ISSN 1842-6298 (electronic), 1843-7265 (print) Volume **6** (2011), 43 – 66

MAXIMAL SUBGROUPS OF THE GROUP PSL(12,2)

Rauhi Ibrahim Elkhatib

Abstract. In this paper, We will find the maximal subgroups of the group PSL(12, 2) by Aschbacher's Theorem ([2]).

1 Introduction

The purpose of this research is to prove the following theorem:

Theorem 1. Let G = PSL(12, 2). If H is a maximal subgroup of G, then H isomorphic to one of the following subgroups:

- 1. A group $G_{(p)}$ or $G_{(10-\pi)}$, stabilizing of a point or its dual, the stabilizer of a hyperplane. These are isomorphic to a group of form 2^{11} .SL(11,2);
- 2. A group $G_{(l)}$ or $G_{(9-\pi)}$, stabilizing of a line or its dual, the stabilizer of a 9-space. These are isomorphic to a group of form $2^{20} \cdot (SL(2,2) \times SL(10,2));$
- 3. A group $G_{(2-\pi)}$, or $G_{(8-\pi)}$, stabilizing of a plane or its dual, the stabilizer of a 8-space. These are isomorphic to a group of form $2^{27} \cdot (SL(3,2) \times SL(9,2));$
- 4. A group $G_{(3-\pi)}$, or $G_{(7-\pi)}$, stabilizing of a 3-space or its dual, the stabilizer of a 7-space. These are isomorphic to a group of form $2^{32} \cdot (SL(4,2) \times SL(8,2))$;
- 5. A group $G_{(4-\pi)}$, or $G_{(6-\pi)}$, stabilizing of a 4-space or its dual, the stabilizer of a 6-space. These are isomorphic to a group of form $2^{35} \cdot (SL(5,2) \times SL(7,2))$;
- 6. A group $G_{(5-\pi,5-\pi)}$, stabilizing of a pair of 5-spaces. These are isomorphic to a group of form $2^{36} \cdot (SL(6,2) \times SL(6,2));$
- 7. $H_2 = PSL(3, 2):S_4$ a group preserving four mutually skew planes of PG(11, 2) and H_2 interchanges them;

²⁰¹⁰ Mathematics Subject Classification: 20B05; 20G40; 20E28. Keywords: Finite groups; Linear groups; Maximal subgroups.

- 8. H₃=PSL(4, 2):S₃ a group preserving three mutually skew 3-spaces of PG(11, 2) and H₃ interchanges them;
- 9. H₄=PSL(6, 2):S₂ a group preserving two mutually skew 5-spaces of PG(11, 2) and H₄ interchanges them;
- 10. $H_5 = \Gamma L(2, 2^6)$, a group preserves six mutually skew lines of $PG(11, 2^5)$ and H_5 interchanges them;
- 11. $H_6 = \Gamma L(3, 2^4)$, a group preserves four skew planes of $PG(11, 2^4)$ and H_6 interchanges them;
- 12. $H_7 = \Gamma L(4, 2^3)$, a group preserves three skew 3-spaces of $PG(11, 2^3)$ and H_7 interchanges them;
- 13. $H_8 = \Gamma L(6, 2^2)$, a group preserves two skew 5-spaces of $PG(11, 2^2)$ and H_8 interchanges them;
- 14. $H_{10} = PSL(3, 2) \circ PSL(4, 2);$
- 15. Sp(12, 2);
- 16. $P\Gamma L(2, 11);$
- 17. $P\Gamma L(2, 13);$
- 18. $P\Gamma L(2, 25);$
- 19. $P\Gamma L(3, 3)$.

Through this research, $\Gamma L(n, q)$ denote the group of all non-singular semi-linear transformation of a vector space $V_n(q)$ of dimension n over a field F_q with q is a prime power. The general linear group GL(n, q), consisting of the set of all invertible $n \times n$ matrices. In fact, GL(n, q) is a subgroup of $\Gamma L(n, q)$ consisting of all non-singular linear transformations of $V_n(q)$. The centre Z of GL(n, q) is the set of all non-singular scalar matrices. The factor group GL(n, q)/Z called The projective general linear group which is denoted by PGL(n, q). GL(n, q) has a normal subgroup SL(n, q), consisting of all matrices of determinant 1 called the special linear group. The projective special linear group PSL(n, q) is the quotient group $SL(n,q)/(Z \cap SL(n,q))$. PSL(n, q) is simple, except for PSL(2, 2) and PSL(2,3).

PG(n-1, q) will denote the projective space of dimension n-1 associated with $V_n(q)$. One, two and three- dimensional subspaces of $V_n(q)$ will be called points, lines and planes respectively. An (n-1)-dimensional subspace shall be called a hyperplane.

A split extension (a semidirect product) A:B is a group G with a normal subgroup A and a subgroup B such that G = AB and $A \cap B = 1$. A non-split extension A.B

is a group G with a normal subgroup A and $G/A \cong B$, but with no subgroup B satisfying G = AB and $A \cap B = 1$. A group $G = A \circ B$ is a central product of its subgroups A and B if G = AB and [A, B], the commutator of A and $B = \{1\}$, in this case A and B are normal subgroups of G and $A \cap B = Z(G)$. If $A \cap B = \{1\}$, then $A \circ B = AB$.

G = PSL(12, 2) is a simple group of order

```
6441762292785762141878919881400879415296000\\
```

thus $|G| = 2^{66} \cdot 3^8 \cdot 5^3 \cdot 7^4 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^2 \cdot 73 \cdot 89 \cdot 127$. G acting as a doubly transitive permutation group on the points of the projective space PG(11, 2).

2 Aschbacher's Theorem

In this section, we will give some definitions before starting a brief description of Aschbacher's Theorem [2].

Definition 2. Let V be a vector space of dimensional n over a finite field q, a subgroup H of GL(n, q) is called reducible if it stabilizes a proper nontrivial subspace of V. If H is not reducible, then it is called irreducible. If H is irreducible for all field extensition F of F_q , then H is absolutely irreducible. An irreducible subgroup H of GL(n, q) is called imprimitive if there are subspaces $V_1, V_2, \ldots, V_k, k = 2$, of V such that $V = V_1 \oplus \ldots \oplus V_k$ and H permutes the elements of the set $\{V_1, V_2, \ldots, V_k\}$ among themselves. When H is not imprimitive then it is called primitive.

Definition 3. A group G = GL(n, q) is a superfield group of degree s if for some s divides n with s > 1, the group G may be embedded in $\Gamma L(n/s, q^s)$.

Definition 4. If the group G = GL(n,q) preserves a decomposition $V = V_1 \otimes V_2$ with $\dim(V_1) \neq \dim(V_2)$ then G is a tensor product group.

Definition 5. Suppose that $n = r^m$ and m > 1. If G = GL(n, q) preserves a decomposition $V = V_1 \otimes \ldots \otimes V_m$ with $\dim(V_i) = r$ for 1 = i = m, then G is a tensor induced group.

Definition 6. A group G = GL(n, q) is a subfield group if there exists a subfield $F_{q_o} \subset F_q$ such that G can be embedded in $GL(n, q_o).Z$.

Definition 7. A p-group G is called special if Z(G) = G' and is called extraspecial if also |Z(G)| = p.

Definition 8. Let Z denote the group of scalar matrices of G. Then G is almost simple modulo scalars if there is a non-abelian simple group T such that T = G/Z = Aut(T), the automorphism group of T.

A classification of the maximal subgroups of GL(n, q) by Aschbacher's Theorem [2], which may be briefly summarized as follows:

Proposition 9. (Aschbacher's Theorem): Let H be a subgroup of GL(n, q), $q = p^e$ with the center Z and V be the underlying n-dimensional vector space over a field q. If H is a maximal subgroup of GL(n, q), then one of the following holds: C_1 :- H is a reducible group.

 C_2 :- *H* is an imprimitive group.

 C_3 :- H is a superfield group.

 C_4 :- *H* is a tensor product group.

 C_5 :- H is a subfield group.

 C_6 :- H normalizes an irreducible extraspecial or symplectic-type group.

 C_7 :- *H* is a tensor induced group.

 C_8 :- H normalizes a classical group in its natural representation.

 C_9 :- H is absolutely irreducible and H /(H \cap Z) is almost simple.

Note: The nine classes of Proposition 9 are not mutually exclusive. To prove Theorem 1 by using Aschbacher's Theorem (Proposition 9), first, we will determine the maximal subgroups in the classes $C_1 - C_8$ of Proposition 9.

3 The maximal subgroups in the classes C_1 - C_8 of Proposition 9

3.1 The maximal subgroups of the class C_1

Let H be a reducible subgroup of G and W an invariant subspace of H. If we let $d = \dim(W)$, then $1 \leq d \leq 12$. Let $G_d = G_{(W)}$ denote the subgroup of G containing all elements fixing W as a whole and $H \subseteq G_{(W)}$. with a suitable choice of a basis, $G_{(W)}$ consists of all matrices of the form $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ where A and C are $d \times d$ and (12-d) \times (12-d) non-singular matrices of determinant 1, where B is an arbitrary $d \times$ (12-d) matrix. G_d is isomorphic to a group of the form $2^{d(12-d)}(SL(d, 2)) \times (SL(12-d, 2))$. which give us the following reducible maximal subgroups of G:

- 1. A group $G_{(p)}$ or $G_{(10-\pi)}$, stabilizing of a point or its dual, the stabilizer of a hyperplane. These are isomorphic to a group of form $2^{11} \cdot SL(11,2)$.
- 2. A group $G_{(l)}$ or $G_{(9-\pi)}$, stabilizing of a line or its dual, the stabilizer of a 9-space. These are isomorphic to a group of form $2^{20} \cdot (SL(2,2) \times SL(10,2))$.
- 3. A group $G_{(2-\pi)}$, or $G_{(8-\pi)}$, stabilizing of a plane or its dual, the stabilizer of a 8-space. These are isomorphic to a group of form $2^{27} \cdot (SL(3,2) \times SL(9,2))$.

http://www.utgjiu.ro/math/sma

- 4. A group $G_{(3-\pi)}$, or $G_{(7-\pi)}$, stabilizing of a 3-space or its dual, the stabilizer of a 7-space. These are isomorphic to a group of form $2^{32} \cdot (SL(4,2) \times SL(8,2))$.
- 5. A group $G_{(4-\pi)}$, or $G_{(6-\pi)}$, stabilizing of a 4-space or its dual, the stabilizer of a 6-space. These are isomorphic to a group of form $2^{35} \cdot (SL(5,2) \times SL(7,2))$.
- 6. A group $G_{(5-\pi,5-\pi)}$, stabilizing of a pair of 5-spaces. These are isomorphic to a group of form $2^{36} \cdot (SL(6,2) \times SL(6,2))$.

Which prove the points (1), (2), (3), (4), (5) and (6) of Theorem 1.

3.2 The maximal subgroups of the class C_2

If H is imprimitive, then H preserves a decomposition of V as a direct sum $V = V_1 \oplus \ldots \oplus V_t$, t > 1, into subspaces of V, each of dimension m = n/t, which are permuted transitively by H, thus C_2 are isomorphic to GL(m, q): S_t . Consequently, there are two imprimitive groups of C_2 in PSL(12, 2) which are:

- 1. $H_1 = PSL(2, 2):S_6$, a group preserving six mutually skew lines of PG(11, 2) and H_1 interchanges them.
- 2. $H_2 = PSL(3, 2):S_4$ a group preserving four mutually skew planes of PG(11, 2) and H_2 interchanges them.
- 3. $H_3 = PSL(4, 2):S_3$ a group preserving three mutually skew 3-spaces of PG(11, 2) and H_3 interchanges them.
- 4. $H_4 = PSL(6, 2):S_2$ a group preserving two mutually skew 5-spaces of PG(11, 2) and H_4 interchanges them.

But it shown in [14] that $GL(k, 2):S_t$ is not maximal for k = 2. Thus H_1 is not a maximal subgroups of PSL(12, 2).

Which prove the points (7), (8) and (9) of Theorem 1.

Note: if q>2, then there exist in C_2 an imprimitive group $G_{(\Delta)}$ of order $n!(q-1)^{n-1}$ preserving a n-simplex points of PG(n-1, q) with coordinates in F_q and $G_{(\Delta)}$ interchanges them.

3.3 The maximal subgroups of the class C_3

If H is (superfield group) a semilinear groups over extension fields of GF(q) of prime degree, then H acts on G as a group of semilinear automorphism of a (n/k)dimensional space over the extension field $GF(q^k)$, so H embeds in $\Gamma L(n/k, q^k)$, for some prime number k dividing n. Consequently, there are four C_3 groups in PSL(12, 2) which are:

- 1. $H_5 = \Gamma L(2, 2^6)$, a group preserves six mutually skew lines of PG(11, 2⁵) and H_5 interchanges them.
- 2. $H_6 = \Gamma L(3, 2^4)$, a group preserves four skew planes of PG(11, 2⁴) and H_6 interchanges them.
- 3. $H_7 = \Gamma L(4, 2^3)$, a group preserves three skew 3-spaces of PG(11, 2³) and H_7 interchanges them.
- 4. $H_8 = \Gamma L(6, 2^2)$, a group preserves two skew 5-spaces of PG(11, 2²) and H_8 interchanges them.

Which prove the points (10), (11), (12) and (13) of Theorem 1.

Definition 10. A Singer cycle of GL(n, q) is an element of order q^{n} -1.

Remark 11. (/9, 13, 20]).

If n is a prime number, then there exist a Singer cycles group $H = \Gamma L(1, q^n)$ of order $d^{-1}(q^n-1)/(q-1)$, where d = gcd(n, q-1) and H is irreducible maximal subgroup of PSL(n, q) which it is the normalizer of the (cyclic) multiplicative group for $GF(q^n)$. Consequently, there is no Singer cycle subgroup in PSL(12, 2), since 12 is not a prime number.

3.4 The maximal subgroups of the class C_4

If H is a tensor product group, then H preserves a decomposition of V as a tensor product $V_1 \otimes V_2$, where dim $(V_1) \neq \dim(V_2)$ of spaces of dimensions k, m > 1 over GF(q), and so H stabilize the tensor product decomposition $F^k \otimes F^m$, where n = km, k \neq m. Thus, H is a subgroup of the central product of PSL(k, q) \circ PSL(m, q). Consequently, there are two C_4 groups in PSL(12, 2) which are:

- 1. $H_9 = PSL(2, 2) \circ PSL(6, 2);$
- 2. $H_{10} = PSL(3, 2) \circ PSL(4, 2);$

but it shown in [14] that $PSL(2, 2) \circ PSL(k, 2)$ is not maximal for all k. Thus $H_9 = PSL(2, 2) \circ PSL(6, 2)$ is not a maximal subgroups of PSL(12, 2). Which prove the point (14) of Theorem 1.

3.5 The maximal subgroups of the class C_5

If H is a subfield group, then H is the linear groups over subfields of GF(q) of prime index. Thus H can be embedded in $GL(n, p^f)$.Z where e/f is prime number and $q = p^e$. Consequently, there are no C_5 groups in PSL(12, 2) since 2 is a prime number.

3.6 The maximal subgroups of the class C_6

For the dimension $n = r^m$, if r is prime number divides q-1, then $H = r^{2m}:Sp(2m, r)$ is an extraspecial r-group of order r^{2m+1} , or if r = 2 and 4 divides q-1, then $H = 2^{2m} \cdot O^{\in}(2m, 2)$ normalizes a 2-group of symplectic type of order 2^{2m+2} . Consequently, there are no C_6 groups in PSL(12, 2) since 12 is not prime power.

3.7 The maximal subgroups of the class C_7

If H is a tensor-induced, then H preserves a decomposition of V as $V_1 \otimes V_2 \otimes \ldots \otimes V_m$ where V_i are isomorphic and each V_i has dimension r > 1, $n = \dim V = r^m$, and the set of V_i is permuted by H, so H stabilize the tensor product decomposition $F^r \otimes F^r \otimes \ldots \otimes F^r$, where $F = F_q$. Thus $H/Z = PGL(r, q):S_m$. Consequently, there are no C_7 groups in PSL(12, 2) since 12 is not a proper power.

3.8 The maximal subgroups of the class C_8

If H normalizes a classical group in its natural representation, then H lies between a classical group and its normalizer in GL(n, q), so H preserves a classical form up to scalar multiplication. Thus H is a normalizer of such a subgroup $PSL(n, \dot{q})$, $PSp(n, \dot{q})$, $P\Omega(n, \dot{q})$ or $PSU(n, \dot{q})$ for various \dot{q} dividing q. But from [5], Sp(n, q)is a maximal subgroups of PSL(n, q). Consequently, In C_8 , there are only Sp(12, 2)irreducible groups in PSL(12, 2) since 2 is not a square, and is even number. Which proves the point (15) of Theorem 1.

Note: From [4] and [12], $O^-(12, 2)$ and $O^+(12, 2)$ are maximal subgroups of Sp(12, 2), then G contains subgroups isomorphic to $O^-(12, 2)$ and $O^+(12, 2)$ but these are not maximal in G. Thus $O^{\in}(12, 2) \subseteq$ Sp(12, 2) \subseteq PSL(12, 2).

Finally, we will determine the maximal subgroups in class C_9 of Aschbacher's Theorem (Proposition 9):

4 The maximal subgroups of the class C_9

If H is absolutely irreducible and H /(H \cap Z) is almost simple, then H is the normalizer of absolutely irreducible normal subgroup M of H which is non-abelian and simple group. Thus, to find the maximal subgroups of C_9 , we will determine the maximal primitive subgroups H of G which have the property that a minimal normal subgroup M of H is non abelian group.

The following Corollary will play an important role in proving the main result of this section, (Theorem 37).

Corollary 12. If M is a non abelian simple group of a primitive subgroup H of G, then M is isomorphic to one of the following groups:

- 1. $A_{13};$
- 2. A_{14} ;
- 3. PSL(2, 11);
- 4. PSL(2, 13);
- 5. PSL(2, 25);
- 6. PSL(3, 3);
- 7. PSU(2, 11);
- 8. PSU(2, 13);
- 9. Sp(12, 2);
- 10. $O^{\in}(12, 2), \in \{+, -\}.$

Proof. let H be a primitive subgroup of G with a minimal normal subgroup M of H is not abelian. So, we will discuss the possibilities of a minimal normal subgroup M of H according to:

- 1. M contains transvections, (Section 4.1).
- 2. M does not contain any transvection, (Section 4.2).
- 3. M is doubly transitive, (Section 4.3).

4.1 Primitive subgroups H of G which have the property that a minimal normal subgroup of H is not abelian is generated by transvections

To find the primitive subgroups H of G which have the property that a minimal normal subgroup of H is not abelian is generated by transvections, we will use the following result of Mclaughlin [16]:

Proposition 13. (Mclaughlin Theorem): Let H be a proper irreducible subgroup of SL(n, 2) generated by transvections. Then n>3 and H is Sp(n, 2), $O^{\in}(n, 2)$, S_{n+1} or S_{n+2} .

In the following, we will discuss the different possibilities of Mclaughlin Theorem (Proposition 13), which will give us the following main result of Section 4.1.

Corollary 14. If M is a proper irreducible subgroup of SL(12, 2) generated by transvections, then M isomorphic to symplectic group Sp(12, 2), orthogonal groups $O^-(12, 2)$ and $O^+(12, 2)$, symmetric groups S_{13} or S_{14} .

Proof. From Mclaughlin Theorem (Proposition 13), M is isomorphic to one of the following groups: symplectic group Sp(12, 2), orthogonal groups $O^{-}(12, 2)$ and $O^{+}(12, 2)$, symmetric groups S_{13} or S_{14} .

- 1. From [5], the symplectic group Sp(12, 2) is a subgroup of G.
- 2. From [4] and [12], $O^-(12, 2)$ and $O^+(12, 2)$ are maximal subgroups of Sp(12, 2), then G contains subgroups isomorphic to $O^-(12, 2)$ and $O^+(12, 2)$ but these are not maximal in G. Thus $O^{\in}(12, 2) \subseteq$ Sp(12, 2) \subseteq PSL(12, 2).
- 3. $S_{13} \subset G$, since, the irreducible 2-modular characters for S_{13} by GAP are: [[1, 1], [12, 1], [64, 2], [208, 1], [288, 1], [364, 2], [560, 1], [570, 1], [1572, 1], [1728, 1], [2208, 1], [2510, 1], [2848, 1], [3200, 1], [8008, 1], [8448, 1]]. (gap> CharacterDegrees(CharacterTable("S13")mod 2);). But S_{13} is not a simple group.
- 4. $S_{14} \subset G$, since, the irreducible 2-modular characters for S_{14} by GAP are:

[[1, 1], [12, 1], [64, 2], [208, 1], [364, 1], [560, 2], [768, 1], [1300, 1], [2016, 1], [2510, 1], [3418, 1], [3808, 1], [4576, 1], [4704, 1], [10880, 1], [11648, 1], [13312, 1], [19240, 1], [23296, 1], [35840, 1]].

(gap> CharacterDegrees (CharacterTable("S14)mod 2);). But S_{14} is not a simple group.

4.2 Primitive subgroups H of G which have the property that a minimal normal subgroup of H is not abelian and does not contain transvections

In this section, we will consider a minimal normal subgroup M of H is not abelian and does not contain any transvections. The following corollary is the main result of Section 4.2.

Corollary 15. If Y be a non - abelian simple subgroup of G which does not contain any transvection. Then Y is isomorphic to

- 1. PSL(2, 11);
- 2. PSL(2, 13);
- 3. PSL(2, 25);

4. PSL(3,3).

Proof. We will prove Corollary 15 by series of Lemma 16 through Lemma 21 and Proposition 17. \Box

Lemma 16. Let Y is a primitive subgroup of G such that Y does not contain any transvection. If S(2) be a 2-Sylow subgroup of Y, then S(2) contains no elementary abelian subgroup of order 8.

Proof. A 2-Sylow subgroup of G can be represented by the set of all matrices of the form:

_											-	•
1	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	l
	1	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}	x_{21}	
		1	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}	x_{29}	x_{30}	
			1	x_{31}	x_{32}	x_{33}	x_{34}	x_{35}	x_{36}	x_{37}	x_{38}	
				1	x_{39}	x_{40}	x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	
					1	x_{46}	x_{47}	x_{48}	x_{49}	x_{50}	x_{51}	
						1	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}	l
							1	x_{57}	x_{58}	x_{59}	x_{60}	l
								1	x_{61}	x_{62}	x_{63}	l
									1	x_{64}	x_{65}	İ
										1	x_{66}	l
											1	
_											_	-

Where all entries are in F_2 . Let Y is a primitive subgroup of G such that Y does not contain any transvection. If S(2) be a 2-Sylow subgroup of Y, then inside S(2), there exist only two elementary abelian subgroups of the form:-

Since S(2) does not contain any transvections, then both A and B must be the identity element. Then S(2) contains no elementary abelian subgroup of order 8. \Box

Proposition 17. ([1]) Let Y be a simple group. Assume that the 2-Sylow subgroup of Y contains no elementary abelian subgroup of order 8. Then Y is isomorphic to one of the following groups: A_7 , PSL(2, q), PSL(3, q), PSU(3, q) with q odd or

PSU(3, 4).

We will proceed to determine which of these groups will satisfy the conditions of Proposition 17.

Lemma 18. $A_7 \not\subset G$.

Proof. Since the irreducible 2-modular characters for A_7 by GAP are:

```
[[1, 1], [4, 2], [6, 1], [14, 1], [20, 1]]
```

(gap > CharacterDegrees (CharacterTable ("A7") mod 2)); And non of them of degree 11. $\hfill \Box$

Lemma 19. If $PSL(2, q) \subset G$, q odd, then q = 11, 13 or 25.

Proof. PSL(2, q) has no projective representation in G of degree $\langle (1/2)(q-1) \rangle$ ([15] and [18]) and (1/2)(q-1) > 12 for all odd q > 25. Hence we need only to consider the cases when $q \leq 25$.

- 1. $PSL(2, 3) \not\subset G$, since PSL(2, 3) is not simple.
- 2. $PSL(2, 5) \cong PSL(2, 2^2)$, The irreducible 2-modular characters for PSL(2, 5) by GAP are:

[[1, 1], [2, 2], [4, 1]],

(gap > CharacterDegrees (CharacterTable ("L2(5)") mod 2)); But non of them of degree 12. Therefore if $PSL(2, 5) \subset G$, then it is reducible.

3. $PSL(2, 7) \cong PSL(3, 2)$, The irreducible 2-modular characters for PSL(2,7) by GAP are:

[[1, 1], [3, 2], [8, 1]],

(gap > CharacterDegrees (CharacterTable ("L2(7)") mod 2)); But non of them of degree 12. Therefore if $PSL(2, 7) \subset G$, then it is reducible.

4. For $PSL(2, 3^2) \cong A_6$: The irreducible 2-modular characters for $PSL(2, 3^2)$ by GAP are:

[[1, 1], [4, 2], [8, 2]].

(gap > CharacterDegrees (CharacterTable ("L2(9)") mod 2)); But non of them of degree 12. Therefore if $PSL(2, 3^2) \subset G$, then it is reducible.

5. $PSL(2, 11) \subset G$, since the irreducible 2-modular characters for PSL(2, 11) by GAP are:

[[1, 1], [5, 2], [10, 1], [12, 2]].

(gap > CharacterDegrees (CharacterTable ("L2(11)") mod 2));

PSL(2, 13) ⊂ G, since the irreducible 2-modular characters for PSL(2, 13) by GAP are:

[[1, 1], [6, 2], [12, 3], [14, 1]].

 $(\text{gap} > \text{CharacterDegrees} (\text{CharacterTable} (" L2(13)") \mod 2));$

7. For PSL(2, 17): The irreducible 2-modular characters for PSL(2, 17) by GAP are:

[[1, 1], [8, 2], [16, 4]],

(gap > CharacterDegrees (CharacterTable ("L2(17)") mod 2)); But non of them of degree 12. Therefore if $PSL(2, 17) \subset G$, then it is reducible.

8. For PSL(2, 19): The irreducible 2-modular characters for PSL(2, 19) by GAP are:

[[1, 1], [9, 2], [18, 2], [20, 4]],

(gap > CharacterDegrees (CharacterTable ("L2(19)") mod 2)); But non of them of degree 12. Therefore if $PSL(2, 19) \subset G$, then it is reducible.

9. For PSL(2, 23): The irreducible 2-modular characters for PSL(2, 23) by GAP are:

[[1,1], [11,2], [22,1], [24,5]]

gap> CharacterDegrees(CharacterTable("PSL(2,23)")mod 2); But non of them of degree 12. Therefore if PSL(2, 23) \subset G, then it is reducible.

10. $PSL(2, 25) \subset G$, since the irreducible 2-modular characters for PSL(2, 25) by GAP are:

[[1, 1], [12, 2], [24, 6], [26, 1]]

gap> CharacterDegrees(CharacterTable("PSL(2,25)")mod 2);

Lemma 20. If $PSL(3, q) \subset G$, then q = 3.

Proof. PSL(3, q) has no projective representation in G of degree $\langle q^{n-1}-1 = q^2-1$ ([15] and [18]) and it is clear that $q^2-1 > 13$ for all $q \ge 4$. Thus, we need to test PSL(3, 2) and PSL(3, 3) as primitive subgroups of G?

- 1. $PSL(3, 2) \not\subset G$. Since $PSL(3, 2) \cong PSL(2, 7)$, and $PSL(2, 7) \not\subset G$, [see Lemma 19].
- 2. $PSL(3, 3) \subset G$, since the irreducible 2-modular characters for PSL(3, 3) by GAP are:

[1, 1], [12, 1], [16, 4], [26, 1]],

(gap > CharacterDegrees (CharacterTable (" PSL(3, 3) ") mod2));

Lemma 21. $PSU(3, q) \not\subset G$, for all q.

Proof. PSU(3, q) has no projective representation in G of degree < q(q-1) [18], and it is clear that q(q-1) > 12 for all $q \ge 5$. Thus, we need to test PSU(3, 2), PSU(3, 3) and PSU(3, 4) are primitive subgroups of G?

- 1. PSU(3, 2) is not simple.
- 2. PSU(3, 3) $\not\subset$ G, since the irreducible 2-modular characters for PSU(3, 3) by GAP are:

[1, 1], [6, 1], [14, 1], [32, 2]],

(gap> CharacterDegrees (CharacterTable("U3(3)")mod 2)). and non of these of degree 12.

3. PSU(3, 4) is not simple.

4.3 Primitive subgroups H of G which have the property that a minimal normal subgroup of H which is not abelian is doubly transitive group

In this section, we will consider a minimal normal subgroup M of H is not abelian and is doubly transitive group: The following Corollary will be the main result of this section:

Corollary 22. If M is a non abelian simple group of doubly transitive group H of G, then M is isomorphic to one of the following groups:

- 1. A_{13} ;
- 2. A_{14} ;
- 3. PSL(2, 11);
- 4. PSL(2, 13);
- 5. PSL(2, 25);
- 6. PSL(3, 3);
- 7. PSU(2, 11);
- 8. PSU(2, 13).

Proof. Since every doubly transitive group is a primitive group [3], then we will use the classification of doubly transitive groups (Proposition 23). And we will prove Corollary 22 by series of Lemma 24 through Lemma 36 and Proposition 23. \Box

Proposition 23. ([8, 17]). If Y be a doubly transitive group, then Y has a simple normal subgroup M^* , and $M^* \subseteq Y \subseteq Aut(M^*)$, where M^* as follows:

- 1. $A_n, n \ge 5;$
- 2. $PSL(d, q), d \ge 2$, where $(d, q) \ne (2, 2), (2, 3);$
- 3. PSU(3, q), q > 2;
- 4. the Suzuki group Sz(q), $q = 2^{2m+1}$ and m > 0;
- 5. the Ree group Re(q), $q = 3^{2m+1}$ and m > 0;
- 6. $Sp(2n, 2), n \ge 3;$
- 7. PSL(2, 11);
- 8. Mathieu groups M_n , n = 11, 12, 22, 23, 24;
- 9. HS (Higman-Sims group);
- 10. CO_3 (Conway's smallest group).

In the following, we will discuss the different possibilities of Proposition 23:

Lemma 24. If $A_n \subset G$, then n = 13 or 14.

Proof. From [19], An for all n > 8, has a unique faithful 2-modular representation of least degree, this degree being (n-1) if n is odd and (n-2) if n is even, so, the 2-modular representation of least degree is greater than 12 for all n = 15. Thus $A_n \not\subset G$ for any n = 15.

1. $A_5 \not\subset G$: since the irreducible 2-modular characters for A_5 by GAP are:

```
[[1,1],[2,2],[4,1]]
```

 $(\text{gap} > \text{CharacterDegrees} (\text{CharacterTable} ("A5") \mod 2));$

2. $A_6 \not\subset G$: since the irreducible 2-modular characters for A_6 by GAP are:

[[1,1],[4,2],[8,2]]

(gap > CharacterDegrees (CharacterTable ("A6") mod 2));

3. $A_7 \not\subset G$: since the irreducible 2-modular characters for A_7 by GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 1]]

(gap > CharacterDegrees (CharacterTable ("A7") mod 2));

4. $A_8 \not\subset G$: since the irreducible 2-modular characters for A_8 by GAP are:

[[1,1],[4,2],[6,1],[14,1],[20,2],[64,1]]

(gap > CharacterDegrees (CharacterTable ("A8") mod 2));

5. $A_9 \not\subset G$: since the irreducible 2-modular characters for A_9 by GAP are:

[[1, 1], [8, 3], [20, 2], [26, 1], [48, 1], [78, 1], [160, 1]]

 $(\text{gap} > \text{CharacterDegrees} (\text{CharacterTable} ("A9") \mod 2));$

- 6. $A_{10} \not\subset G$: since the irreducible 2-modular characters for A_{10} by GAP are: [[1, 1], [8, 1], [16, 1], [26, 1], [48, 1], [64, 2], [160, 1], [198, 1], [200, 1], [384, 2]] (gap > CharacterDegrees (CharacterTable ("A10") mod 2)).
- 7. $A_{11} \not\subset G$: since the irreducible 2-modular characters for A_{11} by GAP are: [[1, 1], [10, 1], [16, 2], [44, 1], [100, 1], [144, 1], [164, 1], [186, 1], [198, 1], [416, 1], [584, 2], [848, 1]] (gap > CharacterDegrees (CharacterTable ("A11") mod 2));
- 8. $A_{12} \not\subset G$: since the irreducible 2-modular characters for A_{12} by GAP are: [[1, 1], [10, 1], [16, 2], [44, 1], [100, 1], [144, 2], [164, 1], [320, 1], [416, 1], [570, 1], [1046, 1], [1184, 2], [1408, 1], [1792, 1], [5632,1]. (gap > CharacterDegrees (CharacterTable ("A12") mod 2));
- 9. $A_{13} \subset G$: since the irreducible 2-modular characters for A_{13} by GAP are: [[1, 1], [12, 1], [32, 2], [64, 1], [144, 2], [208, 1], [364, 2], [560, 1], [570, 1], [1572, 1], [1728, 1], [2208, 1], [2510, 1], [2848, 1], [3200, 1], [4224, 2], [8008, 1]] (gap > CharacterDegrees (CharacterTable ("A13") mod 2));
- 10. $A_{14} \subset G$: since the irreducible 2-modular characters for A_{14} by GAP are: [[1, 1], [12, 1], [64, 2], [208, 1], [364, 1], [384, 2], [560, 2], [1300, 1], [2016, 1], [2510, 1], [3418, 1], [3808, 1], [4576, 1], [4704, 1], [6656, 2], [10880, 1], [11648, 1], [17920, 2], [19240, 1], [23296, 1]]

(gap> CharacterDegrees(CharacterTable("A14")mod 2);)

Lemma 25. If $PSL(2, q) \subset G$, then q = 11, 13 or q = 25.

Proof. We have two cases:

Case 1: q is even:

PSL(2, q) has no projective representation in G of degree $\langle (1/d)(q-1), d = g, c.d(2, q-1) ([15] and [18]) and (q-1) > 12$ for all even $q \ge 16$. Also,

- 1. PSL(2, 2) not simple.
- 2. PSL(2, 4) $\not\subset$ G, since the irreducible 2-modular characters for PSL(2, 4) by GAP are:

(gap > CharacterDegrees (CharacterTable (" $\rm L2(4)$ ") mod 2)); and non of these of degree 12.

3. PSL(2, 8) $\not\subset$ G, since the irreducible 2-modular characters for PSL(2, 8) by GAP are:

(gap > CharacterDegrees (CharacterTable (" $\rm L2(4)$ ") mod 2)); and non of these of degree 12.

Thus, $PSL(2, q) \not\subset G$ for all q is even. **Case 2:** q is odd: If $PSL(2, q) \subset G$, q is odd, then q = 11, 13 or 25. [see Lemma 19].

Lemma 26. $PSL(n, 2) \not\subset G$ for all n.

Proof. PSL(n, 2) has no projective representation in G of degree $\langle q^{n-1}-1 = 2^{n-1}-1$ ([15] and [18]), and it is clear that $2^{n-1}-1 > 12$ for all n > 4. Thus, we need to test PSL(2, 2), PSL(3, 2) and PSL(4, 2) are primitive subgroups of G?

- 1. PSL(2, 2) is not simple.
- 2. $PSL(3, 2) \not\subset G$. Since $PSL(3, 2) \cong PSL(2, 7)$, and $PSL(2, 7) \not\subset G$ [see Lemma 19].
- 3. $PSL(4, 2) \not\subset G$. Since $PSL(4, 2) \cong A_8$, and $A_8 \not\subset G$ [see Lemma 19].

Lemma 27. If $PSL(n, q) \subset G$, then (n, q) = (2, 11), (2, 13), (2, 25) or (3, 3).

Proof. PSL(n, q) has no projective representation in G of degree $\langle (q^{n-1}-1) \rangle$ ([15] and [18]), which \rangle 12 for all for all $q \geq 3$ and $n \geq 4$. Thus, we need to test PSL(2, q), PSL(3, q) and PSL(n, 2) as primitive subgroups of G?

- 1. If $PSL(2, q) \subset G$, then q = 11, 13 or 25 [see Lemma 25].
- 2. If $PSL(3, q) \subset G$, then q = 3 [see Lemma 20].
- 3. $PSL(n, 2) \not\subset G$ for all n [see Lemma 26].

Lemma 28. If $PSU(2, q) \subset G$, then q = 11 or 13.

Proof. $PSU(2, q) \subseteq PGL(2, q)$. But PGL(2, q) has no projective representation in G of degree < (q-1), provided $q \neq 9$ [18], which > 12 for all q > 13. Thus, we need to test PSU(2, 2), PSU(2, 3), PSU(2, 4), PSU(2, 5), PSU(2, 7), PSU(2, 9), PSU(2, 11) and PSU(2, 13) are primitive subgroups of G?

- 1. PSU(2, 2) is not simple.
- 2. PSU(2, 3) is not simple.
- 3. PSU(2, 4) $\not\subset$ G, since the irreducible 2-modular characters for PSU(2, 4) by GAP are:

(gap> CharacterDegrees (CharacterTable("U2(4)")mod 2)) and there is non of degree 12.

4. PSU(2, 5) $\not\subset$ G, since the irreducible 2-modular characters for PSU(2, 5) by GAP are:

(gap> CharacterDegrees (CharacterTable("U2(5)")mod 2)). and there is non of degree 12.

5. PSU(2, 7) $\not\subset$ G, since the irreducible 2-modular characters for PSU(2, 7) by GAP are:

[[1, 1], [3, 2], [8, 1]],

(gap> CharacterDegrees (CharacterTable("U2(7)")mod 2)). and there is non of degree 12.

6. PSU(2, 9) $\not\subset$ G, since the irreducible 2-modular characters for PSU(2, 9) by GAP are:

[[1, 1], [4, 2], [8, 2]],

(gap> CharacterDegrees (CharacterTable("U2(9)")mod 2)). and there is non of degree 12.

7. $PSU(2, 11) \subset G$, since the irreducible 2-modular characters for PSU(2, 11) by GAP are:

[[1, 1], [5, 2], [10, 1], [12, 2]],

(gap> CharacterDegrees(CharacterTable("U2(11)")mod 2)).

8. **PSU(2, 13)** ⊂ **G**, since the irreducible 2-modular characters for PSU(2, 13) by GAP are:

 $(\text{gap} > \text{CharacterDegrees}(\text{CharacterTable}("U2(13)") \mod 2)).$

Lemma 29. $PSU(n, 2) \not\subset G$, for all n.

Proof. PSU(n, q), $n \ge 3$, has no projective representation in G of degree $\langle q(q^{n-1}-1)/(q+1) \rangle$ if n is odd, and PSU(n, q), $n \ge 3$, has no projective representation in G of degree $\langle (q^n-1)/(q+1) \rangle$ if n is even ([15] and [18]), thus the minimal projective degree for PSU(n, 2) is > 12 for all $n \ge 6$. Thus, we need to test PSU(2, 2), PSU(3, 2), PSU(4, 2) and PSU(5, 2) are primitive subgroups of G?

- 1. $PSU(2, 2^2)$ is not simple.
- 2. $PSU(3, 2^2)$ is not simple.
- 3. PSU(4, 2) $\not\subset$ G. Since the irreducible 2-modular characters for PSU(4, 2) by GAP are:

[[1, 1], [4, 2], [6, 1], [14, 1], [20, 2], [64, 1]],

(gap> CharacterDegrees (CharacterTable("U4(2)") mod 2)). and non of these of degree 12.

4. PSU(5, 2) $\not\subset$ G, since the irreducible 2-modular characters for PSU(5, 2) by GAP are:

[[1, 1], [5, 2], [10, 2], [24, 1], [40, 4], [74, 1], [160, 2], [280, 2], [1024, 1]],

(gap> CharacterDegrees (CharacterTable("U5(2)") mod 2)). and non of these of degree 12.

Lemma 30. if $PSU(n, q) \subset G$, then n = 2, q = 11 or 13.

Proof. PSU(n, q), $n \ge 3$, has no projective representation in G of degree $\langle q(q^{n-1}-1)/(q+1) \rangle$ if n is odd, and PSU(n, q), $n \ge 3$, has no projective representation in G of degree $\langle (q^{n}-1)/(q+1) \rangle$ if n is even ([15] and [18]), thus, the minimal projective degree is > 11 for all n > 3 and $q \ge 3$. Thus, we need to test PSU(n, 2), PSU(2, q) and PSU(3, q) are primitive subgroups of G?

- 1. $PSU(n, 2) \not\subset G$ [see Lemma 29].
- 2. $PSU(2, q) \subset G$, for q = 11 or 13 [see Lemma 28].
- 3. $PSU(3, q) \not\subset G$ [see Lemma 21].

Lemma 31. $Sz(q) \not\subset G$, $q = 2^{2m+1}$ and m > 0.

Proof. The irreducible 2-modular characters for Suzuki groups by GAP are:

[[1, 1], [4, 3], [16, 3], [64, 1]]

(gap > CharacterDegrees (CharacterTable ("Sz(8)") mod 2)); and non of these of degree 12, thus Sz(q) $\not\subset$ G.

Lemma 32. $Re(q) \not\subset G, q = 3^{2m+1}$.

Proof. The irreducible 2-modular characters for Ree group Re(q) by GAP are:

[[1, 1], [702, 1], [741, 2], [2184, 2], [13832, 6], [16796, 1], [18278, 1], [19684, 6], [26936, 3]]

(gap> CharacterDegrees (CharacterTable (" R(27) ") mod 2)); and non of these of degree 12, thus $Re(q) \not\subset G$.

Lemma 33. $PSp(2n, 2) \not\subset G$ for all $n \geq 3$.

Proof. From ([15] and [18]), PSp(2n, q), $n \ge 2$ has no projective representation in G of degree $< (1/2)q^{n-1}(q^{n-1} - 1)(q-1)$ if q is even. And since q = 2, then $(1/2)q^{n-1}(q^{n-1} - 1)(q-1) > 12$ for all $n \ge 4$. Thus, we need to test PSp(6, 2) is a primitive subgroups of G? The irreducible 2-modular characters for PSp(6, 2) by GAP are:

[1, 1], [6, 1], [8, 1], [14, 1], [48, 1], [64, 1], [112, 1], [512, 1]]

(gap> CharacterDegrees(CharacterTable("S6(2)")mod 2); and non of these of degree 12, thus $PSp(6, 2) \not\subset G$.

Lemma 34. The Mathieu groups $M_n \not\subset G$, for all n = 11, 12, 22, 23 and 24.

Proof.

1. $M_{11} \not\subset G$, since the irreducible 2-modular characters for Mathieu group M_{11} by GAP are:

[[1, 1], [10, 1], [16, 2], [44, 1]],

(gap > CharacterDegrees (CharacterTable (" M11 ") mod 2)); and non of these of degree 12.

Surveys in Mathematics and its Applications 6 (2011), 43 – 66 http://www.utgjiu.ro/math/sma

2. $M_{12} \not\subset G$, since the irreducible 2-modular characters for Mathieu group M_{12} by GAP are:

[[1, 1], [10, 1], [16, 2], [44, 1], [144, 1]],

(gap > CharacterDegrees (CharacterTable (" M12 ") mod 2)); and non of these of degree 12.

3. $M_{22} \not\subset G$, since the irreducible 2-modular characters for Mathieu group M_{22} by GAP are:

[[1, 1], [10, 2], [34, 1], [70, 2], [98, 1]],

(gap > CharacterDegrees (CharacterTable (" M22 ") mod 2)). and non of these of degree 12.

4. $M_{23} \not\subset G$, since the irreducible 2-modular characters for Mathieu group M_{23} by GAP are:

[[1, 1], [11, 2], [44, 2], [120, 1], [220, 2], [252, 1], [896, 2]]

gap> CharacterDegrees(CharacterTable("M23")mod 2); and non of these of degree 12.

5. $M_{24} \not\subset G$, since the irreducible 2-modular characters for Mathieu group M_{24} by GAP are:

[[1, 1], [11, 2], [44, 2], [120, 1], [220, 2], [252, 1], [320, 2], [1242, 1], [1792, 1]].

gap> CharacterDegrees(CharacterTable("M24")mod 2); and non of these of degree 12.

Lemma 35. *HS* (*Higman-Sims group*) $\not\subset$ *G*;

Proof. The minimal degrees of faithful representations of the Higman-Sims group over F_2 is 20, which is greater than 12 [7].

Lemma 36. CO_3 (Conway's smallest group) $\not\subset G$;

Proof. The minimal degrees of faithful representations of the CO_3 over F_2 is 22, which is greater than 12 [7].

Now, we will determine the maximal primitive groups of the class C_9 :

Theorem 37. : If H is a maximal primitive subgroup of G which has the property that a minimal normal subgroup M of H is not abelian group, then H is isomorphic to one of the following subgroups of G:

- 1. $P\Gamma L(2, 11)$,
- 2. $P\Gamma L(2, 13)$,
- 3. $P\Gamma L(2, 25)$,
- 4. $P\Gamma L(3, 3)$,

Proof. We will prove this theorem by finding the normalizers of the groups of Corollary (12) and determine which of them are maximal:

- 1. The normalizer of A_{13} is the symmetric group S_{13} which is not simple group, also, he normalizer of A_{14} is the symmetric group S_{14} which is not simple group [19].
- 2. The normalizer of PSL(2, 11) is $P\Gamma L(2, 11)$ ([10], [13], [21] and [22]). Thus $P\Gamma L(2, 11)$ is a maximal primitive subgroup of G.
- 3. The normalizer of PSL(2, 13) is PΓL(2, 13) ([10], [13], [21] and [22]). Thus PΓL(2, 13) is a maximal primitive subgroup of G.
- 4. The normalizer of PSL(2, 25) is $P\GammaL(2, 25)$ ([10], [13], [21] and [22]). Thus $P\Gamma L(2, 25)$ is a maximal primitive subgroup of G
- 5. The normalizer of PSL(3, 3) is $P\Gamma L(3, 3)$ ([10], [13], [21] and [22]). Thus $P\Gamma L(3, 3)$ is a maximal primitive subgroup of G.
- 6. The normalizer of PSU(2, 11) is PGL(2, 11) ([10], [13], [21] and [22]). But $PGL(2, 11) \subset P\Gamma L(2, 11)$, thus PGL(2, 11) is not a maximal primitive subgroup of G. similarly the normalizer of PSU(2, 13) is PGL(2, 13), but $PGL(2, 13) \subset P\Gamma L(2, 13)$, thus PGL(2, 13) is not a maximal primitive subgroup of G

Theorem 37 prove the points (16), (17), (18), (19) of Theorem 1, and this complete the proof of Theorem 1.

References

- J. L. Alperin, R. Brauer and D. Gorenstein, *Finite simple groups of 2-rank two*, Scripta Math. **29** (1973), 191-214. MR401902(53#5728). Zbl 0274.20021.
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469–514. MR746539(86a:20054). Zbl 0537.20023.

- M. Aschbacher, *Finite group theory*, Cambridge Stud. Adv. Math. 10, Cambridge Univ. Press, Cambridge, 1986. MR895134(89b:20001). Zbl 0583.20001.
- [4] R. H. Dye, Symmetric groups as maximal subgroups of orthogonal and symplectic group over the field of two elements, J. London Math. Soc. 20(2) (1979), 227-237. MR0551449(80m:20010). Zbl 0407.20036.
- [5] R. H. Dye, Maximal subgroups of GL2n(K), SL2n(K), PGL2n(K) and PSL2n(K) associated with symplectic polarities, J. Algebra. 66 (1980), 1–11. MR0591244(81j:20061). Zbl 0444.20036.
- [6] GAP program (2004). version 4.4. available at: http://www.gap-system.org.
- [7] C. Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math. 8 (2005), 122–144. MR2153793(2006e:20026). Zbl 1089.20006.
- [8] W. M. Kantor, Homogeneous designs and geometric lattices, Journal of combinatorial theory. 38 (1985), 66-74. MR0773556(87c:51007). Zbl 0559.05015.
- [9] W. M. Kantor, *Linear groups containing a Singer cycle*, J. Algebra. 62 (1980), 232-234. MR0561126(81g:20089). Zbl 0429.20004.
- [10] O. H. King, On some maximal subgroups of the classical groups, J. Algebra. 68 (1981), 109–120. MR0604297(82e:20055). Zbl 0449.20049.
- [11] O. H. King, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata. 19 (1985), 297–310. MR0815209(87c:20081). Zbl 0579.20040.
- [12] O. H. King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra. 96 (1985), 178–193. MR0808847(87b:20057). Zbl 0572.20028.
- O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, Surveys in combinatorics 2005, 29–56, London Math. Soc. Lecture Note Ser. **327**, Cambridge Univ. Press, Cambridge, 2005. MR2187733(2006i:20053). Zbl 1107.20035.
- [14] P. B. Kleidman and M. Liebeck, *The Subgroup Structure of the Finite Classical Groups*, London Mathematical Society Lecture Note Series **129**, Cambridge University Press, Cambridge, 1990. MR1057341(91g:20001). Zbl 0697.20004.
- [15] V. Landázuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra. 32 (1974). MR0360852 (50#13299). Zbl 0325.20008.

- [16] J. Mclaughlin, Some Groups Generated By Transvections, Arch. Math. 18, 1967. MR0222184(36#5236). Zbl 0232.20084.
- [17] B. Mortimer, The modular permutation representations of the known doubly transitive groups, Proc. London Math. Soc. 41 (1980), 1-20. MR0579714(81f:20004). Zbl 0393.20002.
- [18] G. M. Seitz and A. E. Zalesskii, On the minimal degree of projective representations of the finite Chevalley groups II, J. Algebra. 158 (1993), 233– 243. MR1223676(94h:20017).
- [19] A. Wagner, The faithful linear representation of least degree of Sn and An over a field of characteristic 2, Math. Z. 2 (1976), 127–137. MR0419581(54#7602).
- [20] A. Wagner, The subgroups of PSL(5, 2^a), Resultate Der Math. 1 (1978), 207-226. MR0559440(81a:20054). Zbl 0407.20039.
- [21] R. A. Wilson, *Finite simple groups*, Graduate Texts in Mathematics 251. Springer-Verlag London, Ltd., London, 2009. MR2562037. Zbl pre05622792.
- [22] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. A. Parker, S. P. Norton, J. H. Conway, R. T. Curts and J. Bary, Atlas of finite simple groups representations, (available at:http://web.mat.bham.ac.uk/v2.0/.48).

Rauhi Ibrahim ElkhatibDept. of Mathematics, Faculty of Applied Science, Thamar University, Yemen.P.O. Box: 12559.e-mail: rauhie@yahoo.com