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LOG-CONCAVITY PROPERTY FOR SOME
WELL-KNOWN DISTRIBUTIONS

G. R. Mohtashami Borzadaran and H. A. Mohtashami Borzadaran

Abstract. Interesting properties and propositions, in many branches of science such as economics
have been obtained according to the property of cumulative distribution function of a random
variable as a concave function. Caplin and Nalebuff (1988 [10],1989 [11]), Bagnoli and Khanna
(1989 [7]) and Bagnoli and Bergstrom (1989 [4], 1989 [5], 2005 [6]) have discussed the log-concavity
property of probability distributions and their applications, especially in economics.

Log-concavity concerns twice differentiable real-valued function g whose domain is an interval

on extended real line. g as a function is said to be log-concave on the interval (a, b) if the function

ln(g) is a concave function on (a, b). Log-concavity of g on (a, b) is equivalent to g
′
/g being

monotone decreasing on (a, b) or (ln(g))
′′
< 0. Bagnoli and Bergstrom (2005 [6]) have obtained log-

concavity for distributions such as normal, logistic, extreme-value, exponential, Laplace, Weibull,

power function, uniform, gamma, beta, Pareto, log-normal, Student’s t, Cauchy and F distributions.

We have discussed and introduced the continuous versions of the Pearson family, also found the

log-concavity for this family in general cases, and then obtained the log-concavity property for

each distribution that is a member of Pearson family. For the Burr family these cases have been

calculated, even for each distribution that belongs to Burr family. Also, log-concavity results

for distributions such as generalized gamma distributions, Feller-Pareto distributions, generalized

Inverse Gaussian distributions and generalized Log-normal distributions have been obtained.

1 Introduction

The log-concavity and log-convexity property have an important role in economics,
social sciences, information theory and optimization. Most of the time logarithm of
cumulative function of a random variable is concave. In papers such as Laffont and
Tirole (1988 [17]), Lewis and Sappington (1988 [18]), Baron and Myerson (1982 [8]),
Riordan and Sappington (1989 [28]), Myerson and Satterthwaite (1983 [22]), Maskin
and Riley (1984 [19]), Caplin and Nalebuff (1988 [10],1989 [11]) and Matthews (1987
[20]), many results due to concavity, log-concavity and their applications in many
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branches of science such as economics and social sciences have been discussed.
Log-concavity and log-convexity of survival functions are important in reliability

theory that is equivalent to the failure rate being increasing and decreasing respectively.
An (1994) studied classes of log-concave distributions that arise in economics of
uncertainly and information. Bagnoli and Khanna (1989) obtained a model where
there is a distribution reservation demand for houses via log-concavity of reliability
function and similar research by Jegadeesh and Chowdhry (1989 [14]) for studying
the log-concavity of reliability function in finance literature. Let F be the distribution
function, Flinn and Heckman (1983 [12]) stated that if the function

H(x) =

∫ ∞
x

(1− F (t))dt

is log-concave, then with optimal search strategies, an increase in the rate of arrivals
of jobs offers will increase the exit rate from unemployment. Also, Bagnoli and
Bergstorm (1989a) used by the log-concavity of

G(x) =

∫ x

−∞
F (t)dt

developed a marring market model.
Fortunately, it happens that sufficient condition for cdf to be log-concave is that
the density function be log-concave. A sufficient condition for the integral of the
cdf being log-concave is that the cdf be log-concave. These results are proved by
Prekopa (1972 [25]) in Hungarian Mathematics Journal. Flinn and Heckman (1983
[12]) introduced these results to the economics literature and were applied by Caplin
and Nalebuff (1988 [10]).
In this paper, based on the theorems and properties mentioned in Bagnoli and
Bergstrom (2005), we have obtained results due to log-concavity for Pearson type,
Burr type distributions and some generalized version of distributions such as generalized
gamma, Feller-Pareto and generalized inverse Gaussian distributions. Also, we have
discussed log-concavity for each members of these families. On noting that, if the
density function f is log-concave on (a, b), then properties of reliability measures
connected to concavity and convexity are discussed.

2 Preliminaries

The concept of log-concavity was revolutionized by introducing log-concave probability
measures due to Prekopa(1971 [24],1973 [26]) and An (1994 [1], 1995 [2], 1997
[3]) completed and reproduced several results on log-concavity from the previous
literature and obtained some new results.

The following definitions and theorems that are discussed here (for more details
see Bagnoli and Bergstrom 2005 [6] that has an important role in our results).
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Log-concavity property 205

Definition 1. A function g is said to be log-concave on interval (a, b) if the function
ln(g) is a concave function on (a, b).

Definition 2. Log-concavity of g on (a, b) is equivalent to each of the following two
conditions:
(i) g′/g is monotone decreasing on (a, b).
(ii) (lng)′′ < 0.

Lemma 3. Let g be strictly monotonic(increasing or decreasing) defined on the
interval (a, b), it must be that g(x) is also a log-concave function on (a, b).

Let X be continuous random variable with density function f(x) and cdf F (x)
whose support Ω is an open interval such as (a, b) ⊂ <. Define in the interval (a, b),
S(x) ≡ 1− F (x) as its survivor function,
h(x) ≡ f(x)/S(x) as its hazard function,
G(x) ≡

∫ x
a F (u)du as its left side integral,

H(x) ≡
∫ b
x S(u)du as its right side integral.

Thus, the following notes are needed (See Bagnoli and Bergstrom 2005 [6] and An
1995 [2]), so:

• If the density function f , is monotone decreasing(increasing), then its cdf.,F (S),
and its left side integral, G, are both log-concave.

• (i). If the density function f , is log-concave on (l, h), then the survivor
(reliability) function S, is also log-concave on (l, h).

(ii). If the reliability function S, is log-concave on (l, h), then the right hand
integral H, is log-concave function on (l, h).

• If the density function f , be log-concave on (a, b), then the failure rate is
monotone increasing on (a, b). If the failure rate is monotone increasing on
(a, b), then H ′/H is monotone decreasing.

• If the density function f is monotone increasing, then the reliability function,
S, is log-concave.

• Among the properties of log-concave distributions, the most surprising result
is that the class of log-concave densities coincides with the class of strongly
unimodal densities.

• Let g : < → <+ be a measurable function. Suppose {x : g(x) > 0} = (a, b). If
g(x) is log-concave on (a, b), then Gl(x) ≡

∫ x
b g(y)dy is log-concave on (a, b).

For the functions defined above, the following logical implications hold :
f(x) is log-concave ⇒ h(x) is non-decreasing in x,
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f(x) is log-concave ⇔ S(x) is log-concave,
f(x) is log-concave ⇒ H(x) is log-concave,
f(x) is log-concave ⇒ F (x) is log-concave,
f(x) is log-concave ⇒ G(x) is log-concave.

Theorem 4. Let X be a random variable whose density function, f(x), is log-
concave. Then for any a 6= 0 the random variable Y = αX + β is log-concave.

Proof. See An (1995 [2]).

Theorem 5. Let X be a random variable with monotonically decreasing density
function f(x). Then,
1. If X is Log-concave(log-convex) then, for any α 6= 0, the random variable αX +
β is log-concave(log-convex). In particular, the mirror image, Y = −X, is log-
concave(log-convex).
2. If X is log-concave and positive valued then log(X) is log-concave.
3. If X is log-convex, then, eX is log-convex.

Proof. See An (1997 [3]) .

• Let X be a random variable whose density function, f(x), is log-concave and
monotonic decreasing. Consider a function l(.) satisfying:

(i) x = l(y) is strictly increasing, differentiable and convex,

(ii) l
′′
(y) is log-concave.

Then the random variable Y = l−1(X) is log-concave.

• The distributions such as uniform, normal, logistic, gamma (G(α, β), α ≥ 1),
beta (B(a, b), a ≥ 1, b ≥ 1) and Weibull (W (γ, α), α ≥ 1) are log-concave
and Pareto, gamma (G(α, β), α < 1), beta (B(a, b), a < 1, b < 1), Weibull
(W (γ, α), α < 1) and F-distribution (F (m1,m2),m1 ≤ 2) are log-convex.

• There are distributions which are both log-concave and log-convex. For example,
the negative exponential distributions are such cases. In fact, since linear
functions are the only functions which are both concave and convex, the only
distributions which are both log-concave and log-convex are exponential or
truncated exponential.

• There are distributions which are neither log-concave nor log-convex over
the entire support. Examples include the log-normal distribution, the Beta
distribution with a > 1 and b < 1 and the F-distribution with the first degree
of freedom m1 > 2.
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3 Log-concavity of the Pearson and Burr families of
distributions

In this section, via the arguments in Bagnoli and Bergstrom (2005 [6]), the easiest
distributions to deal with that, are the one’s with log-concave or log-convex density
functions where distribution function and failure rate function of them are listed in
Table 1.

The Pearson and Burr families will be introduced before we discuss about log-
concavity of the Pearson and Burr families of distributions.

3.1 Pearson family

Pearson (1895 [23]) used as a solution of differential equation

f
′
(x)

f(x)
=

x− a
b0 + b1x+ b2x2

, (3.1)

where f is the density of the random variable X and it’s derivative exists as the
densities of Pearson family. Also, discrete version of their family is obtained that we
can not use in this discussion. For various values of a, b0, b1 and b2, we have some
members of this family that is shown in Table 2.

Theorem 6. For the Pearson family with the form (3.1):

I. If b2 > 0 , a2b2 + b0 + b1a > 0 for x > a +

√
a2b2

2+b2(b0+b1a)
b2

or x < a −√
a2b2

2+b2(b0+b1a)
b2

, the Pearson family is log-concave.

II. If b2 > 0 , a2b2 + b0 + b1a < 0, then the Pearson family is log-concave.

III. If b2 < 0 , a2b2+b0+b1a < 0 for a−
√
a2b2

2+b2(b0+b1a)
b2

< x < a+

√
a2b2

2+b2(b0+b1a)
b2

,
the Pearson family is log-concave.

Proof. The Pearson family (3.1) is log-concave if h
′
(x) = d

dx(f
′
(x)

f(x) ) < 0 .
Thus,

h
′
(x) =

d

dx
(

x− a
b0 + b1x+ b2x2

) < 0⇒ (3.2)

h
′
(x) =

−b2x2 + 2ab2x+ b0 + b1a

(b0 + b1x+ b2x2)2
< 0⇒ (3.3)

b2x
2 − 2ab2x− b0 − b1a > 0. (3.4)

So, based on ∆ = 4a2b22 + 4b2(b0 + b1a) and b2 we have these statements for holding
log-concavity property.
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Table 1: Log-concavity of some common Distributions
Distribution Form of density The derivative of ln f density c.d.f. Reliability

Uniform 1 1
x log-concave log-concave log-concave

Normal e−
x2

2√
2π

−x log-concave log-concave log-concave

Logistic e−x

(1+e−x)2
e−x−1
e−x+1

log-concave log-concave log-concave

Extreme Value e−e
−x

e−x log-concave log-concave log-concave

Chi-Square x
n
2−12

n
2 e−2x

Γ(n
2

)
n−2−4x

2x log-concave log-concave log-concave

Chi x(
n
2 )−1e(−

n
2 )x2

2
n
2 Γ(n

2
)

n+2
2x log-concave log-concave log-concave

Exponential λe−λx −λ log-concave log-concave log-concave

Laplace λ
2 e
−λ|x|

{
−λ x ≥ 0
λ x < 0

log-concave log-concave log-concave

Weibull(c ≥ 1) cxc−1e−x
c −cxc−1 log-concave log-concave log-concave

Gamma(m ≥ 1) xm−1θme−θx

Γ(m) −−m+1+θx
x log-concave log-concave log-concave

Beta xa−1(1−x)b−1

B(a,b)
x(a+b−2)−a+1

x(x−1) log-concave log-concave log-concave

(a ≥ 1, b ≥ 1)

Log Normal e−(lnx)2/2

x
√

2π
−1+lnx

x mixed log-concave mixed?

Pareto βx−β−1 −β+1
x log-convex log-concave log-convex

Power Function βxβ−1 β+1
x log-convex log-concave mixed

(β < 1)

Weibull ( cxc−1e−x
c −cxc−1 log-convex log-concave log-convex

(c < 1)

Gamma xm−1θme−θx

Γ(m) −−m+1+θx
x log-convex log-concave log-convex

(m < 1)

Beta xa−1(1−x)b−1

B(a,b)
x(−1)+0.5
x(x−1) log-convex mixed? mixed?

(a = .5, b = .5)

Beta xa−1(1−x)b−1

B(a,b)
x(.5)−1
x(x−1) mixed? mixed? log-convex

(a = 2, b = .5)

Student’s t
(1+x2

n
)−n+1/2

√
(n)B(.5,n/2)

(1−2n)x
n+x2

mixed mixed? mixed?

Cauchy 1
π(1+x2)

−2x
1+x2

mixed mixed? mixed?

*Denotes answers found, not by analytic means, but by numerical simulation for
particular parameter values see detailed comments on the particular distribution in
Bagnoli and Bergstorm .
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Table 2: The Pearson Family Distribution

Type Density Support f
′
(x)

f(x) = x−a
b0+b1x+b2x2

Normal exp(−x
2

2 ) x ∈ < a = b1 = b2 = 0, b0 = −1

I (1 + x)m1(1− x)m2 −1 ≤ x ≤ 1 a = −m2−m1
m2+m1

, b0 = − 1
m2+m1

, b1 = 0

b2 = 1
m2+m1

II (1− x2)m −1 ≤ x ≤ 1 a = 0, b0 = − 1
2m , b1 = 0, b2 = 1

2m

III xmexp(−x) x ≥ 0 a = m, b0 = 0, b1 = −1, b2 = 0

IV (1 + x2)−m ∗ exp(−υtan−1(x)) x ∈ < a = − ν
2m , b0 = − 1

2m , b1 = 0, b2 = − 1
2m

V x−mexp(−x−1) 0 ≤ x <∞ a = 1
m , b0 = b1 = 0, b2 = − 1

m

VI xm2(1 + x)−m1 0 ≤ x <∞ a = − m2
m2−m1

, b0 = 0, b1 = b2 = 1
m2−m1

VII (1 + x2)−m x ∈ < a = b1 = 0, b0 = b2 = − 1
2m

VIII (1 + x)−m 0 ≤ x ≤ 1 a = m, b0 = b1 = 1, b2 = 0

IX (1 + x)m 0 ≤ x ≤ 1 a = −m, b0 = b1 = 1, b2 = 0

X e−x 0 ≤ x <∞ a = b0 = 1, b1 = b2 = 0

XI x−m 1 ≤ x <∞ a = m, b0 = b2 = 0, b1 = 1

XII (g+xg−x)h −g ≤ x ≤ g a = −2gh, b0 = g2, b1 = 0, b2 = −1

I. If b2 > 0 , ∆ > 0 then the answer is x < x1 = a−
√

∆
b2

, x > x2 = a+
√

∆
b2

(x1 < x2).
II. For b2 > 0 , ∆ < 0 it is obvious.

III. If b2 < 0 , ∆ > 0, then the answer is x1 = a−
√

∆
b2

< x < x2 = a+
√

∆
b2

.
If we simplify the statements above, it will imply the theorem.

On noting that log-concavity of f implies that h(x) = f
′
(x)

f(x) should be monotone

decreasing on it’s interval, so h
′
(x) < 0.

Remark 7. For Pearson family with the form (3.1) when b2 = 0, then b1a < b0
implies log-concavity of f . Also, when b1 = b2 = 0, then b0 < 0 implies the log-
concavity of f .

According to Theorem 6 we have discussed log-concavity of the Pearson family
in Table 3.
On noting that the normal type of the Pearson family is always log-concave.
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Table 3: Log-concavity for Pearson family

Type Log-concave Type Log-concave

I

 1. m1m2 > 0

2. m1m2 < 0 , x >

√
|m1|−

√
|m2|√

|m1|+
√
|m2|

.
VII

{
1. m < 0,−1 < x < 1,
2. m > 0, x ∈ (−∞,−1) ∪ (1,∞)

II m > 0 VIII m < 0
III m > 0 IX m > 0

IV


1. m > 0 , x > x2 , x < x1
2. m < 0 , x1 < x < x2

where x1, x2 =
−ν±

√
ν2+4m2

2m

X Never

V x < 2
m

XI m < 0

VI


1. m1 > 0 , m2 > 0 , x <

√
m2√

m1−
√
m2

2. m1 < 0 , m2 < 0 , x > 1√
m1
m2
−1

XII hgx < 0

3.2 Burr family

Burr (1942 [9]) chose to work with cdf F (x) satisfying

dF (x)

dx
= F (x)(1− F (x))g(x, F (x)) (3.5)

that is the analogue of Pearson system. g(x, F (x)) must be positive for 0 < F (x) < 1

and x in support of x. When g(x, F (x)) = g(x), then F (x) =
exp{

∫ x
0 g(t)dt}

1+exp{
∫ x
0 g(t)dt} that

implies 12 distributions as Burr family with various values of g. Table 4 shows cdf
of the random variable X via various values of g:

Theorem 8. For Burr family with the form (3.5), for the values that (g
′
(x)

g(x) )
′
< r−r̃′,

then the Burr family is log-concave, where r(x) = f(x)

F (x)
and r̃(x) = f(x)

F (x) are hazard

rate and reversed hazard rate respectively.

Proof. We know that f(x) = F (x)F (x)g(x),
then,

f
′
(x)

f(x)
=

f(x)

F (x)
− f(x)

F (x)
+
g
′
(x)

g(x)

= r̃(x)− r(x) +
g
′
(x)

g(x)
, (3.6)

So, d
dx(f

′
(x)

f(x) ) = (r̃(x))
′ − r′(x) + d

dx(g
′
(x)

g(x) ) < 0, and this implies the theorem.

Remark 9. We can simplify Theorem 8 via special cases of Burr family that is
mentioned in Table 4.
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Table 4: The Burr Distributions

Type F (x) f(x)

I x , 0 < x < 1 1

II (1 + e−x)−k , x ∈ < ke−x(1 + e−x)−k−1

III (1 + x−c)−k , x > 0 (1 + x−c)−k−1kcx−c−1

IV (1 + ( c−xx )
1
c )−k , 0 < x < c −k(1+( c−x

x
)
1
c )−k−1( c−x

x
)
1
c

x(x−c)
V (1 + ce−tanx)−k , −π

2 < x < π
2 (1 + ce−tanx)−k−1kc(1 + tan2x)e−tanx

VI (1 + ce−rsinhx)−k , x ∈ < −kce−rcoshx(1 + ce−rsinhx)−k−1

VII 2−k(1 + tanhx)k , x ∈ < k(1−tanhx)(1+tanhx)k

2k

VIII (2tan−1ex

π )k , x ∈ < ke( 2tan−1ex

π
)k

tan−1ex(1+e2x2 )

IX 1− 2
c((1+ex)k−1)+2

, x ∈ < 2kce(1+ex)k

(c((1+ex)k−1)+2)2(1+ee)

X (1 + e−x
2
)k , x > 0 k(1 + e−x

2
)k−1e−2x

XI (x− sin2πx
2π )k , 0 < x < 1

(x− sin2πx
2π

)kk(1−cos2πx)

x− sin2πx
2π

XII 1− (1 + xc)−k , x > 0 (1 + xc)−k−1kcxc−1

4 Log-concavity for some general version of distributions

In this section, we have discussed log concavity property for some general distributions
including: generalized gamma distributions, Feller-Pareto distributions, generalized
inverse Gaussian distributions and generalized log-normal distributions.

4.1 Generalized Gamma Distributions

The generalized gamma (GG) distribution offers a flexible family in the varieties of
shapes and hazard functions for modeling duration. It was introduced by Stacy (1962
[29]). Difficulties with convergence of algorithms for maximum likelihood estimation
(Hager and Bain, 1970, [13]) inhabited applications of the GG model. Prentice (1974
[27]) resolved the covergence problem using a nonlinear transformation of GG model.

Definition 10. The probability density function of GG distribution, GG(α, τ, λ),
is

fGG(y|α, τ, λ) =
τ

λατΓ(α)
yατ−1e−(y/λ)τ , y ≥ 0 , α > 0 , τ > 0 , λ > 0, (4.1)

where Γ(.) is the gamma function, α and τ are shape parameters, and λ is the
scale parameter.
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The GG family is flexible in that it includes several well-known models as sub-
families (see, Johnson et al., 1994 [15]). The sub-families of GG considered here are
exponential GG(1, 1, λ), gamma for GG(α, 1, λ), and Weibull for GG(1, τ, λ). The
log-normal distribution is also obtained as a limiting distribution when α→∞. By
letting GG(α, 2, λ) we obtain a sub-family of GG which is known as the generalized
normal distribution, GN(2α, λ). The GN itself is a flexible family and includes Half-
normal GG(1/2, τ, λ), Rayleigh GG(1, τ, λ), Maxwell-Boltzmann GG(3/2, τ, λ), and
Chi (GG(k/2, τ, λ), k = 1, 2, ...) distributions.

Theorem 11. The generalized Gamma distribution with the form (4.1) is log-
concave for

y > λ τ

√
1−ατ
τ(τ−1) .

Proof. f is log-concave if (f
′
(y)

f(y) )
′
< 0 on it’s interval, so :

d

dy
(
f
′
(y)

f(y)
) = −

ατ − 1− τ( yλ)τ + τ2( yλ)τ

y2
< 0

That implies y > λ τ

√
1−ατ
τ(τ−1) .

Remark 12. For τ = 1, when α ≥ 1, then the special version of the generalized
gamma (gamma distribution) is log-concave.

So, log-concavity of the GG distribution implies the log-concavity of it’s sub-
families such as the generalized normal distribution, gamma, exponential, Weibull
and log-normal distributions on their interval. On noting that the generalized normal
is a flexible distribution and has it’s own sub families such as half-normal, Rayleigh,
Maxwell-Boltzmann and Chi distributions.

4.2 Feller-Pareto distributions

The Feller-Pareto distributions are denoted by GB2(a, b, p, q) and has the pdf

f(x) =
axap−1

bapB(p, q)[1 + (x/b)a]p+q
, x > 0. (4.2)

Here all four parameters a,b,p,q are positive, b is a scale and a,p,q are shape parameters.
If the distribution of Y = logX, with density

f(y) =
aeap(y−logb)

B(p, q)[1 + ea(y−logb)]p+q
,−∞ < y <∞, (4.3)

is considered, a turns out to be a scale parameter, whereas p and q are still shape
parameters.
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Theorem 13. The Feller-Pareto distribution that is defined in (4.2), is log-convex
if ap < 1 and p+ q > 4.

Proof. We should prove that

d

dx
(
f
′
(x)

f(x)
) =
−1 + ap− 2(xb )a − (xb )2a− qa(xb )a − qa(xb )2a+ a2(xb )ap+ a2q(xb )a + ap(xb )a

−x2(1 + (xb )a)2
> 0

(4.4)
by choosing (xb )a = y, we have

(−aq − 1)y2 + (ap+ a2q + a2p− aq − 2)y + ap− 1 < 0. (4.5)

It implies that,

(a(p− q) + a2(p+ q)− 2)2 < 4(ap− 1)(−1− aq), (4.6)

it is necessary that ap < 1.
Also, (4.6) leads to (p+ q)((p+ q)a2 + 2(p− q)a+ (p+ q − 4)) < 0
that implies

q − p−
√

∆

p+ q
< a <

q − p+
√

∆

p+ q
where ∆ = 4p+ 4q − 4pq. (4.7)

(4.7) is equivalent to (a(p+ q) + (p− q))2 < ∆, so, a should be positive, which leads
to p+ q > 4.
The special cases of Feller-Pareto size distributions should be log-convex based on
the following conditions :

GB2(a, b, p, 1)⇒ Dagum distribution is log-convex if ap < 1 and p > 3.
GB2(1, b, p, q)⇒ Beta distribution of second kind is log-convex when p < 1 and

p+ q < 4.
GB2(a, b, 1, q) ⇒ Singh-Maddala distribution is log-convex when a < 1 and

q < 3.
GB2(1, b, 1, q)⇒ Lomax distribution is always log-convex.
GB2(a, b, 1, 1)⇒ Fisk(log-logistic) distribution is log-convex for a < 1 and p > 3.
GB2(1, b, p, 1)⇒ Inverse Lomax distribution is log-convex for 0 < p < 1

Remark 14. A distribution introduced by McDonald an Xu (1995 [21]) as the
”generalized beta” (GB) distribution. The GB is defined by the pdf

GB(x; a, b, c, p, q) =
|a|xap−1(1− (1− c)(x/b)a)q−1

bapB(p, q)(1 + c(x/b)a)p+q
, 0 < xa < ba/(1− c), (4.8)

and zero otherwise with 0 ≤ c ≤ 1 and b, p and q positive. As in the ordinary
beta distribution, the parameters p and q control shape and skewness. Parameters
a and b control ”peakedness” and scale, respectively. c = 1 and c = 0 implies the
Feller-Pareto and GB1 distributions.
In general case, finding log-concavity or log-convexity of GB is complicated.
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4.3 Generalized inverse Gaussian distributions

The generalized inverse Gaussian distribution denoted by GIG(µ, c2, λ), with parameters
(µ, c2, λ) has the pdf given by

q(x) =
1

2Kλ(1/c2)µ
(
x

µ
)λ−1exp{− 1

2c2
(
x

µ
+
µ

x
)},

0 < x <∞,−∞ < λ <∞, 0 < µ <∞, 0 < c <∞, (4.9)

where Kλ(.) denotes the modified Bessel function of the third kind and with index
λ (Kawamura et al. 2003 [16]). In particular, GIG(µ, c2,−1/2) and GIG(µ, c2, 1/2)
which are the inverse Gaussian and reciprocal inverse Gaussian distributions respectively.
Also, for GIG(µ, c2, 0) the Halphen distribution which is a prototype of generalized
inverse Gaussian distribution can be obtained.

Theorem 15. The Generalized Inverse Gaussian with the form (4.9) is log-concave
for the two conditions below:
(i) λ < 1 , x > µ

c2(1−λ)

(ii) λ > 1 , x < µ
c2(1−λ)

Proof. For the GIG(µ, c2, λ), we have d
dx(f

′
(x)

f(x) ) = −λxc2−xc2+µ
x3c2

< 0 and after
simplifying it, we have the theorem.

Remark 16. when λ = 1 the GIG with the form (4.9) is always log-concave.

The power inverse Gaussian distribution parameterized by an arbitrarily fixed
real number λ 6= 0 denoted by PIGλ(µ, c2) has the pdf given by

q(x) =
1√

(2π)cµ
(
x

µ
)−(1+λ/2)exp{− 1

2(λc)2
((
x

µ
)λ/2 − (

µ

x
)−(λ/2))2},

0 < x <∞ , 0 < µ <∞ , 0 < c <∞, (4.10)

In particular, PIG1(µ, c2) and PIG−1(µ, c2), are the inverse Gaussian and the
reciprocal inverse Gaussian distributions respectively. Also when λ→ 0 , the power
inverse Gaussian reduces to a log-normal distribution.

Theorem 17. The Power Inverse Gaussian with the form (4.10) is log-concave for
λ > 1.

Proof. We have,

d

dx
(
f
′
(x)

f(x)
) =

2λc2 + λ2c2 + (x/µ)λ − (x/µ)−λ − λ(x/µ)−λ − λ(x/µ)λ

2λc2x2
< 0 (4.11)

where on choosing (x/µ)λ = A, we should prove that
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Proof.

(1− λ)A2 + (2λc2 + λ2c2)A− (1 + λ) < 0, (4.12)

Proof. This inequality is true when λ > 1. Note that, when λ < 1, equation (4.12)
is not possible.
For an arbitrarily fixed real numbers λ 6= 0, let a positive random variable X satisfy
the relation

(1 + λ
X − µ
σ

)1/λ ∼ e(1), (4.13)

where µ and c are real number with −∞ < x < ∞, 0 < σ < ∞ and e(1) denotes
the exponential distribution with the mean 1. Also the range of X is assumed to
satisfy 1 + λ(X − µ)/σ > 0. We call this distribution of X the generalized Gumbel
distribution GGλ(µ, σ2). The transformation y = (1 + λ(x−µ)/σ)1/λ is one-to-one,
and therefore, the pdf of generalized Gumbel distribution is presented by

Proof.

q(x) =
1

σ
(1 + λ

x− µ
σ

)(1/λ)−1exp{−(1 + λ
x− µ
σ

)1/λ} (4.14)

1 + λx−µσ > 0, −∞ < µ <∞, 0 < σ <∞.

Theorem 18. The generalized Gumbel distribution is log-concave based on the
conditions below:
(i). When λ ≤ 1 then, for x ≤ σλλ+λµ−σ

λ generalized Gumbel distribution is log-
concave.
(ii). When λ > 1 then, for x > σλλ+λµ−σ

λ generalized Gumbel distribution is log-
concave.

Proof. For being log-concave d
dx(f

′
(x)

f(x) ) < 0. So :

d

dx
(
f
′
(x)

f(x)
) =

(σ+λx−λµ
σ )

1
λ (λ− 1)− λ+ λ2

(σ + λx− λµ)2
< 0, (4.15)

((
σ + λx− λµ

σ
)
1
λ + λ)(λ− 1) < 0, (4.16)

and if we simplify (4.16), we have the theorem.

Remark 19. For σ = λ = µ = 1, the generalized Gumbel distribution is log-convex.
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4.4 Generalized log-normal distributions

Vianelli [31, 32, 33] proposed a three-parameter generalized log-normal distribution.
It is obtained as the distribution of X = eY ; where Y follows a generalized error
distribution, with density

f(y) =
1

2r1/rσrΓ(1 + 1/r)
exp{− 1

rσrr
|y − µ|r} , −∞ < y <∞, (4.17)

where −∞ < µ < ∞ is the location parameter, σr = [E|Y − µ|r]1/r is the scale
parameter, and r > 0 is the shape parameter. For r = 2 we arrive at the normal
distribution and r = 1 yields to the Laplace distribution. The generalized error
distribution is thus known as both a generalized normal distribution, in particular
in the Italian literature (Vianelli, 1963), as a generalized Laplace distribution. If we
start from (4.17), the density of X = eY is

f(x) =
1

2xr1/rσrΓ(1 + 1/r)
exp{− 1

rσrr
|logx− µ|r} , 0 < x <∞, (4.18)

Here eµ is a scale parameter and σr,r are shape parameters.

Theorem 20. The generalized Error distribution with the form (4.17) is log-concave
for any of these conditions:
(i) y ≥ µ , r > 1 , σr > 0,
(ii) y ≤ µ , r = 2k(k ∈ Z) , r > 1,
(iii) y < µ , r 6= 2k(k ∈ Z) , r < 1 , σr > 0,
(iv) y ≥ µ , r < 1 , σr < 0,
(v) y < µ , r > 1 , σr > 0.

Proof. For y ≥ µ and y ≤ µ(r = 2k, k ∈ Z) we have, d
dx(f

′
(x)

f(x) ) = −σ−rr (y−µ)r−2(r−
1) < 0,

and for y ≤ µ(r 6= 2k, k ∈ Z) d
dx(f

′
(x)

f(x) ) = σ−rr (y − µ)r−2(r − 1) < 0.
So, if we simplify them, we have the theorem.

Remark 21. For r = 1 or σr = 0 the generalized error distribution is log-convex.

Remark 22. For generalized log-normal distribution, we can find the log-convexity
properties via Theorem 5 on using log-convexity properties of the generalized error
distribution.

Conclusion 23. In this paper, log-concavity and log-convexity properties for classes
of distributions, such as, Pearson, Burr, generalized gamma, Feller-Pareto distributions,
generalized inverse Gaussian, power inverse Gaussian, generalized Gumbel, generalized
error and generalized log-normal and special cases of them are obtained.
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