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LOCAL CONVERGENCE OF SOME

HIGH ORDER ITERATIVE METHODS
BASED ON THE DECOMPOSITION TECHNIQUE
USING ONLY THE FIRST DERIVATIVE

loannis K. Argyros and Santhosh George

Abstract. We present a local convergence analysis of some high order iterative methods
based on the decomposition technique using only the first derivative for solving equations in order
to approximate a solution of a nonlinear equation. In earlier studies hypotheses on the higher
derivatives are used. Thus by using only first derivative, we extended the applicability of these
methods. Moreover the radius of convergence and computable error bounds on the distances

involved are also given in this study. Numerical examples are also presented in this study.

1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution z* of equation

F(z) =0, (1.1)

where F': D C R — R is a nonlinear function, D is a convex subset of R. Newton-like
methods are used for finding solutions of equation (1.1). These methods are usually
studied based on: semi-local and local convergence. The semi-local convergence
matter is, based on the information around an initial point, to give conditions
ensuring the convergence of the iterative procedure; while the local one is, based
on the information around a solution, to find estimates of the radii of convergence
balls [1, 2, 24, 25, 32].

Third order methods such as Euler’s, Halley’s, super Halley’s, Chebyshev’s
require the evaluation of the second derivative F” at each step, which in general
is very expensive. That is why many authors have used higher order multipoint
methods [24]. In this paper we study the one-step method defined for each n =
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Tpp1 = xp— (F'(z) 4+ F(xn)H(z,)) ' F(2n), (1.2)
the two-step method

Yn = xn— (F'(zn)+ F(mn)H(xn))_lF(xn)7 (1.3)
Tyl = Yn — (F/(yn) + F(yn)H(yn))_lF(yn)

and the three-step method

Yn = Tn— (F/(xn) + F(xn)H(ﬁn))_lF(xn)v
Zn = Yn — (Fl(yn) + F(yn)H(yn))ilF(yn)a (1'4)
Tp+l = Zp — (F/(Zn) + F(zn)H(Zn))ilF(zn)’

where zg is an initial point, G : D C R — R a continuously differentiable function
and H(x) = ((’;((;)) for each + € D. These methods were derived by using the
decomposition technique in [16, 21, 22, 30, 31]. The efficiency, motivation and
the advantages of these methods over other competing methods were also given
in these references. Several choices of the function G are possible. For example,
let G(x) = e~**. Then, methods (1.2)—(1.4) reduce, respectively to the first-step

method

Tpp1 = Tp— (F'(z,) — aF(z,))  F(z,), (1.5)
the two-step method

Yn = xp— (F'(x) — aF(z,)) L F (), (1.6)
Tnt+l = Yn — (F,(yn) - aF(yn))_lF(yn)

and the three-step method

Yn = Tn— (F/(xn) - O‘F(ﬂjn))_lF(xn)a
Zn = Yn — (F/(yn) - aF(yn )71F(yn)’ (17)

For o« = 0, method (1.5) merges to method obtained by He et al. [16] and Noor et
al. [30]. If @ = 0 in method (1.6), then we obtain the method given by Traub in [32]
and Noor et al. in [21, 22, 31]. Moreover, if we set o« = 0, %, 1, we obtain other well
known methods for solving nonlinear equations [3, 4, 24, 25, 32]. Furthermore, many
other choices of function G are possible. Notice that in particular the eight order
of convergence for method (1.4) was shown using Taylor expansions and hypotheses
reaching up to the sixth derivative of function F' and the third derivative of function
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G although only the first derivative of these functions appear in the definition of these
methods. Therefore, these hypotheses restrict the applicability of these methods.
As a motivational example, let us define function f on D = [—%, %] by

lna? 4+ 2% —2t, x#£0

J(@) = { 0, =0
Choose z* = 1. We have that

f'(x) = 32%Inz®+ bzt — 423 + 222,
f"(x) = 6xlnz®+ 202> — 1222 + 10z
() = 6lna?+ 60z — 24z + 22.

Then, obviously, function f” is unbounded on D.

Notice that, in-particular there is a plethora of iterative methods for approximating
solutions of nonlinear equations defined on R [24]. These results show that if the
initial point z¢ is sufficiently close to the solution z*, then the sequence {x,}
converges to x*. But how close to the solution z* the initial guess zg should be?
These local results give no information on the radius of the convergence ball for the
corresponding method. We address this question for methods (1.2)-(1.4) in Section
2. The same technique can be used to other methods.

In the present paper we only use hypotheses on the first derivative. This way we
expand the applicability of method (1.2).

The rest of the paper is organized as follows: Section 2 contains the local
convergence analysis of methods (1.2)-(1.4). The numerical examples are presented
in the concluding Section 3.

2 Local convergence analysis

We present the local convergence analysis of method (1.4), method (1.3) and method
(1.2) in this section, respectively. Let Lo > 0, L > 0 and M > 1 be given parameters
and let ¢ : [0, Lio] — (0,+00) be a continuous and nondecreasing function. It is
convenient for the local convergence analysis of the method (1.4) that follows to

define some functions and parameters. Define function p; and h,, on the interval
[0, 7-) by

pi(t) = (Lo+ M),

and
hp, () = p1(t) — 1.
Then, we have that hp, (0) = —1 < 0 and hpl(LiO) = LMO@(%O) > 0. It follows from

the intermediate value theorem that function h,, has zeros in the interval (0, L%))
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Denote by r,, the smallest such zero. Define functions g; and h; on the interval
[07 rpl) by

B 1 2M?p(t)
gl(t) - 2(1 — L(]t) [1 + 1 _pl(t)]tv

and
hi(t) = g1(t) —

Then, we have that h1(0) = —1 < 0 and hy(t) — +o0 as t — r,, . Denote by r; the
smallest zero of functions hq on the interval (0,7,,). Define functlons p2 and hp, on
the interval [0,7,,) by

p2(t) = [Lo + Mo(t)]g1 ()L,
and

hpy (t) = pa(t) — 1.

Then, we get that hyp,(0) = —1 < 0 and hy,(t) — +o0 as t — r,,. Denote by rp, the
smallest zero of functions hy, on the interval (0,7,,). Define func‘mons g2 and hp on

the interval [0,7,,) by
M

g2(t) = (1+ T ()

)g1(t)

and
ha(t) = ga(t) — 1.

We get that h2(0) = —1 < 0 and ha(t) — +oo as t — r,,. Denote by r the smallest
zero of function hy on the interval (0,7, ). Define functlons p3 and hy, on the interval

[Ovrpz) by
p3(t) = [Lo + Mo(t)]g2(t)t

hps(t) = ps(t) — 1.

Then, we have that hp,(0) = —1 < 0 and hyp,(t) — +o0 as t — r,,. Denote by 7,
the smallest zero of functions hy, on the interval (0, 7,,). Finally, define functions g3
and h3z on the interval [0, r,,) by

and

hs(t) = g3(t) —
Then, we have that h3(0) = —1 < 0 and h3(t) — 400 as t — r,,,. Denote by 73 the
smallest zero of functions hz on the interval (0,7p,). Set

r = min{ry, ra,r3}. (2.1)
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Then, we have that for each t € [0, )

0<pi(t) <1 (2.2)

0<q1(t) <1, (2.3)

0<pat) <1, (2.4)

0<go(t) <1, (2.5)

0<ps(t) <1 (2.6)
and

0 < g3(t) <1. (2.7)

Denote by U(v, p),U(v, p) the open and closed balls in R, respectively, with center
v € R and of radius p > 0. Next,we present the local convergence analysis of method
(1.4) using the preceding notation.

THEOREM 2.1. Let F,G : D C R — R be a differentiable function. Suppose

that there exist x* € D parameters Ly > 0,L > 0,M > 1 and a continuous and

nondecreasing function ¢ : [0, Lio) such that for H(z) = GG/((;”)) and for each x, y € D

F(z*) =0, F'(z*) £ 0, G(z) #£0, if F+#G, (2.8)
|F' (@) (F' () = F'(2%))| < Loz — a*|, (2.9)
|F' () (F' () = F'(y))| < Lz =y, (2.10)
|F' ()" F'(z)| < M, (2.11)
|H(z)| < o(|lz — z7) (2.12)
and
U(z*,r) C D, (2.13)

where the radius v is given by (2.1). Then, the sequence {x,} generated for xoy €
U(x*,r) — {z*} by method (1.4) is well defined, remains in U(x*,r) for each n =

0,1,2,--- and converges to xz*. Moreover, the following estimates hold
lyn — 2| < g1(|zn, — ™)) |2n — 2*| < |2 — 2% <71, (2.14)
|zn — 2¥| < g2(|lzn — 2|) |20 — 2| < |20 — =¥ (2.15)
and
1 — 27| < g3(|on — 7)) |on — 27| < |zn — 27, (2.16)

where the " g" functions are defined above Theorem 2.1. Furthermore, if there exists
T € [r, Llo) such that U(x*,T) C D, then the limit point x* is the only solution of
equation F(z) =0 in U(x*,T).
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Proof. We shall show estimates (2.14)—(2.16) using mathematical induction. Using
(2.1), (2.9) and the hypothesis z¢ € U(z*,r) — {z*} we have that

|F' (%) Y (F'(xg) — F'(2*))| < Lo|zo — 2*| < Lor < 1. (2.17)

It follows from (2.17) and the Banach Lemma on invertible functions [3, 4, 25, 32]
that F'(zo)~! € L(R,R) and

< 1 < 1
- 1—L0]a;0—x*| 1—L0’I”'

|F' (z0) Y F' (%) (2.18)

Next, we shall show that F'(xg) + F(z9)H (z9) # 0. We can write by (2.12) that
1
F(xg) = F(xg) — F(z*) = / F'(x* + 0(zo — 2%)) (zo — 2*)d0. (2.19)
0

Notice that |z* +0(yo —2*) — 2| = Olyo — 2" < r. Hence, 2™ +0(yo —2*) € U(z*, 7).
Then, using (2.11) and (2.19), we get that

1
[F'(@) " F ()] = | /0 F'(a®) ™ F' (2" + 0(wo — o)) (w0 — 27)df)|
< Mlzg — z¥|. (2.20)
In view of (2.1), (2.2), (2.17) and (2.20), we have in turn that
|F/ (%) F (o) — F'(a") + F (o) H (x0)]|
|F' (%) "1 (F ("wo) — F'(a*) 71|
+ (@) TV (o) || H (x0))|

Lolzo — ™[ + M(|zo — «™[) |z — 27|
(Lo + Mg(|zo — 27)) = pr(Jzo — 27]) < 1. (2.21)

IN

It follows from (2.21) that

1

/ -1t %
|(F ($0)+F($O)H(l’0)) F (SL’ )‘ < 1—p1(\1‘0—$*|).

(2.22)

Hence, yo is well defined by the first substep of method (1.4) for n = 0, Using first
substep of method (1.4) for n = 0, (2.1), (2.3), (2.10), (2.18), (2.20) and (2.22) we
obtain from

yo— " = mzog—a* — F/(l‘o)ilF(JUQ)

+F'(20) " (F' (o) + F(x0)H(x0) — F'(20))(F'(20) + F(x0)H (z0)) ' F(0)
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in turn that
lyo — 2*| < [F'(wo) T F! (2%)]
1
x]F’(x*)_l / [F'(z* + 0(xg — %)) — F'(2*)]db]||xo — =]
0

[ (w0) T (27)|| (B (wo) + F (wo) H (w0)) ™ F' ()| F (%) T F (o) || H (o) |

Ll|xg — 2*|? M?p(|zg — x*])|zo — x*]?
= 2(1 = Lolwo —2*]) (1 — Lolzo — 2*)(1 — p1(|lzo — z*|))
= gi1(|lzo — 2™|)|xo — 2¥| < |zo — 2™| < 1, (2.23)

which shows (2.14) for n =0 and yp € U(z*,r). As in (2.22), we show that

1
1 —pa(lwg — z*])°

|(F"(yo) + F(yo) H (w0)) "' F'(27)] < (2.24)
Hence, zg is well defined by the second substep of method (1.4) for n = 0, Using the
second substep of method (1.4) for n = 0, (2.1), (2.5), (2.23) and (2.24) we get in
turn that

20 — 2| < Jyo — 2| + [(F' (o) + F(yo)H (20)) "' F'(z*)||F'(z*) "' F(yo)|
* A4w90'_ x*‘
< lyo—x" |+
o = T (w0 — )
i e
= y — X
1= pa(jzo — z*) "

*

= 1+

g1(|zg — 2*|)|xo — x
1= palfmg — & 70 =7 )

= go(|lzo — x*|)|xo — 2*| < | — 2*| < 1, (2.25)

which shows (2.15) for n = 0 and zp € U(z*,r). As in (2.22) (for zgp = x0), we get

that
1

1 —p3(|lzo — x*])

Hence, x; is well defined by the last substep of method (1.4) for n = 0. Then, using
(2.1), (2.6), (2.7), (2.20) for zo = zp, (2.25) and (2.26) we get in turn that

|(F"(20) + F(z0)H (o)) " F'(a")| <

(2.26)

w1 —a'| < |z —a| +|(F'(z0) + F(z0)H(z0) ' F'(2")
x| ()~ Fao)|

* A4WZO'_ $*|
< zo— x|+ ”
1 —p3(|zo — z*|)
M
= (1+ 20— xF
( 1_p3(,x0_x*‘! |

= g3(|lzo — x*|)|xo — 2| < M|zo — 2*| < r,
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which shows (2.16) for n = 0 and x; € U(z*,r). By simply replacing z9, yo, 20, €1
by Z, Yk, 2k, Tx+1 in the preceding estimates we arrive at estimates (2.14)—(2.16).
Using the estimate |21 — 2*| < |z — 2*| < r, we deduce that zj; € U(z*,r) and
limy oo 21 = 2*. To show the uniqueness part, let QQ = fol F'(y* + 0(z* — y*)do for
some y* € U(z*,T) with F(y*) = 0. Using (2.9) we get that

1
Fa*) Q- F'(e") < / Loly® + 6(z" —y*) — a*|do

IN

1
/ (1 0)|z" — y*|do < %R <1 (227)
0

It follows from (2.27) and the Banach Lemma on invertible functions that @ is
invertible. Finally, from the identity 0 = F(z*) — F(y*) = Q(z* — y*), we deduce
that =* = y*.

g

REMARK 2.2. 1. In view of (2.9) and the estimate

|F'(«) 7 F (@) = |F'(@") " (F (x) = F'(¢%)) + 1
< 14 |F'(a*) Y (F'(z) — F'(z*))] < 1+ Lo|lz — =*
condition (2.11) can be dropped and M can be replaced by
M(t) =1+ Lot
or
M(t)=M =2,
: 1
since t € [0, 7).

2. The results obtained here can be used for operators F' satisfying autonomous
differential equations [3] of the form

where P is a continuous operator. Then, since F'(x*) = P(F(z*)) = P(0),
we can apply the results without actually knowing x*. For example, let F(x) =
e? — 1. Then, we can choose: P(x) =z + 1.

3. It is worth noticing that method (1.2) is not changing when we use the conditions
of Theorem 2.1 instead of the stronger conditions used in [19]. Moreover, we
can compute the computational order of convergence (COC) defined by

() (]
|wn — a¥| |2p—1 — z*|
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or the approrimate computational order of convergence

Tyl — Ty — Ty
Elzln(’ n+1 n|>/ln< | n n 1| >
’$n - $n71| ’$n71 - $n72|
This way we obtain in practice the order of convergence in a way that avoids

the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F.

THEOREM 2.3. Let F;G : D C R — R be a differentiable functions. Suppose
that there exist x* € D parameters Ly > 0,L > 0,M > 1 and a continuous and
nondecreasing functio ¢ : [0, LLO) such that for H(x) = g((gf)) and (2.8)-(2.13) hold.
Then, the sequence {xy} generated for xo € U(z*,r) — {x*} by method (1.3) is well
defined, remains in U(x*,r) for each n =0,1,2,--- and converges to x*. Moreover,
the following estimates hold

Y — 27| < g1(Jzn — 27)|wn — 27| <y — 2™ <, (2.28)

and

[Tny1 — 27| < gollmn — 27)) |20 — 27| < |20 — 27, (2:29)
where the "g" functions are defined above Theorem 2.1. Furthermore, if there exists
T € [r, L%) such that U(x*,T) C D, then the limit point x* is the only solution of
equation F(z) =0 in U(x*,T).

Proof. Simply delete the work for (2.16) in the proof of Theorem 2.1 and define
the radius of convergence r by r = min{ry,r2}.
O

THEOREM 2.4. Let F,G : D C R — R be a differentiable functions. Suppose
that there exist x* € D parameters Lo > 0,L > 0,M > 1 and a continuous and
nondecreasing function ¢ : [0, ) such that for H(x) = G@) ond (2.8)-(2.13) hold.

> Lo - G(x)
Then, the sequence {xy} generated for xo € U(z*,r) — {x*} by method (1.2) is well
defined, remains in U(x*,r) for each n =0,1,2,--- and converges to x*. Moreover,

the following estimate holds
Bt — 2] < g1 (fon — 7)) — 27| < |20 — 2, (2.30)

where the "g" functions are defined above Theorem 2.1. Furthermore, if there exists
T € |[r, L%) such that U(z*,T) C D, then the limit point x* is the only solution of
equation F(z) =0 in U(x*,T).

Proof. Simply delete the work for (2.15) and (2.16) in the proof of Theorem 2.1
and define the radius of convergence r by r = ry.
O
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3 Numerical Examples

We present numerical examples for method (1.4) in this section. We use G(z) =

e, o(t) = |a| and o = 1 in all the examples below.

EXAMPLE 3.1. Let D = [—o00,+00|. Define function f of D by
f(z) = sin(x). (3.1)
Then we have for x* =0 that Lo = L = M = 1. The parameters are
ra = 0.6667, rp, = 0.6667, r1 = 0.3772, r, = 0.4377,
ry = 0.3446, 7, = 0.0591, 75 = 0.3446.
EXAMPLE 3.2. Let D = [—1,1]. Define function f of D by
flx)=¢€"—1. (3.2)
Using (3.2) and x* = 0, we get that Lo = e — 1 < L = M = e. The parameters are
ra = 0.3249, r,, = 0.3679, 1 = 0.1690, r},, = 0.2118,
ro = 0.1326, rp, = 0.0363, r3 = 0.0007.

EXAMPLE 3.3. Returning back to the motivational example at the introduction
of this study, we have Ly = L = 146.6629073, M = 101.5578008. The parameters
are

ra = 0.0045, r,, = 0.0068, r1 = 0.0060, rp,, = 0.0061,

rg = 0.0001, rp, = 0.00001, r3 = 0.00001.
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