ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 7 (2012), 137 – 145

EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED WEAKLY REICH-CONTRACTIVE OPERATORS

Liliana Guran Manciu

Abstract. In this paper we define the concept of weakly Reich-contractive operator and give a fixed point result for this type of operators. Then we study the data dependence for this new result.

1 Introduction

Let (X, d) be a metric space. A singlevalued operator T from X into itself is called contractive if there exists a real number $r \in [0, 1)$ such that $d(T(x), T(y)) \leq rd(x, y)$ for every $x, y \in X$. It is well know that if X is a complete metric space then a contractive operator from x into itself has a unique fixed point in X. In 1972 S. Reich was obtained some generalizations of this results for some classes of generalized contractive operators and in some recent papers [10]-[13] S. Reich et al. gave some applications of these results.

In 1996 the Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi introduced the concept of w-distance (see [4]) and discussed some properties of this new distance. Later, T. Suzuki and W. Takahashi starting by the definition above, gave some fixed points result for a new class of operators, weakly contractive operators (see [17]).

In 2001 T. Suzuki (see [15]) introduced the concept of τ -distance on a metric space which is a generalization of both *w*-distance and Tataru's distance. He gave some examples of τ -distance and improve the generalization of Banach contraction principle, Caristi's fixed point theorem, Ekeland's variational principle and the Takahashi's nonconvex minimization theorem, see [15]. Also, some fixed point theorems for multivalued operators on a complete metric space endowed with a τ -distance were established in T. Suzuki [16].

The purpose of this paper is to give a fixed point theorem for a new class of operators, the so-called weakly Reich-contractive operators. Then we present a data

²⁰¹⁰ Mathematics Subject Classification: 47H10; 54H25

Keywords: w-distance, τ -distance, weakly Reich-contraction, fixed point, multivalued operator

dependence result for the fixed point set of these operators.

2 Preliminaries

Let (X, d) be a complete metric space. We will use the following notations: P(X) - the set of all nonempty subsets of X; $\mathcal{P}(X) = P(X) \bigcup \emptyset$ $P_{cl}(X)$ - the set of all nonempty closed subsets of X; $P_b(X)$ - the set of all nonempty bounded subsets of X; $P_{b,cl}(X)$ - the set of all nonempty bounded and closed, subsets of X; For $A, B \in P_b(X)$ we recall the following functionals. $D: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, D(Z,Y) = \inf\{d(x,y) : x \in Z \ y \in Y\}, Z \subset X$ - the gap functional. $\delta: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, \delta(A, B) := \sup\{d(a, b) | x \in A, b \in B\}$ - the diameter functional;

$$\begin{split} \rho : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, \rho(A, B) &:= \sup\{D(a, B) | a \in A\} \text{ - the excess functional}; \\ H : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, H(A, B) &:= \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\} \text{ - the excess functional}; \end{split}$$

Pompeiu-Hausdorff functional;

 $FixF := \{x \in X \mid x \in F(x)\}$ - the set of the fixed points of F;

The concept of w-distance was introduced by O. Kada, T. Suzuki and W. Takahashi (see[4]) as follows:

Let (X,d) be a metric space. The functional $w : X \times X \to [0,\infty)$ is called *w*-distance on X if the following axioms are satisfied :

- 1. $w(x,z) \le w(x,y) + w(y,z)$, for any $x, y, z \in X$;
- 2. for any $x \in X : w(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous;
- 3. for any $\varepsilon > 0$, exists $\delta > 0$ such that $w(z, x) \leq \delta$ and $w(z, y) \leq \delta$ implies $d(x, y) \leq \varepsilon$.

Some examples of w-distance can be find in [16].

For the proof of the main results we need the following crucial result for wdistance (see[17]).

Lemma 1. Let (X, d) be a metric space and let w be a w-distance on X. Let (x_n) and (y_n) be two sequences in X, let (α_n) , (β_n) be sequences in $[0, +\infty[$ converging to zero and let $x, y, z \in X$. Then the following hold:

- 1. If $w(x_n, y) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then y = z.
- 2. If $w(x_n, y_n) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then (y_n) converges to z.

- 3. If $w(x_n, x_m) \leq \alpha_n$ for any $n, m \in \mathbb{N}$ with m > n, then (x_n) is a Cauchy sequence.
- 4. If $w(y, x_n) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a Cauchy sequence.

The concept of τ -distance was introduced by T. Suzuki (see[1]) as follows.

Definition 2. Let (X,d) be a metric space. Then $\tau : X \times X \to [0,\infty)$ is called τ -distance on X if there exists a function $\eta : X \times \mathbb{R}_+ \to \mathbb{R}_+$ and the following are satisfied :

 $(\tau_1) \ \tau(x,z) \leq \tau(x,y) + \tau(y,z), \text{ for any } x,y,z \in X;$

 $(\tau_2) \ \eta(x,0) = 0$ and $\eta(x,t) \ge t$ for all $x \in X$ and $t \in \mathbb{R}_+$, and η is concave and continuous in its the second variable;

 $(\tau_3) \lim_n x_n = x \text{ and } \lim_n \sup\{\eta(z_n, \tau(z_n, x_m)) : m \ge n\} = 0 \text{ imply } \tau(w, x) \le \lim_n \inf_n(\tau(w, x_n)) \text{ for all } w \in X;$

 $(\tau_4) \lim_n \sup\{\tau(x_n, y_m)\} : m \ge n\} = 0 \text{ and } \lim_n \eta(x_n, t_n) = 0 \text{ imply } \lim_n \eta(y_n, t_n) = 0;$

 $(\tau_5) \lim_n \eta(z_n, \tau(z_n, x_n)) = 0 \text{ and } \lim_n \eta(z_n, \tau(z_n, y_n)) = 0 \text{ imply } \lim_n d(x_n, y_n) = 0.$

Notice that one may replace (τ_2) by the following $(\tau_2)'$:

 $(\tau_2)'$ inf $\{\eta(x,t): t > 0\} = 0$ for all $x \in X$, and η is nondecreasing in the second variable.

Some examples of τ -distance are given in [15].

We recall the definition of τ -Cauchy sequence and some lemmas (see [16]), useful for the proofs of the fixed point results on metric spaces endowed with a τ -distance.

Definition 3. Let (X, d) be a metric space and let τ be a τ -distance on X. Then a sequence $\{x_n\}$ in X is called τ – Cauchy if there exists a function $\eta : X \times [0, \infty) \rightarrow [0, \infty)$ satisfying (τ_2) - (τ_5) and a sequence $\{z_n\}$ in X such that $\lim_n \sup\{\eta(z_n, \tau(z_n, x_m)) : m \ge n\} = 0$.

A crucial results in order to obtain fixed point theorems by using τ -distance are the following lemmas.

Lemma 4. Let (X, d) be a metric space and let τ be a τ -distance on X. If a sequence $\{x_n\}$ in X satisfies $\lim_n \sup\{\tau(x_n, x_m) : m > n\} = 0$, then $\{x_n\}$ is a τ -Cauchy sequence. Moreover, if a sequence $\{y_n\}$ in X satisfies $\lim_n \tau(x_n, y_n) = 0$, then $\{y_n\}$ is also a τ -Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.

Lemma 5. Let (X,d) be a metric space and let τ be a τ -distance on X. If a sequence $\{x_n\}$ in X satisfies $\lim_n \tau(z, x_n) = 0$ for $z \in X$ then $\{x_n\}$ is a τ -Cauchy sequence. Moreover, if a sequence $\{y_n\}$ in X also satisfies $\lim_n \tau(z, y_n) = 0$, then $\lim_n d(x_n, y_n) = 0$. In particular, for $x, y, z \in X$, $\tau(z, x) = 0$ and $\tau(z, y) = 0$ imply x = y.

Lemma 6. Let (X, d) be a metric space and let τ be a τ -distance on X. If $\{x_n\}$ is a τ -Cauchy sequence, then $\{x_n\}$ is a Cauchy sequence. Moreover, if $\{y_n\}$ is a sequence satisfying $\lim_n \sup\{\tau(x_n, y_m) : m > n\} = 0$, then $\{y_n\}$ is a τ -Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.

3 Existence of fixed points for multivalued weakly Reichcontractive operators

For the first result of this section, let us define the notion of multivalued weakly Reich-contractive operators.

Definition 7. Let (X, d) be a metric space, $T : X \to P(X)$ is called multivalued weakly Reich-contractive operator if for every $a, b, c \in \mathbb{R}_+$ such that $a+b+c \in [0,1)$, there exists a w-distance on X such that for every $x, y \in X$ and $u \in T(x)$ there exists $v \in T(y)$ such that

$$w(u,v) \le aw(x,y) + bD_w(x,T(x)) + cD_w(y,T(y)),$$

where $D_w(x, T(x)) := \inf\{w(x, y) : y \in T(x)\}.$

Let (X, d) be a metric space, w be a w-distance on X $x_0 \in X$ and r > 0. Let us define:

 $B_w(x_0; r) := \{x \in X | w(x_0, x) < r\}$ the open ball centered at x_0 with radius r with respect to w;

 $\widetilde{B_w}^d(x_0;r)$ - the closure in (X,d) of the set $B_w(x_0;r)$.

One of the main results is the following fixed point theorem for weakly Reichcontractive operators.

Theorem 8. Let (X, d) be a complete metric space, $x_0 \in X$, r > 0, $\alpha := \frac{a+b}{1-c}$ for every $a, b, c \in \mathbb{R}_+$ with $a + b + c \in [0, 1)$ and $T : \widetilde{B_w}(x_0; r) \to P_{cl}(X)$ a multivalued operator such that:

- 1. T is weakly Reich-contractive operator with respect to a w-distance;
- 2. For every $x, y \in X$, with $y \notin T(y)$ we have that

$$\inf\{w(x,y) + D_w(x,T(x)): x \in X\} > 0;$$

3. $D_w(x_0, T(x_0)) < (1 - \alpha)r.$

Then there exists $x^* \in X$ such that $x^* \in T(x^*)$.

Proof. Let 0 < s < r and $D_w(x_0, T(x_0)) < (1 - \alpha)s < (1 - \alpha)r$.

Then there exists $x_1 \in T(x_0)$ such that $w(x_0, x_1) < (1 - \alpha)s \leq s$. Hence $x_1 \in B_w(x_0; s)$.

For $x_1 \in T(x_0)$ there exists $x_2 \in T(x_1)$ such that

$$w(x_1, x_2) \le aw(x_0, x_1) + bD_w(x_0, T(x_0)) + cD_w(x_1, T(x_1))$$

$$w(x_1, x_2) \le aw(x_0, x_1) + bw(x_0, x_1) + cw(x_1, x_2))$$

$$w(x_1, x_2) \le \frac{a+b}{1-c}w(x_0, x_1)$$

Then $w(x_1, x_2) \leq \alpha w(x_0, x_1) \leq \alpha (1 - \alpha)s.$

Then $w(x_0, x_2) \leq w(x_0, x_1) + w(x_1, x_2) < (1 - \alpha)s + \alpha(1 - \alpha)s = (1 - \alpha^2)s \leq s$. Hence $x_2 \in B_w(x_0; s)$.

For $x_1 \in B_w(x_0; s)$ and $x_2 \in T(x_1)$ there exists $x_3 \in T(x_2)$ such that

$$w(x_2, x_3) \le aw(x_1, x_2) + bD_w(x_1, T(x_1)) + cD_w(x_2, T(x_2))$$
$$w(x_2, x_3) \le aw(x_1, x_2) + bw(x_1, x_2) + cw(x_3, x_3))$$
$$w(x_2, x_3) \le \frac{a+b}{1-c}w(x_1, x_2)$$

Then $w(x_2, x_3) \leq \alpha w(x_1, x_2) \leq \alpha^2 w(x_0, x_1) \leq \alpha^2 (1 - \alpha) s$. Then $w(x_0, x_3) \leq w(x_0, x_2) + w(x_2, x_3) < (1 - \alpha^2) s + \alpha^2 (1 - \alpha) s = (1 - \alpha)(1 + \alpha + \alpha^2) s = (1 - \alpha^3) s < s$. Hence $x_3 \in B_w(x_0; s)$.

By induction we obtain in this way a sequence $(x_n)_{n \in \mathbb{N}} \in B_w(x_0; s)$ with the following properties:

(1) $x_n \in T(x_{n-1})$, for each $n \in \mathbb{N}$;

(2) $w(x_n, x_{n+1}) \leq \alpha^n (1 - \alpha) s$, for each $n \in \mathbb{N}$.

For $m, n \in \mathbb{N}$ with m > n we have

$$w(x_n, x_m) \le w(x_n, x_{n+1}) + w(x_{n+1}, x_{n+2}) + \dots + w(x_{m-1}, x_m) \le \\ \le \alpha^n (1 - \alpha)s + \alpha^{n+1} (1 - \alpha)s + \dots + \alpha^{m-1} (1 - \alpha)s \le \\ \le \frac{\alpha^n}{1 - \alpha} (1 - \alpha)s = \alpha^n s.$$

Using Lemma 1(3) we have that $(x_n)_{n \in \mathbb{N}} \in B_w(x_0; s)$ is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space it follows that the sequence $(x_n)_{n \in \mathbb{N}}$ has a limit $x^* \in \widetilde{B_w}^d(x_0; s)$.

Assume that $x^* \notin T(x^*)$. Fix $n \in \mathbb{N}$. Since $(x_m)_{m \in \mathbb{N}} \in B_w(x_0; s)$ converge to x^* and $w(x_n, \cdot)$ is lower semicontinuous we have

 $w(x_n, x^*) \leq \lim_{m \to \infty} \inf w(x_n, x_m) \leq \alpha^n s$, for every $n \in \mathbb{N}$.

http://www.utgjiu.ro/math/sma

Therefore by hypothesis (2) and by using the above inequality, we obtain

$$0 < \inf\{w(x, x^*) + D_w(x, T(x)) : x \in X\} \leq \inf\{w(x_n, x^*) + w(x_n, x_{n+1}) : n \in \mathbb{N}\} \leq \inf\{\alpha^n s(2 - \alpha)w(x_0, x_1) : n \in \mathbb{N}\} = 0.$$

Which is a contradiction. Thus we conclude that $x^* \in T(x^*)$.

A global result for previous theorem is the following fixed point result for multivalued weakly Reich-contractive operators.

Theorem 9. Let (X,d) be a complete metric space, $T: X \to P_{cl}(X)$ a multivalued operator such that such that:

- 1. T is weakly Reich-contractive operator with respect to a w-distance;
- 2. For every $x, y \in X$, with $y \notin T(y)$ we have that

$$\inf\{w(x,y) + D_w(x,T(x)): x \in X\} > 0;$$

Then there exists $x^* \in X$ such that $x^* \in T(x^*)$.

Notice that some similar results can be found in [7].

Remark 10. Similar results can be obtained for the case of τ -distance.

4 Data dependence for multivalued weakly Reich-contractive operators

The main result of this section is the following data dependence theorem for the fixed point set of multivalued weakly Reich contractive operators.

Theorem 11. Let (X, d) be a complete metric space, $T_1, T_2 : X \to P_{cl}(X)$ be two multivalued weakly Reich-contractive operators with respect to a w-distance, with $\alpha \in$ [0,1) where $\alpha := \frac{a+b}{1-c}$, for every $a, b, c \in \mathbb{R}_+$ with $a+b+c \in [0,1)$ and satisfying for every $x, y \in X$, with $y \notin T_i(y)$, the following inequality $\inf\{w(x,y) + D_w(x,T_i(x)) : x \in X\} > 0$. Then the following are true:

- 1. $FixT_1 \neq \emptyset \neq FixT_2;$
- 2. We suppose that there exists $\eta > 0$ such that for every $u \in T_1(x)$ there exists $v \in T_2(x)$ such that $w(u, v) \leq \eta$, (respectively for every $v \in T_2(x)$ there exists $u \in T_1(x)$ such that $w(v, u) \leq \eta$).

http://www.utgjiu.ro/math/sma

Then for every $u^* \in FixT_1$ there exists $v^* \in FixT_2$ such that $w(u^*, v^*) \leq \frac{\eta}{1-\alpha}$, where $\alpha = \alpha_i$ for $i = \{1, 2\}$; (respectively for every $v^* \in FixT_2$ there exists $u^* \in FixT_1$ such that $w(v^*, u^*) \leq \frac{\eta}{1-\alpha}$, where $\alpha = \alpha_i$ for $i = \{1, 2\}$)

Proof. Let $u_0 \in FixT_1$, then $u_0 \in T_1(u_0)$. Using the hypothesis (2) we have that there exists $u_1 \in T_2(u_0)$ such that $w(u_0, u_1) \leq \eta$.

Since T_1, T_2 are weakly Reich-contractive with $\alpha_i \in [0, 1)$, where $\alpha := \frac{a+b}{1-c}$, for every $a, b, c \in \mathbb{R}_+$ with $a + b + c \in [0, 1)$ and $i = \{1, 2\}$ we have that for every $u_0, u_1 \in X$ with $u_1 \in T_2(u_0)$ there exists $u_2 \in T_2(u_1)$ such that

$$w(x_1, x_2) \le aw(u_0, u_1) + bD_w(u_0, T_2(u_0)) + cD_w(u_1, T_2(u_1))$$
$$w(u_1, u_2) \le aw(u_0, u_1) + bw(u_0, u_1) + cw(u_1, u_2))$$
$$w(u_1, u_2) \le \frac{a+b}{1-c}w(u_0, u_1)$$

Then $w(u_1, u_2) \le \alpha w(u_0, u_1)$.

For $u_1 \in X$ and $u_2 \in T_2(u_1)$ there exists $u_3 \in T_2(u_2)$ such that

$$w(u_2, u_3) \le aw(u_1, u_2) + bD_w(u_1, T_2(u_1)) + cD_w(u_2, T_2(u_2))$$

$$w(u_2, u_3) \le aw(u_1, u_2) + bw(u_1, u_2) + cw(u_3, u_3))$$
$$w(u_2, u_3) \le \frac{a+b}{1-c}w(u_1, u_2)$$

Then $w(u_2, u_3) \le \alpha w(u_1, u_2) \le \alpha^2 w(u_0, u_1).$

By induction we obtain a sequence $(u_n)_{n \in \mathbb{N}} \in X$ such that

- (1) $u_{n+1} \in T_2(u_n)$, for every $n \in \mathbb{N}$;
- (2) $w(u_n, u_{n+1}) \le \alpha^n w(u_0, u_1)$

For $n, p \in \mathbb{N}$ we have the inequality

 $w(u_n, u_{n+p}) \le w(u_n, u_{n+1}) + w(u_{n+1}, u_{n+2}) + \dots + w(u_{n+p-1}, u_{n+p}) \le < \alpha^n w(u_0, u_1) + \alpha^{n+1} w(u_0, u_1) + \dots + \alpha^{n+p-1} w(u_0, u_1) \le \le \frac{\alpha^n}{1-\alpha} w(u_0, u_1)$

By the Lemma 1(3) we have that the sequence $(u_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since (X, d) is a complete metric space we have that there exists $v^* \in X$ such that $u_n \stackrel{d}{\to} v^*$.

Assume that $v^* \notin T_2(v^*)$. Fix $n \in \mathbb{N}$. Since $(x_m)_{m \in \mathbb{N}} \in X$ converge to v^* and $w(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous we have

$$w(u_n, v^*) \le \lim_{p \to \infty} \inf w(u_n, u_{n+p}) \le \frac{\alpha^n}{1 - \alpha} w(u_0, u_1)$$

$$(4.1)$$

By hypothesis we have the following inequality:

http://www.utgjiu.ro/math/sma

 $\begin{array}{ll} 0 & <\inf\{w(u,v^*)+D_w(u,T_2(u)):x\in X\}\\ & \leq\inf\{w(u_n,v^*)+w(u_n,u_{n+1}):n\in\mathbb{N}\}\\ & \leq\inf\{\frac{\alpha^n}{1-\alpha}w(u_0,u_1)+\alpha^nw(u_0,u_1):n\in\mathbb{N}\}=0. \end{array}$

Which is a contradiction. Thus we conclude that $v^* \in T(v^*)$. Then, by $w(u_n, v^*) \leq \frac{\alpha^n}{1-\alpha} w(u_0, u_1)$, with $n \in \mathbb{N}$, for n = 0 we obtain

$$w(u_0, v^*) \le \frac{1}{1 - \alpha} w(u_0, u_1) \le \frac{\eta}{1 - \alpha}$$

which complete the proof.

References

- [1] A. Granas, J. Dugundji, *Fixed Point Theory*, Berlin, Springer-Verlag, 2003.
- Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl. 317(2006), 103-112.
 Zbl 1094.47049.
- [3] L. Guran, Existence and data dependence for multivalued weakly contractive operators, Studia Univ. Babeş-Bolyai, Mathematica, **54**(2009), no. 3, 67-76.
- [4] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44(1996) 381-391. MR1416281(97j:49011). Zbl 0897.54029.
- [5] A. Latif, A.W. Albar, Fixed point results for multivalued maps, Int. J. Contemp. Math. Sci. 2, 21-24(2007), 1129-1136. MR2373908. Zbl 1165.54018.
- [6] A. Latif, A. A. N. Abdou, Fixed point results for generalized contractive multimaps in metric spaces, Fixed Point Theory and Applications Volume 2009(2009), Article ID 432130, 16 pages doi:10.1155/2009/432130. MR2544343. Zbl 1179.54065.
- [7] A. Latif, Saleh Abdullah Al-Mezel, Fixed point results related to Reich'S problem, Fixed Point Theory and Applications, Vol.4(2009), Issue 2, 147-159.
- [8] T. Lazăr, A. Petruşel, N. Shahzad, Fixed points for non-self operators and domanin invariance theorems, Nonlinear Analysis: Theory, Methods and Applications, 70(2009), 117-125.
- [9] S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital., 5(1972), 26-42.

- [10] S. Reich, A. J. Zaslavski, Convergence of iterates of nonexpansive set-valued mappings, Set Valued Mappings with Applications in Nonlinear Analysis, 4(2002) of Mathematical Analysis and Applications, 411–420, Taylor and Francis, London, UK.
- [11] S. Reich, A. J. Zaslavski, Generic existence of fixed points for set-valued mappings, Set-Valued Analysis, 10(2002), no. 4, 287–296.
- [12] S. Reich, A. J. Zaslavski, Two results on fixed points of set-valued nonexpansive mappings, Revue Roumaine de Mathématiques Pures et Appliquées, 51(2006), no. 1, 89–94.
- [13] S. Reich, A. J. Zaslavski, Existence and Approximation of Fixed Points for Set-Valued Mappings, Fixed Point Theory and Applications, Volume 2010(2010), Article ID 351531, 10 pages doi:10.1155/2010/351531. Zbl 1189.54037
- [14] I. A. Rus, Generalized Contractions and Applications, Presa Clujeană Universitară, Cluj-Napoca, 2001.
- [15] T. Suzuki, Generalized Distance and Existence Theorems in Complete Metric Spaces, J.Math.Anal.Appl., 253(2001), 440-458. MR1808147(2002f:49038). Zbl 0983.54034.
- [16] T. Suzuki, Several Fixed Point Theorems Concerning τ-distance, Fixed Point Theory and Application, 3(2004), 195-209. MR2096951. Zbl 1076.54532.
- [17] T. Suzuki, W. Takahashi, Fixed points theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, Journal of Juliusz Schauder Center, 8(1996), 371-382. MR1483635(99c:54064). Zbl 0902.47050.

Liliana Guran Manciu

Department of Finance and Business Administration, Faculty of Economic Sciences, Titu Maiorescu University, Calea Văcărești, nr. 189, 040056, sector 4, Bucharest, Romania. e-mail: liliana.guran@utm.ro, gliliana.math@gmail.com.