
Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)

Volume 6 (2011), 43 – 66

MAXIMAL SUBGROUPS OF THE GROUP PSL(12,2)

Rauhi Ibrahim Elkhatib

Abstract. In this paper, We will find the maximal subgroups of the group PSL(12, 2) by

Aschbacher’s Theorem ([2]).

1 Introduction

The purpose of this research is to prove the following theorem:

Theorem 1. Let G = PSL(12, 2). If H is a maximal subgroup of G, then H
isomorphic to one of the following subgroups:

1. A group G(p) or G(10−π), stabilizing of a point or its dual, the stabilizer of a
hyperplane. These are isomorphic to a group of form 211.SL(11, 2);

2. A group G(l) or G(9−π), stabilizing of a line or its dual, the stabilizer of a
9-space. These are isomorphic to a group of form 220.(SL(2, 2)× SL(10, 2));

3. A group G(2−π), or G(8−π), stabilizing of a plane or its dual, the stabilizer of
a 8-space. These are isomorphic to a group of form 227.(SL(3, 2)× SL(9, 2));

4. A group G(3−π), or G(7−π), stabilizing of a 3-space or its dual, the stabilizer of
a 7-space. These are isomorphic to a group of form 232.(SL(4, 2)× SL(8, 2));

5. A group G(4−π), or G(6−π), stabilizing of a 4-space or its dual, the stabilizer of
a 6-space. These are isomorphic to a group of form 235.(SL(5, 2)× SL(7, 2));

6. A group G(5−π,5−π), stabilizing of a pair of 5-spaces. These are isomorphic to
a group of form 236.(SL(6, 2)× SL(6, 2));

7. H2=PSL(3, 2):S4 a group preserving four mutually skew planes of PG(11, 2)
and H2 interchanges them;
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8. H3=PSL(4, 2):S3 a group preserving three mutually skew 3-spaces of PG(11,
2) and H3 interchanges them;

9. H4=PSL(6, 2):S2 a group preserving two mutually skew 5-spaces of PG(11,
2) and H4 interchanges them;

10. H5=ΓL(2, 26), a group preserves six mutually skew lines of PG(11, 25) and
H5 interchanges them;

11. H6=ΓL(3, 24), a group preserves four skew planes of PG(11, 24) and H6

interchanges them;

12. H7=ΓL(4, 23), a group preserves three skew 3-spaces of PG(11, 23) and H7

interchanges them;

13. H8=ΓL(6, 22), a group preserves two skew 5-spaces of PG(11, 22) and H8

interchanges them;

14. H10=PSL(3, 2) ◦PSL(4, 2);

15. Sp(12, 2);

16. PΓL(2, 11);

17. PΓL(2, 13);

18. PΓL(2, 25);

19. PΓL(3, 3).

Through this research, ΓL(n, q) denote the group of all non-singular semi-linear
transformation of a vector space Vn(q) of dimension n over a field Fq with q is
a prime power. The general linear group GL(n, q), consisting of the set of all
invertible n×n matrices. In fact, GL(n, q) is a subgroup of ΓL(n, q) consisting of
all non-singular linear transformations of Vn(q). The centre Z of GL(n, q) is the
set of all non-singular scalar matrices. The factor group GL(n, q)/Z called The
projective general linear group which is denoted by PGL(n, q). GL(n, q) has a
normal subgroup SL(n, q), consisting of all matrices of determinant 1 called the
special linear group. The projective special linear group PSL(n, q) is the quotient
group SL(n, q)/(Z∩SL(n, q)). PSL(n, q) is simple, except for PSL(2, 2) and PSL(2,
3).

PG(n-1, q) will denote the projective space of dimension n-1 associated with
Vn(q). One, two and three- dimensional subspaces of Vn(q) will be called points, lines
and planes respectively. An (n-1)-dimensional subspace shall be called a hyperplane.

A split extension (a semidirect product) A:B is a group G with a normal subgroup
A and a subgroup B such that G = AB and A ∩ B = 1. A non-split extension A.B
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is a group G with a normal subgroup A and G/A ∼= B, but with no subgroup B
satisfying G = AB and A ∩ B = 1. A group G = A◦B is a central product of its
subgroups A and B if G = AB and [A, B], the commutator of A and B = {1}, in
this case A and B are normal subgroups of G and A∩B = Z(G). If A∩B = {1}, then
A ◦ B = AB.

G = PSL(12, 2) is a simple group of order

6441762292785762141878919881400879415296000

thus |G |= 266.38.53.74.11.13.17.23.312.73.89.127. G acting as a doubly transitive
permutation group on the points of the projective space PG(11, 2).

2 Aschbacher’s Theorem

In this section, we will give some definitions before starting a brief description of
Aschbacher’s Theorem [2].

Definition 2. Let V be a vector space of dimensional n over a finite field q, a
subgroup H of GL(n, q) is called reducible if it stabilizes a proper nontrivial subspace
of V. If H is not reducible, then it is called irreducible. If H is irreducible for all
field extensition F of Fq, then H is absolutely irreducible. An irreducible subgroup
H of GL(n, q) is called imprimitive if there are subspaces V1, V2, . . . , Vk, k = 2, of
V such that V = V1 ⊕ . . .⊕ Vk and H permutes the elements of the set { V1, V2,
. . . , Vk} among themselves. When H is not imprimitive then it is called primitive.

Definition 3. A group G = GL(n, q) is a superfield group of degree s if for some
s divides n with s > 1, the group G may be embedded in ΓL(n/s, qs).

Definition 4. If the group G = GL(n,q) preserves a decomposition V = V1 ⊗ V2

with dim(V1) 6= dim(V2) then G is a tensor product group.

Definition 5. Suppose that n = rm and m > 1. If G = GL(n, q) preserves a
decomposition V = V1 ⊗ . . .⊗ Vm with dim(Vi) = r for 1 = i = m, then G is a
tensor induced group.

Definition 6. A group G = GL(n, q) is a subfield group if there exists a subfield
Fqo ⊂ Fq such that G can be embedded in GL(n, qo).Z.

Definition 7. A p-group G is called special if Z(G) = G′ and is called extraspecial
if also |Z(G)|= p.

Definition 8. Let Z denote the group of scalar matrices of G. Then G is almost
simple modulo scalars if there is a non-abelian simple group T such that T = G/Z
= Aut(T), the automorphism group of T.
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A classification of the maximal subgroups of GL(n, q) by Aschbacher’s Theorem
[2], which may be briefly summarized as follows:

Proposition 9. (Aschbacher’s Theorem): Let H be a subgroup of GL(n, q), q = pe

with the center Z and V be the underlying n-dimensional vector space over a field q.
If H is a maximal subgroup of GL(n, q), then one of the following holds: C1:- H is
a reducible group.

C2:- H is an imprimitive group.

C3:- H is a superfield group.

C4:- H is a tensor product group.

C5:- H is a subfield group.

C6:- H normalizes an irreducible extraspecial or symplectic-type group.

C7:- H is a tensor induced group.

C8:- H normalizes a classical group in its natural representation.

C9:- H is absolutely irreducible and H /(H∩Z)is almost simple.

Note: The nine classes of Proposition 9 are not mutually exclusive.

To prove Theorem 1 by using Aschbacher’s Theorem (Proposition 9), first, we will
determine the maximal subgroups in the classes C1 - C8 of Proposition 9.

3 The maximal subgroups in the classes C1 - C8 of
Proposition 9

3.1 The maximal subgroups of the class C1

Let H be a reducible subgroup of G and W an invariant subspace of H. If we let d =
dim(W), then 1 ≤ d≤ 12. Let Gd = G(W ) denote the subgroup of G containing all
elements fixing W as a whole and H ⊆ G(W ). with a suitable choice of a basis, G(W )

consists of all matrices of the form

(
A B
0 C

)
where A and C are d × d and (12-d)

×(12-d) non-singular matrices of determinant 1, where B is an arbitrary d×(12-d)
matrix. Gd is isomorphic to a group of the form 2d(12−d)(SL(d, 2))×(SL(12-d, 2)).

which give us the following reducible maximal subgroups of G:

1. A group G(p) or G(10−π), stabilizing of a point or its dual, the stabilizer of a
hyperplane. These are isomorphic to a group of form 211.SL(11, 2).

2. A group G(l) or G(9−π), stabilizing of a line or its dual, the stabilizer of a
9-space. These are isomorphic to a group of form 220.(SL(2, 2)× SL(10, 2)).

3. A group G(2−π), or G(8−π), stabilizing of a plane or its dual, the stabilizer of
a 8-space. These are isomorphic to a group of form 227.(SL(3, 2)× SL(9, 2)).
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4. A group G(3−π), or G(7−π), stabilizing of a 3-space or its dual, the stabilizer of
a 7-space. These are isomorphic to a group of form 232.(SL(4, 2)× SL(8, 2)).

5. A group G(4−π), or G(6−π), stabilizing of a 4-space or its dual, the stabilizer of
a 6-space. These are isomorphic to a group of form 235.(SL(5, 2)× SL(7, 2)).

6. A group G(5−π,5−π), stabilizing of a pair of 5-spaces. These are isomorphic to
a group of form 236.(SL(6, 2)× SL(6, 2)).

Which prove the points (1), (2), (3), (4), (5) and (6) of Theorem 1.

3.2 The maximal subgroups of the class C2

If H is imprimitive, then H preserves a decomposition of V as a direct sum V =
V1 ⊕. . .⊕ Vt, t > 1, into subspaces of V, each of dimension m = n/t, which are
permuted transitively by H, thus C2 are isomorphic to GL(m, q): St. Consequently,
there are two imprimitive groups of C2 in PSL(12, 2) which are:

1. H1 = PSL(2, 2):S6, a group preserving six mutually skew lines of PG(11, 2)
and H1 interchanges them.

2. H2 = PSL(3, 2):S4 a group preserving four mutually skew planes of PG(11,
2) and H2 interchanges them.

3. H3 = PSL(4, 2):S3 a group preserving three mutually skew 3-spaces of PG(11,
2) and H3 interchanges them.

4. H4 = PSL(6, 2):S2 a group preserving two mutually skew 5-spaces of PG(11,
2) and H4 interchanges them.

But it shown in [14] that GL(k, 2):St is not maximal for k = 2. Thus H1 is not a
maximal subgroups of PSL(12, 2).

Which prove the points (7), (8) and (9) of Theorem 1.

Note: if q>2, then there exist in C2 an imprimitive group G(∆) of order n!(q −
1)n−1 preserving a n-simplex points of PG(n-1, q) with coordinates in Fq and G(∆)

interchanges them.

3.3 The maximal subgroups of the class C3

If H is (superfield group) a semilinear groups over extension fields of GF(q) of
prime degree, then H acts on G as a group of semilinear automorphism of a (n/k)-
dimensional space over the extension field GF(qk), so H embeds in ΓL(n/k, qk ), for
some prime number k dividing n. Consequently, there are four C3 groups in PSL(
12, 2 ) which are:
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1. H5 = ΓL(2, 26), a group preserves six mutually skew lines of PG(11, 25) and
H5 interchanges them.

2. H6 = ΓL(3, 24), a group preserves four skew planes of PG(11, 24) and H6

interchanges them.

3. H7 = ΓL(4, 23), a group preserves three skew 3-spaces of PG(11, 23) and H7

interchanges them.

4. H8 = ΓL(6, 22), a group preserves two skew 5-spaces of PG(11, 22) and H8

interchanges them.

Which prove the points (10), (11), (12) and (13) of Theorem 1.

Definition 10. A Singer cycle of GL(n, q) is an element of order qn-1.

Remark 11. ([9, 13, 20]).

If n is a prime number, then there exist a Singer cycles group H = ΓL(1, qn) of order
d−1(qn-1)/(q-1), where d = gcd(n, q-1) and H is irreducible maximal subgroup of
PSL(n, q) which it is the normalizer of the (cyclic) multiplicative group for GF(qn).
Consequently, there is no Singer cycle subgroup in PSL(12, 2), since 12 is not a
prime number.

3.4 The maximal subgroups of the class C4

If H is a tensor product group, then H preserves a decomposition of V as a tensor
product V1 ⊗ V2, where dim(V1) 6= dim(V2) of spaces of dimensions k, m > 1 over
GF(q), and so H stabilize the tensor product decomposition F k ⊗ Fm, where n =
km, k 6= m. Thus, H is a subgroup of the central product of PSL(k, q)◦PSL(m, q).
Consequently, there are two C4 groups in PSL(12, 2) which are:

1. H9 = PSL(2, 2)◦PSL(6, 2);

2. H10 = PSL(3, 2)◦PSL(4, 2);

but it shown in [14] that PSL(2, 2)◦PSL(k, 2) is not maximal for all k. Thus H9 =
PSL(2, 2)◦PSL(6, 2) is not a maximal subgroups of PSL(12, 2).

Which prove the point (14) of Theorem 1.

3.5 The maximal subgroups of the class C5

If H is a subfield group, then H is the linear groups over subfields of GF(q) of prime
index. Thus H can be embedded in GL(n, pf ).Z where e/f is prime number and q =
pe. Consequently, there are no C5 groups in PSL(12, 2) since 2 is a prime number.
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3.6 The maximal subgroups of the class C6

For the dimension n = rm, if r is prime number divides q-1, then H = r2m:Sp(2m,
r) is an extraspecial r-group of order r2m+1, or if r = 2 and 4 divides q-1, then H =
22m.O∈(2m, 2) normalizes a 2-group of symplectic type of order 22m+2. Consequently,
there are no C6 groups in PSL(12, 2) since 12 is not prime power.

3.7 The maximal subgroups of the class C7

If H is a tensor-induced, then H preserves a decomposition of V as V1 ⊗ V2 ⊗. . .⊗
Vm where Vi are isomorphic and each Vi has dimension r > 1, n = dim V = rm, and
the set of Vi is permuted by H, so H stabilize the tensor product decomposition F r

⊗ F r ⊗ . . .⊗ F r, where F = Fq. Thus H/Z = PGL(r, q):Sm. Consequently, there
are no C7 groups in PSL(12, 2) since 12 is not a proper power.

3.8 The maximal subgroups of the class C8

If H normalizes a classical group in its natural representation, then H lies between
a classical group and its normalizer in GL(n, q), so H preserves a classical form
up to scalar multiplication. Thus H is a normalizer of such a subgroup PSL(n, q́),
PSp(n, q́), PΩ(n, q́) or PSU(n, q́) for various q́ dividing q. But from [5], Sp(n, q)
is a maximal subgroups of PSL(n, q). Consequently, In C8, there are only Sp(12, 2)
irreducible groups in PSL(12, 2) since 2 is not a square, and is even number.

Which proves the point (15) of Theorem 1.

Note: From [4] and [12], O−(12, 2) and O+(12, 2) are maximal subgroups of Sp(12,
2), then G contains subgroups isomorphic to O−(12, 2) and O+(12, 2) but these are
not maximal in G. Thus O∈(12, 2) ⊆ Sp( 12, 2 ) ⊆ PSL( 12, 2 ).

Finally, we will determine the maximal subgroups in class C9 of Aschbacher’s
Theorem (Proposition 9):

4 The maximal subgroups of the class C9

If H is absolutely irreducible and H /(H∩Z)is almost simple, then H is the normalizer
of absolutely irreducible normal subgroup M of H which is non-abelian and simple
group. Thus, to find the maximal subgroups of C9, we will determine the maximal
primitive subgroups H of G which have the property that a minimal normal subgroup
M of H is non abelian group.

The following Corollary will play an important role in proving the main result
of this section, (Theorem 37).

Corollary 12. If M is a non abelian simple group of a primitive subgroup H of G,
then M is isomorphic to one of the following groups:
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1. A13;

2. A14;

3. PSL(2, 11);

4. PSL(2, 13);

5. PSL(2, 25);

6. PSL(3, 3);

7. PSU(2, 11);

8. PSU(2, 13);

9. Sp(12, 2);

10. O∈(12, 2), ∈ = {+, -}.

Proof. let H be a primitive subgroup of G with a minimal normal subgroup M of H
is not abelian. So, we will discuss the possibilities of a minimal normal subgroup M
of H according to:

1. M contains transvections, (Section 4.1).

2. M does not contain any transvection, (Section 4.2).

3. M is doubly transitive, (Section 4.3).

4.1 Primitive subgroups H of G which have the property that a
minimal normal subgroup of H is not abelian is generated by
transvections

To find the primitive subgroups H of G which have the property that a minimal
normal subgroup of H is not abelian is generated by transvections, we will use the
following result of Mclaughlin [16]:

Proposition 13. (Mclaughlin Theorem): Let H be a proper irreducible subgroup of
SL(n, 2) generated by transvections. Then n>3 and H is Sp(n, 2), O∈(n, 2), Sn+1

or Sn+2.

In the following, we will discuss the different possibilities of Mclaughlin Theorem
(Proposition 13), which will give us the following main result of Section 4.1.
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Corollary 14. If M is a proper irreducible subgroup of SL(12, 2) generated by
transvections, then M isomorphic to symplectic group Sp(12, 2), orthogonal groups
O−(12, 2) and O+(12, 2), symmetric groups S13 or S14.

Proof. From Mclaughlin Theorem (Proposition 13), M is isomorphic to one of the
following groups: symplectic group Sp(12, 2), orthogonal groups O−(12, 2) and
O+(12, 2), symmetric groups S13 or S14.

1. From [5], the symplectic group Sp(12, 2) is a subgroup of G.

2. From [4] and [12], O−(12, 2) and O+(12, 2) are maximal subgroups of Sp(12,
2), then G contains subgroups isomorphic to O−(12, 2) and O+(12, 2) but
these are not maximal in G. Thus O∈(12, 2) ⊆ Sp( 12, 2 ) ⊆ PSL( 12, 2 ).

3. S13 ⊂ G, since, the irreducible 2-modular characters for S13 by GAP are:

[[1, 1], [12, 1], [64, 2], [208, 1], [288, 1], [364, 2], [560, 1], [570, 1], [1572, 1],
[1728, 1], [2208, 1], [ 2510, 1], [2848, 1], [3200, 1], [8008, 1], [8448, 1]].

(gap> CharacterDegrees(CharacterTable(”S13”)mod 2); ). But S13 is not a
simple group.

4. S14 ⊂ G, since, the irreducible 2-modular characters for S14 by GAP are:

[[1, 1], [12, 1], [64, 2], [208, 1], [364, 1], [560, 2], [768, 1], [1300, 1], [2016, 1],
[2510, 1], [3418, 1], [ 3808, 1], [4576, 1], [4704, 1], [10880, 1], [11648, 1], [13312,
1], [19240, 1], [23296, 1], [35840, 1]].

(gap> CharacterDegrees(CharacterTable(”S14)mod 2); ). But S14 is not a
simple group.

4.2 Primitive subgroups H of G which have the property that a
minimal normal subgroup of H is not abelian and does not
contain transvections

In this section, we will consider a minimal normal subgroup M of H is not abelian
and does not contain any transvections. The following corollary is the main result
of Section 4.2.

Corollary 15. If Y be a non - abelian simple subgroup of G which does not contain
any transvection. Then Y is isomorphic to

1. PSL(2, 11);

2. PSL(2, 13);

3. PSL(2, 25);
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4. PSL(3,3).

Proof. We will prove Corollary 15 by series of Lemma 16 through Lemma 21 and
Proposition 17.

Lemma 16. Let Y is a primitive subgroup of G such that Y does not contain any
transvection. If S(2) be a 2-Sylow subgroup of Y, then S(2) contains no elementary
abelian subgroup of order 8.

Proof. A 2-Sylow subgroup of G can be represented by the set of all matrices of the
form: 

1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21

1 x22 x23 x24 x25 x26 x27 x28 x29 x30

1 x31 x32 x33 x34 x35 x36 x37 x38

1 x39 x40 x41 x42 x43 x44 x45

1 x46 x47 x48 x49 x50 x51

1 x52 x53 x54 x55 x56

1 x57 x58 x59 x60

1 x61 x62 x63

1 x64 x65

1 x66

1


Where all entries are in F2. Let Y is a primitive subgroup of G such that Y does
not contain any transvection. If S(2) be a 2-Sylow subgroup of Y, then inside S(2),
there exist only two elementary abelian subgroups of the form:-

A =





1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 . . . . . . . . . .
1 . . . . . . . . .

1 . . . . . . . .
1 . . . . . . .

1 . . . . . .
1 . . . . .

1 . . . .
1 . . .

1 . .
1 .

1





and
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B =





1 . . . . . . . . . . x1

1 . . . . . . . . . x2

1 . . . . . . . . x3

1 . . . . . . . x4

1 . . . . . . x5

1 . . . . . x6

1 . . . . x7

1 . . . x8

1 . . x9

1 . x10

1 x11

1




where the orders of A and B are equal to 211

A corresponds to transvections: I+



1
.
.
.
.
.
.
.
.
.
.



[
. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

]

And B corresponds to transvections: I+



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

.



[
. . . . . . . . . . 1

]

Since S(2) does not contain any transvections, then both A and B must be the
identity element. Then S(2) contains no elementary abelian subgroup of order 8.

Proposition 17. ([1]) Let Y be a simple group. Assume that the 2-Sylow subgroup
of Y contains no elementary abelian subgroup of order 8. Then Y is isomorphic to
one of the following groups: A7, PSL(2, q), PSL(3, q), PSU(3, q) with q odd or

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 43 – 66

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


54 R. I. Elkhatib

PSU(3, 4).

We will proceed to determine which of these groups will satisfy the conditions
of Proposition 17.

Lemma 18. A7 6⊂ G.

Proof. Since the irreducible 2-modular characters for A7 by GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A7” ) mod 2 ) ); And non of them
of degree 11.

Lemma 19. If PSL(2, q) ⊂ G, q odd, then q = 11, 13 or 25.

Proof. PSL(2, q) has no projective representation in G of degree <(1/2)(q-1) ([15]
and [18]) and (1/2)(q-1) > 12 for all odd q > 25. Hence we need only to consider
the cases when q ≤ 25.

1. PSL(2, 3) 6⊂ G, since PSL(2, 3) is not simple.

2. PSL(2, 5) ∼= PSL(2, 22), The irreducible 2-modular characters for PSL(2, 5)
by GAP are:

[[1, 1], [2, 2], [4, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(5) ” ) mod 2 ) ); But non
of them of degree 12. Therefore if PSL(2, 5) ⊂ G, then it is reducible.

3. PSL(2, 7) ∼= PSL(3, 2), The irreducible 2-modular characters for PSL(2,7) by
GAP are:

[[1, 1], [3, 2], [8, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(7) ” ) mod 2 ) ); But non
of them of degree 12. Therefore if PSL(2, 7) ⊂ G, then it is reducible.

4. For PSL(2, 32) ∼= A6: The irreducible 2-modular characters for PSL(2, 32) by
GAP are:

[[1, 1], [4, 2], [8, 2]].

( gap > CharacterDegrees (CharacterTable ( ” L2(9) ” ) mod 2 ) ); But non
of them of degree 12. Therefore if PSL(2, 32) ⊂ G, then it is reducible.

5. PSL(2, 11) ⊂ G, since the irreducible 2-modular characters for PSL(2, 11)
by GAP are:

[[1, 1], [5, 2], [10, 1], [12, 2]].

( gap > CharacterDegrees ( CharacterTable ( ”L2(11) ” ) mod 2 ) );
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6. PSL(2, 13) ⊂ G, since the irreducible 2-modular characters for PSL(2, 13)
by GAP are:

[[1, 1], [6, 2], [12, 3], [14, 1]].

( gap > CharacterDegrees ( CharacterTable ( ” L2(13) ” ) mod 2 ));

7. For PSL(2, 17): The irreducible 2-modular characters for PSL(2, 17) by GAP
are:

[[1, 1], [8, 2], [16, 4]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(17) ” ) mod 2 )); But non
of them of degree 12. Therefore if PSL(2, 17) ⊂ G, then it is reducible.

8. For PSL(2, 19): The irreducible 2-modular characters for PSL(2, 19) by GAP
are:

[[1, 1], [9, 2], [18, 2], [20, 4]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(19) ” ) mod 2 )); But non
of them of degree 12. Therefore if PSL(2, 19) ⊂ G, then it is reducible.

9. For PSL(2, 23): The irreducible 2-modular characters for PSL(2, 23) by GAP
are:

[[1, 1], [11, 2], [22, 1], [24, 5]]

gap> CharacterDegrees(CharacterTable(”PSL(2,23)”)mod 2); But non of them
of degree 12. Therefore if PSL(2, 23) ⊂ G, then it is reducible.

10. PSL(2, 25) ⊂ G, since the irreducible 2-modular characters for PSL(2, 25)
by GAP are:

[[1, 1], [12, 2], [24, 6], [26, 1]]

gap> CharacterDegrees(CharacterTable(”PSL(2,25)”)mod 2);

Lemma 20. If PSL(3, q) ⊂ G, then q = 3.

Proof. PSL(3, q) has no projective representation in G of degree < qn−1−1 = q2−1
([15] and [18]) and it is clear that q2-1 > 13 for all q ≥ 4. Thus, we need to test
PSL(3, 2) and PSL(3, 3) as primitive subgroups of G?

1. PSL(3, 2) 6⊂ G. Since PSL(3, 2) ∼= PSL(2, 7), and PSL(2, 7) 6⊂ G, [see Lemma
19].

2. PSL(3, 3) ⊂ G, since the irreducible 2-modular characters for PSL(3, 3) by
GAP are:

[1, 1], [12, 1], [16, 4], [26, 1]],

( gap > CharacterDegrees (CharacterTable (” PSL(3, 3) ”) mod2));
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Lemma 21. PSU(3, q) 6⊂ G, for all q.

Proof. PSU(3, q) has no projective representation in G of degree < q( q-1 ) [18],
and it is clear that q( q-1 ) > 12 for all q ≥ 5. Thus, we need to test PSU(3, 2),
PSU(3, 3) and PSU(3, 4) are primitive subgroups of G?

1. PSU(3, 2) is not simple.

2. PSU(3, 3) 6⊂ G, since the irreducible 2-modular characters for PSU(3, 3) by
GAP are:

[1, 1], [6, 1], [14, 1], [32, 2]],

( gap> CharacterDegrees(CharacterTable(”U3(3)”)mod 2) ). and non of these
of degree 12.

3. PSU(3, 4) is not simple.

4.3 Primitive subgroups H of G which have the property that a
minimal normal subgroup of H which is not abelian is doubly
transitive group

In this section, we will consider a minimal normal subgroup M of H is not abelian
and is doubly transitive group: The following Corollary will be the main result of
this section:

Corollary 22. If M is a non abelian simple group of doubly transitive group H of
G, then M is isomorphic to one of the following groups:

1. A13;

2. A14;

3. PSL(2, 11);

4. PSL(2, 13);

5. PSL(2, 25);

6. PSL(3, 3);

7. PSU(2, 11);

8. PSU(2, 13).
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Proof. Since every doubly transitive group is a primitive group [3], then we will use
the classification of doubly transitive groups (Proposition 23). And we will prove
Corollary 22 by series of Lemma 24 through Lemma 36 and Proposition 23.

Proposition 23. ([8, 17]). If Y be a doubly transitive group, then Y has a simple
normal subgroup M∗, and M∗ ⊆ Y⊆ Aut(M∗), where M∗ as follows:

1. An, n ≥ 5;

2. PSL(d, q), d ≥ 2, where (d, q) 6= (2, 2), (2, 3);

3. PSU(3, q), q > 2;

4. the Suzuki group Sz(q), q = 22m+1 and m > 0;

5. the Ree group Re(q), q = 32m+1 and m > 0;

6. Sp(2n, 2), n ≥ 3;

7. PSL(2, 11);

8. Mathieu groups Mn, n = 11, 12, 22, 23, 24;

9. HS (Higman-Sims group);

10. CO3 (Conway’s smallest group).

In the following, we will discuss the different possibilities of Proposition 23:

Lemma 24. If An ⊂ G, then n = 13 or 14.

Proof. From [19], An for all n > 8, has a unique faithful 2-modular representation
of least degree, this degree being (n-1) if n is odd and (n-2) if n is even, so, the
2-modular representation of least degree is greater than 12 for all n = 15. Thus An
6⊂ G for any n = 15.

1. A5 6⊂ G: since the irreducible 2-modular characters for A5 by GAP are:

[[1, 1], [2, 2], [4, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A5” ) mod 2 ) );

2. A6 6⊂ G: since the irreducible 2-modular characters for A6 by GAP are:

[[1, 1], [4, 2], [8, 2]]

( gap > CharacterDegrees ( CharacterTable ( ”A6” ) mod 2 ) );

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 43 – 66

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


58 R. I. Elkhatib

3. A7 6⊂ G: since the irreducible 2-modular characters for A7 by GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A7” ) mod 2 ) );

4. A8 6⊂ G: since the irreducible 2-modular characters for A8 by GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 2], [64, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A8” ) mod 2 ) );

5. A9 6⊂ G: since the irreducible 2-modular characters for A9 by GAP are:

[[1, 1], [8, 3], [20, 2], [26, 1], [48, 1], [78, 1], [160, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A9” ) mod 2 ) );

6. A10 6⊂ G: since the irreducible 2-modular characters for A10 by GAP are:

[[1, 1], [8, 1], [16, 1], [26, 1], [48, 1], [64, 2], [ 160, 1], [198, 1], [200, 1], [384, 2]]

( gap > CharacterDegrees ( CharacterTable ( ”A10” ) mod 2 ) ).

7. A11 6⊂G: since the irreducible 2-modular characters for A11 by GAP are:

[[1, 1], [10, 1], [16, 2], [44, 1], [100, 1], [144, 1], [164, 1], [186, 1], [198, 1], [416,
1], [584, 2], [848, 1 ]]

( gap > CharacterDegrees ( CharacterTable ( ”A11” ) mod 2) );

8. A12 6⊂ G: since the irreducible 2-modular characters for A12 by GAP are:

[[1, 1], [10, 1], [16, 2], [44, 1], [100, 1], [144, 2], [164, 1], [320, 1], [416, 1], [570,
1], [1046, 1], [1184, 2], [1408, 1], [1792, 1], [5632,1].

( gap > CharacterDegrees ( CharacterTable ( ”A12” ) mod 2 ) );

9. A13 ⊂ G: since the irreducible 2-modular characters for A13 by GAP are:

[[1, 1], [12, 1], [32, 2], [64, 1], [144, 2], [208, 1], [364, 2], [560, 1], [570, 1], [1572,
1], [1728, 1], [2208, 1], [2510, 1], [2848, 1], [3200, 1], [4224, 2], [8008, 1]]

( gap > CharacterDegrees ( CharacterTable ( ”A13” ) mod 2 ) );

10. A14 ⊂ G: since the irreducible 2-modular characters for A14 by GAP are:

[[1, 1], [12, 1], [64, 2], [208, 1], [364, 1], [384, 2], [560, 2], [1300, 1], [2016, 1],
[2510, 1], [3418, 1], [3808, 1], [4576, 1], [4704, 1], [6656, 2], [10880, 1], [11648,
1], [17920, 2], [19240, 1], [23296, 1]]

(gap> CharacterDegrees(CharacterTable(”A14”)mod 2);)
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Lemma 25. If PSL(2, q) ⊂ G, then q = 11, 13 or q = 25.

Proof. We have two cases:
Case 1: q is even:
PSL(2, q) has no projective representation in G of degree < (1/d)(q-1), d = g,c.d(2,
q-1) ([15] and [18]) and (q-1) >12 for all even q ≥ 16. Also,

1. PSL(2, 2) not simple.

2. PSL(2, 4) 6⊂ G, since the irreducible 2-modular characters for PSL(2, 4) by
GAP are:

[[1, 1], [2, 2], [4, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(4) ” ) mod 2 ) ); and non
of these of degree 12.

3. PSL(2, 8) 6⊂ G, since the irreducible 2-modular characters for PSL(2, 8) by
GAP are:

[[1, 1], [2, 3], [4, 3], [8, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” L2(4) ” ) mod 2 ) ); and non
of these of degree 12.

Thus, PSL(2, q) 6⊂ G for all q is even.
Case 2: q is odd:
If PSL(2, q) ⊂ G, q is odd, then q = 11, 13 or 25. [see Lemma 19].

Lemma 26. PSL(n, 2) 6⊂ G for all n.

Proof. PSL(n, 2) has no projective representation in G of degree < qn−1-1 = 2n−1-1
([15] and [18]), and it is clear that 2n−1-1 > 12 for all n > 4. Thus, we need to test
PSL(2, 2), PSL(3, 2) and PSL(4, 2) are primitive subgroups of G?

1. PSL(2, 2) is not simple.

2. PSL(3, 2) 6⊂G. Since PSL(3, 2) ∼= PSL(2, 7), and PSL(2, 7) 6⊂ G [see Lemma
19].

3. PSL(4, 2) 6⊂G. Since PSL(4, 2) ∼= A8, and A8 6⊂ G [see Lemma 19].

Lemma 27. If PSL(n, q) ⊂ G, then (n, q) = (2, 11), (2, 13), (2, 25) or (3, 3).

Proof. PSL(n, q) has no projective representation in G of degree < (qn−1-1) ([15]
and [18]), which > 12 for all for all q ≥ 3 and n ≥ 4. Thus, we need to test PSL(2,
q), PSL(3, q) and PSL(n, 2) as primitive subgroups of G?
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1. If PSL(2, q) ⊂ G, then q = 11 , 13 or 25 [see Lemma 25].

2. If PSL(3, q) ⊂ G, then q = 3 [see Lemma 20].

3. PSL(n, 2) 6⊂ G for all n [see Lemma 26].

Lemma 28. If PSU(2, q) ⊂ G, then q = 11 or 13.

Proof. PSU(2, q) ⊆ PGL(2, q). But PGL(2, q) has no projective representation in
G of degree < ( q-1 ), provided q 6= 9 [18], which > 12 for all q > 13. Thus, we need
to test PSU(2, 2), PSU(2, 3), PSU(2, 4), PSU(2, 5), PSU(2, 7), PSU(2, 9), PSU(2,
11) and PSU(2, 13) are primitive subgroups of G?

1. PSU(2, 2) is not simple.

2. PSU(2, 3) is not simple.

3. PSU(2, 4) 6⊂ G, since the irreducible 2-modular characters for PSU(2, 4) by
GAP are:

[[1, 1], [2, 2], [4, 1]],

( gap> CharacterDegrees(CharacterTable(”U2(4)”)mod 2) ) and there is non
of degree 12.

4. PSU(2, 5) 6⊂ G, since the irreducible 2-modular characters for PSU(2, 5) by
GAP are:

[[1, 1], [2, 2], [4, 1]],

( gap> CharacterDegrees(CharacterTable(”U2(5)”)mod 2) ). and there is non
of degree 12.

5. PSU(2, 7) 6⊂ G, since the irreducible 2-modular characters for PSU(2, 7) by
GAP are:

[[1, 1], [3, 2], [8, 1]],

(gap> CharacterDegrees(CharacterTable(”U2(7)”)mod 2) ). and there is non
of degree 12.

6. PSU(2, 9) 6⊂ G, since the irreducible 2-modular characters for PSU(2, 9) by
GAP are:

[[1, 1], [4, 2], [8, 2]],

( gap> CharacterDegrees(CharacterTable(”U2(9)”)mod 2) ). and there is non
of degree 12.
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7. PSU(2, 11) ⊂ G, since the irreducible 2-modular characters for PSU(2, 11)
by GAP are:

[[1, 1], [5, 2], [10, 1], [12, 2]],

( gap> CharacterDegrees(CharacterTable(”U2(11)”)mod 2) ).

8. PSU(2, 13) ⊂ G, since the irreducible 2-modular characters for PSU(2, 13)
by GAP are:

[[1, 1], [6, 2], [12, 3], [14, 1]],

( gap> CharacterDegrees(CharacterTable(”U2(13)”)mod 2) ).

Lemma 29. PSU(n, 2) 6⊂ G, for all n.

Proof. PSU(n, q), n ≥ 3, has no projective representation in G of degree < q(qn−1-
1)/(q+1) if n is odd, and PSU(n, q), n ≥ 3, has no projective representation in G
of degree < (qn-1)/(q+1) if n is even ([15] and [18]), thus the minimal projective
degree for PSU(n, 2) is > 12 for all n ≥ 6. Thus, we need to test PSU(2, 2) , PSU(3,
2), PSU(4, 2) and PSU(5, 2) are primitive subgroups of G?

1. PSU(2, 22) is not simple.

2. PSU(3, 22) is not simple.

3. PSU(4, 2) 6⊂ G. Since the irreducible 2-modular characters for PSU(4, 2) by
GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 2], [64, 1]],

( gap> CharacterDegrees(CharacterTable(”U4(2)”) mod 2) ). and non of these
of degree 12.

4. PSU(5, 2) 6⊂ G, since the irreducible 2-modular characters for PSU(5, 2) by
GAP are:

[[1, 1], [5, 2], [10, 2], [24, 1], [40, 4], [74, 1], [160, 2], [280, 2], [1024, 1]],

(gap> CharacterDegrees(CharacterTable(”U5(2)”) mod 2) ). and non of these
of degree 12.

Lemma 30. if PSU(n, q) ⊂ G, then n = 2, q = 11 or 13.

Proof. PSU(n, q), n ≥ 3, has no projective representation in G of degree < q(qn−1-
1)/(q+1) if n is odd, and PSU(n, q) , n ≥ 3, has no projective representation in G
of degree < (qn-1)/(q+1) if n is even ([15] and [18]), thus, the minimal projective
degree is > 11 for all n > 3 and q ≥ 3. Thus, we need to test PSU(n, 2), PSU(2, q)
and PSU(3, q) are primitive subgroups of G?
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1. PSU(n, 2) 6⊂ G [see Lemma 29].

2. PSU(2, q) ⊂ G, for q = 11 or 13 [see Lemma 28].

3. PSU(3, q) 6⊂ G [see Lemma 21].

Lemma 31. Sz(q) 6⊂ G, q = 22m+1 and m > 0.

Proof. The irreducible 2-modular characters for Suzuki groups by GAP are:

[[1, 1], [4, 3], [16, 3], [64, 1]]

( gap > CharacterDegrees ( CharacterTable ( ” Sz(8) ” ) mod 2 ) ); and non of these
of degree 12, thus Sz(q) 6⊂ G.

Lemma 32. Re(q) 6⊂ G, q = 32m+1.

Proof. The irreducible 2-modular characters for Ree group Re(q) by GAP are:

[[1, 1], [702, 1], [741, 2], [2184, 2], [13832, 6], [16796, 1], [18278, 1], [19684, 6], [26936, 3]]

( gap> CharacterDegrees ( CharacterTable ( ” R(27) ” ) mod 2 ) ); and non of these
of degree 12, thus Re(q) 6⊂ G.

Lemma 33. PSp(2n, 2) 6⊂ G for all n ≥ 3.

Proof. From ([15] and [18]), PSp(2n, q), n ≥ 2 has no projective representation
in G of degree < (1/2)qn−1(qn−1 - 1)(q-1) if q is even. And since q = 2, then
(1/2)qn−1(qn−1 - 1)(q-1) > 12 for all n ≥ 4. Thus, we need to test PSp(6, 2) is a
primitive subgroups of G? The irreducible 2-modular characters for PSp(6, 2) by
GAP are:

[1, 1], [6, 1], [8, 1], [14, 1], [48, 1], [64, 1], [112, 1], [512, 1]]

(gap> CharacterDegrees(CharacterTable(”S6(2)”)mod 2); and non of these of degree
12, thus PSp(6, 2) 6⊂ G.

Lemma 34. The Mathieu groups Mn 6⊂ G, for all n = 11, 12, 22, 23 and 24.

Proof.

1. M11 6⊂ G, since the irreducible 2-modular characters for Mathieu group M11

by GAP are:
[[1, 1], [10, 1], [16, 2], [44, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” M11 ” ) mod 2 ) ); and non
of these of degree 12.
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2. M12 6⊂ G, since the irreducible 2-modular characters for Mathieu group M12

by GAP are:

[[1, 1], [10, 1], [16, 2], [44, 1], [144, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” M12 ” ) mod 2 ) ); and non
of these of degree 12.

3. M22 6⊂ G, since the irreducible 2-modular characters for Mathieu group M22

by GAP are:

[[1, 1], [10, 2], [34, 1], [70, 2], [98, 1]],

( gap > CharacterDegrees ( CharacterTable ( ” M22 ” ) mod 2 ) ). and non
of these of degree 12.

4. M23 6⊂ G, since the irreducible 2-modular characters for Mathieu group M23

by GAP are:

[[1, 1], [11, 2], [44, 2], [120, 1], [220, 2], [252, 1], [896, 2]]

gap> CharacterDegrees(CharacterTable(”M23”)mod 2); and non of these of
degree 12.

5. M24 6⊂ G, since the irreducible 2-modular characters for Mathieu group M24

by GAP are:

[[1, 1], [11, 2], [44, 2], [120, 1], [220, 2], [252, 1], [320, 2], [1242, 1], [1792, 1]].

gap> CharacterDegrees(CharacterTable(”M24”)mod 2); and non of these of
degree 12.

Lemma 35. HS (Higman-Sims group) 6⊂ G;

Proof. The minimal degrees of faithful representations of the Higman-Sims group
over F2 is 20, which is greater than 12 [7].

Lemma 36. CO3 (Conway’s smallest group) 6⊂ G;

Proof. The minimal degrees of faithful representations of the CO3 over F2 is 22,
which is greater than 12 [7].

Now, we will determine the maximal primitive groups of the class C9:

Theorem 37. : If H is a maximal primitive subgroup of G which has the property
that a minimal normal subgroup M of H is not abelian group, then H is isomorphic
to one of the following subgroups of G:

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 43 – 66

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


64 R. I. Elkhatib

1. PΓL(2, 11),

2. PΓL(2, 13),

3. PΓL(2, 25),

4. PΓL(3, 3),

Proof. We will prove this theorem by finding the normalizers of the groups of
Corollary (12) and determine which of them are maximal:

1. The normalizer of A13 is the symmetric group S13 which is not simple group,
also, he normalizer of A14 is the symmetric group S14 which is not simple
group [19].

2. The normalizer of PSL(2, 11) is PΓL(2, 11) ([10], [13], [21] and [22]). Thus
PΓL(2, 11) is a maximal primitive subgroup of G.

3. The normalizer of PSL(2, 13) is PΓL(2, 13) ([10], [13], [21] and [22]). Thus
PΓL(2, 13) is a maximal primitive subgroup of G.

4. The normalizer of PSL(2, 25) is PΓL(2, 25) ([10], [13], [21] and [22]). Thus
PΓL(2, 25) is a maximal primitive subgroup of G

5. The normalizer of PSL(3, 3) is PΓL(3, 3) ([10], [13], [21] and [22]). Thus
PΓL(3, 3) is a maximal primitive subgroup of G.

6. The normalizer of PSU(2, 11) is PGL(2, 11) ([10], [13], [21] and [22]). But
PGL(2, 11)⊂ PΓL(2, 11), thus PGL(2, 11) is not a maximal primitive subgroup
of G. similarly the normalizer of PSU(2, 13) is PGL(2, 13), but PGL(2, 13) ⊂
PΓL(2, 13), thus PGL(2, 13) is not a maximal primitive subgroup of G

Theorem 37 prove the points (16), (17), (18), (19) of Theorem 1, and this complete
the proof of Theorem 1.
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