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FULL AVERAGING OF FUZZY IMPULSIVE
DIFFERENTIAL INCLUSIONS

Natalia V. Skripnik

Abstract. In this paper the substantiation of the method of full averaging for fuzzy impulsive
differential inclusions is studied. We extend the similar results for impulsive differential inclusions
with Hukuhara derivative [23], for fuzzy impulsive differential equations [18], and for fuzzy differential

inclusions [26].

1 Introduction

In recent years the fuzzy set theory introduced by L.Zadeh [29] has emerged as an
interesting and fascinating branch of pure and applied sciences [1], [3], [4], [6] - [18],
[21], [22], [27], [28]. The applications of the fuzzy set theory can be found in many
branches of regional, physical, mathematical and engineering sciences.

The concept of fuzzy differential inclusion was introduced in [24], where theorems
of existence and continuous dependence on parameter of classical solutions of fuzzy
differential inclusions were proved. In [19, 25] the concepts of ordinary, generalized
and quasisolutions of fuzzy differential inclusions were studied, the relationship
between sets of such solutions was investigated. The schemes of full and partial
averaging for fuzzy differential inclusions was also considered [26].

In this paper the substantiation of the method of full averaging for fuzzy impulsive
differential inclusions is considered. These results generalize the similar results for
impulsive differential inclusions with Hukuhara derivative [23], for fuzzy impulsive
differential equations [18], and for fuzzy differential inclusions [26].

2  Main definitions

Let conv(R™) be a family of all nonempty compact convex subsets of R™ with
Hausdorff metric

A B) = in || — infla—b
h(A, B) = max{magmin la — bl maxmin fla — ]},
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248 N. V. Skripnik

where || - || denotes the usual Euclidean norm in R"™.

Let E" be a family of mappings = : R — [0, 1] satisfying the following conditions:

1) x is normal, i.e. there exists yp € R™ such that z(yo) = 1;

2) x is fuzzy convex, i.e. x(Ay+ (1 — A)z) > min{z(y),z(z)} whenever y, z € R"
and A € [0,1];

3) x is upper semicontinuous, i.e. for any yg € R™ and € > 0 there exists
d(yo,€) > 0 such that z(y) < z(yo) + € whenever ||y — yo|| < J, y € R™;

4) a closure of the set {y € R™ : z(y) > 0} is compact.

Definition 1. The set {y € R" : z(y) > a} is called an a - level [x]* of a mapping
xz € E" for a € (0,1]. A closure of the set {y € R™ : x(y) > 0} is called a 0 - level
[2]° of a mapping x € E™.

It follows from 1) — 4) that the a-level set [z]* € conv(R"™) for all a € [0, 1].
Let 0 be a fuzzy mapping defined by

_J 0ify#0,
(y)_{ Lif y=0.

Define the metric D : E® x E® — R, by the equation

o)

D(z,y) = i h([z] [y]*)-

Let I be an interval in R.

Definition 2. A mapping f : I — E™ is called continuous at point ty € I provided for
any € > 0 there exists 6 > 0 such that D(f(t), f(to)) < € whenever |t—to| <, t € I.
A mapping f : I — E" is called continuous on I if it is continuous at every point
to € 1.

Definition 3. [15] A mapping f : I — E"™ is called measurable on I if a multivalued
mapping fo(t) = [f(t)]* is Lebesque measurable for any a € [0, 1].

Definition 4. [15] An element g € E"™ is called an integral of f : I — E™ over I if
(9] = (A) [ fa(t)dt for any a € (0,1], where (A) [ fo(t)dt is the Aumann integral
T T

/2],

Definition 5. A mapping f : I — E™ is called absolutely continuous on I if there
exists an integrable mapping g : I — E™ such that

¢
f(t) = f(to) + /g(s)ds, to € I for everyt e I.
to
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Definition 6. [15] A mapping f : I — E" is called differentiable at point to € I
if the multivalued mapping fo(t) is Hukuhara differentiable at point to [5] for any
a € [0,1] and the family {Dg fo(to) : « € [0,1]} defines a fuzzy number f'(ty) € E™
(which is called a fuzzy derivative of f(to) at point to). A mapping f : I — E" is
called differentiable on I if it is differentiable at every point ty € 1.

Let comp(E™) [conv(E™)] be a family of all subsets F' of E™ such that the family
of all a— levels of the elements from F' is a nonempty compact [and convex] element
in comp(R™) (that is an element of cc(R™) (cocc(R™)) [11]) for any « € [0, 1] with
metric

¢(A, B) = max{sup inf D(a,b),sup inf D(a,b)}.
acAbEB beB acA

Define also the distance from an element = € E" to a set A € comp(E") :

dist(z, A) = min D(x, a).
acA
Consider the usual algebraic operations in comp(E™):
—addition: F+G={f+g:f€F,geG}
— multiplication by scalars : A\F'={g = Af: f € F}.
The following properties hold [24]:
1) if F,G € comp(E™) [conv(E™)], then F + G € comp(E™) [conv(E™)];
2) if F' € comp(E™) [conv(E™)], then A\F' € comp(E™) [conv(E™)];
3) F+G =G+ F;
4) F+(G+H)=(F+G)+H;
5) there exists a null element {0}: F + {0} =
1) a(BF) = (aB)F:
5)1-F = F;
6) a(F + G) = oF + (G;
ifa >0, 8>0and F € conv(E"), then (o + B)F = aF + BF; otherwise
(o +B)F C aF + (F.

Definition 7. A mapping F : I — comp(E"™) is called a fuzzy multivalued mapping.

Definition 8. A fuzzy multivalued mapping F : I — comp(E™) is called measurable
on I if the set {t € I : F(t)(\G # 0} is measurable for every G € comp(E").

Definition 9. A fuzzy multivalued mapping F : I — comp(E™) is called continuous
at point tg € I provided for any e > 0 there exists §(to, ) > 0 such that s(F(t), F(to)) <
e whenever |t — to| < 6, t € 1. A fuzzy multivalued mapping f : I — E™ is called
continuous on I if it is continuous at every point ty € 1.

Definition 10. A mapping f : I — E" is called a selector of a fuzzy multivalued
mapping F : I — comp(E™) if f(t) € F(t) for almost every t € I.
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Obviously a selector f(t) always exists as the set F(t) is not empty for all ¢t € I.
Define an integral of F': I — comp(E™) over I :

/F(t)dt = /f(t)dt : f(t) € F(t) almost everywhere on [
T T

Consider a fuzzy differential inclusion
¥ € F(t,z), z(to) = o, (2.1)

where t € [ is time; x € G C E™ is a phase variable; the initial conditions to €
I,zy € G; a fuzzy multivalued mapping F': I x G — comp(E™).

Definition 11. An absolutely continuous fuzzy mapping x(t), x(ty) = xo, is called
an ordinary solution of differential inclusion (2.1) if

1) z(t) € G for allt € I

2) 2'(t) € F(t,z(t)) almost everywhere on I.

Theorem 12. Let the fuzzy multivalued mapping F : I x G — comp(E™) satisfy the
following conditions:

1) F(-,x) is measurable on I;

2) F(t,-) satisfies the Lipschitz condition with the constant k > 0, i.e. for all
(t,z),(t,y) € I x G the inequality holds

C(F(tv SC),F(t,y)) < kD(x7y)§

3) there exists an absolutely continuous fuzzy mapping y(t), y(to) = yo, such that
D(y(t),zo) < b and dist(y'(t), F(t,y(t))) < n(t) for almost all t : |t — to| < a, where
the function n(t) is Lebesque summable.

Then on the interval [to,ty + o] there exists a solution x(t) of fuzzy differential
inclusion (2.1) such that D(x(t),y(t)) < r(t), where

¢
r(t) = roekt=to) 4 /ek(ts)ﬁ(s)dsv ro = D(z0,30),

to

& = min {a, AZ} M= ma d(F(t2), 0).

The proof is similar to [24].
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3 Main Results

Consider the substantiation of the full averaging method on the finite interval for
fuzzy impulsive differential inclusion

' € eF(t,x), t # 7, x(0) = m, (3.1)

Ax|i=r, € el;(x).
If for any t > 0,2 € G there exists a limit

t+T
F(z) = lim % /t F(t,m)dt—i—% > L) |, (3.2)

T—o0
tST,L' <t+T

then in the correspondence to inclusion (3.1) we will set the following averaged
inclusion

y € eF(y), y(0) = zo. (3.3)

Theorem 13. Let in the domain Q = {t >0, v € G C E"} the following hold:

1) the fuzzy multivalued mappings F : Q — conv(E™), I; : G — conv(E™) are
continuous, uniformly bounded by M and satisfy the Lipschitz condition in x with
constant \;

2) uniformly with respect to t > 0 and x € D limit (3.2) exists and

1

where i(t,t +T) is the quantity of points of the sequence T; on the interval (t,t+ T1;

3) for any xo € G' C G and t > 0 the solutions of inclusion (5.3) together with
a p— neighborhood belong to the domain G.

Then for any n € (0,p] and L > O there exists €%(n, L) > 0 such that for all
e € (0,€"] and t € [0, Le™1] the following statements fulfill:

1) for any solution y(t) of inclusion (3.3) there exists a solution x(t) of inclusion
(8.1) such that

D(z(t),y(t)) <m; (3.4)

2) for any solution x(t) of inclusion (3.1) there exists a solution y(t) of inclusion

(3.3) such that inequality (3.4) holds.

Proof. From conditions 1), 2) it follows that the fuzzy multivalued mapping
F : D — conv(E") is uniformly bounded by M; = M(1 + d) and satisfies the
Lipschitz condition with constant A\ = A(1 4 d).

Namely

~ B . B t+T 1
@)l =s(F@A0) << (P [ Pleajat+ 5 3 1))+

t<7; <t+T
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1 t+T 1 . 1 t+T
+< T/ F(t,x)dt—kf Z Ii(x), {0} <a+T/t |F'(s,x)|ds+
t<T; <t+T
1
+ > (@) <a+ M+dM =a+ M1+ d);

t<rm;<t+T

t<rm;<t+T
1 t+T 1 1 T .
+¢ T/t E(t,z)dt + > Ii(:cl),T/t F(t,w2)dt + S L) |+
tsmi<t T t<m<t+T
1 t+T 1 B
+< T /t F(t7$2)dt + T Z Ii(m2)7 F(Q;Q) <

t<7;<t+T
1 t+T 1
< 20+ T/t S(F(s,1), F(s,02))ds + = t§T§+T§(Ii(J:1), Ii(x2)) <
< 2a 4 Mh(z1,x2) + Adh(z1, 22) = 200 + N1 4 d) D (21, 22),

where o can be done arbitrary small by choosing 1. Hence
[F(@)| £ M(1+d), <(F(21), Fw2)) < A1+ d)D(a1,32).

Let us proof the first statement of the theorem. Let y(¢) be a solution of inclusion
(3.3). Divide the interval [0, Le~!] on the partial intervals with a step 7(g) such
that () — oo and ey(e) — 0 as € — 0. Then there exists a measurable selection
v(t) € F(y(t)) such that

) =(ty) +2 [ ods, teltytial, 9(0) = oo (35

where t; = jy(e), j =0,m, my(e) < Le~! < (m+ 1)7(e).
Consider the mapping

y'(8) = y' (t) +evi(t — 1)), t € [ty,tjn], ¥ (0) = a0, (3.6)
where v; € E" satisfies the condition

D (7(5)1}]-,/# v(s)ds> = veFIE/ilI%tj))D (7(5)7},/1‘/‘ v(s)ds> . (3.7)

J J
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Obviously, v; exists in view of the compactness of the set F'(y!(¢;)) and the continuity
of the function being minimized.
Denote by §; = D(y(t;),y'(t;)). For t € [t;,t;+1] using (3.5) and (3.6), we have

D(y(t),y(t;)) < Miey(e), D(y'(t),y'(t;)) < Mie(e). (3.8)
Therefore the following inequalities hold for ¢ € [t;,t;41]:
D(y(t).y'(t;)) < D(y(t;). y' (t;)) + D(y(t), y(t;)) < &; +eMu(t —t;),

S(F(y(), Fy' (1)) < MD(y(t).y' (t;)) < M0 +eMi(t—t;)).  (3.9)
From (3.7) and (3.9) it follows that

D </ v(S)ds,v(E)vj> < [ R s <

J

<\ <5j’7(6) + 5M1Py22(8)> . (3.10)
By (3.5) and (3.6) we obtain
djr1 <05 +eX <5j’y(6) +eMy fyz(g)> = (1+ Mey(e))d; + /\1M1€2722(€). (3.11)
Since dp = 0 from inequality (3.11) we get
o1 < MMy 62722(6)7
e®7%(e)

%% (e)
82 < (14 Miey(e))d1 + MM,y 5 = AlMlT((l + Aiey(e)) + 1).

By induction

1 < MM L E (1 er(©) + (14 Mer () 4 1) =
= M) (14 den (e - 1) < M (14 Ao 1) <
< Mﬁ;(e)(em —1). (3.12)

So in view of inequalities (3.8) we derive the estimation:

D(y(t),y*(t)) < D(y(t), y(t;)) + D(y(t;),y" (t;)) + D(y' (t;), y' (1)) <

< WMy (e) + Mﬁ;(g)(em 1< Ml;"(‘g)(em +3). (3.13)
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It follows from condition 2) of the theorem that for any n; > 0 there exists
e1(m) > 0 such that for € < e1(m) the inequality holds

ti+1
N e AR YA I S DI T 1)) R CRT)

Hence, there exist a measurable selection u;(t) € F(t,y!(¢;)) and p;; € Li(y*(t;))
such that

1 ti+1
D | vj, ) / uj(s)ds + Z Dij <M. (3.15)
e tj tj§7i<tj+1

Consider the mapping

a2t (t) = 21 (t;) + e/t uj(s)ds + ¢ Z pijs t € (tj,tjs1], 27(0) =z9.  (3.16)

J t;<1;<t

Since z1(0) = »'(0) it follows from (3.6), (3.16) and (3.15) that for j = 1,m
D(a'(t)),y' (t;)) < D('(tj—1),y" (tj—1)) + mey(e) < ... < jmey(e) < L. (3.17)
As for t € (tj,tj41] we have
D(a'(t), 2 (tj)) < M(1+ d)er(e) = Miev(e),
taking into account inequality (3.8), we get
D(x(t),y' (t)) < Ly + 2Myev(e), (3.18)

D(z'(t),y'(t;)) < Lm + Myey(e).

Let us show that there exists a solution z(t) of inclusion (3.1) that is sufficiently
close to x!(t).

Let 61, ...,0, be the moments of impulses 7;, that get into the interval (¢;,%;41].
For convenience denote by 0y = tj, 041 = tj11. Let pf = D(x!(0x +0), 2(6) + 0)),
pp = D('(0r),2(0r)), k=0,p + 1.

Using the Lipschitz condition, we have

dist (acl/(t),eF(t,ml(t))> < (eF(ty'(t;), eF(t, 2\ (1)) <

< eAD(z'(t),y' (t;)) < eA(Miey(e) + Lm) = 1,
dist (Ax' =g, eli(z" (01))) << (eLily' (), eli(x" (Br))) <
< EAD(yl(tj),azl(Ok)) < eX(Mievy(e) + L) =n*.
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According to Theorem 12 there exists a solution x(t) of inclusion (3.1) such that
for t € (0, 0k+1] the estimate holds

t
D) 1) < e 1 ¢ [
O

Denote by v; = 01 — 0 < v(¢), Yo+ ... +vp = 7(€). Then
ey S w4 (@ -1). (3.19)
When getting over the impulse point we have
M]—;_l < ﬂ];+1 + &g (Il(yl(tj))alz(x(9k+1))) <
<ty + s (L@t (Ok41)), Li(@(01))) + e (Liy' (1), Lia! (k1)) <
< iy + Mty &5 (Li(y (), Li(@' (O41))) <
< (T+eMu, +1 (3.20)

From (3.19) and (3.20) it follows that

pa S (L eNegf 45, 5= 114+ e) (290 = 1) o,

Hence,
pi < (L4 e Pud + 8 < (1+eN)eEud + 8,
g < (L4 eN)eM il + 8 < (14eh)2er 00ty
HB(1 + XM 4 8 < (14N @t + ((1 Fen)enE) 4 1) ,

ete.

pho < (L+e)frled @+ 8 ( ATE (L4 ek + o+ (1 +eN) + 1) =

Aevy(e) (1 + gA)k —1

= (14 Nkttt 45 (e -

(1+5)\)+1>§

Ad
< 6)\(1+d)57(e)ua—+n* <1+)\5>‘(€/\57(s) _ 1) + 1> (e)\s“/(s)em:;)_l(l + 5)\) + 1) —
- 04#3_ + /817
where
o = PO+
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B1 = (Myevy(e)+Ln) (H)\g)\(e/\”(a) - 1)+ 1) <e/\57(5) (e)‘d”(a) — 1) (I4+eX)+ 6)\) .

So
3fi1 = D((tjr1),z' (tj41)) < a8 + i

We obtain the sequence of inequalities

S =0, 07 <pBi, 0 <api+pi=(a+1)b,...

adtl — 1

0 < (o + o+ 1)f = i <

a—1

AL(1+d) 1 T4er
< Sardae — 1 Merv(e) + L) < S G Vi 1) x

X (ekm(s) (e’\dm(g) — 1) (1+eX)+ 5)\) .

Since L tex

. + € A

lim ( ——— () —1)+1) =1

lim < 3 (e ) + )

and
A eNdev(e) _1 1

i erev(e) (e)\dsfy(s) _ 1) (1 4 8)\) e . e EW(s)W + ol d
€l0 e 1+d)ev(e) — 1 50 ertder(e) 1 1 +d’

Aey(e)
one has that
55, < C(Myey(e) + L)
for e < es.
Therefore for ¢ € (¢,¢;41] the inequality holds

D(x(t),z' (1)) < D(x(t), x(t;)) + D(x(tj), ='(t;))) + D(a' (1), 2 (¢;)) <

< M(1+4d)ey(e) + Miey(e)+ C(Miey(e)+ Lim) = My (24 C)evy(e)+CLn. (3.21)

In view of inequalities (3.13),(3.18), and (3.21) we get that D(z(t),y(t)) can be
done less than any preassigned n by means of choosing ¢ < g9 and 7.
The second statement of the theorem is proved similarly.

If the fuzzy multivalued mappings F(¢,z) and I;(z) are periodic in ¢, one derives
better estimation.

Theorem 14. Let in the domain Q = {t >0, v € G C E"} the following hold:

1) the fuzzy multivalued mappings F : Q — conv(E"™), I; : G — conv(E™) are
continuous, uniformly bounded by M and satisfy the Lipschitz condition in x with
constant \;
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2) the fuzzy multivalued mapping F(t,z) is 2n— periodic in t and there exists
such d € N that for all i € N the equalities hold T,1q = T; + 27, Iivq(x) = L;i(x);

3) for any xo € G' C G and t > 0 the solutions of inclusion (3.3) together with
a p— neighborhood belong to the domain G.

Then for any L > 0 there exist (L) > 0 and C(L) > 0 such that for all
e € (0,€"] and t € [0, Le™1] the following statements fulfill:

1) for any solution y(t) of inclusion (3.3) there exists a solution x(t) of inclusion
(3.1) such that

D(a(t), (1)) < Ce: (3.22)

2) for any solution x(t) of inclusion (3.1) there exists a solution &(t) of inclusion
(3.3) such that inequality (3.22) holds.

Proof. Using condition 2) of the theorem, we obtain that

B 1 2w

F(a) F(s,x)ds+2i S L), (3.23)

2 0 g 0<r; <27

It follows from condition 1) of the theorem that F': D — conv(E™) is uniformly
bounded by M; = M(1 + d) and satisfies the Lipschitz condition with constant
A= A1+4d).

We are going to prove the first statement of the theorem. Let y(¢) be a solution
of inclusion (3.3). Divide the interval [0, Leé '] on the partial intervals with a step
27 by the points t; = 2mj, j = 0,m, where m : ¢, < Le ! < t41. Then there
exists a measurable selector v(t) of the fuzzy multivalued mapping F(y(t)) such that

) =(ty) +2 [ ods, t ety tial, 9(0) = oo (3.24)

Consider the mapping

y'(t) = y' (t;) + vt — t;), t € [tj, tj41], ¥ (0) = mo, (3.25)

where v; € E" satisfies the condition

ti+1 tj1
D 2771}]-,/ v(s)ds | = min D 271'1},/ v(s)ds | . (3.26)
t veF(y'(t;)) t

J J

Obviously, v; exists in view of the compactness of the set F'(y!(¢;)) and the continuity
of the function being minimized.
Denote by &; = D(y(t;),y'(t;)). For t € [tj,t;41] using (3.24) and (3.25), we
have
D(y(t),y(t;)) < 2nMyie, D(y*(t),y'(t;)) < 2mMe. (3.27)
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Hence for t € [t},t;41] the following inequalities hold:
D(y(t),y'(tj)) < D(y(t;).y" (t;) + D(y(t), y(t;)) < &; +eM(t — t;),

S(F(y(t), Fy' (1)) < MD(y(t),y' (t;)) < M (05 + eMi(t — t;)). (3.28)
From (3.26) and (3.28) it follows that

D </tj+1 v(s)ds, 277Uj> = /tj+1 S(F(y(s)), F(y'(t;)ds < M (2705 + 2m Mye) .

i i
(3.29)
Considering (3.24) and (3.25) we obtain

§jt1 < 6+ e (2m8; + 2m* Mye) = (1 + 2mAie)d; + 22 A My e”. (3.30)
From inequality (3.30) taking into account g = 0, we get
(51 < 27['2)\1M1€2,

0y < (1 + 27TA16)51 + 27T2)\1M162 < 27T2)\1M1€2((1 + 271’/\16) + 1),

ete.
6j+1 < 27T2)\1M162((1 + 27T)\16)i + (1 + 27?)\16)i_1 + ...+ 1) =

= nMe ((1 + 2nAe) ™ — 1) < 7Mje ((1 + 27\ e) e — 1) < mMye(eMt —1).

(3.31)
In view of inequalities (3.8) one has that:
D(y(t),y'(t)) < D(y(t), y(t;)) + D(y(t;), y' (¢)) + D(y' (), 5" (1)) <
< 4nMje + mMye(eMt — 1) < wMye(eMt +3). (3.32)
Furthermore,
_ 1 [+ 1 1 1
FO' ) =5 [ Feute)ds+ o 3 LGE). (339
gl 1 <7 <tj1

and there a exist p;; € I;(y'(t;)) and a measurable selection u;(t) € F(t,y*(t;)) such
that

1 ti+1

v = 5o uj(s)ds + Z Dij | - (3.34)
b Lj<Ti<tjy1

Consider the mapping

al(t) = 2t (t;) + E/. uj(s)ds+¢e Z pij, t € (tj,tj41], 2°(0) = xo.  (3.35)

4 tj<mi<t
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From (3.25), (3.35), and (3.34) using 2'(0) = »'(0), it follows that for j = 1,m
z(t;) = y'(t;), D(z'(t),2'(t;)) < 2mMye, D(x*(t),y'(t)) < 4rMqe. (3.36)

Let us show that there exists a solution z(t) of inclusion (3.1) that is sufficiently
close to z!(t).

Let 61, ...,0, be the moments of impulses 7;, that get into the interval (¢;,¢;1].
For convenience denote by 0y = t;, Op41 = tj41. Let i = D(z' (0 + 0),z(0x + 0)),
By = D(z(0k),z(0)), k =0,p + 1.

Using the Lipschitz condition, we have

dist (2V'(0),2F (8,2 (1)) << (F(t,y (1)), eF (12" (1)) <
< eAD(x' (1), 2 (t;)) < 2mAMye? = ¥,

dist (A:clltzgk,&?[i(ml(ﬁk))) <g (sfi(yl(tj)),EIi(:cl(Hk))) <
< eAD(z'(t;), v (0r)) < 2mAMe? = n*.

According to Theorem 12 we obtain that there exists a solution z(¢) of inclusion
(3.1) such that for t € (6, 0x+1] the following estimation holds

t
D(x(t),xl(t)) < Ml-:ea)\(tfek) + 5/ esA(tfs)n*dS.
0

k

Denote by v = Or+1 — 0, < 27, 70 + ... + v, = 2m. Then

e < e T (@me 1) (3.37)
When getting over the impulse point we have
i <ty +es (L' (1), Li(@(6r11))) <
< iy + &5 (L (k1)) Li(2(0ps1))) + £ (L' (1)), Li(2 (Bs1))) <
< iy + M s (L' (t)), Li(x' (0r41))) <

< (T+eMp, +1 (3.38)
From (3.19) and (3.20) it follows that

i S U+eNeMeul +8, =T (1+eN) (™ —1) + 0.
Hence,
pf < (14N Pud + 8 < (14 eN)e?™ e ud + 3,
/~L§r < (1+ 5)\)65’\71uf +B<(1+ 5)\)268A(70+71)M8r+
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+8(1 +eN)eM 4 8 < (1 +eN)2e?™eud + 6 ((1 +eN)e?™e 4 1) ,
etc.

i < e ™o s 4 (62””((1 +eNf o+ (1 4eN) + 1) =

L+eNk -1
— (1 _'_5)\)14:—&-16270\6#(4{ _1_5 <627r>\a( +€6)\) (1 +€)\) + 1) <
1 Ade2n 1
S 627‘(}\(1+d)€,u8- 4 77* < —{;\€>\ (627-()\8 o 1) + 1> <€27'('/\€€ 6)\ (1 4 g)\) T 1> _

= Oé,LLa_ + 617
where

o= 627r>\(1+d)€

1
/61 = 27TM1€ (4;\5)\(627»\6 o 1) + 1) <62ﬂ')\6 <627T)\d6 . 1) (1 +€)\) +5>\) ]

So

5y = D(@(tj), 2! (tjg1)) < adf + br.

We obtain the sequence of inequalities

(58_ = 07 (5? S /817 (5;_ S C“/81 +/81 — (05+ 1)ﬁ1>"'7

N . adtl —1
6j+1 <(+..+1)p = ﬁﬂl <
AL(4d) _ /11 )
e €
< 27TM1€27r)\(1+d)5 — < 3 (6270\8 _ 1) + 1) <627T)\8 <627T)\d5 o 1) (1 + 8)\) + €A> E.
As
3 1 —|—€)\ 27\
1 - Ten TAE _q 1] =1
) ( yoe )+
and
. e2mAe (6271')\d5 _ 1) (1 + 6)\) el ' 6271')\5& +1 2dm +1
lim = lim A =
e e2mA(I+d)e _ | 20 % 21+ d)r’
£
then
(5;:_1 < Cype
for e < 9.

Therefore for ¢ € (¢;,¢;41] the inequality holds
D(x(t),#'(t)) < D(x(t), x(t;)) + D(a(t;), = (1)) + D(a' (t), 2" (t;)) <
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<27M(1+d)e + 2nMie + Coe = (4nMy + Ch)e. (3.39)
In view of inequalities (3.32),(3.36), and (3.39) we get that

D(x(t),y(t)) < Che, (3.40)

Cy = My (eME + 3) + 47 My + Co.

The first part of the theorem is proved.

Taking any solution x(¢) of inclusion (3.1) and making the calculations similar to
the previous, it is possible to find a solution y(t) of inclusion (3.3) such that inequality
similar to (3.40) with some constant Cj is fair. Choosing C' = max(Cy, C2) we will
receive the justice of all statements of the theorem.

4 Conclusion

It is also possible to use the partial averaging of fuzzy impulsive differential inclusions,
i.e. to average only some summands or factors. Such variant of the averaging method
also leads to the simplification of the initial inclusion and happens to be useful when
the average of some functions does not exist or their presence in the system does
not complicate its research.
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