Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 11 (2016), 157 -- 167

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A GENERAL UNIQUE COMMON FIXED POINT THEOREM FOR HYBRID PAIRS OF MAPPINGS IN METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

Abstract. The purpose of this paper is to prove a general unique common fixed point theorem for two pairs of mappings using Hausdorff - Pompeiu metric, which generalizes, in a correct form, the results from [8] and extends Theorem 2.4 [9], for occasionally (f,F) - weakly commuting mappings.

2010 Mathematics Subject Classification: 54H25; 47H10
Keywords: Fixed point; hybrid pairs; occasionally commuting; implicit relation.

Full text

References

  1. M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, Math. Anal. Appl. 270 (1) (2002), 181 -- 188. MR2970439. Zbl 1008.54030.

  2. M. Aamri and D. El Moutawakil, Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-Notes 3 (2003), 156 -- 162. MR1995645. Zbl 1056.47036.

  3. M. Abbas and B. E. Rhoades, Common fixed point theorem for hybrid pair of occasionally weakly compatible mappings satisfying generalized contractive condition of integral type, Fixed Point Theory Appl. 2007 (2007), Article ID 054101, 9 pages. MR2346334. Zbl 1153.54307.

  4. M. Abbas and B. E. Rhoades, Common fixed point theorems for hybrid pair of occasionally weakly compatible mappings, Pan Amer. Math. J. 18 (1) (2008), 55 -- 62. MR2388596. Zbl 1225.54018.

  5. J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4 (17) (2008), 269 -- 285. MR2483851. Zbl 1180.54052.

  6. A. Aliouche and V. Popa, General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J. Math. 39 (1) (2009), 89 -- 109. MR2598624. Zbl 1265.54149.

  7. M. Al - Thagafi and N. Shahzad, Generalized I - nonexpansive selfmaps and invariant approximations, Acta Math. Sin., Engl. Ser. 24 (5) (2008), 867 -- 876. MR2403120. Zbl 1175.41026.

  8. H. Bouhadjera, A. Djoudi and B. Fisher, A unique common fixed point theorem for occasionally weakly compatible maps, Surv. Math.Appl. 3 (2008), 177 -- 180. MR2462035. Zbl 1175.54050.

  9. H. Bouhadjera and C. Godet Thobie, Common fixed point theorems for occasionally weakly compatible maps, Acta Math. Vietnam. 36 (1) (2011), 1 -- 17. MR2815212. Zbl 1231.54019.

  10. M. Imdad, S. Chauhan, A. H. Soliman and M. A. Ahmed, Hybrid fixed point theorems in symmetric spaces via common limit range property, Demonstr. Math. 47 (4) (2014), 949 -- 962. MR3290397. Zbl 1304.54081.

  11. M. Imdad, S. Chauhan and P. Kumam, Fixed point theorems for two hybrid pairs of non-self mappings under joint common limit range property in metric spaces, J. Nonlinear Convex Anal. 16 (2) (2015),  243 -- 254. MR3315939. Zbl 1311.54043.

  12. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (4) (1986), 771 -- 779. MR870534.

  13. G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (2) (1996), 199 -- 215. MR1426938. Zbl 0928.54043.

  14. G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227 -- 238. MR1617919. Zbl 0904.54034.

  15. T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (1) (2004), 235 -- 241. MR2091284. Zbl 1064.54055.

  16. R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (2) (1994), 436 -- 440. MR1305460. Zbl 0830.54031.

  17. R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1) (1998), 251 -- 258. MR1646430. Zbl 0916.54027.

  18. R. P. Pant, R -- weak commutativity and common fixed points, Soochow J. Math. 25 (1) (1999), 37 -- 42. MR1681606. Zbl 0918.54038.

  19. V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. Ştiinţ., Ser. Mat., Univ. Bacău 7 (1997), 127 -- 134. MR1721711. Zbl 0967.54041.

  20. V. Popa, A general fixed point theorem for weakly commuting multi - valued mappings, An. Univ. Galaţi, Ser. Mat. Fiz. Mec. Teor., Fasc. II 16 (22) (1999), 19 -- 22.

  21. V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstr. Math. 33 (1) (2000), 159 -- 164. MR1759876. Zbl 0947.54023.

  22. V. Popa, Coincidence and fixed point theorems for noncontinuous hybrid contractions, Nonlinear Anal. Forum 7 (2) (2002), 153 -- 158. MR1959875. Zbl 1027.47059.

  23. V. Popa, A general coincidence and common fixed point theorem for two hybrid pairs of mappings, Demonstr. Math. 47 (4) (2014), 971 -- 978. MR3290399. Zbl 1304.54099.

  24. K. R. Rao, G. Ravi Babu and V. C. C. Raju, A common fixed point theorem for two pairs of occasionally weakly semi-compatible hybrid mappings under an implicit relation, Math. Sci. Q. J. 1 (3) (2007), 1 -- 6. Zbl 1206.54057.

  25. M. Samreen, T. Kamran and E. Karapinar, Fixed point theorems for hybrid mappings, The Scientific World Journal 2015 (2015), Article ID 938165, 7 pages.

  26. N. Shahzad and T. Kamran, Coincidence points and R - weakly commuting maps, Arch. Math., Brno 37 (3) (2001), 179 -- 183. Zbl 1090.54040.

  27. P. K. Shrivastava, N. P. S. Bawa, P. Singh, Coincidence theorems for hybrid contraction II, Soochow J. Math. 26 (4) (2000), 411 -- 421. MR1807434. Zbl 0982.54034.

  28. S. L. Singh and S. N. Mishra, Coincidence and fixed points for nonself hybrid contractions, J. Math. Anal. Appl. 256 (2) (2001), 486 -- 497. Zbl 0985.47046.

  29. W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. 2011 (2011), Article ID 637958, 14 pages. MR2822403. Zbl 1226.54061.



Valeriu Popa
"Vasile Alecsandri" University of Bacău,
157 Calea Mărăşeşti, Bacău, 600115, Romania,
e-mail: vpopa@ub.ro


Alina-Mihaela Patriciu
"Dunărea de Jos" University of Galaţi,
Faculty of Sciences and Environment, Department of Mathematics and Computer Sciences,
111 Domnească Street, Galaţi, 800201, Romania,
e-mail: Alina.Patriciu@ugal.ro

http://www.utgjiu.ro/math/sma