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APPROXIMATE SOLUTIONS TO SOME
NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

FOR GROWTH PHENOMENA

Youness Mir

Abstract. Growth modeling is widely used in various fields of applied sciences. The purpose

of this paper is to develop analytic approximate solutions to some non-autonomous differential

equations used in population growth. We demonstrate that when the carrying capacity varies with

time, an approximate solution to the generalized Turner model and any particular case of this model

can be produced without expensive calculations.

1 Introduction

Gompertz and logistic models are among the oldest used models in modeling pheno-
mena arising from real situations. These two models have been introduced in the
18th and 19th century by the mathematicians Gompertz to study the human mortal-
ity [2], and by Verhulst to study the population dynamics [34]. Over the last century,
these models have been extensively used in other fields of applied sciences to describe
and improve the possible relationship between independent and dependent variables
in terms of mathematical equations, like in ecology, in sociology, in medicine and
other domains of natural and human sciences [8, 9, 11, 21, 23, 24, 31]. Numerous
extensions of these models have been developed by mathematicians over the last
decades. These extensions have extended the use of mathematical modeling in other
fields of applied science. Examples of the most commonly cited ones include, Turner
model [13], Richards model [25], Michaelis-Menten (or Morgan) model [20], Bridge
(or Weibul) model and several other models [12, 14, 35]. The differential equation
that characterizes these standard (growth) models is given in [15, 32, 33, 35]. The
main feature of these (standard) growth models is that they have a limit of growth
which is presented by an horizontal asymptote. Also, called carrying capacity, this
limit, often denoted by k, can be caused by many environmental factors as space,
food, or resources [1, 17, 18, 20, 29, 30, 35].

2010 Mathematics Subject Classification: 91B62; 65L05; 34C60.
Keywords: Growth models; Turner model; generalized logistic model; carrying capacity.

******************************************************************************
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v10/v10.html
http://www.utgjiu.ro/math/sma


140 Youness Mir

Models with unchanging carrying capacity k could no longer be used in general to
model phenomena arising from life sciences research. According to several authors,
many environmental and social factors prevent the carrying capacity to stay unchan-
ged over time [1, 3, 4, 5, 16, 17]. Hence, models with time dependent carrying
capacity is of growing need. To overcome this problem a wide varieties of models were
provided to model phenomena with varying [27, 28, 29], logistically varying [16, 17],
increasing [6, 7, 18, 19] or sinusoidally varying [4, 5, 26] carrying capacity. Several
other researchers have devoted much attention to the development of existence and
uniqueness theories concerning these models, especially logistic model [3, 4, 5, 10, 22].

Whereas the number of models proposed in the literature keeps growing, the an-
alytic solutions of their corresponding differential equations is not often possible and
requires the use of expensive calculations and techniques of numerical analysis. This
leads to a growing need to approximate the solutions to their differential equations.
The main purpose of this study is to overlap this problem. We provide approximate
solutions to Turner differential equation [13] and Richards equation [25] with time
dependent coefficients. Some examples are presented to highlight the efficiency and
the importance of these approximate solutions for the linear and sinusoidal carrying
capacity cases.

2 Preliminaries

Let I = [t0,+∞) be an interval such that t0 ∈ R and consider the differential
equation

ẋ(t) =
dx(t)

dt
=

1

α
β(t)x(t)1+α(1−γ)

[
1−

(
x(t)

k(t)

)α]γ
, t ≥ t0, (2.1)

where β(t), k(t) : I → (0,+∞) are two continuous functions, and α and γ are two
real numbers such that 1 ≤ γ < 1 + 1/α. In addition, suppose that the initial
conditions satisfy the following inequality

0 < x(t0) = x0 ≤ k0 = k(t0). (2.2)

In the case where k(t) = k doesn’t depend on time, and under the assumption
(2.2), the differential equation (2.1), can be solved explicitly using basic integration
techniques. Indeed, by performing the transformation

z : x(t) → z(t) = kαx−α(t)− 1, (2.3)

(2.1) reduces to
ż(t) = −αkα(1−γ)β(t)z(t)γ , t ≥ t0 (2.4)

which has the unique solution given by

z(t) =

(
z1−γ
0 + (γ − 1)kα(1−γ)

∫ t

t0

β(τ)dτ

)1/(1−γ)

, (2.5)

******************************************************************************
Surveys in Mathematics and its Applications 10 (2015), 139 – 148

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v10/v10.html
http://www.utgjiu.ro/math/sma


Approximate solutions to some differential equations 141

with z0 = kαx−α
0 − 1.

By substituting (2.3) in (2.5), the solution of (2.1) is then given by

x(t) =
k(

1 +
(
z1−γ
0 + (γ − 1)kα(1−γ)

∫ t
t0
β(τ)dτ

)1/(1−γ)
)1/α

. (2.6)

We have

• If x0 = k, we have z0 = 0. From (2.4) and (2.5) it follows that z(t) = 0. By
(2.3) we get x(t) = k for all t ≥ t0;

• If x0 < k, we have

lim
t→+∞

x(t) = x∞ =

{
k, if

∫ t
+∞ β(τ)dτ = +∞,

k1, if
∫ t
+∞ β(τ)dτ = l.

In this case, we have x(t) < x∞ for all t ∈ I, and the solution x(t) grows up
to x∞.

When k(t) depends on time, (2.1) has no constant solution and the solution (2.4)
may crosses k(t). It happens when ẋ(t) = 0. We have the following Lemma.

Lemma 1. Let k : I → (0,+∞) be continuous and increasing function, and let x(t)
be the solution of (2.1) passing through the point (t0, x0). If for some t∗ ∈ I we have
x(t∗) = k(t∗), then x(t) ≤ k(t) for all t ≥ t∗.

Proof. Let t∗ ∈ I such that x(t∗) = k(t∗). By (2.1) it follows that x(t∗) = 0. As
x(t) is increasing on I, by continuity of x(t) and k(t) it follows that x(t) = k(t) for
all t > t∗ provided that x(t) = k(t) = 0. If we define s as the maximum of the set
of abscissa t such that x(t) = k(t), we have that x(t) = k(t) for all t∗ ≤ t ≤ s and
x(t) < k(t) for all t > s. Which complete the proof.

An analytic solution of (2.1) is not often possible when the carrying capacity k(t) is
time dependent function. It requires the use of expensive calculations and techniques
of numerical analysis. In the following sections we give an approximate solution of
(2.1) which can be produced without numerical calculations of the solution of (2.1).

3 Main results

When k(t) is a time dependent function, the solution to (2.1) is often not possible
and requires the use of expensive calculations and techniques of numerical analysis.
The following result produce an approximate solution to (2.1) and any particular
case of it.

******************************************************************************
Surveys in Mathematics and its Applications 10 (2015), 139 – 148

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v10/v10.html
http://www.utgjiu.ro/math/sma


142 Youness Mir

Theorem 2. Let rϕ : R× I → (0,+∞) be defined such that

lim
ϵ→+∞

∫ ϵ

t0

rϕ(τ, t)dτ = +∞, (3.1)

and
lim

ϵ→+∞
rϕ(ϵ, t) = β(t). (3.2)

For small values of ϵ, the function ϕ(ϵ, t) given by

ϕ(ϵ, t) =
k(t)(

1 +

(
(γ − 1)

∫ ϵ
t0
rϕ(τ, t)dτkα(1−γ)(t) +

((
k(t)
x(t)

)α
− 1
)(1−γ)

)1/(1−γ)
)1/α

(3.3)
is an approximate function of the solution x(t) of (2.1).

Proof. By (3.1) and (3.2), it follows that

lim
ϵ→+∞

ϕ(ϵ, t) = k(t), (3.4)

and
lim
ϵ→0

ϕ(ϵ, t) = β(t). (3.5)

In addition, we have

dϕ(ϵ, t)

dϵ
=

1

α
rϕ(ϵ, t)ϕ(ϵ, t)

1+α(1−γ)

[
1−

(
ϕ(ϵ, t)

k(t)

)α]γ
. (3.6)

In (3.6), by taking the limit ϵ → 0 and by using (3.5) we get

lim
ϵ→0

dϕ(ϵ, t)

dϵ
=

dx(t)

dt
. (3.7)

Thus, for small values of ϵ, the function ϕ(ϵ, t) given in (3.3) coincide with the so-
lution x(t) of (2.1). Thus, the proof is completed.

In the following section we provide some examples of situations for which equation
(2.1) admits an analytic solution.

4 Richards model

If we set γ = 1, (2.1) reduces to the well-known logistic generalized differential
equation given by

ẋ(t) =
dx(t)

dt
=

1

α
β(t)x(t)

(
1−

(
x(t)

k(t)

)α)
, t ≥ t0, (4.1)
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which has the explicit solution given by

x(t) =
1

e
−(1/α)

∫ t
t0

β(τ)dτ
(∫ t

t0

β(τ)
k(τ)α e

∫ τ
t0

β(u)du
dτ + 1/xα0

)1/α . (4.2)

From (3.3), an approximate solution to this model is given by

ϕ(ϵ, t) =
k(t)(

1 +
((

k(t)
x(t)

)α
− 1
)
e
−

∫ ϵ
t0

rϕ(τ,t)dτ
)1/α (4.3)

In the case when α → 0, (4.1) reduces to the generalized Gompertz differential
equation given by

ẋ(t) =
dx(t)

dt
= −β(t)x(t) ln

(
x(t)

k(t)

)
, t ≥ t0, (4.4)

which has the following solution

x(t) = exp

(
ln(x0)e

−
∫ t
t0

β(τ)dτ
+ e

−
∫ t
t0

β(τ)dτ
∫ t

t0

β(τ)e
∫ τ
t0

β(u)du
ln(k(τ))dτ

)
(4.5)

From (3.3) , an approximate solution to this model is given by

ϕ(ϵ, t) = k(t)exp
(
− ln(k(t)/x(t))e

−
∫ ϵ
t0

rϕ(τ,t)dτ
)
. (4.6)

In the case when α = 1 , (4.1) reduces to the logistic differential equation given by

ẋ(t) = β(t)x(t)

[
1−

(
x(t)

k(t)

)]
, t ≥ t0, (4.7)

which has the explicit solution given by

x(t) =
1

e
−

∫ t
t0

β(τ)dτ
(∫ t

t0

β(τ)
k(τ)e

∫ τ
t0

β(u)du
dτ + 1/x0

) . (4.8)

From (3.3), an approximate solution to this model is given by

ϕ(ϵ, t) =
k(t)(

1 +
((

k(t)
x(t)

)
− 1
)
r
−

∫ ϵ
t0

rϕ(τ,t)dτ
) (4.9)

In addition, it will be noted that (4.1) and (4.2) reduces to the linear model when
α = −1.
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5 Numerical examples

In this section, we consider the differential equation (2.1). For a given initial condi-
tion x0 = x(t0) > 0, we assume the following explicit forms for β(t),

β(t) = β0 > 0.

In this particular case, if we set rϕ(ϵ, t) = β0, the assumptions (3.1) and (3.2) of
Theorem 2. are satisfied and an approximate solution follows immediately from
(3.3).

5.1 Linear carrying capacity

Suppose that k(t) = k0(1+ ct), where k0 and c are positive real numbers. A graphic
representation of the numerical solution x(t) of (2.1), the approximate solution ϕ(ϵ, t)
given in (3.3), and the carrying capacity k(t) are given in Figure 1.

(a) α = 3, and γ = 1.25 (b) α = 1.5, and γ = 1

Figure 1: Representation of the solution x(t) (red solid line), the approximate solu-
tion ϕ(ϵ, t) (green dot-dashed line), and the carrying capacity k(t) (blue long-dashed
line) for x0 = 10, k0 = 2000, c = 0.025, ϵ = 0.05 and β0 = 0.25.

5.2 Sinusoidal carrying capacity

Suppose that k(t) = k0 + k1 sin(ωt), where k0, k1 and ω = 2π/T are positive real
numbers and define respectively the mean, the amplitude and the frequency of os-
cillation. A graphic representation of the numerical solution x(t) of (2.1), the ap-
proximate solution ϕ(ϵ, t) given in (3.3), and the carrying capacity k(t) are given in
Figure 2.
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(a) α = 1.5, and γ = 1 (b) α = 1, and γ = 1

Figure 2: Representation of the solution x(t) (red solid line), the approximate solu-
tion ϕ(ϵ, t) (green dot-dashed line), and the carrying capacity k(t) (blue long-dashed
line) for x0 = 10, k0 = 200, k1 = 20, T = 20, ϵ = 0.05 and β0 = 0.5.
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