Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 8 (2013), 11 -- 21BOUNDED LINEAR OPERATORS ON FINITE DIMENSIONAL PROBABILISTIC NORMED SPACES
Mahmood Haji Shaabani and Mohammad Baseri Nezhad
Abstract. Probabilistic normed spaces were introduced by Serstnev and have been redefined by Alsina, Schweizer, and Sklar. In this paper, we obtain some conditions under which linear operators on finite dimensional probabilistic normed spaces are bounded and continuous.
2010 Mathematics Subject Classification: 54E70; 46S50.
Keywords: Probabilistic normed space; Serstnev space; D-bounded; Bounded operator.
References
M. Alimohammady, B. Lafuerza-Guillén, R. Saadati, Some results in generalized Serstnev spaces, Bulletin of the Iranian Mathematical Society 31 (2005) 37--47. MR2228455(2007a:54021). Zbl 1113.54018.
C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, Aequationes Math. 46 (1993) 91--98. MR1220724(94h:46115). Zbl 0792.46062.
C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl. 208 (1997) 446--452. MR1441446(98c:46167). Zbl 0903.46075.
J. B. Conway, A Course in Functional Analysis, Springer-Verlag, 1989. MR1070713(91e:46001). Zbl 0706.46003.
B. Lafuerza-Guillén, J. A. Rodriguez-Lallena, C. Sempi, Some classes of probabilistic normed spaces, Rend. Mat. 17 (1997) 237--252. MR1484933(99d:46103). Zbl 0904.54025.
B. Lafuerza-Guillén, J. A. Rodriguez-Lallena, C. Sempi, Probabilistic norms for linear operators, J. Math. Anal. Appl. 220 (1998) 462--476. MR1614955(99f:47096). Zbl 0922.47068.
B. Lafuerza-Guillén, J. A. Rodriguez-Lallena, C. Sempi, Normability of probabilistic normed spaces, Note di Matematica, 29 (2008) 99-111. MR2779883. Zbl 1213.54045.
B. Lafuerza-Guillén, C. Sempi, G. Zhang, A study of boundedness in probabilistic normed spaces, Nonlinear Analysis, 73 (2010) 1127-1135. MR2661215(2010j:54035). Zbl 1196.54054.
B. Lafuerza-Guillén, J. A. Rodriguez-Lallena, C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl. 232 (1999) 183-196. MR1683042(2000m:46151). Zbl 0945.46056.
J. R. Munkres, Topology, 2nd ed., Prentice-Hall Inc., Englewood Cliffs, N. J., 2000. MR1079066(92d:58001). Zbl 0951.54001.
W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR1157815(92k:46001). Zbl 0867.46001.
R. Saadati, M. Amini, D-boundedness and D-compactness in finite dimentional probabilistic normed spaces, Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 483--492. MR2184208(2008c:46115). Zbl 1096.46048.
R. Saadati, S. M. Vaezpour, Linear operators in finite dimensional probabilistic normed spaces, J. Math. Anal. Appl. 346 (2008) 446-450. MR2431540(2009h:47133). Zbl 1153.47065.
B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983; 2nd ed., Dover, Mineola, NY, 2005. MR0790314(86g:54045).
A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk. SSSR, 149, 280--283; English transl., Soviet Math. Doklady, 4 (1963) 388--390. Zbl 0127.34902.
M. Haji Shaabani M. Baseri Nezhad Shiraz University of Technology, Shiraz University of Technology, Department of Mathematics, Department of Mathematics, Faculty of Basic Sciences, Faculty of Basic Sciences, P. O. Box 71555-313, Shiraz, P. O. Box 71555-313, Shiraz, Iran. Iran. e-mail: shaabani@sutech.ac.ir e-mail: m.baserinezhad@sutech.ac.ir