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MULTIPLE PERIODIC SOLUTIONS FOR A
FOURTH-ORDER DISCRETE HAMILTONIAN

SYSTEM

Jianwen Zhou and Yongkun Li

Abstract. By means of a three critical points theorem proposed by Brezis and Nirenberg
and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic
solutions of a fourth-order discrete Hamiltonian system

∆4u(t− 2) +∇F (t, u(t)) = 0, for all t ∈ Z.

1 Introduction

Consider the nonlinear fourth-order discrete Hamiltonian system

∆4u(t− 2) +∇F (t, u(t)) = 0, ∀t ∈ Z, (1.1)

where ∆u(t) = u(t + 1) − u(t),∆2u(t) = ∆(∆u(t)), F : Z × RN → R, F (t, x) is
continuously differentiable in x for every t ∈ Z and T -periodic in t for all x ∈ RN .
T is a positive integer and ∇F (t, x) denotes the gradient of F (t, x) in x.

The theory of nonlinear difference equations (including discrete Hamiltonian
systems) has been widely used to study discrete models in many fields such as
computer science, economics, neural networks, ecology and so on. Many scholars
studied the qualitative properties of difference equations such as stability, oscillation
and boundary value problems (see e.g. [1, 2, 3] and references cited therein). But
results on periodic solutions of difference equations are relatively rare and the results
usually obtained by analytic techniques or various fixed point theorems (see e.g. [4]).

We may think of (1.1) as being a discrete analogue of the following fourth-order
Hamiltonian system

d4x(t)
dt4

+∇F (t, x(t)) = 0, ∀t ∈ R,
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where F : R×RN → R, F (t, x) is continuously differentiable in x for every t ∈ R and
∇F (t, x) denotes the gradient of F (t, x) in x. As is known to us, the development
of the study of periodic solutions of differential equations is relatively rapid. There
have been many approaches to study periodic solutions of differential equations,
such as fixed-point theory, coincidence degree theory, critical point theory and so
on. However, there are few known techniques for studying the existence of periodic
solutions of discrete systems. The authors in [1] studied the existence of periodic
solutions of a second order nonlinear difference equation by using the critical point
theory for the first time. The paper [5] shows that critical point theory is an effective
approach to the study of periodic solutions of second order difference equations. In
[6], Xue and Tang studied the existence of periodic solutions of superquadratic
second-order discrete Hamiltonian systems. Compared to second-order discrete
Hamiltonian systems, the study of higher-order discrete Hamiltonian systems, and
in particular, fourth-order discrete Hamiltonian systems, has received considerably
less attention (see e.g. [7, 8] and the references cited therein).

In [9], Thandapanı and Arockıasamy studied the following fourth-order difference
equation of the form

∆2(rn∆2yn) + f(n, yn) = 0, n ∈ N,

where n ∈ N(n0) = {n0, n0 + 1, n0 + 2, · · · }, n0 is a nonnegative integer, and the real
sequence {rn} and the function f satisfy the following conditions:

(a) rn > 0 for all n ∈ N(n0) and
∞∑

n=n0

n
rn
<∞;

(b) f : N(n0) × R → R is a continuous function with uf(n, u) > 0 for all u 6= 0
and all n ∈ N(n0), and f(n, ·) 6= 0 eventually.

In [10], Cai, Yu and Guo studied the existence of the periodic solutions of the
equation

∆2(rn−2∆2xn−2) + f(n, xn) = 0, n ∈ N, (1.2)

where f : Z×R→ R is a continuous function in the second variable and f(n+T, z) =
f(n, z) for all (n, z) ∈ Z × R, rn > 0, rn+T = rn for a given positive integer T and
for all n ∈ Z. They obtained the following result.

Theorem 1. ([10], Theorem 1.1)Assume that the following conditions are satisfied.

(A1) For all z ∈ R and all t ∈ Z, one has
∫ z

0 f(t, s)ds ≤ 0 and lim
z→0

f(t,z)
z = 0.

(A2) There exist R2 > 0 and β > 2 such that, for every t ∈ Z and every z ∈ R with
|z| ≥ R2, one has zf(t, z) ≤ β

∫ z
0 f(t, s)ds < 0.
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Multiple periodic solutions for a Hamiltonian system 335

Then, equation (1.2) has at least two nontrivial T -periodic solutions.

But when N > 1, the existence and multiplicity of periodic solutions for problem
(1.1) have not been studied by critical point theory.

In this paper, we study the existence and multiplicity of periodic solutions for
problem (1.1) when N ≥ 1. Our results are superior to those obtained in references
[9] and [10].

2 Preliminaries and statements

In this section, we recall some basic facts which will be used in the proofs of our main
results. In order to apply the critical point theory, we make a variational structure.
From this framework structure, we can reduce the problem of finding T -periodic
solutions of problem (1.1) to the one of seeking the critical points of a corresponding
functional.

For a, b ∈ Z, we define Z(a) = {a, a + 1, a + 2, · · · },Z(a, b) = {a, a + 1, · · · , b}
when a ≤ b.

For a given positive integer T , we define HT as follows:

HT = {u : Z→ RN |u(t+ T ) = u(t), t ∈ Z}.

HT can be equipped with the inner product 〈·, ·〉 and norm ‖ · ‖ as follows:

〈u, v〉 =
T∑
t=1

(
u(t), v(t)

)
, ∀ u, v ∈ HT ,

‖u‖ =

√√√√ T∑
t=1

|u(t)|2, ∀ u ∈ HT ,

where (·, ·) and | · | denote the usual inner product and the usual norm in RN ,
respectively. It is easy to see that (HT , 〈·, ·〉) is a finite dimensional Hilbert space
and linearly homeomorphic to RNT . For any u ∈ HT , set

‖u‖θ =
( T∑
t=1

|u(t)|θ
) 1
θ , ∀ θ > 1.

Then ‖ · ‖ and ‖ · ‖θ are equivalent. That is, there exist positive constants C1, C2

such that

C1‖u‖θ ≤ ‖u‖ ≤ C2‖u‖θ, ∀u ∈ HT .

In order to make a variational structure of problem (1.1), we need the following
lemma.
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Lemma 2. For any u, v ∈ HT ,

T∑
t=1

(
∆4u(t− 2), v(t)

)
=

T∑
t=1

(
∆2u(t),∆2v(t)

)
=

T∑
t=1

(
∆4v(t− 2), u(t)

)
.

Proof. In fact, for any u, v ∈ HT , since u(t+ T ) = u(t), v(t+ T ) = v(t), thus

T∑
t=1

(
∆4u(t− 2), v(t)

)
=

T∑
t=1

(
∆2(∆2u(t− 2)), v(t)

)
=

T∑
t=1

(
∆2
(
u(t)− 2u(t− 1) + u(t− 2)

)
, v(t)

)
=

T∑
t=1

(
∆2
(
u(t)− u(t− 1)

)
, v(t)

)
−

T∑
t=1

(
∆2
(
u(t− 1)− u(t− 2)

)
, v(t)

)
=

T∑
t=1

(
∆2
(
∆u(t− 1)

)
, v(t)

)
−
T−1∑
t=0

(
∆2
(
∆u(t− 1)

)
, v(t+ 1)

)
= −

T∑
t=1

(
∆2
(
∆u(t− 1)

)
,∆v(t)

)
=

T∑
t=1

(
∆2u(t),∆2v(t)

)
.

Similarly, one can show that
T∑
t=1

(
∆4v(t−2), u(t)

)
=

T∑
t=1

(
∆2u(t),∆2v(t)

)
. The proof

is complete.

Consider the functional

I(u) =
1
2

T∑
t=1

|∆2u(t)|2 +
T∑
t=1

F
(
t, u(t)

)
, (2.1)

where F (t, x) is the same as that in (1.1). Clearly, I ∈ C1(HT ,R). For any v ∈ HT ,
one has

〈I ′(u), v〉 =
T∑
t=1

(
∆2u(t),∆2v(t)

)
+

T∑
t=1

(
∇F

(
t, u(t)

)
, v(t)

)
.

Hence u ∈ HT is a critical point of I if and only if

T∑
t=1

(
∆2u(t),∆2v(t)

)
= −

T∑
t=1

(
∇F

(
t, u(t)

)
, v(t)

)
.
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It follows from Lemma 2 that

T∑
t=1

(
∆4u(t− 2), v(t)

)
= −

T∑
t=1

(
∇F

(
t, u(t)

)
, v(t)

)
.

By the arbitrariness of v, we conclude that

∆4u(t− 2) +∇F (t, u(t)) = 0, ∀t ∈ Z.

Since u ∈ HT is T -periodic, and F (t, x) is T -periodic in t, hence u ∈ HT is a critical
point of I if and only if for any t ∈ Z, ∆4u(t − 2) + ∇F (t, u(t)) = 0. That is the
functional I is the variational framework of problem (1.1). So, we can reduce the
existence of periodic solutions of problem (1.1) to the existence of critical points of
I on HT .

In this paper, we need the following definition and theorems.

Definition 3. Let X be a real Banach space and I ∈ C1(X,R). I is said to be
satisfying P.S. condition on X if any sequence {xn} ∈ X for which I(xn) is bounded
and I ′(xn)→ 0 as n→∞, possesses a convergent subsequence in X.

Theorem 4. ([11], Theorem 4) Let X be a Banach space with a direct sum decomposition
X1
⊕
X2 with dimX2 < ∞. Let I be a C1 function on X with I(0) = 0, satisfying

P.S. condition and assume that, for some R > 0,

I(u) ≥ 0, ∀ u ∈ X1, ‖u‖ ≤ R (2.2)

and

I(u) ≤ 0, ∀ u ∈ X2, ‖u‖ ≤ R. (2.3)

Assume also that I is bounded blow and infX I < 0. Then I has at least two nonzero
critical points.

Theorem 5. ([12], Theorem 9.12) Let E be a Banach space. Let I ∈ C1(E,R) be
an even functional which satisfies the P.S. condition and I(0) = 0. If E = V

⊕
W ,

where V is finite dimensional, and I satisfies

(I1) there are constants ρ, α > 0 such that I|∂Bρ ⋂
W ≥ α, where Bρ = {x ∈ E :

‖x‖ < ρ},

(I2) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such that
I ≤ 0 on Ẽ\B

R(Ẽ)
,

then I possesses an unbounded sequence of critical values.
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3 Main results

Theorem 6. Assume that F (t, x) satisfies

(F1) There exists a positive integer T ≥ 2 such that F (t + T, x) = F (t, x) for all
(t, x) ∈ Z× RN .

(F2) There exist constants R1 > 0, γ > 0 and β > 0 such that for any |x| ≥ R1,

F (t, x) ≥ β|x|2 − γ.

(F3) There exist some constants δ > 0, k ∈ Z[0, [T2 ]− 1] such that

−1
2
λk+1|x|2 ≤ F (t, x) ≤ −1

2
λk|x|2

for all |x| ≤ δ and t ∈ Z[1, T ], where λk = 2 cos 2kω − 8 cos kω + 6, ω = 2π
T , [·]

denotes the Gauss Function.

Then the problem (1.1) has at least three T -periodic solutions.

Remark 7. Take F (t, x) = −1
2λ1|x|2+1

2 |x|
3. Then F (t, x) satisfies all the conditions

of Theorem 6.

Denote
Nk = {u ∈ HT | ∆4u(t− 2) = λku(t)},

where λk = 2 cos 2kω−8 cos kω+6, k ∈ Z[0, [T2 ]], ω = 2π
T , then Nk is the subspace

of HT and λk ≥ 0 for all k ∈ Z[0, [T2 ]].
In order to prove Theorem 6, we need to prove the following lemmas.

Lemma 8. It follows from the definition of Nk that

(1) Nk⊥Nj , k 6= j, k, j ∈ Z[0, [T2 ]],

(2) HT =
[T
2

]⊕
k=0

Nk.

Proof. (1) By the definition of Nk and Lemma 2, for any u ∈ Nk, v ∈ Nj , k 6=
j, k, j ∈ Z[0, [T2 ]], we obtain

λk〈u, v〉 = λk
T∑
t=1

(
u(t), v(t)

)
=

T∑
t=1

(
∆4u(t− 2), v(t)

)
=

T∑
t=1

(
∆2u(t),∆2v(t)

)
=

T∑
t=1

(
∆4v(t− 2), u(t)

)
= λj〈u, v〉.
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Sine λk 6= λj , thus 〈u, v〉 = 0, then (1) is verified.
(2) For k ∈ Z[0, [T2 ]], we define

Wk =
{
a cos kωt+ b sin kωt | a, b ∈ RN , t ∈ Z, k ∈ Z[0, [

T

2
]]
}
.

Then Wk ⊂ Nk. In fact, for any w = a cos kωt+ b sin kωt ∈Wk, we get

∆4u(t− 2) = u(t+ 2)− 4u(t+ 1) + 6u(t)− 4u(t− 1) + u(t− 2)
= a

(
cos kω(t+ 2) + cos kω(t− 2)

)
+ b
(

sin kω(t+ 2) + sin kω(t− 2)
)

−4
[
a
(

cos kω(t+ 1) + cos kω(t− 1)
)

+ b
(

sin kω(t+ 1) + sin kω(t− 1)
)]

+6
(
a cos kωt+ b sin kωt

)
= 2 cos 2kω

(
a cos kωt+ b sin kωt

)
− 8 cos kω

(
a cos kωt+ b sin kωt

)
+6
(
a cos kωt+ b sin kωt

)
=

(
2 cos 2kω − 8 cos kω + 6

)
u(t)

= λku(t),

which implies that u ∈ Nk, thus Wk ⊂ Nk, furthermore, we have
[T
2

]⊕
k=0

Wk ⊂
[T
2

]⊕
k=0

Nk ⊂

HT . It is easy to get that
dimW0 = N ;

dimWk = 2N, when k ∈ Z, 0 < k < T
2 ;

dimW[T
2

] = N , when T is even.

Thus, we have dim
[T
2

]⊕
k=0

Wk = NT = dimHT . Then the result (2) holds.

Lemma 9. Let Hk =
k⊕
j=0

Nj , H
⊥
k =

[T
2

]⊕
j=k+1

Nj , k ∈ Z[0, [T2 ]− 1], then

T∑
t=1

|∆2u(t)|2 ≤ λk‖u‖2 ∀u ∈ Hk, (3.1)

T∑
t=1

|∆2u(t)|2 ≥ λk+1‖u‖2 ∀u ∈ H⊥k . (3.2)
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Proof. For any uk ∈ Nk, it follows from Lemma 2 that

T∑
t=1

(
∆2uk(t),∆2uk(t)

)
=

T∑
t=1

(
∆4uk(t− 2), uk(t)

)
= λk

T∑
t=1

(
uk(t), uk(t)

)
.

Since λk = 2 cos 2kω − 8 cos kω + 6, ω = 2π
T , k ∈ Z[0, [T2 ]], we have 0 = λ0 < λ1 <

λ2 < · · · < λ[T
2

] ≤ 16 and λ[T
2

] = 16 when T is even; λ[T
2

] = 2 cos( 2
T π)+8 cos( 1

T π)+6
when T is odd. For any u ∈ Hk, there exist some constants aj , j ∈ Z[0, k], such that

u =
k∑
j=0

ajuj , where uj ∈ Nj . It follows from Lemma 2 and Lemma 8 that

T∑
t=1
|∆2u(t)|2 =

T∑
t=1

( k∑
j=0

aj∆2uj(t),
k∑
j=0

aj∆2uj(t)
)

=
T∑
t=1

k∑
j=0

a2
j

(
∆2uj(t),∆2uj(t)

)
=

T∑
t=1

k∑
j=0

a2
jλj
(
uj(t), uj(t)

)
≤ λk

T∑
t=1

k∑
j=0

(
ajuj(t), ajuj(t)

)
= λk

T∑
t=1

( k∑
j=0

ajuj(t),
k∑
j=0

ajuj(t)
)

= λk‖u‖2.

Then (3.1) is verified. By using the same method, we can get (3.2). The proof is
complete.

Now we prove Theorem 6.

Proof. We shall apply Theorem 4 to the functional I. Clearly I ∈ C1(HT ,R). By
(F3), we can get F (t, 0) = 0, so we can say that I(0) = 0. Now, we will verify that
I satisfies the rest conditions of Theorem 5.

Firstly, we show that I satisfies the P.S. condition.
Let {uk}k∈Z(1) ⊂ HT , I ′(uk)→ 0 as k →∞ and {I(uk)} is bounded.
Set

Γ1 =
{
t|t ∈ Z[1, T ], |uk(t)| ≥ R1

}
, Γ2 =

{
t|t ∈ Z[1, T ], |uk(t)| < R1

}
.

Then, by (F2), we obtain

I(uk) = 1
2

T∑
t=1
|∆2uk(t)|2 +

T∑
t=1

F (t, uk(t))

≥
∑
t∈Γ1

(
β|uk(t)|2 − γ

)
+
∑
t∈Γ2

F (t, uk(t))

≥ β‖uk‖2 − Tγ +
∑
t∈Γ2

(
F (t, uk(t)− β|uk(t)|2

)
.
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The continuity of F (t, x)−β|x|2 with x implies that there exists a positive constant
M such that for any t ∈ Z[1, T ], |x| < R1, F (t, x)− β|x|2 ≥ −M . Then we have

I(uk) ≥ β‖uk‖2 − T (γ +M).

Since {I(uk)} is bounded, then {uk}k∈Z(1) is bounded. As a consequence in finite
dimensional spaceHT , {uk}k∈Z(1) has a convergent subsequence, thus the P.S. condition
holds.

Secondly, we claim that I has a local linking at 0, that is, I satisfies (2.2) and
(2.3). Also we have infu∈HT I(u) ≤ 0.

It follows from (F3) and Lemma 9 that

I(u) = 1
2

T∑
t=1
|∆2u(t)|2 +

T∑
t=1

F (t, u(t))

≤ 1
2λk‖u‖

2 − 1
2λk

T∑
t=1
|u(t)|2

= 0

for all u ∈ Hk with ‖u‖ ≤ δ.
Similar to the above, we conclude that

I(u) = 1
2

T∑
t=1
|∆2u(t)|2 +

T∑
t=1

F (t, u(t))

≥ 1
2λk+1‖u‖2 − 1

2λk+1

T∑
t=1
|u(t)|2

= 0

for all u ∈ H⊥k with ‖u‖ ≤ δ.
Then I has a local linking at 0, which implies that 0 is a critical point of I. At

the same time, we get that inf
u∈HT

I(u) ≤ 0.

In the case that inf
u∈HT

I(u) < 0, our result follows from Theorem 4.

In the case that inf
u∈HT

I(u) = 0, from the above, we have I(u) = inf
u∈HT

I(u) = 0 for

all u ∈ Hk with ‖u‖ ≤ δ, which implies that all u ∈ Hk with ‖u‖ ≤ δ are minimum
points of I. Hence all u ∈ Hk with ‖u‖ ≤ δ are solutions of problem (1.1), and
(1.1) has infinite solutions in HT . Therefore, Theorem 6 is verified. The proof of
Theorem 6 is complete.

Theorem 10. Assume that the following conditions are satisfied

(F4) F (t, x) is even in x and there exists a positive integer T ≥ 2 such that F (t +
T, x) = F (t, x) for all (t, x) ∈ Z× RN ;
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(F5) there exist constants a1 > 0, a2 > 0 and β > 2 such that for all x ∈ RN ,

F (t, x) ≤ −a1|x|β + a2;

(F6) F (t, x) = o(|x|2) as |x| → 0 uniformly in t.

Then the problem (1.1) has an infinite number of T -periodic solutions.

Proof. I ∈ C1(HT ,R), by (2.1), (F4) and (F6), I is an even functional and I(0) = 0.
We divide our proof into three parts in order to show Theorem 10.
Firstly, we show that I satisfies the P.S. condition.
Let {uk}k∈Z(1) ⊂ HT and {I(uk)} is bounded. Then, there exists M1 > 0 such

that for all k ∈ Z(1),

|I(uk)| ≤M1. (3.3)

On the other hand, by (F5), for every u ∈ HT , we have

I(u) ≤ 1
2

T∑
t=1

(
∆u(t)−∆u(t− 1)

)2 − a1

T∑
t=1

|u(t)|β + a2T

≤ 1
2

T∑
t=1

2
(
|∆u(t)|2 + ∆|u(t− 1)|2

)
− a1‖u‖ββ + a2T

= 2
T∑
t=1

(∆u(t))2 − a1‖u‖ββ + a2T

≤ 2
T∑
t=1

2
(
|u(t+ 1)|2 + |u(t)|2

)
− a1‖u‖ββ + a2T

= 8
T∑
t=1

|u(t)|2 − a1‖u‖ββ + a2T

= 8‖u‖2 − a1‖u‖ββ + a2T

≤ 8‖u‖2 − a1(
1
C2

)β‖u‖β + a2T. (3.4)

Hence, by (3.3) and (3.4), we have for all k ∈ Z(1),

−M1 ≤ I(uk) ≤ 8‖uk‖2 − a1

(
1
C2

)β
‖uk‖β + a2T.

That is,

a1

(
1
C2

)β
‖uk‖β − 8M2‖uk‖2 ≤M1 + a2T, ∀k ∈ Z(1).
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By β > 2, {uk} is bounded on HT . Since HT is finite dimensional, {uk} has a
convergent subsequence, and the P.S. condition holds.

Secondly, we verify the condition (I2) of Theorem 5.
For arbitrary finite dimensional subspace Ẽ ⊂ HT , any given ϕ ∈ Ẽ, ‖ϕ‖ = 1

and λ > 0, by the proof of (3.4), we have

I(λϕ) ≤ 8λ2‖ϕ‖2 − a1λ
β( 1

C2
)β‖ϕ‖β + a2T

= 8λ2 − a1λ
β( 1

C2
)β + a2T

→ −∞ (λ→ +∞).

So there exists R(Ẽ) > 0 such that I ≤ 0 on Ẽ\B
R(Ẽ)

.
Finally, we verify the condition (I1) of Theorem 5.
Take k0 ∈ [0, [T2 ]− 1], by Lemma 8 and Lemma 9, we have HT = Hk0

⊕
H⊥k0 .

By the condition (F6), we obtain

lim
|x|→0

F (t, x)
|x|2

= 0.

Hence, ∀ε > 0, there exists δ > 0 such that for every x with |x| ≤ δ,

|F (t, x)| ≤ ε|x|2.

For any u ∈ H⊥k0 with ‖u‖ ≤ δ, then |u(t)| ≤ δ, t ∈ Z(1, T ). Then, we have

I(u) = 1
2

T∑
t=1

(∆2u(t))2 +
T∑
t=1

F (t, u(t))

≥ λk0+1

2 ‖u‖2 − ε
T∑
t=1
|u(t)|2

= λk0+1

2 ‖u‖2 − ε‖u‖2.

Take ε = 1
4λk0+1 and α = 1

4λk0+1δ
2, then

I(u) ≥ α, ∀u ∈ H⊥k0
⋂
∂Bδ.

By Theorem 5, I possesses infinite critical points, that is, problem (1.1) has infinite
nontrivial T -periodic solutions.

Remark 11. Take F (t, x) = −|x|4. Then F (t, x) satisfy all conditions of Theorem
10.
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