Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 8 (2013), 103 -- 114EULER'S CONSTANT, SEQUENCES AND SOME ESTIMATES
Alina Sîntămărian
Abstract. We give a class of sequences with the argument of the logarithmic term modified and that converge quickly to a generalization of Euler's constant denoted by γ(a), i.e. the limit of the sequence (∑k=1n1/(a+k-1)-ln((a+n-1)/a)n∈ℕ, where a∈(0,+∞).
Also, we obtain estimates for γ-(∑k=1n1/k-ln(n+1/2+1/(24(n+1/2)))), where γ=γ(1) is the Euler's constant.2010 Mathematics Subject Classification: 11Y60; 11B68; 40A05; 41A44; 33B15.
Keywords: Sequence; Convergence; Approximation; Euler's constant; Bernoulli number; Estimate.
References
H. Alzer, Inequalities for the gamma and polygamma functions, Abh. Math. Semin. Univ. Hamb. 68 (1998), 363--372. MR1658358(99k:33002). Zbl 0945.33003.
C.-P. Chen, Inequalities for the Euler--Mascheroni constant, Appl. Math. Lett. 23 (2) (2010), 161--164. MR2559461(2010k:11193). Zbl 1203.26025.
C.-P. Chen, Monotonicity properties of functions related to the psi function, Appl. Math. Comput. 217 (7) (2010), 2905--2911. MR2733736. Zbl 1213.33003.
C.-P. Chen, F. Qi, The best lower and upper bounds of harmonic sequence, RGMIA 6 (2) (2003), 303--308.
C.-P. Chen, C. Mortici, New sequence converging towards the Euler--Mascheroni constant, Comput. Math. Appl. 64 (4) (2012), 391--398. MR2948588. Zbl 1252.33002.
D. W. DeTemple, A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (5) (1993), 468--470. MR1215533(94e:11146). Zbl 0858.11068.
O. Furdui, Limits, Series, and Fractional Part Integrals. Problems in Mathematical Analysis, Springer, New York, 2013. MR3097674. Zbl 06135851.
I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (7th ed.), Elsevier/Academic Press, Amsterdam, 2007. MR2360010(2008g:00005). Zbl 1208.65001.
B.-N. Guo, F. Qi, Sharp bounds for harmonic numbers, Appl. Math. Comput. 218 (3) (2011), 991--995. MR2831344. Zbl 1229.11027.
J. Havil, Gamma. Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003. MR1968276(2004k:11195). Zbl 1023.11001.
K. Knopp, Theory and Application of Infinite Series, Blackie & Son Limited, London and Glasgow, 1951. Zbl 0042.29203.
V. Lampret, A double inequality for a generalized-Euler-constant function, J. Math. Anal. Appl. 381 (1) (2011), 155--165. MR2796199(2012c:11277). Zbl 1225.65008.
C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett. 23 (1) (2010), 97--100. MR2566111(2010k:33003). Zbl 1183.33003.
C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput. 215 (9) (2010), 3443--3448. MR2576834. Zbl 1186.11076.
C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Comput. Math. Appl. 59 (8) (2010), 2610--2614. MR2607965(2011b:33005). Zbl 1193.33003.
C. Mortici, On some Euler-Mascheroni type sequences, Comput. Math. Appl. 60 (7) (2010), 2009--2014. MR2719721(2011h:40002). Zbl 1205.40006.
F. W. J. Olver (ed.), D. W. Lozier (ed.), R. F. Boisvert (ed.), C. W. Clark (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010. MR2723248(2012a:33001). Zbl 1198.00002.
A. Sîntămărian, A generalization of Euler's constant, Numer. Algorithms 46 (2) (2007), 141--151. MR2358246(2009a:11260). Zbl 1130.11075.
A. Sîntămărian, Some inequalities regarding a generalization of Euler's constant, J. Inequal. Pure Appl. Math. 9 (2) (2008), 7 pp., Article 46. MR2417328(2009i:11149). Zbl 1195.11168.
A. Sîntămărian, A Generalization of Euler's Constant, Editura Mediamira, Cluj-Napoca, 2008. Zbl 1163.26300.
A. Sîntămărian, Some new sequences that converge to a generalization of Euler's constant, Creat. Math. Inform. 20 (2) (2011), 191--196. MR2918517(2012m:11181). Zbl 06160785.
L. Tóth, Problem E 3432, Amer. Math. Monthly 98 (3) (1991), 264.
L. Tóth, Problem E 3432 (Solution), Amer. Math. Monthly 99 (7) (1992), 684--685.
Alina Sîntămărian
Department of Mathematics,
Technical University of Cluj-Napoca,
Str. Memorandumului nr. 28,
400114 Cluj-Napoca,
Romania.
e-mail: Alina.Sintamarian@math.utcluj.ro