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ON TEA, DONUTS AND NON-COMMUTATIVE
GEOMETRY

Igor V. Nikolaev

Abstract. As many will agree, it feels good to complement a cup of tea by a donut or two. This
sweet relationship is also a guiding principle of non-commutative geometry known as Serre Theorem.
We explain the algebra behind this theorem and prove that elliptic curves are complementary to

the so-called non-commutative tori.

1 Introduction

“..n divinity opposites are always reconciled.” —— Walter M. Miller Jr.

An algebraic curve C is the set of points on the affine plane whose coordinates are
zeros of a polynomial in two variables with real or complex coefficients, like the one
shown in Figure 1.

a+b

Figure 1: Affine cubic y? = z(z — 1)(x + 1) with addition law.

The mathematical theory of algebraic curves emerged from the concept of an
analytic surface created by Georg Friedrich Bernhard Riemann (1826-1866). These
are called Riemann surfaces and are nothing but algebraic curves over the field
C. The proper mathematical language — algebraic geometry — is the result of an
inspiration and the hard work of Julius Wilhelm Richard Dedekind (1831-1916),
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Heinrich Martin Weber (1842-1913), David Hilbert (1862-1943), Wolfgang Krull
(1899-1971), Oscar Zariski (1899-1986), Alexander Grothendieck (1928-2014) and
Jean-Pierre Serre (born 1926) among others.

The C-valued polynomial functions defined on the curve C' can be added and
multiplied pointwise. This makes the totality of such functions into a ring, say, A.
Since multiplication of complex numbers is commutative, A is a commutative ring.
As an algebraic object, it is dual to the geometric object C. In particular, C' can
recovered up to isomorphism from A and vice versa. In simple terms, this is the
duality between systems of algebraic equations and their solutions.

Instead of the ring A itself, it is often useful to work with modules over A;
the latter is a powerful tool of modern algebra synonymous with representations
of the ring A. Moreover, according to Maurice Auslander (1926-1994), one should
study morphisms between modules rather than modules themselves [1]. Here we
are talking about the category of modules, i.e. the collection of all modules and all
morphisms between them. (In other words, instead of the individual modules over
A we shall study their “sociology”, i.e. relationships between modules over A.) We
shall write Mod (A) to denote a category of finitely generated graded modules over
A factored by a category of modules of finite length. In geometric terms, the role of
modules is played by the so-called sheaves on the curve C. Likewise, we are looking
at the category Coh (C) of coherent sheaves on C, i.e. a class of sheaves having
particularly nice properties related to the geometry of C'. Now the duality between
curve C and algebra A is a special case of the famous Serre Theorem [6] saying that
the two categories are equivalent:

Coh (C) =2 Mod (A). (1.1)

The careful reader may notice that Mod (A) is well-defined for all rings — commutative
or not. For instance, consider the non-commutative ring Ma(A) of two-by-two
matrices over A. It is a trivia to verify that Mod (M2(A)) = Mod (A) are equivalent
categories, yet the ring Ms(A) is not isomorphic to A. (Notice that A is the center
of the ring Ms(A).) Rings whose module categories are equivalent are said to be
Morita equivalent.

In 1982 Evgeny Konstantinovich Sklyanin (born 1955) was busy with a difficult
problem of quantum physics [8], when he discovered a remarkable non-commutative
ring S(a, 3,7) with the following property, see Section 4. If one calculates the right
hand side of (1.1) for the S(«, 3,7), then it will be equivalent to the left hand side of
(1.1) calculated for an elliptic curve; by such we understand a subset £ of complex
projective plane CP? given by the Legendre cubic:

y?z = x(x — 2)(x — \z2), AeC—{0;1}. (1.2)

Moreover, the ring S(«, /3, ) gives rise to an automorphism o : £ — £ [8]. Sklyanin’s
example hints, that at least some parts of algebraic geometry can be recast in terms
of non-commutative algebra; but what such a generalization is good for?
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Long time ago, Yuri Ivanovich Manin (born 1937) and his student Andrei Borisovich
Verevkin (born 1964) suggested that in the future all algebraic geometry will be
non-commutative; the classical case corresponds to an “abelianization” of the latter
[10]. No strict description of such a process for rings exists, but for groups one can
think of the abelianized fundamental group of a knot or a manifold; the latter is
still a valuable topological invariant — the first homology — yet it cannot distinguish
between knots or manifolds nearly as good as the fundamental group does. This
simple observation points to advantages of non-commutative geometry.

In this note we demonstrate an equivalence between the category of elliptic curves
and the category of so-called non-commutative tori; the latter is closely related (but
not identical) to the category of Sklyanin algebras, see Section 4. We explore an
application to the rank problem for elliptic curves, see Section 5.

2 Elliptic curves on breakfast

An imaginative reader may argue that the affine cubic in Figure 1 reminds a part of
a tea pot; what will be the donut in this case? (The situation is sketched in Figure 2
by the artistically impaired author.) We show in Section 4 that the algebraic dual of
€ (the “donut”) corresponds to a non-commutative torus to be defined below. But
first, let us recall some standard facts.

-
OQ + @ = breakfast

tea pot donut

Figure 2: Mathematical breakfast.

An elliptic curve £ is a subset of CP? given by equation (1.2). There exist two
more equivalent definitions of £.

(1) The curve &£ can be defined as the intersection of two quadric surfaces in
complex projective space CP3:

2 2 2 2 _
{u +vitw 424 = 0, (2.1)

Av? + Buw? + 22 = 0,

where A and B are some complex constants and (u,v,w,z) € CP3. (Unlike the
Legendre form (1.2), this representation of £ is not unique.) The system of equations
(2.1) is called the Jacobi form of £.
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C C/L.

/ quotient
1 map

\d

Figure 3: Complex torus C/L.

(2) The analytic form of £ is given by a complez torus, i.e. a surface of genus 1
whose local charts are patched together by a complex analytic map. The latter is
simply the quotient space C/L,, where L, := Z + Zr is a lattice and 7 € H := {z =
x4+ iy € C| y > 0} is called the complex modulus, see Figure 3.

There exists a one-to-one correspondence & — C/L, given by a meromorphic

p-function:
1 1 1
weL,—{0}

The lattice L, is connected to the so-called Weierstrass normal form of € in CP?:
vz = da® — goaz® — g323, (2.3)

where go = 60 ZweLT_{O} ﬁ and g3 = 140 EweLT_{O} ﬁ In turn, the Weierstrass

normal form (2.3) is linked to the Legendre cubic (1.2) by the formulas g2 = ()\23_7%
and g3 = 2%()\ + 1)(2A%2 — 5X + 2). Thus, it is possible to recover £& — up to an
isomorphism — from L.; we shall denote by & the elliptic curve corresponding to

the complex torus of modulus 7.

Remark 1. It is easy to see, that each automorphism o : £, — &£, is given by a
shift of lattice L in the complex plane C and vice versa; thus points p € C/L; are
bijective with the automorphisms of ;. In particular, points of finite order on &;
correspond to finite order automorphisms of £;.

Notice that L, can be written in a new basis {w1,w2}, where wa = a7 + b and
wy = c¢T + d for some a, b, c,d € Z, such that ad — bc = 1. Normalization 7 := % of
basis {w1,w2} to a standard basis {1, 7'} implies that £, and &, are isomorphic, if
and only if:

for some matrix <z 2) € SLy(Z). (2.4)

, ar+b
7—*
cTt+d

An elliptic curve &; is said to have complex multiplication (CM) if there is a
complex number « ¢ Z such that aL; C L,. Applying multiplication by « to
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1€ L;, we have a € L., i.e., a = a + br for some a,b € Z. Applying multiplication
by a to 7 € L;, we have (a + br)T = ¢+ d7 for some ¢,d € Z. Since T is not a real
number and the ratio (c+ d7)(a + br)~! is uniquely determined, ¢ + d7 cannot be a
real multiple of a + b7. Thus a + b7 and ¢+ d7, viewed as vectors of the real vectors
space C, are linearly independent, and therefore ad — bec # 0. Rewriting the above

equality as a quadratic equation, b72 4 (a — d)7 — ¢ = 0, we have 7 = (d—a)27j:b V_D,
where D = —(a — d)? — 4ac. Since 7 is not a real number, we must have D > 0,

which tells us that 7 (and hence a = a + br) belongs to the imaginary quadratic
field Q(v/—D). In particular, not every elliptic curve admits complex multiplication.
Conversely, if 7 € Q(v/—D) then &, has CM; thus one gets a necessary and sufficient
condition for complex multiplication.

No surprise, that complex multiplication is used to construct extensions of the
imaginary quadratic fields with abelian Galois group, thus providing a powerful link
between complex analysis and number theory [7]. Perhaps that is why David Hilbert
counted complex multiplication as not only the most beautiful part of mathematics
but also of entire science.

3 A non-commutative donut

The product of complex numbers a and b is commutative, i.e. ab = ba. Such a
property cannot be taken for granted, since more than often ab # ba. (For instance,
putting on a sock a then a rollerblade shoe b feels better than the other way around.)
Below we consider a non-commutative algebra related to elliptic curves.

A C*-algebra A is an algebra over C with a norm a + ||a|| and an involution a
a*,a € A, such that A is complete with respect to the norm, and such that ||ab|| <
|la|| ||b]| and ||a*a|| = ||a||* for every a,b € A. We assume that our algebra A has
a unit. Such algebras provide an axiomatic way to describe rings of bounded linear
operators acting on a Hilbert space. These rings appear in the works of John von
Neumann (1903-1957) and his former student Francis Joseph Murray (1911-1996)
on quantum physics. Axioms for C*-algebras were introduced by Israel Moiseevich
Gelfand (1913-2009). The usage of C*-algebras in non-commutative geometry was
pioneered by Alain Connes (born 1947).

A C*-algebra is called universal if for any other C*-algebra with the same number
of generators satisfying the same relations, there is a unique unital C*-morphism
from the former to the latter. (For C*-algebras, the universal problem does not
always have a solution, but it does have a solution for a class of C*-algebras which
we introduce below.) An element u € A is called a unitary, if u=! = u*.

Definition 2. ([5]) By a non-commutative torus one understands the universal
C*-algebra Ay generated by unitaries u and v satisfying the commutation relation

vu = e2™uv for a real constant 6.
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Remark 3. If one denotes x1 = u,xo = u*,x3 = v,x4 = v* and if e is the unit,
then the relations for Ag take the form:

r3xr1 = 62”9331:153,
T1Ty =€ = Taxy, (3.1)
T3T4 — € = T4T3,

with the involution x] = x2 and x5 = x4.

Different 4y may have equivalent module categories. It was shown by Marc
Aristide Rieffel (born 1937) and others, that Ay and Ay are Morita equivalent if
and only if:

o ad +b
cd+d

for some matrix (CCL 2) € SLy(Z). (3.2)

Denote by Ag a pseudo-lattice, i.e. the abelian subgroup Z + Z0 of R. The Ay is
said to have real multiplication (RM), if there exists a real number « ¢ Z such that
alg € Ay. The above inclusion implies, that 6, a € (@(\/ﬁ) for some integer D > 0.
Indeed, from aAy C Ag one gets o = a + b8 and af = ¢+ df for some a,b,c,d € Z,
such that ad — bc # 0. Eliminating « in the above two equations, one obtains a
quadratic equation b§? + (a — d)f — ¢ = 0 with discriminant D. Because 0 is a real
root, one gets D > 0. Since @ = a + bf, one has an inclusion « € @(\/5); whence
the name.

4 Bon appetit!

The reader noticed already something unusual: transformations (2.4) and (3.2) are
given by the same formulas! This observation hints at a possibility of equivalence of
the corresponding categories as shown on the diagram below.

(‘:7- 57_/: at+b
cT+d
F F
./49 Aa/i ab+b
T cO+d

Example 4. If D > 1 is a square-free integer, then F maps & with CM by \/—D
to Ag with RM by \/D; in other words, F(S\/j) = A\/E' Note however, that no

explicit formula for the function 8 = 0(7) exists in general.
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The category of elliptic curves consists of all £, and all algebraic (or holomorphic)
maps between &;. Likewise, the category of non-commutative tori consists of all Ay
and all C*-algebra homomorphisms between Ay ® K, where K is the C*-algebra of
all compact operators on an infinite dimensional separable Hilbert space. (It was
proved by Marc Aristide Rieffel, that Ay ® K and Ay ® K are isomorphic if and only
if Ap and Ay are Morita equivalent.) The following result tells us, that indeed we
have an equivalence of two categories.

Theorem 5. There exists a covariant functor, F', from the category of elliptic curves
to the category of noncommutative tori, such that F(E;) and F (&) are isomorphic
if and only if £ and &, are related by an algebraic map.

Proof. A Sklyanin algebra S(«, 3,7) is a C-algebra on four generators x1, ...,z and
six quadratic relations:

(X120 — o1 = ar3Ty + Th2T3),
T1T2 + T2T1 = T3T4 — T4T3,
r1x3 — w371 = [(T422 + T224), (4.1)
T1X3 + X3T] = = T4Xo — Toly, ’
r1xg — 2421 = Y(@ows + x372),

\ T1%4 + X421 = = TaX3 — T3T2,

where a+ +v+afy =0, see [9], p. 260. It was proved that the center of S(«, 3,7)
gives rise to a family of elliptic curves & in the Jacobi form:

w? w422 = 0, 49
vt + w422 = 0 (42)

and an automorphism o : & — & [9]. As explained in Section 1, Coh (&;) =
Mod (S(«a, ,7)) for each admissible values of «, f and v even though S(a, 3,7) is
a non-commutative ring.

Remark 6. The algebra S(«, 3,v) depends on two variables, say, o and (. It is not
hard to see that o corresponds to T and 3 corresponds to o, since the automorphism
o s given by the shift 0 — p, where p is a point of ;.

Let & be any elliptic curve, but choose o : & — &; to be of order 4. Following
([2], Remark 1), in this case system (4.1) can be brought to the skew-symmetric

form:

. .
6271'19

r3r1 =W S XT3,
zawy = ¥ rony,
—2mif
rar1 = pe Tx12y, 43
_ 1 _—27mif ( . )
T3T2 =€ T2T3,
X221 = 12,
423 = T34,
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where 6 = Arg (q) and p = |g| for some complex number ¢ € C — {0}. (In general,
any Sklyanin algebra on n generators can be brought to the skew-symmetric form if
and only if 0™ = Id [2], Remark 1.) We shall denote by S(g) the Sklyanin algebra
given by relations (4.3).

The reader can verify that relations (4.3) are invariant under the involution
x} = x9 and % = x4. This involution turns S(g¢) into an algebra with involution.

To continue our proof, we need the following result.

Lemma 7. The system of relations (3.1) for any free C-algebra on generators

T1,...,T4 18 equivalent to the following system of relations:

( 3T — 627ri9:61$3,
zary =2y,
x4my = e 0piay,

_ ,—2mif (44)

Tr3xo = ¢€ rox3,
o1 = T1T2 = €,
T4T3 — X3T4 = €.

Proof. Notice that the first and the two last equations of (3.1) and (4.4) coincide;
we shall proceed stepwise for the rest of the equations.

Let us prove that relations (3.1) imply xz4 = 20y 21 Tt follows from zq29 =
e and x3xy = e that xixoxsry = e. Since zi1x9 = xoxy we can bring the last
equation to the form zoziz324 = e and multiply both sides by e2™: thus one gets
x2(62m'9x1x3)$4 = e2™9  But ezmexlwg = x3x1 and our main equation takes the form
Toxsrimy = €270 Multiplying both sides on the left by x1 we have xizox3x124 =
e2mif 2mify, . Again, one can multiply both
2”%4@; since x4x3 = e, one gets

Tr1; since x1x2 = e one has x3x114 = €
sides on the left by x, and thus get z4x3x124 = €

the required identity z1x4 = e2m0 gy 1.

2760 —2mif

The proof of the remaining relations x4xs = e*™xoxy and x3xe =€ Tox3 is
similar and is left to the reader. Lemma 7 is proved. O

Returning to the proof of Theorem 5, we see that relations (4.3) are equivalent
to (4.4) plus the following relations:

1
T1To = T3xy = —e. (4.5)
i

(The reader is encouraged to verify the equivalence.) We shall call (4.5) the scaling
of the unit relations and denote by I, the two-sided ideal in S(q) generated by such
relations. It is easy to see that the scaling of the unit relations are invariant under
the involution ] = z2 and 23§ = x4. Thus involution on algebra S(q) extends to
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an involution on the quotient algebra S(¢)/I,. In view of the above, one gets an
isomorphism of rings with involution:

Ao = S(g)/1L,. (4.6)

Theorem 5 is proved. O

5 Know your rank

Why is Theorem 5 useful? Roughly, it says that instead of the elliptic curves &, one
can study the corresponding non-commutative tori Ag; in particular, geometry of &,
can be recast in terms of Ay. It is interesting, for instance, to compare isomorphism
invariants of £, with invariants of the algebra Ay. Below we relate one such invariant,
the rank of £, to the so-called arithmetic complexity of Ay.

Recall that if a, b € &, are two points, then their sum is defined as shown in Figure
1. (The addition is simpler on the complex torus C/L,, where the sum is just the
image of sum of complex numbers a,b € C under projection C — C/L;.) Since each
point has an additive inverse and there is a zero point, the set of all points of £, has
the structure of an abelian group. If & is defined over Q (or a finite extension of
Q), then the Mordell-Weil theorem says that the subgroup of points with rational
coordinates is a finitely generated abelian group. The number of generators in this
group is called the rank of £, and is denoted by rk(&;). Little is known about ranks
in general, except for the famous Birch and Swinnerton-Dyer Conjecture comparing
rk(E;) to the order at zero of the Hasse-Weil L-function attached to &;.

Let &; be an elliptic curve with CM by v/—D for some square-free positive integer
D. In this case rk(&;) is finite, because &; can be defined over Q or a finite extension
of Q; moreover, the integer rk(&;) is an isomorphism invariant of £; modulo a finite
number of twists. The ranks of CM elliptic curves were calculated by Benedict
Hyman Gross (born 1950) in his doctoral thesis [3]; they are reproduced in the table
below for some primes D = 3 mod 4.

Let Ay be a non-commutative torus with RM by v/ D, see Example 4 for motivation.
By an arithmetic complexity ¢(Ag) of Ag one understands the number of independent
entries in the period (ay,...,a,) of continued fraction of v/D. Roughly speaking,
the ¢(Ay) is equal to the Krull dimension of an irreducible component of the affine
variety defined by a diophantine equation obtained from the continued fraction of
V/D; we refer the interested reader to [4, Section 6.2.1] for the details. It follows
from the standard properties of continued fractions and formula (3.2), that ¢(Ay)
is an invariant of the Morita equivalence of Ag. The values of ¢(Ay) for primes
D = 3 mod 4 are given in the table below.
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continued
D =3 mod 4 | rk(&;) fraction of v D c(Ap)
3 1 [1,1,2] 2
7 0 2,1,1,1,4 1
11 1 3,3, 6] 2
19 1 [4,2,1,3,1,2,9] 2
23 0 [4,1,3,1,9] 1
31 0 5.1,1,3,5,3,1, L, 10] 1
43 1 |[6,1,1,3,1,5,1,3,1,1,12] | 2
A7 0 6,1,5,1,12] 1
59 1 7.1,2,7,2,1, 14] 2
67 1 [[8,52,1,1,7,1,1,2,5,16) | 2
71 0 8,2,2,1,7,1,2,2,10] 1
79 0 [§,1,7,1,16] 1
83 1 [9,9, 18] 2

The reader may notice a correlation between rk(E;) and ¢(Ag), which can be
generalized as follows.

Theorem 8. ([4]) If D = 3 mod 4 is a prime number, then
rk(&:) = c¢(Ag) — 1. (5.1)

Perhaps (5.1) is a reconciliation formula for the “opposites” £; and Ay meant by
the science fiction writer Walter M. Miller Jr. (1923-1996). The reader is to judge!
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