FINITE RANK INTERMEDIATE HANKEL OPERATORS ON THE BERGMAN SPACE

Namita Das

Abstract

In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.

1 Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C}, \mathbb{T} the unit circle, and $L_{a}^{2}(\mathbb{D})$ the Bergman space, consisting of those analytic functions on \mathbb{D} that are square integrable on \mathbb{D} with respect to area measure. The Bergman space is a closed subspace of the Hilbert space $L^{2}(\mathbb{D})$ of all square integrable complex-valued functions on \mathbb{D}. The inner product in $L^{2}(\mathbb{D})$, and hence in $L_{a}^{2}(\mathbb{D})$, is given by the formula

$$
\langle f, g\rangle=\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z), f, g \in L^{2}(\mathbb{D})
$$

where $d A(z)=\frac{1}{\pi} d x d y$, the normalized area measure on \mathbb{D}. The associated norm is denoted by $\|\cdot\|_{2}$. Let $L^{\infty}(\mathbb{D}, d A)$ denote the Banach space of essentially bounded measurable functions on \mathbb{D} with

$$
\|f\|_{\infty}=\operatorname{ess} \sup \{|f(z)|: z \in \mathbb{D}\}
$$

Let $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D}. The function $K(z, w)=$ $\frac{1}{(1-z \bar{w})^{2}}$ is the reproducing kernel $[7]$ for the Hilbert space $L_{a}^{2}(\mathbb{D})$. Let $K_{z}(w)=$ $\overline{K(z, w)}$. Let $\overline{L_{a}^{2}(\mathbb{D})}$ be the subspace of $L^{2}(\mathbb{D})$ consisting of complex conjugates of functions in $L_{a}^{2}(\mathbb{D})$. For $p \geq 0$, let

$$
E_{p}=\overline{\operatorname{span}}\left\{|z|^{2 k} \bar{z}^{n}, k=0, \cdots, p ; n=0,1,2, \cdots\right\} .
$$

2010 Mathematics Subject Classification: 32A36; 47B35.
Keywords: Hankel operators; Bergman space.

For $\phi \in L^{\infty}(\mathbb{D})$, we define the intermediate Hankel operator $H_{\phi}^{E_{p}}: L_{a}^{2} \rightarrow E_{p}$ by $H_{\phi}^{E_{p}}(f)=P_{p}(\phi f), f \in L_{a}^{2}$ where P_{p} is the orthogonal projection from $L^{2}(\mathbb{D})$ onto E_{p}. Note $\overline{L_{a}^{2}} \subseteq E_{p} \subseteq\left(\left(L_{a}^{2}\right)_{0}\right)^{\perp}$ where $\left(L_{a}^{2}\right)_{0}=\left\{g \in L_{a}^{2}: g(0)=0\right\}$.
In this paper we characterize the kernel of an intermediate Hankel operator in terms of the inner divisors of the Bergman space and obtain a characterization for finite rank intermediate Hankel operators. Similar characterizations for finite rank intermediate Hankel operators were also obtained by E. Strouse [6] using different techniques. We use the invariant subspace theory for the Bergman space developed in [2], [3] and [4].

2 Intermediate Hankel operators

For $p \geq 0$, let E_{p} be the closed subspace of $L^{2}(\mathbb{D})$ described above. For $n>m$ and $j \in\{0, \cdots, p\}$, let

$$
A_{j}^{n, m}=\frac{\prod_{1 \leq l \leq p+1}(n-m+l+j)}{\prod_{1 \leq l \leq p+1}(n+l)} \frac{1}{j!(p-j)!(-1)^{p-j}} \prod_{\substack{0 \leq l \leq p \\ l \neq j}}(m-l)
$$

It is not so difficult to check that

$$
P_{p}\left(\bar{z}^{n} z^{m}\right)=\left\{\begin{array}{rll}
0 & \text { if } & n<m ; \\
\bar{z}^{n} z^{m} & \text { if } & n \geq m, 0 \leq m \leq p \\
A_{0}^{n, m} \bar{z}^{n-m}+A_{1}^{n, m} \bar{z}^{n-m+1} z+ & & \\
\cdots+A_{p}^{n, m} \bar{z}^{n-m+p} z^{p} & \text { if } & n \geq m, m>p
\end{array}\right.
$$

The details are given in $[6$, Lemma 1].
Lemma 1. Suppose $\phi \in L^{\infty}(\mathbb{D})$. The operator $H_{\phi}^{E_{p}} \equiv 0$ if and only if $\phi \in E_{p}^{\perp}$.
Proof. Note $H_{\phi}^{E_{p}}=0$ implies $\phi f \in E_{p}^{\perp}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and hence in particular $\phi \in E_{p}^{\perp}$. Conversely, if $\phi \in E_{p}^{\perp}$ then $\left.\left.\langle\phi| z\right|^{2 k,} \bar{z}^{n}\right\rangle=0$ for all $n \in \mathbb{Z}, n \geq 0$, and $k=0,1, \cdots, p$.
Let $f \in L_{a}^{2}(\mathbb{D})$ and $g \in E_{p}$ and $g(z)=|z|^{2 k} \bar{z}^{n}, n=0,1,2, \cdots ; k=0,1, \cdots, p$. Then $\left\langle H_{\phi}^{E_{p}} f, g\right\rangle=\left\langle P_{p}(\phi f), g\right\rangle=\langle\phi f, g\rangle=\langle\phi, \bar{f} g\rangle=0$ as $\bar{f} g \in E_{p}$. This implies $H_{\phi}^{E_{p}} f=0$ for all $f \in L_{a}^{2}(\mathbb{D})$ and thus $H_{\phi}^{E_{p}} \equiv 0$.

Proposition 2. If $Q: L^{2} \rightarrow L_{a}^{2}$ is the Bergman projection, then $\left(H_{\phi}^{E_{p}}\right)^{*}=Q(\bar{\phi} f)$. Proof. If $f \in E_{p}, g \in L_{a}^{2}$ then $\left\langle\left(H_{\phi}^{E_{p}}\right)^{*} f, g\right\rangle=\left\langle f, H_{\phi}^{E_{p}} g\right\rangle=\left\langle f, P_{p}(\phi g)\right\rangle=\langle f, \phi g\rangle=$ $\langle\bar{\phi} f, g\rangle=\langle Q(\bar{\phi} f), g\rangle$. Thus $\left(H_{\phi}^{E_{p}}\right)^{*}: E_{p} \rightarrow L_{a}^{2}$ such that $\left(H_{\phi}^{E_{p}}\right)^{*} f=Q(\bar{\phi} f)$.

3 Inner functions and kernel of a finite rank intermediate Hankel operator

Definition 3. An invariant subspace of $L_{a}^{2}(\mathbb{D})$ is a closed subspace I such that $z I \subset I$; in other words $z f(z)$ is in I whenever f is in I.

Definition 4. A function $G \in L_{a}^{2}(\mathbb{D})\left(G \in H^{2}\right)$ is called an inner function in $L_{a}^{2}(\mathbb{D})\left(\right.$ respectively, $\left.H^{2}\right)$ if $|G|^{2}-1$ is orthogonal to H^{∞}.

This definition of inner function in a Bergman space was given by Korenblum and Stessin [5]. If N is a subspace of $L_{a}^{2}(\mathbb{D})$, let $Z(N)=\{z \in \mathbb{D}: f(z)=0$ for all $f \in N\}$, which is called the common zero set of functions in N. Hence if z_{1} is a zero of multiplicity at most n of all functions in N, then z_{1} appears n times in the set $Z(N)$, and each z_{1} is treated as a distinct element of $Z(N)$.

Lemma 5. If \mathcal{I} is an invariant subspace of $L_{a}^{2}(\mathbb{D})$ of finite codimension and $Z(\mathcal{I})=$ $\{z \in \mathbb{D}: f(z)=0$ for all $f \in \mathcal{I}\}$ then $Z(\mathcal{I})$ is a finite set and $\mathcal{I}=I(Z(\mathcal{I}))=\{f \in$ $L_{a}^{2}(\mathbb{D}): f(z)=0$ for all $\left.z \in Z(\mathcal{I})\right\}$.

Proof. For proof see [1].
For notational convenience, henceforth we shall assume that p is a fixed positive integer.

Theorem 6. Let $\phi \in L^{\infty}(\mathbb{D})$ and $H_{\phi}^{E_{p}}$ be a finite rank intermediate Hankel operator on $L_{a}^{2}(\mathbb{D})$. Then $\operatorname{ker} H_{\phi}^{E_{p}}=G L_{a}^{2}(\mathbb{D})$ for some inner function $G \in L_{a}^{2}(\mathbb{D})$ and the following hold.
(i) If $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}=Z\left(\operatorname{ker}^{N} E_{\phi}^{E_{p}}\right)$ then G vanishes on \mathbf{a}.
(ii) $\|G\|_{L^{2}}=1$ and G is equal to a constant plus a linear combination of the Bergman kernel functions $K\left(z, a_{1}\right), K\left(z, a_{2}\right), \cdots, K\left(z, a_{n}\right)$ and certain of their derivatives.
(iii) $|G|^{2}-1 \perp L_{h}^{1}$ where L_{h}^{1} is the class of harmonic functions in L^{1} of the disc.

Proof. Note $\operatorname{ker} H_{\phi}^{E_{p}}=\left\{f \in L_{a}^{2}(\mathbb{D}): H_{\phi}^{E_{p}} f=0\right\}=\left\{f \in L_{a}^{2}(\mathbb{D}): P_{p}(\phi f)=0\right\}=$ $\left\{f \in L_{a}^{2}(\mathbb{D}): \phi f \in E_{p}^{\perp}\right\}=\left\{f \in L_{a}^{2}(\mathbb{D}):\left.\langle\phi f| z\right|^{2 k,} \bar{z}^{n}\right\rangle=0$ for all $n \in \mathbb{Z}, n \geq$ 0 and $k=0,1, \cdots, p\}$.
Now if $f \in \operatorname{ker} H_{\phi}^{E_{p}}$ then $\left.\left.\langle\phi f| z\right|^{2 k,} \bar{z}^{n}\right\rangle=0$ for all $n \in \mathbb{Z}, n \geq 0$ and $k=0,1, \cdots, p$ and therefore $\left.\left.\left.\langle z \phi f| z\right|^{2 k,} \bar{z}^{n}\right\rangle=\left.\langle\phi f| z\right|^{2 k,} \bar{z}^{n+1}\right\rangle=0$ for all $n \in \mathbb{Z}, n \geq 0$ and $k=0,1, \cdots, p$. Hence $z \phi f \in E_{p}^{\perp}$ and then $z f \in \operatorname{ker} H_{\phi}^{E_{p}}$. Thus $\operatorname{ker} H_{\phi}^{E_{p}} \subset L_{a}^{2}$ is invariant under
multiplication by z, and $\operatorname{ker} H_{\phi}^{E_{p}}$ has finite codimension since $H_{\phi}^{E_{p}}$ is of finite rank. Let $Z\left(\operatorname{ker} H_{\phi}^{E_{p}}\right)=\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$. Let G be the extremal function for the problem

$$
\sup \left\{\operatorname{Re} f^{(k)}(0): f \in L_{a}^{2},\|f\|_{L^{2}} \leq 1, f=0 \text { on } \mathbf{a}\right\}
$$

where k is the multiplicity of the number of times zero appears in $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}(k=0$ if $0 \notin\left\{a_{j}\right\}_{j=1}^{N}$). It is clear from $[2,3,4]$ that G satisfies conditions (i)-(iii), and G vanishes precisely on a in $\overline{\mathbb{D}}$, counting multiplicities. Moreover, for every function $f \in L_{a}^{2}(\mathbb{D})$ that vanishes on $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$, there exists $g \in L_{a}^{2}(\mathbb{D})$ such that $f=G g$. Thus $\operatorname{ker} H_{\phi}^{E_{p}}=G L_{a}^{2}(\mathbb{D})$.

If $H_{\phi}^{E_{p}}$ is of finite rank, then $\operatorname{rank} H_{\phi}^{E_{p}}=$ number of zeroes of G counting multiplicities. We now make the link between inner functions and finite rank Hankel operators as follows.

Proposition 7. Suppose $\Psi \in L^{\infty}(\mathbb{D})$ and $H_{\Psi}^{E_{p}}$ is a finite rank intermediate Hankel operator. Then there exist functions ϕ and χ such that $\Psi=\phi+\chi$, where $\chi \in E_{p}^{\perp}$ and $\bar{\phi} z^{k} \in \overline{E_{p}} \cap\left(G L_{a}^{2}\right)^{\perp}$, for all $k=0,1, \cdots, p$ and for some inner function $G \in H^{\infty}$.

Proof. Suppose $\Psi \in L^{\infty}(\mathbb{D})$ and $H_{\Psi}^{E_{p}}$ is a finite rank intermediate Hankel operator. Let $\Psi=\phi+\chi$, where $\chi \in E_{p}^{\perp}$ and $\phi \in E_{p}$. By Lemma $1, H_{\chi}^{E_{p}} \equiv 0$. Hence $H_{\Psi}^{E_{p}} \equiv H_{\phi}^{E_{p}}$ and therefore, $H_{\phi}^{E_{p}}$ is a finite rank intermediate Hankel operator.

By Theorem 6, there exists an inner function $G \in L_{a}^{2}(\mathbb{D})$ such that $\operatorname{ker} H_{\phi}^{E_{p}}=$ $G L_{a}^{2}(\mathbb{D})$. Thus $\phi G \in E_{p}^{\perp}$. So $\langle\phi G, h\rangle=0$ for all $h \in E_{p}$. That is, $\langle G \bar{h}, \bar{\phi}\rangle=0$ for all $h \in E_{p}$, and so $\bar{\Psi}=\bar{\phi}+\bar{\chi}$, where $\bar{\chi} \in \overline{E_{p}}{ }^{\perp}$ and $\bar{\phi} \in \overline{E_{p}} \cap\left(G \overline{E_{p}}\right)^{\perp}$. By Theorem $6, G$ vanishes precisely at $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$, a finite sequence of points in \mathbb{D}, counting multiplicities. Now $\bar{\phi} \in \overline{E_{p}} \cap\left(G \overline{E_{p}}\right)^{\perp}$ implies $\left.\left.\langle\bar{\phi}, G| z\right|^{2 k} z^{n}\right\rangle=0$ for all $k=$ $0,1, \cdots p, n \in \mathbb{Z}, n \geq 0$. Hence $\left\langle\bar{\phi} z^{k}, G z^{k+n}\right\rangle=0$ for all $k=0,1, \cdots p, n \in \mathbb{Z}, n \geq 0$. Thus $\bar{\phi} z^{k} \in \overline{E_{p}} \cap\left(\bar{G} L_{a}^{2}\right)^{\perp}$ for all $k=0,1, \cdots p$.

Corollary 8. If $\Psi \in \overline{H^{\infty}}$ and $H_{\Psi}^{E_{p}}$ is of finite rank then for all $k=0,1, \cdots p$,

$$
\bar{\Psi} z^{k}=\sum_{j=1}^{N} \sum_{\nu=0}^{m_{j}-1} c_{j \nu}^{(k)} \frac{\partial^{\nu}}{\partial \bar{b}_{j}^{\nu}} K_{b_{j}}(z)
$$

where $c_{j \nu}^{(k)}$ are constants for all $k=0,1, \cdots p$ and $j=1, \cdots, N$ and $\nu=0, \cdots m_{j}-1$. Here $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{N}$ is a finite set of points in \mathbb{D} and m_{j} is the number of times b_{j} appears in \mathbf{b}.

Proof. By Proposition 7, $\Psi=\phi+\chi$, where $\chi \in E_{p}^{\perp}$ and $\bar{\phi} z^{k} \in \overline{E_{p}} \cap\left(G L_{a}^{2}\right)^{\perp}$, for all $k=0,1, \cdots, p$ and for some inner function $G \in H^{\infty}$. Since $\Psi \in \overline{H^{\infty}}, \chi \equiv 0$. Thus $H_{\Psi} \equiv H_{\phi}$ is a finite rank operator and $\bar{\Psi} z^{k}=\bar{\phi} z^{k} \in \overline{E_{p}} \cap\left(G L_{a}^{2}\right)^{\perp}$, for all $k=0,1, \cdots, p$ and for some inner function $G \in H^{\infty}$. Further, $\operatorname{ker} H_{\Psi}^{E_{p}}=G L_{a}^{2}(\mathbb{D})$. Now $\bar{\Psi} z^{k} \in L_{a}^{2} \subset \overline{E_{p}}$. Thus $\bar{\Psi} z^{k} \in L_{a}^{2} \cap \overline{E_{p}} \cap\left(G L_{a}^{2}\right)^{\perp}=L_{a}^{2} \ominus G L_{a}^{2}$. Let $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{N}$ be the zeros of G (counting multiplicities). From [2, 4], it follows that

$$
\left\{K_{b_{1}}, \cdots, \frac{\partial^{m_{1}-1}}{\partial \bar{b}_{1}^{m_{1}-1}} K_{b_{1}}, \cdots, K_{b_{N}}, \cdots, \frac{\partial^{m_{N}-1}}{\partial \bar{b}_{N}^{\bar{m}_{N}-1}} K_{b_{N}}\right\}
$$

form a basis for $\left(G L_{a}^{2}(\mathbb{D})\right)^{\perp}$, hence the result follows.
Notice that $\bar{\Psi}$ is a polynomial of degree $\leq p$ if and only if $\operatorname{rank} H_{\Psi}^{E_{p}} \leq p$. The proof of this fact is given in [6]. For the sake of completeness, we are presenting the proof of [6] here: If $\bar{\Psi}$ is a polynomial of degree less than or equal to p then $\operatorname{rank} H_{\Psi}^{E_{p}} \leq p$. This is so because if $\bar{\Psi}(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k}, k \leq p, a_{k} \neq 0$ then for $m>k, H_{\Psi}^{E_{p}}\left(z^{m}\right)=P_{p}\left(\Psi z^{m}\right)=P_{p}\left(\left(\overline{a_{0}}+\overline{a_{1}} \bar{z}+\cdots+\overline{a_{k}} \bar{z}^{k}\right) z^{m}\right)=0$. If $\Psi \in \overline{L_{a}^{2}}$ then (see $[7]), \Psi(z)=\sum_{n=0}^{\infty} \hat{\Psi}(n) \bar{z}^{n}, \hat{\Psi}(n) \in \mathbb{C}$ and $\sum_{n=0}^{\infty} \frac{|\hat{\Psi}(n)|^{2}}{n+1}<\infty$. Now if $H_{\Psi}^{E_{p}}$ is of rank $\leq p$ and $\bar{\Psi}$ is not a polynomial then the functions $H_{\Psi}^{E_{p}}(1)=\Psi, H_{\Psi}^{E_{p}}(z)=$ $z(\Psi-\hat{\Psi}(0)), \cdots, H_{\Psi}^{E_{p}}\left(z^{p}\right)=z^{p}\left(\Psi-\sum_{n=0}^{p-1} \hat{\Psi}(n) \bar{z}^{n}\right)$ are linearly independent and $\operatorname{rank} H_{\Psi}^{E_{p}} \geq p+1$ which is a contradiction. Let $v_{k}=\sum_{j=o}^{p} A_{j}^{m+k, m} \bar{z}^{k+j} z^{j}$. Notice that $v_{k} \perp v_{l}$ for $k \neq l$. Now if for some $m \geq 0, H_{\Psi}^{E_{p}}\left(z^{m}\right)=0$ then since $H_{\Psi}^{E_{p}}\left(z^{m}\right)=$ $\sum_{k=o}^{\infty} \hat{\Psi}(m+k)\left(\sum_{j=o}^{p} A_{j}^{m+k, m} \bar{z}^{k+j} z^{j}\right) ;$ hence $\hat{\Psi}(m+k)=0$ for all $k=0,1,2, \cdots$. This implies $\bar{\Psi}$ is a polynomial of degree $\leq m$ and in which case $H_{\Psi}^{E_{p}}\left(z^{n}\right)=0$ for all $n \geq m$. Thus $\operatorname{rank} H_{\Psi}^{E_{p}} \leq p$ implies $\bar{\Psi}$ is a polynomial of degree $\leq p$.
Theorem 9. If $\Psi \in\left(E_{p}\right)^{\perp} \oplus \overline{H^{\infty}}$ and $H_{\Psi}^{E_{p}}$ is a finite rank operator of rank $p+r$ then $\bar{\Psi}=\chi+\bar{\Theta}+\bar{\phi}$ where $\chi \in\left(\overline{E_{p}}\right)^{\perp}, \bar{\Theta}$ is a polynomial of degree $\leq p$, and rankH ${ }_{\phi G_{1}}^{E_{p}} \leq r$ for some inner function G_{1}.

Proof. Suppose $\Psi \in\left(E_{p}\right)^{\perp} \oplus \overline{H^{\infty}}$ and $H_{\Psi}^{E_{p}}$ is a finite rank operator of rank $p+r$. Then $\Psi=\bar{\chi}+\Omega$ where $\bar{\chi} \in\left(E_{p}\right)^{\perp}$ and $\Omega \in \overline{H^{\infty}}$. Since $H_{\bar{\chi}} \equiv 0$ if and only if $\bar{\chi} \in\left(E_{p}\right)^{\perp}$, hence $H_{\Psi}^{E_{p}}=H_{\Omega}^{E_{p}}$ is a finite rank operator of rank $p+r$. By Theorem 6 this implies there exists an inner function (a finite zero divisor) $G \in H^{\infty}$ such that $\operatorname{ker} H_{\Omega}^{E_{p}}=$ $G L_{a}^{2}(\mathbb{D})$. Let $Z\left(\operatorname{ker} H_{\Omega}^{E_{p}}\right)=\left\{\xi_{j}\right\}_{j=1}^{N}$ repeated according to their multiplicities. From [2, 3, 4], it follows that $G(z)=J(0,0)^{-\frac{1}{2}} B(z) J(z, 0)$, where $J(z, \zeta)$ is the kernel function of the Bergman space $L_{a}^{2}(w(z) d A(z))$ with weight $w=|B|^{p}$, and B is the finite Blaschke product associated with $\left\{\xi_{j}\right\}_{j=1}^{N}$. Without loss of generality assume that G has no zeros at the origin. That is, $B(z)=\prod_{n=1}^{N} \frac{\left|\xi_{n}\right|}{\xi_{n}} \frac{\xi_{n}-z}{1-\overline{\xi_{n}} z}$. Let $B_{1}(z)=$
$\prod_{n=1}^{p} \frac{\left|\xi_{n}\right|}{\xi_{n}} \frac{\xi_{n}-z}{1-\overline{\xi_{n} z}}$ and $B_{2}(z)=\prod_{n=p+1}^{N} \frac{\left|\xi_{n}\right|}{\xi_{n}} \frac{\xi_{n}-z}{1-\overline{\xi_{n}} z}$. Then $G(z)=J(0,0)^{-\frac{1}{2}} B(z) J(z, 0)=$ $J(0,0)^{-\frac{1}{2}} B_{1}(z) J(z, 0) B_{2}(z)=G_{1}(z) B_{2}(z)$ where $G_{1}(z)$ is an inner function in the Bergman space $L_{a}^{2}(\mathbb{D})$ and $B_{2}(z)$ is a classical inner function, in fact a finite Blaschke product. Notice that G_{1} has p zeros and B_{2} has $N-p$ zeros counting multiplicities. Now $\operatorname{ker} H_{\Omega}^{E_{p}}=G L_{a}^{2}(\mathbb{D})$ implies $H_{\Omega}^{E_{p}}\left(G L_{a}^{2}\right)=\{0\}$. Hence, $\Omega G \in\left(E_{p}\right)^{\perp}$. That is, $\Omega \in\left(\bar{G} E_{p}\right)^{\perp}$ or $\bar{\Omega} \in\left(G \overline{E_{p}}\right)^{\perp}$. But observe that $\left(G \overline{E_{p}}\right)^{\perp}=\left(G_{1} \overline{E_{p}}\right)^{\perp} \oplus\left[\left(G \overline{E_{p}}\right)^{\perp} \ominus\right.$ $\left.\left(G_{1} \overline{E_{p}}\right)^{\perp}\right]=\left(G_{1} \overline{E_{p}}\right)^{\perp} \oplus\left[\left(G \overline{E_{p}}\right)^{\perp} \cap G_{1} \overline{E_{p}}\right]$. Thus, $\bar{\Omega}=\bar{\Theta}+\bar{\phi}$ where $\bar{\Theta} \in\left(G_{1} \overline{E_{p}}\right)^{\perp}$ and $\bar{\phi} \in\left(G \overline{E_{p}}\right)^{\perp} \cap G_{1} \overline{E_{p}}$. Hence $H_{\Omega}^{E_{p}}=H_{\Theta}^{E_{p}}+H_{\phi}^{E_{p}}$. We shall now verify that $H_{\Theta}^{E_{p}}$ is a finite rank operator of rank $\leq p$ and $\operatorname{rank} H_{\phi G_{1}}^{E_{p}} \leq r$.

Since $\bar{\Theta} \in\left(G_{1} \overline{E_{p}}\right)^{\perp}$, we have $\Theta G_{1} \in\left(E_{p}\right)^{\perp}$ and hence $\operatorname{ker} H_{\Theta}^{E_{p}} \supset G_{1} L_{a}^{2}$. Thus $\left(\operatorname{ker} H_{\Theta}^{E_{p}}\right)^{\perp}=\operatorname{range} H_{\Theta}^{* E_{p}} \subset\left(G_{1} L_{a}^{2}\right)^{\perp} \cap L_{a}^{2}$. Since $G_{1} L_{a}^{2} \subset L_{a}^{2}$ and $\left(G_{1} L_{a}^{2}\right)^{\perp}$ has dimension p; the space $\operatorname{ker} H_{\Theta}^{E_{p}}$ has finite codimension and dim range $H_{\Theta}^{E_{p}} \leq p$. Hence $\bar{\Theta}$ is a polynomial of degree $\leq p$. Thus $\bar{\Theta} \in H^{\infty}$ and therefore $\bar{\phi} \in H^{\infty}$. Now $\bar{\phi} \in\left(G \overline{E_{p}}\right)^{\perp} \cap G_{1} \overline{E_{p}}$. This implies $\overline{\bar{\phi}} \in G_{1} \overline{E_{p}}$ and $\bar{\phi} \perp G \overline{E_{p}}$. That is, $\left\langle\bar{\phi} \overline{G_{1}}, B_{2} g\right\rangle=$ $\left\langle\bar{\phi}, G_{1} B_{2} g\right\rangle=\langle\bar{\phi}, G g\rangle=0$ for all $g \in \overline{E_{p}}$. Thus $\bar{\phi} \overline{G_{1}} \in\left(B_{2} \overline{E_{p}}\right)^{\perp}$. That is, $\phi G_{1} \in$ $\left(\overline{B_{2}} E_{p}\right)^{\perp}$. Hence $\operatorname{rank} H_{\phi G_{1}}^{E_{p}} \leq r$.

Theorem 10. If $H_{\phi}^{E_{p}}$ is an intermediate Hankel operator on $L_{a}^{2}(\mathbb{D})$, and $\operatorname{kerH}_{\phi}^{E_{p}}=$ $\left\{f \in L_{a}^{2}(\mathbb{D}): f=0\right.$ on $\left.\mathbf{b}\right\}$ where $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{\infty}$ is an infinite sequence of points in \mathbb{D}, then there exists an inner function $G \in L_{a}^{2}(\mathbb{D})$ such that $\operatorname{ker}_{\phi}^{E_{p}}=G L_{a}^{2}(\mathbb{D}) \cap L_{a}^{2}(\mathbb{D})$.

Proof. The proof follows from the result of Hedenmalm [4] as $\operatorname{ker} H_{\phi}^{E_{p}}$ is an invariant subspace of the operator of multiplication by z.

It is not known for the Bergman space whether the invariant subspaces determined by infinite zero sets are generated by the corresponding canonical divisors (see [2, 4]). Now let $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{\infty}$ be an infinite sequence of points in \mathbb{D}. Let $\mathcal{I}=I(\mathbf{b})=\{f \in$ $L_{a}^{2}(\mathbb{D}): f=0$ on $\left.\mathbf{b}\right\}$. Let $G_{\mathbf{b}}$ be the solution of the extremal problem

$$
\begin{equation*}
\sup \left\{\operatorname{Re} f^{(n)}(0): f \in \mathcal{I},\|f\|_{L^{2}} \leq 1\right\}, \tag{3.1}
\end{equation*}
$$

where n is the number of times zero appears in the sequence \mathbf{b} (that is, the functions in \mathcal{I} have a common zero of order n at the origin). The natural question that arises at this point is to see if it is possible to construct an intermediate Hankel operator $H_{\phi}^{E_{p}}$ whose kernel is $G_{\mathbf{b}} L_{a}^{2} \cap L_{a}^{2}$. In the case that $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{N}$ is a finite set of points in \mathbb{D}, it is possible to construct an intermediate Hankel operator $H_{\phi}^{E_{p}}$ such that $\operatorname{ker} H_{\phi}^{E_{p}}=G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})$, as follows.

Theorem 11. If $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{N}$ is a finite set of points in $\mathbb{D}, \mathcal{I}=I(\mathbf{b})=\left\{f \in L_{a}^{2}(\mathbb{D})\right.$:
$f=0$ on $\mathbf{b}\}$ and $G_{\mathbf{b}}$ is the solution of the extremal problem (3.1),

$$
\bar{\phi} z^{k}=\sum_{j=1}^{N} \sum_{\nu=0}^{m_{j}-1} c_{j \nu}^{(k)} \frac{\partial^{\nu}}{\partial \bar{b}_{j}^{\nu}} K_{b_{j}}(z)
$$

where $c_{j \nu}^{(k)}$ are constants, $c_{j \nu}^{(k)} \neq 0$ for all $j, \nu, k=0,1, \cdots, p$ and m_{j} is the number of times b_{j} appears in \mathbf{b}, then $\operatorname{ker}^{E_{\phi}}=G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})$.

Proof. $\left\{K_{b_{1}}, \cdots, \frac{\partial^{m_{1}-1}}{\partial \bar{b}_{1}^{m_{1}-1}} K_{b_{1}}, \cdots, K_{b_{N}}, \cdots, \frac{\partial^{m_{N}-1}}{\partial \bar{b}_{N}^{m_{N}-1}} K_{b_{N}}\right\}$ forms a basis for $\left(G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})\right)^{\perp}$. By the Gram-Schmidt orthogonalization process, we can obtain an orthonormal basis $\left\{\Psi_{j}\right\}_{j=1}^{l}$ for $\left(G_{\mathbf{b}} L_{a}^{2}\right)^{\perp}$. Since $\bar{\phi} z^{k} \in\left(G_{\mathbf{b}} L_{a}^{2}\right)^{\perp}$, hence $\left\langle\bar{\phi} z^{k}, G_{\mathbf{b}} z^{n} z^{k}\right\rangle=0$ for all $k=$ $0,1, \cdots, p, n \in \mathbb{Z}, n \geq 0$. This implies $\left.\left.\left\langle\bar{\phi}, G_{\mathbf{b}}\right| z\right|^{2 k} z^{n}\right\rangle=0$ for all $k=0,1, \cdots, p, n \in$ $\mathbb{Z}, n \geq 0$. Therefore $\left.\left.\langle | z\right|^{2 k} \bar{z}^{n}, \phi G_{\mathbf{b}}\right\rangle=0$ for all $k=0,1, \cdots, p, n \in \mathbb{Z}, n \geq 0$. Thus $\phi G_{\mathbf{b}} \in E_{p}^{\perp}$ and $G_{\mathbf{b}} \in \operatorname{ker} H_{\phi}^{E_{p}}$. Since $\operatorname{ker} H_{\phi}^{E_{p}}$ is invariant under the operator of multiplication by z, hence

$$
\begin{equation*}
G_{\mathbf{b}} L_{a}^{2} \subset \operatorname{ker} H_{\phi}^{E_{p}} \tag{3.2}
\end{equation*}
$$

Suppose $f \in \operatorname{ker} H_{\phi}^{E_{p}}$, then $\phi f \in E_{p}^{\perp}$. That is, $\left.\left.\langle\phi f| z\right|^{2 k,} \bar{z}^{n}\right\rangle=0$ for all $n \geq$ $0, n \in \mathbb{Z}, k=0,1, \cdots, p$. Hence $\left.\left.\langle | z\right|^{2 k} \phi f, \bar{z}^{n}\right\rangle=0$ for all $n \geq 0, n \in \mathbb{Z}, k=0,1, \cdots, p$ and therefore $\left.\left.\langle | z\right|^{2 k} \phi f, \bar{g}\right\rangle=0$ for all $g \in L_{a}^{2}$ and $k=0,1, \cdots, p$. So in particular, $\left.\left.\langle | z\right|^{2 k} \phi f, \overline{K_{b_{j}}}\right\rangle=0$ for all $j=1,2, \cdots, N ; k=0,1, \cdots, p$. Thus $\overline{\phi\left(b_{j}\right)}\left|b_{j}\right|^{2 k} \overline{f\left(b_{j}\right)}=0$ for all $j=1,2, \cdots, N ; k=0,1, \cdots, p$. In particular, $\overline{\phi\left(b_{j}\right) f\left(b_{j}\right)}=0$ for all $j=$ $1,2, \cdots, N$.
Since $\overline{\phi\left(b_{j}\right)} \neq 0$ for all $j=1,2, \cdots, N$ hence we have, $\overline{f\left(b_{j}\right)}=0$ for all $j=$ $1,2, \cdots, N$. Thus $f \in \mathcal{I}$. Since $G_{\mathbf{b}}$ is the solution of the extremal problem (1), $f \in G_{\mathbf{b}} L_{a}^{2}$. Hence

$$
\begin{equation*}
\operatorname{ker} H_{\phi}^{E_{p}} \subset G_{\mathbf{b}} L_{a}^{2} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), $\operatorname{ker} H_{\phi}^{E_{p}}=G_{\mathbf{b}} L_{a}^{2}=\mathcal{I}$ as required.

References

[1] N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. 31 (1999), 75-80. MR1651001(99j:47034). Zbl 0942.47015.
[2] P. L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157 (1993), 37-56. MR1197044(94c:30048). Zbl 0739.30029.
[3] P.L. Duren, D. Khavinson, H. S. Shapiro and C. Sundberg, Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J. 41 (1994), 247-259. MR1278431(95e:46030). Zbl 0833.46044.
[4] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine. Angew. Math. 422 (1991), 45-68. MR1133317(93c:30053). Zbl 0734.30040.
[5] B. Korenblum and M. Stessin, On Toeplitz-invariant subspaces of the Bergman space, J. Funct. Anal. 111 (1993), 76-96. MR1200637(94f:30049). Zbl 0772.30042.
[6] E. Strouse, Finite rank intermediate Hankel operators, Arch. Math. (Basel) 67 (1996), 142-149. MR1399831(97i:47047). Zbl 0905.47014.
[7] K. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker, Inc. 139, New York and Basel, 1990. MR1074007(92c:47031). Zbl 0706.47019.

Namita Das

P. G. Dept. of Mathematics,

Utkal University, Vanivihar, Bhubaneswar, 751004, Orissa, India.
e-mail: namitadas440@yahoo.co.in

