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ON THE REGULARITY OF MILD SOLUTIONS TO
COMPLETE HIGHER ORDER DIFFERENTIAL

EQUATIONS ON BANACH SPACES.

Nezam Iraniparast and Lan Nguyen

Abstract. For the complete higher order differential equation u(n)(t) = Σn−1
k=0Aku

(k)(t) + f(t),

t ∈ R (*) on a Banach space E, we give a new definition of mild solutions of (*). We then characterize

the regular admissibility of a translation invariant subspace M of BUC(R,E) with respect to (*)

in terms of solvability of the operator equation Σn−1
j=0AjXDj −XDn = C. As application, almost

periodicity of mild solutions of (*) is proved.

1 Introduction

The qualitative theory of mild solutions on the whole line of the higher order
differential equation of the type

u(n)(t) = Au(t) + f(t), t ∈ R, (1.1)

where A is a closed operator on a Banach space E, has been of increasing interest
in the last years. When n = 1 and A generates a C0-semigroup (T (t))t≥0, the mild
solution of (1.1) is defined by

u(t) = T (t− s)u(s) +

∫ t

s
T (t− τ)f(τ)dτ, t ≥ s. (1.2)

The qualitative behavior of mild solution (1.2) has been intensively investigated by
many authors (see [7], [10], [13], [15], [19] and references therein). For second order
differential equation u′′(t) = Au(t) + f(t) with A generating a cosine family (C(t)),
the mild solution is then defined by

u(t) = C(t− s)u(s) + S(t− s)u′(s) +

∫ t

s
S(t− τ)f(τ)dτ, (1.3)
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where S(t) is the associate sine family. The qualitative properties of mild solution
(1.3) have also been studied in [8] and [14].

Recently, Schweiker [17] and Vu Quoc Phong and Schuler [16] studied the first and
second order differential equation, in which A is not the generator of a C0-semigroup
or of a cosine family (respectively). Although their definitions of mild solutions are
different, they all showed that the existence and uniqueness of mild solutions, which
belong to a subspace M of BUC(R,E), are closely related to the solvability of the
operator equation of the form

AX −XD = −δ0.

Here D is the differential operator in M and δ0 is the Dirac operator defined by
δ0(f) := f(0). On the other hand, in [2], Arendt and Batty showed the existence
of almost periodic mild solution to second order differential equation by using a
different way. In [9], the author extended those results to higher order differential
equations.

Unfortunately, for the complete higher differential equations, we have had little
consideration about the regularity of their solutions, mainly because of the complexity
of the structure of the equation. In this paper, we consider the complete higher order
differential equation

u(n)(t) =

n−1∑
j=0

Aju
(j)(t) + f(t) t ∈ R, (1.4)

where Aj (j = 0, 1, 2, ..., n−1) are closed linear operator on E and f is a continuous
function fromR to E. First, we give a general definition of mild solutions to Equation
(1.4). Several properties of mild solutions are then shown in Section 2.

In Section 3, we consider the conditions for the solvability of operator equation of
the form B(

∑n−1
j=0 BjXDj)−XDn = C, in particular, when D = D, the differential

operator on a function space, and C = −δ0.

Assume that M is a closed, translation-invariant subspace of BUC(R,E). M is
said to be regularly admissible with respect to Equation (1.4), if for every f ∈ M
Equation (1.4) has a unique mild solution u ∈ M. In Section 4 we characterize the
regular admissibility of M in terms of solvability of an operator equation. Namely,
we show that the subspace M is regularly admissible if and only if the operator
equation of the form

B(

n−1∑
j=0

BjXDj)−XDn = C (1.5)

has a unique bounded solution. As applications, in Section 5, we prove that if
σ(S) ∩ iR is countable and F is a certain subspace of BUC(R), then each bounded
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Mild Solutions To Complete Higher Order Differential Equations 25

mild solution of the complete higher order equation is in F whenever f is in F .
The results in this paper extend some well-known results on the regularity of mild
solutions of the first and higher order differential equations to the complete higher
order differential equations.

Throughout this paper, if not otherwise indicated, we assume that Ai, i = 0, 1, ..., n−
1, are linear, closed operators on E with the domains Dom(Ai) that satisfy the
following condition:

Condition F: There exists a linear, closed operator B on E with Dom(B) ⊂
∩n−1
j=0 Dom (Aj) and 0 ∈ ϱ(B) such that B commutes with Ai and B−1Aj can be

extended to bounded operators Bj = B−1Aj = AjB
−1 for all j = 0, 1, ..., n− 1.

Examples:

1) Consider the higher order differential equation

u(n)(t) = Au(t) + f(t) t ∈ R,

where A is a closed operator on E with ϱ(A) ̸= ∅. Then A satisfies Condition
F with B = (λ−A), where λ ∈ ϱ(A).

2) Consider the complete, higher order differential equation:

n∏
j=1

(
d

dt
−Aj)u(t) = f(t), t ∈ R,

where Aj are closed, commuting operators on E with ϱ(Aj) ̸= ∅. Then Aj

satisfy Condition F with B =
∏n

j=1(λj −Aj), where λj ∈ ϱ(Aj).

For a number λ ∈ C, define the operator

S(λ) = λn −B(

n−1∑
j=0

λjBj) (1.6)

with Dom(S(λ)) = {x ∈ E :
∑n−1

j=0 λ
jBjx ∈ Dom(B)}. It is not hard to see that

∩n−1
j=0Dom(Aj) ⊆ Dom(S(λ)). Moreover, since B−1S(λ) is bounded, S(λ) is a closed

operator. Finally, we define the resolvent ϱ(S) and spectrum σ(S) by

ϱ(S) := {λ ∈ C : S(λ) is injective and surjective}

and
σ(S) = C\ϱ(S).

Since S(λ) is a closed operator, if λ ∈ ϱ(S), then S(λ)−1 is a bounded operator on
E.
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26 N. Iraniparast and L. Nguyen

2 Mild Solutions of Higher Order Differential Equations

Let us fix some notations. By C(n)(R,E) we denote the space of continuous functions
with continuous derivatives u′, u′′, ...u(n), and by BUC(R,E) the space of bounded,
uniformly continuous functions with values in E. The operator I : C(R,E) →
C(R,E) is defined by If(t) :=

∫ t
0 f(s)ds and Inf := I(In−1f).

(1) A continuous function u is called a mild solution of (1.4), if
∑n−1

j=0 BjI
n−ju(t) ∈

Dom(B) and there exist n vectors x0, x1, ..., xn−1 in E such that

u(t) =
n−1∑
j=0

tj

j!
xj +B

( n−1∑
j=0

BjI
n−ju(t)

)
+ Inf(t) (2.1)

for all t ∈ R.

(2) A function u is a classical solution of (1.4), if u is n-times continuously differentiable,∑n−1
j=0 Bju

(j)u(t) ∈ Dom(B) and

u(n)(t) = B

( n−1∑
j=0

Bju
(j)(t)

)
+ f(t)

holds for t ∈ R.

Remark. Using the standard arguments, we can prove the following.

(i) If a mild solution u is m times differentiable, 0 ≤ m < n , then xj , j =
0, 1, ...,m, are the initial values, i.e. u(0) = x0, u

′(0) = x1, ..., and u(m)(0) =
xm.

(ii) If u is a bounded mild solution of (1.4) corresponding to a bounded inhomogeneity
f and φ ∈ L1(R,E) then u∗φ is a mild solution of (1.4) corresponding to f ∗φ.

The mild solution to (1.4) defined by (2.1) is really an extension of classical solution
in the sense that every classical solution is a mild solution and conversely, if a mild
solution is n-times continuously differentiable, then it is a classical solution. That
statement is actually contained in the following lemma. For the sake of simplicity,
for j < 0, we denote Iju(t) := u(j)(t), the jth derivative of u(t).

Lemma 1. Suppose m is an integer with 0 ≤ m ≤ n and u is a mild solution of (1.4),
which is m-times continuously differentiable. Then

∑n−1
j=0 BjI

n−m−ju(t) ∈ D(B)
and

u(m)(t) =

n−1∑
j=m

tj−m

(j −m)!
xj +B

( n−1∑
j=0

BjI
n−m−ju(t)

)
+ In−mf(t). (2.2)
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Mild Solutions To Complete Higher Order Differential Equations 27

Proof. If m = 0, then (2.2) coincides with (2.1). We prove for m = 1: Let

v(t) := B

( n−1∑
j=0

BjI
n−ju(t)

)
= u(t)−

n−1∑
j=0

tj

j!
xj − Inf(t).

By the assumptions, v is continuously differentiable and

v′(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t).

Let h > 0 and put

vh :=
n−1∑
j=0

Bj
1

h

∫ t+h

t
In−j−1u(s)ds.

Then vh →
∑n−1

j=0 Bj(I
n−j−1u)(t) for h → 0 and

Bvh = B

n−1∑
j=0

1

h

(
Bj

∫ t+h

0
In−j−1u(s)ds−Bj

∫ t

0
In−j−1u(s)ds

)

=
1

h

(
B

n−1∑
j=0

Bj

∫ t+h

0
In−j−1u(s)ds−B

n−1∑
j=0

Bj

∫ t

0
In−j−1u(s)ds

)

=
1

h

(
B

n−1∑
j=0

BjI
n−ju(t+ h)−B

n−1∑
j=0

BjI
n−ju(t)

)
=

1

h
(v(t+ h)− v(t))

→ v′(t) for h → 0.

Since B is a closed operator, we obtain that
∑n−1

j=0 Bj(I
n−j−1u)(t) ∈ Dom(B) and

B

n−1∑
j=0

Bj(I
n−j−1u)(t) = u′(t)−

n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t),

from which (2.2) with m = 1 follows. If m > 1, we obtain (2.2) by repeating the
above process (m− 1) times.

In particular, if f is continuous and the mild solution u is n-times continuously
differentiable, i.e. m = n, then (2.2) becomes u(n)(t) = B

∑n−1
j=0 BjI

−ju(t) + f(t) =

B
∑n−1

j=0 Bju
(j)(t) + f(t), which means u is a classical solution of (1.4).

In the following we consider the spectrum of mild solutions of (1.4). For a bounded
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28 N. Iraniparast and L. Nguyen

function u ∈ L∞(R,E), the Carleman transform û of u is defined by

û(λ) =

⎧⎨⎩
∫∞
0 e−λtu(t)dt for Re(λ) > 0,

−
∫ 0
−∞ e−λtu(t)dt for Re(λ) < 0.

(2.3)

It is clear that û is holomorphic on C \ iR. A point µ ∈ R is called a regular point
if û has a holomorphic extension in a neighborhood of iµ. The spectrum of u is
defined as follows

sp(u) = {µ ∈ R : µ is not regular }

The following lemma, whose proof can be found in [5] and [11], will be needed later.

Lemma 2. Let f , g be in BUC(R,E) and φ ∈ L1(R,E). Then

(i) sp(f) is closed and sp(f) = ∅ if and only if f = 0.

(ii) sp(f + g) ⊂ sp(f) ∪ sp(g).

(iii) sp(f ∗ φ) ⊂ sp(f) ∩ suppFφ, where Fφ is the Fourier transform of φ.

The following lemma is the first result about the spectrum of mild solutions of
Equation (1.4).

Lemma 3. Let f be a bounded continuous function and u be a bounded mild solution
of (1.4). Then

sp(u) ⊆ {µ ∈ R : iµ ∈ σ(S)} ∪ sp(f).

Proof. It is easy to see that Îu(λ) = 1
λ û(λ), hence Înu(λ) = 1

λn û(λ). Taking
the Carleman transform on both sides of Equation (2.1) we have

û(λ) = Q(λ) +B

n−1∑
j=0

Bj
û(λ)

λn−j
+

1

λn
f̂(λ), (2.4)

where Q(λ) =
∫∞
0 e−λt(

n−1∑
i=0

ti

i!xi)dt =
n−1∑
i=0

xi/λ
i+1. From Equation (2.4) we obtain

S(λ)û(λ) = λnQ(λ) + f̂(λ)

for λ /∈ iR. Hence, for λ ∈ ϱ(S) we have

û(λ) = S(λ)−1(λnQ(λ) + f̂(λ)).

Note that λnQ(λ) is a holomorphic function in terms of λ. It implies that if µ ∈
R is a regular point of f and iµ ∈ ϱ(S), then û has holomorphic extension in a
neighborhood of iµ, i.e. µ is a regular point of u. Hence we have the inclusive
relation.

From Lemma 3, it directly follows.
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Corollary 4. If u is a bounded mild solution of (1.4) corresponding to f ≡ 0, then
sp(u) ⊆ {µ ∈ R : iµ ∈ σ(S)}

Corollary 5. If iR ∩ σ(S) = ∅, then (1.4) has at most one bounded mild solution.

3 The Equation B(
∑n−1

j=0 BjXDj)−XDn = C

Let A and D be closed, generally unbounded, linear operators on Banach spaces
E and F , respectively, and let C be a bounded linear operator from E to F . A
bounded operator X : F → E is called a solution of the operator equation

AX −XD = C (3.1)

if for every f ∈ Dom(D) we have Xf ∈ Dom(A) and AXf −XDf = Cf . Equation
(3.1) has been considered by many authors. It was first studied intensively for
bounded operators by Daleckii and Krein [3], Rosenblum [12]. For unbounded case,
(3.1) was studied in [1], [18], [15] and [19] when A and D are generators of C0-
semigroups, and in [13], [16] when A and D are closed operators.

In this paper, we consider operator equation of the form:

B(
n−1∑
j=0

BjXDj)−XDn = C, (3.2)

where B and Bj , j = 0, 1, ..., n−1, are defined as in Section 1, D is a closed operator
on F and C is a bounded operator from F to E. A bounded operator X : F → E is
called a solution of (3.2) if for each f ∈ Dom(Dn),

∑n−1
j=0 BjXDjf ∈ Dom(B) and

B(
n−1∑
j=0

BjXDjf)−XDnf = Cf.

We have the following results:

Theorem 6. (i) If Equation (3.2) has a unique bounded solution for every bounded
operator C, then σ(S) ∩ σ(D) = ∅;

(ii) Suppose D is a bounded operator such that σ(S) ∩ σ(D) = ∅. Then for every
bounded operator C, Equation (3.2) has a unique bounded solution X, which
has the following integral form

X = − 1

2πi

∫
Γ
S(λ)−1C(λ−D)−1dλ, (3.3)

where Γ is a closed Cauchy contour around σ(D) and separated from σ(S).
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Proof. The proof of (i) is almost the same as the one of ([1, Theorem 2.1]) with
little modification, and is omitted.

To prove (ii), let X be as in (3.3). We will show that X is a solution of (3.2).
Let j be a positive integer and suppose f ∈ Dom(Dj), then by a straightforward
calculation we have

(λ−D)−1Djf = λj(λ−D)−1f −
j−1∑
k=0

λkDj−k−1f. (3.4)

Using definition (3.3) and identity (3.4) we obtain

n−1∑
j=0

BjXDjf = − 1

2πi

n−1∑
j=0

∫
Γ
BjS(λ)

−1C(λ−D)−1Djfdλ)

= − 1

2πi

n−1∑
j=0

∫
Γ
BjS(λ)

−1C

(
λj(λ−D)−1f −

j−1∑
k=0

λkDj−k−1f

)
dλ

= − 1

2πi

n−1∑
j=0

(∫
Γ
λjBjS(λ)

−1C(λ−D)−1fdλ−
j−1∑
k=0

∫
Γ
λkBjS(λ)

−1CDj−k−1fdλ

)

= − 1

2πi

∫
Γ

( n−1∑
j=0

λjBjS(λ)
−1C(λ−D)−1f

)
dλ.

Here we used the fact that
∫
Γ λ

kS(λ)−1CDj−k−1fdλ = 0 for all k = 0, 1, ..., j. Note
that

S(λ)−1C(λ−D)−1f ∈ Dom(S(λ)).

Thus,
n−1∑
j=0

λjBjS(λ)
−1C(λ−D)−1f ∈ Dom(B)

and

B(

n−1∑
j=0

λjBjS(λ)
−1C(λ−D)−1f) =

= λnS(λ)−1C(λ−D)−1f − S(λ)S(λ)−1C(λ−D)−1f

= λnS(λ)−1C(λ−D)−1f − C(λ−D)−1f

is a holomorphic function on C\(σ(D) ∪ σ(S)). Hence,

n−1∑
j=0

BjXDjf = − 1

2πi

∫
Γ

( n−1∑
j=0

λjBjS(λ)
−1C(λ−D)−1f

)
dλ ∈ Dom(B)
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and

B(

n−1∑
j=0

BjXDjf)−XDnf =

= − 1

2πi
B

∫
Γ

( n−1∑
j=0

λjBjS(λ)
−1C(λ−D)−1f

)
dλ+

+
1

2πi

∫
Γ
S(λ)−1C(λ−D)−1Dnfdλ

= − 1

2πi

∫
Γ

(
λnS(λ)−1C(λ−D)−1f − C(λ−D)−1f

)
dλ+

+

(
1

2πi

∫
Γ
λnS(λ)−1C(λ−D)−1fdλ− 1

2πi

n−1∑
k=0

∫
Γ
λkS(λ)−1CDn−k−1fdλ

)

= C
1

2πi

∫
Γ
(λ−D)−1fdλ− 1

2πi

n−1∑
k=0

∫
Γ
λkS(λ)−1CDn−k−1fdλ

)
= Cf,

which shows X is an operator solution to (3.2). Here we used again identity (3.4)
and the fact that

∫
Γ λ

kS(λ)−1CDn−k−1fdλ = 0 for all k = 0, 1, ..., n.

To show the uniqueness of the solution of (3.2), it suffices to show X = 0, where X
is a solution of

B(
n−1∑
j=0

BjXDj)−XDn = 0. (3.5)

Let X be a solution of (3.5). Then for each f ∈ Dom(Dn) we have

XDn(λ−D)−1f = B(

n−1∑
j=0

BjXDj(λ−D)−1f). (3.6)

Thus,

S(λ)−1XDn(λ−D)−1f = S(λ)−1B(
n−1∑
j=0

BjXDj(λ−D)−1f)

= B(

n−1∑
j=0

BjS(λ)
−1XDj(λ−D)−1f). (3.7)

Using Identity (3.4) for the left side and the definition of operator B on the right
side of (3.7) we have

S(λ)−1XDn(λ−D)−1f = λnS(λ)−1X(λ−D)−1f −
n−1∑
k=0

λkS(λ)−1XDn−k−1f (3.8)
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and

B

( n−1∑
j=0

λjBjS(λ)
−1X(λ−D)−1f

)
= λnS(λ)−1X(λ−D)−1f −X(λ−D)−1f.(3.9)

Comparing (3.8) and (3.9) we have

X(λ−D)−1f =

n−1∑
k=0

λkS(λ)−1XDn−k−1f,

which implies

Xf =
1

2πi

∫
Γ
X(λ−D)−1fdλ =

1

2πi

n−1∑
k=0

∫
Γ
λkS(λ)−1XDn−k−1f = 0

and hence, X = 0.

We now consider the situation when F = M, a translation-invariant subspace of
BUC(R,E) and D = DM, the restriction of D to M, where D := d

dt on BUC(R,E).
It is well-known that σ(D) = iR and σ(Dn) = (σ(D))n.

Let now Mk := {f ∈ M : sp(f) ⊂ [−ik, ik]}, k ≥ 1. Then the following properties
hold (See [4, 16]).

i) Mk are translation invariant subspaces,
ii) Mk ⊂ Mk+1 and
iii) DMk

is bounded.

We first need the following Lemma, which was proved in [16].

Lemma 7. σ(DM) = ∪∞
k=1σ(DMk

).

We now return to the operator equation

B(

n−1∑
j=0

BjXDj
M)−XDn

M = δM0 , (3.10)

where δM0 is the restriction of the Dirac operator to M. Assume that

σ(S) ∩ σ(DM) = ∅. (3.11)

Then it implies σ(S) ∩ σ(DMk
) = ∅. By Theorem 6, the operator equation

B(

n−1∑
j=0

BjXDj
Mk

)−XDn
Mk

= δMk
0
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has a unique bounded solution Xk, which is of the form

Xk = − 1

2πi

∫
Γk

S(λ)−1δMk
0 (λ−DMk

)−1dλ, (3.12)

where Γk is a contour around σ(DMk
) and separated from σ(S). Moreover, the

uniqueness of Xk implies
Xk|Ml = Xl for l < k.

We state a result about the existence and uniqueness of bounded solutions of Equation
(3.10), whose proof is similar to that of [16, Theorem 7], and is omitted.

Theorem 8. Assume that condition (3.11) holds. Then the operator equation (3.10)
has a unique bounded solution if and only if

supk≥1∥Xk∥ < ∞, (3.13)

where Xk are defined by (3.12).

4 Regularly Admissible Subspaces

Let M be a closed, translation-invariant subspace of BUC(R,E), which is regularly
admissible with respect to Equation (1.4). Define the linear operator G on M such
that for each f ∈ M, Gf is the unique mild solution of (1.4) in M, we have the
following.

Lemma 9. G is a linear, bounded operator on M.

Proof. We define operator G̃ : M → M⊗ En by

G̃f := (u, x0, x1, ..., xn−1),

where u is the unique mild solution of (1.4) corresponding to f and x0, x1, ..., xn−1

are contained in the mild solution

u(t) =

n−1∑
j=0

ti

j!
xi +B

( n−1∑
j=0

BjI
n−ju(t)

)
+ Inf(t). (4.1)

We will show that G̃ is closed. Let (fk)k∈N ⊆ M with lim
k→∞

fk = f and G̃fk =

(uk, x0,k, ..., xn−1,k) with lim
k→∞

G̃fk = (u, x0, ..., xn−1), i.e. lim
k→∞

uk = u and lim
k→∞

xj,k =

xj for j = 0, 1, ..., n− 1. Then we have

lim
k→∞

n−1∑
j=0

BjI
n−juk(t) =

n−1∑
j=0

BjI
n−ju(t)
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and, by Equation (4.1),

B

( n−1∑
j=0

BjI
n−juk(t)

)
= uk(t)−

n−1∑
0

ti

i!
xi,k − Infk(t)

→ u(t)−
n−1∑
0

ti

i!
xk − Inf(t) as k → ∞.

Since B is closed we obtain that
∑n−1

j=0 BjI
n−ju(t) ∈ Dom(B) and

B

( n−1∑
j=0

BjI
n−ju(t)

)
= u(t)−

n−1∑
0

ti

i!
xi − Inf(t).

That means G̃f = (u, x0, x1, ..., xn−1). Hence, G̃ is closed and thus bounded. Since
G = G̃ ◦ P , where P : M⊗ En → M is the projection on the first coordinate and
thus a bounded operator, we obtain that G is bounded.

In the next lemma, we show that G, which is called the solution operator of (1.4),
commutes with the translation operator and hence, commutes with the differential
operator.

Lemma 10. Let M be a regularly admissible subspace of BUC(R,E). Then the
following statements hold.

i) Sh ·G = G · Sh, where Sh is the translation operator on M.
ii) DM ·G = G · DM

Proof. i) Let u = Gf be the unique mild solution of equation (1.4). We show
that Shu is the unique mild solution to (1.4) corresponding to Shf . By a short
calculation we can show that

(ImShu)(t) = (Imu)(t+ h) +
m−1∑
j=0

tjvj ,

where vj are certain vectors in E depending only on h. Hence,

B

( n−1∑
j=0

BjI
n−j(Shu)(t)

)
+ InShf(t)

= B(

n−1∑
j=0

BjI
n−ju(t+ h)) + Inf(t+ h) +

m−1∑
j=0

tjwj

= u(t+ h)−
m−1∑
j=0

(t+ h)j

j!
xj +

m−1∑
j=0

tjwj

= Shu(t)−
m−1∑
j=0

tj

j!
yj .
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Hence,

Shu(t) =
m−1∑
j=0

tj

j!
yj +B

( n−1∑
j=0

BjI
n−j(Shu)(t)

)
+ InShf(t),

where wi and yj , i = 0, 1, ..., n− 1 are certain vectors in E. This means Shu is the
mild solution to (1.4) corresponding to Shf . Part ii) is a direct consequence of i),
and the lemma is proved

Corollary 11. Let M be a regularly admissible subspace of BUC(R,E) and u be
the unique mild solution corresponding to f in M. If f ∈ Cn(R,E) such that
f ′, f ′′, ..., f (n) belong to M, then u is a classical solution.

In what follows, we assume that M satisfies the following additional assumption:

For all C ∈ L(M, E) and f ∈ M, (4.2)

the function Φ(t) = CS(t)f belongs to M.

The regular admissibility of a space is closely related to the solvability of operator
equation (3.1). That relation was shown for higher order differential equations (see
[15] when n = 1, [17] and [16] when n = 2 and [9] for any n). The following theorem
is a generalization of those results to complete, higher order differential equations.

Theorem 12. Let M be a translation invariant subspace in BUC(R,E), which
satisfies the assumption (4.2). Then the following are equivalent.

(i) M is a regularly admissible.

(ii) The operator equation

B(

n−1∑
j=0

BjXDj
M)−XDn

M = −δ0 (4.3)

has a unique solution.

(iii) For every bounded operator C : M → E, the operator equation

B(
n−1∑
j=0

BjXDj
M)−XDn

M = C (4.4)

has a unique solution.

Proof (i) ⇒ (ii). Let G : M → M be the bounded operator defined by Gf = u
where u is the unique mild solution in M. We define the operator X : M ↦→ E by

Xf := (Gf)(0).
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Then X is a bounded operator. Let now f ∈ Dn
M. By Corollary 11, u = Gf is a

classical solution of (1.4), i.e.,

(Gf)(n)(t) = B

( n−1∑
j=0

Bj(Gf)(j)(t)

)
+ f(t). (4.5)

By Lemma 10, (Gf)(j) = Gf (j) for j = 1, 2, ..., n. Using that fact when we put t = 0
in (4.5), we have

B

( n−1∑
j=0

BjXDj
M

)
f −XDn

Mf = −δ0f

for any f ∈ Dn
M, i.e. X is a bounded solution of (4.3).

To show the uniqueness, we assume that X0 is a solution of Equation (4.3). Then
for every f ∈ Dn

M, the function u ∈ M, defined by u(t) = X0S(t)f , is a classical
solution of Equation (1.4). Indeed,

u(n)(t) = X0DnS(t)f

= B

( n−1∑
j=0

BjX0Dj
MS(t)f

)
+ δ0S(t)f

= B

( n−1∑
j=0

Bju
(j)(t)

)
+ f(t)

for all t ∈ R. We will show that u(·) = X0S(·)f is a mild solution of (1.4) for every
f ∈ M. To this end, let f ∈ M. Then there exists a sequence (fk)k∈N ⊂ D(Dn

M)
with limk→∞fk = f . Using the boundedness of operator G we have

Gf = limk→∞Gfk = limk→∞X0S(·)fk = X0S(·)f,

i.e., u(·) = X0S(·)f is a mild solution of (1.4).
Assume now that X1 and X2 are two solutions of (4.3). Then, for every f ∈

M, u = (X1 − X2)S(·)f is a mild solution of the higher order equation u(n)(t) =
B(

∑n−1
j=0 Bju

(j)(t)). By the uniqueness of the mild solution we have u ≡ 0, which
implies X1 = X2.

(ii) ⇒ (iii) Let X be the unique solution of (4.3). Define the bounded operator
Y : M → E by Y f := Xf , where f(·) := −CS(·)f . Let f ∈ Dom(Dn

M), then

(Dn
Mf)(t) = −CS(t)Dn

Mf = Dn
Mf(t). Hence, we have

B(

n−1∑
j=0

BjYDj
Mf) = B(

n−1∑
j=0

BjXDj
Mf̃)

= XDn
Mf̃ + δ0f̃

= YDn
Mf + Cf,
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i.e. Y is a bounded solution of (4.4).
The uniqueness of the solution of (4.4) follows directly from the uniqueness of

the solution of the homogeneous equation B(
∑n−1

j=0 BjXDj
M) − XDn

M = 0, which,
again, follows from the uniqueness of the solution of (4.3).

(iii) ⇒ (i) We have shown above that, if X is a bounded solution of (4.3), then
u(t) := XS(t)f is a mild solution of the higher order equation (1.4). It remains to
show that this solution is unique. In order to do it, assume that u is a mild solution
of the homogeneous equation u(n)(t) =

∑n−1
j=0 Aju

(j)(t), t ∈ R. By Corollary 4,
isp(u) ⊆ σ(S). On the other hand, since u ∈ M, isp(u) ⊆ σ(DM). By Theorem
6(i), it follows from (iii) that σ(S) ∩ σ(DM) = ∅. Hence, sp(u) = ∅, so u ≡ 0 and
the theorem is proved.

5 Applications

We now apply the results in Chapter 4 to some function spaces. Let G be a closed,
translation-invariant subspace of BUC(R,E). We define the reduced spectrum of a
function u ∈ G by

spG(u) : = {λ ∈ R : ∀ϵ > 0 ∃g ∈ L1(R) such that

suppFg ⊂ (λ− ϵ, λ+ ϵ) and g ∗ u ̸∈ G}.

Theorem 13. Assume that f ∈ G and u is a mild solution of (1.4). Then we have

spG(u) ⊂ iR ∩ σ(S).

Proof. Let λ be any point in R such that iλ ∈ ϱ(S), we will show that λ ̸∈
spG(u), i.e., there is ϵ > 0 such that for every φ ∈ L1(R) with suppFφ ⊂ (λ−ϵ, λ+ϵ),
the function φ ∗ u is in G.
Since ϱ(S) is an open set, there exists ϵ > 0 such that iΓ ⊂ ϱ(S), where Γ =
[λ − ϵ, λ + ϵ]. Let M = X(Γ) be the subspace of BUC(R,E) consisting of all
functions f with sp(f) ⊂ Γ. It is easy to see that M satisfies condition (4.2).
Moreover, DM is bounded, σ(DM) = iΓ and σ(S) ∩ (iΓ) = ∅. Hence, by Theorem
6(ii), the equation B(

∑n−1
j=0 BjXDj

M) − XDn
M = −δ0 has a unique solution. By

Theorem 12, M is regularly admissible and for any function f̃ ∈ M, if f̃ ∈ G, then
the mild solution ũ(t) = XS(t)f̃ is also in G.
Let φ be a function in L1(R) with suppFφ ⊂ Γ. Put ũ := u∗φ and f̃ := f ∗φ. Then
ũ and f̃ are in X(Γ) (due to Lemma 2(iii)) and f̃ is a function in G. Moreover, ũ is
the unique mild solution of (1.4) corresponding to f̃ in X(Γ) (due to Remark (iv)
in Section 2). Hence, ũ is also in G, and the theorem is proved.

We apply the above theorem with G = AP (R,E), the space of all continuous, almost
periodic function from R to E. We know that if u is almost periodic, then spAP (u)
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is countable, but we do not have the converse implication. The following theorem,
which can be found in [6] (part (a) and (b)) and [13] (part (c)), gives conditions for
the almost periodicity of a function, if its reduced spectrum is countable.

Theorem 14. Let u ∈ BUC(R,E) such that spAP (u) is countable. Assume that

(a) E ̸⊇ c0; or

(b) The range of u(t) is weakly relatively compact; or

(c) u is totally ergodic.

Then u is almost periodic.

Combining Theorem 13 and Theorem 14 we have

Theorem 15. For the equation

u(n)(t) =

n−1∑
j=0

Aju
(j)(t) + f(t), t ∈ R, (5.1)

we assume that f is almost periodic and σ(S)∩(iR) is countable. Let u ∈ BUC(R,E)
be a mild solution of Equation (5.1). Then u is almost periodic if one of the following
conditions is satisfied.

(a) E ̸⊇ c0; or

(b) The range of u(t) is weakly relatively compact; or

(c) u is totally ergodic.

We can extend the above results to a class of subspaces in BUC(R,E) using a
result from [2].

Theorem 16. (c.f.[2, Theorem 3.4]) Suppose F is a closed, translation-invariant
subspace of BUC(R,E) satisfying the following conditions:

(i) F contains a constant functions;

(ii) F is invariant by multiplication by eiλ· for all λ ∈ R;

(iii) whenever f ∈ F and F (t) =
∫ t
0 f(s)ds ∈ BUC(R,E), then F ∈ F ;

Then for each function u ∈ BUC(R,E) with σF (u) being countable, we have u ∈ F .

Combining Theorem 13 and Theorem 16, we have

Theorem 17. Let F be a subspace of BUC(R,E) satisfying conditions in Theorem
16. Suppose f ∈ F and iR ∩ σ(S) is countable. Let u ∈ BUC(R,E) be a mild
solution of Equation (5.1). Then u is in F .
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