ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 83 – 88

FIXED POINTS OF MAPPINGS WITH DIMINISHING PROBABILISTIC ORBITAL DIAMETERS

Irshad Aalam, Naresh Kumar and B. D. Pant

Abstract. In this paper we prove a fixed point theorem for a pair of mappings with probabilistic diminishing orbital diameters on Menger spaces and introduce the notion of generalized joint diminishing probabilistic orbital diameters (gjdpod) for a quadruplet of mappings.

1 Introduction

The notion of 'diminishing orbital diameters' (dod) was introduced by Belluce and Kirk [1]. Subsequently, Fisher [3], Huang, Huang and Jeng [4], Liu [7], Ranganathan, Srivastva and Gupta [9], Singh [10], Wong [12] etc. obtained some more results in this settings.

Istrățescu and Săcuiu [5] introduced the concept of non-expansive mappings and mapping with 'diminishing probabilistic orbital diameters' (dpod) on probabilistic metric spaces (PM-spaces). Singh and Pant [11] have shown that a non-expansive mapping on PM-space having dpod has a fixed point. They have also investigated that the condition of non-expansiveness of the mapping may be relaxed to the condition of the mapping being with relatively compact orbits.

In this paper we introduce the notion of dpod and gdpod for a pair of mappings and established a fixed point theorem. Subsequently, we introduced the concept of gjdpod for a quadruplet of mappings and prove a fixed point theorem. Some of the previously results of [7], [9], [10], [11] (in different settings) may be derived from our results.

1.1 Preliminaries

Definition 1. [2].Let A be a non-empty subset of X. The function $D_A(.)$ defined by

$$D_A(x) = \sup_{\varepsilon < x} \{ \inf_{u,v \in A} F_{u,v}(\varepsilon) \}$$

2010 Mathematics Subject Classification: 47H10; 54H25.

Keywords: PM Space; Diameter; Orbit.

is called the probabilistic diameter of A.

Definition 2. [2]. The function $E_{A,B}(.)$ defined by

$$E_{A,B}(\varepsilon) = \underset{x < \varepsilon}{lub} t \{ \underset{u \in A}{glb} (\underset{v \in B}{lub} F_{u,v}(x)), (\underset{v \in B}{glb} \underset{u \in A}{lub} F_{u,v}(x)) \}$$

is called the probabilistic distance between A and B.

Let $P: X \to X$ and $u \in X$, then $O_P(u) = (u, Pu, P^2u, \dots,)$ is called the orbit of u with respect to P and $\overline{O_P(u)}$ denotes the closure of $O_P(u)$.

Definition 3. [5] Let P be a self map on a PM-space X.P is said to have dpod at u if for $D_{O_P(P(u))}(\varepsilon) > 0$

$$\lim_{n\to\infty} D_{O_P(P(u))}(\varepsilon) > D_{O_P(u)}(\varepsilon)$$

where H is a distribution function.

We now introduce the following definitions:

Definition 4. A pair of mappings P, Q of a PM-space X is said to have diminishing probabilistic orbital diameters (dpod) if

$$\lim_{n\to\infty} E_{O_P(P_n(u)),O_Q(Q_n(u))}(\varepsilon) > E_{O_P(u),O_Q(u)}(\varepsilon), \varepsilon > 0,$$

for all $u \in X$ with $E_{O_P(P_n(u)),O_Q(Q_n(u))}(\varepsilon) \neq H$.

Definition 5. A pair of mappings P, Q on a PM-space X is said to have generalized diminishing probabilistic orbital diameters (gdpod) if

$$\lim_{n\to\infty} E_{O_P(P_n(u)),O_Q(Q_n(v))}(\varepsilon) > E_{O_P(u),O_Q(v)}(\varepsilon), \varepsilon > 0,$$

for all $u \in X$ with $E_{O_P(P_n(u)),O_Q(Q_n(v))}(\varepsilon) \neq H$.

It is clear that (P,Q) has a dpod if (P,Q) has a gdpod. Also (P,P) has a dpod if and only if P has dpod.

2 Main Result

Theorem 6. Let P and Q are continuous self mappings of a compact Menger space. If the pair (P,Q) has a gdpod on X, then for each $u,v \in X$, there exists some subsequences $\{P^{n_k}(u)\}$ of $P_n(u)$ and $\{Q^{n_k}(u)\}$ of $Q_n(u)$ converge to a common fixed point of P and Q.

Proof. Let $u \in X$, L(u) denotes the set of all points of X which are the limits of the subsequences $P_n(u)$ Since $L(u) \neq \phi$ because X is compact, L(u) is mapped into itself by P. Also L(u) is closed, so by Zorn's lemma there exists a minimal P-invariant non-empty subset $A \subset L(u)$ such that A is closed and mapped into itself by P. Similarly we can find a minimal Q-invariant non-empty subset $B \subset L(v)$ such that B is closed and mapped into itself by Q. For $u_0 \in A$, $O_P(u_0)$ is mapped into itself by P. Therefore minimality of A implies that $A = \overline{O_P(u_0)}$. Similarly for $v_0 \in B$, we have $B = \overline{O_Q(v_0)}$.

We now prove that $E_{A,B}(\varepsilon) = H$, $\varepsilon > 0$. Suppose $E_{A,B}(\varepsilon) \neq H$, $\varepsilon > 0$. Since P,Q has a dpod, we have

$$E_{A,B}(\varepsilon) = E_{O_P(u_0),O_Q(v_0)}(\varepsilon) < \lim_{n \to \infty} E_{O_P(P_n(u_0)),O_Q(Q_n(v_0))}(\varepsilon)$$

This implies

$$E_{\overline{O_P(u_0),O_Q(v_0)}}(\varepsilon) < \lim_{n \to \infty} E_{\overline{O_P(P_n(u_0)),O_Q(Q_n(v_0))}}(\varepsilon) = E_{A,B}(\varepsilon)$$

contradiction. Hence $E_{A,B}(\varepsilon) = H$, which implies that A = B = (w) (say). Then it is clear that w is a common fixed point of P and Q. If z is another fixed point of P and $z \neq w$ Then we have

$$\lim_{n\to\infty} E_{O_P(P_n(z)),O_Q(Q_n(w))}(\varepsilon) > E_{O_P(z),O_Q(w)}(\varepsilon), \varepsilon > 0,$$

or
$$E_{z,w}(\varepsilon) > E_{z,w}(\varepsilon)$$
,

a contradiction. Hence w is a unique fixed point of P. Similarly, we may show that w is a unique fixed point of Q.

This completes the proof of the theorem

Remark 7. If in the above theorem condition gdpod is replaced by the condition dpod, then it no longer assures the existence of a common fixed point for P and Q. (see [7])

Corollary 8. Let P be a continuous self mapping of a compact Menger space X. If (P,P) has a gdpod, then P has a unique fixed point. Furthermore, for each $u \in X$, there exists some subsequences of $P^n(u)$ converge to a unique fixed point of P.

Pant, Dimri and Chandola [8] have introduced the concept of joint sequence of iterates for a quadruplet of mappings as follows:

Definition 9. [8] Let B = (P, Q, S, T) be a quadruplet of self mappings on a PM-space X. For u_0 in X, let $Tu_n = QPu_{n-1}$, if n is odd and $Tu_n = SQu_{n-1}$ if n is even, then the sequence

$$J_B(u_0) = \{u_0, Pu_0, QPu_0, SQPu_0, TSQPu_0, \cdots\}$$

is called the joint sequence of iterates of B at u_0

We now introduce the notion of gjdpod for a quadruplet of mappings in PM-space

Let
$$\delta_u(\varepsilon) = \lim_{n \to \infty} D_{J_{B_n}(u)}(\varepsilon)$$
.

Definition 10. B will be called to have gjdpod at u if for $D_{J_{B_n}(u)}(\varepsilon) \neq H, \varepsilon > 0$,

$$\delta_u(\varepsilon) > D_{J_R(u)}(\varepsilon).$$

Theorem 11. Let X be a compact Menger space and B = (P, Q, S, T) be a quadruplet of continuous self mappings on X such that B have gjdpod on X. Then for each $u_0 \in X$, a subsequence of $J_B(u_0)$ converges to a common fixed point of P, Q, S and T.

Proof. For $u_0 \in X$, let $A(u_0)$ denote the set of all points of X which are limit of subsequences of the sequence $J_B(u_0)$. Since X is compact, $A(u_0) \neq \phi$ Also $A(u_0)$ is closed and mapped into itself by P, Q, S and T. Let some subsequence of $J_B(u_0)$ converge to a point u in X, so $u \in A(u_0)$. Further P, Q, S and T are continuous, therefore $J_B(u_0) \subset A(u_0)$. By Zorn's Lemma, there exists a minimal nonempty subset $K \subset A(u_0)$ such that K is closed and mapped into itself by P, Q, S and T. Also for $q_0 \in K$, $J_B(q_0)$ is mapped into itself by P, Q, S and T. Therefore minimality of K implies that $K = \overline{J_B(q_0)}$. Suppose $D_K(\varepsilon) \neq H, \varepsilon > 0$. Since B have gjdpod, then we have

$$\delta_{q_0}(\varepsilon) > D_{J_B(q_0)}(\varepsilon).$$

This implies that $D_{\overline{J_{B_n}(q_0)}}(\varepsilon) > D_{\overline{J_B(q_0)}}(\varepsilon)$, for some integer n. Thus

$$D_{J_{B_n}(q_0)}(\varepsilon) > D_{J_B(q_0)}(\varepsilon), \varepsilon > 0$$

This shows that $J_{B_n}(q_0)$ is a proper subset of K, contradicting the minimality of K. Hence $D_K(\varepsilon) = H, \varepsilon > 0$ Thus K consists of a single point q_0 . So we have $P(q_0) = Q(q_0) = R(q_0) = S(q_0) = q_0$. Therefore q_0 is the common fixed point of P, Q, S and T

Remark 12. With Q = S = T = I (Identity mapping), the notion of gjdpod is same as dpod and then result of Kirk (Th. A, [6]) follow.

Remark 13. If any two of P, Q, S, T are taken as identity maps then gjdpod reduces to jdpod and the result of Singh and Pant (Th. 4, [11]) is obtained as corollary.

Remark 14. It is not necessary that any continuous mapping P in Theorem 11 has dpod on X, since in such a case it might be possible to obtain a family B of continuous self mappings on X such that $B \cup P$ has a gjdpod (see, for illustration [9]).

References

- L. P. Belluce and W. A. Kirk, Fixed Point Theorems For Certain Classes Of Non Expansive Mappings, Proc. Amer. Math. Soc. 20 (1969), 141-146. MR0233341.
 Zbl 0165.16801.
- [2] R. J. Egbert, Products And Quotients Of Probabilistic Metric Spaces, 24 (1968), 437-455. MR0226690. Zbl 0175.46601.
- [3] B. Fisher, A Common Fixed Point Theorem For Four Mappings On a Compact Metric Space, Bull. Inst. Math. Acad. Sinica, 12 (1984), 249-252. MR764955. Zbl0544.54037.
- [4] Y. Y. Huang, J. J. Huang, J. C. Jeng and Jyh-Chung, On Common Fixed Points Of Semi Group In Compact Metric Spaces, Indian J. Pure Appl. Math., 27(1996)1073-1076. MR1420097. Zbl 0865.47043.
- [5] V. I. Istrăţescu and I. Săcuiu, Fixed Point Theorems For Contraction Mappings On Probabilistic Metric Space, Rev. Roumaine Math. Pures Appl. 18 (1973), 1375-1380. MR0331356. Zbl 0293.60014.
- [6] W. A. Kirk, On Mappings With Diminishing Orbital Diameters, J. Lond. Math. Soc. 44 (1969), 107-111. MR0233342. Zbl 0162.54902.
- [7] Z. Liu and S. M. Kang, On Mappings With Diminishing Orbital Diameters,
 IJMMS 27, 6 (2001), 341-346. MR1870035. Zbl 1010.54048.
- [8] B. D. Pant, R. C. Dimri and V. B. Chandola, Some Results On Fixed Points Of Probabilistic Densifying Mappings, Bull. Cal. Math. Soc. 96 (3) (2004), 189-194. MR2090229. Zbl 1072.47052.
- [9] S. Ranganathan, P. Srivastva and V. K. Gupta, Joint Sequence Of Iterates And Common Fixed Points, Nanta Math. 9 (I) (1976), 92-94. MR0445480. Zbl0355.540388.
- [10] S. L. Singh, Generalized Diminishing Orbital Diameteral Sum, Math. Sem. Notes Kobe Uni. 5(1977), 295-312. MR0478125. Zbl0374.54040.

- [11] S. L. Singh and B. D. Pant, Fixed Points Of Mappings With Diminishing Probabilistic Orbital Diameters, Punjab Univ.J. Math. 19 (1986), 99-105. MR893390. Zbl 0622.54032.
- [12] C. S. Wong, Fixed Point Theorems For Generalized Non-Expansive Mappings,
 J. Aust. Math. Soc. 18 (1974), 265-276. MR0358753. Zbl 0292.47052.

Irshad Aalam
Department of Mathematics,
R. H. G. P. G. College Kashipur,
U. S. Nagar, Uttarakhand, India.
e-mail: aalam_math @ rediffmail.com

Naresh Kumar Department of Mathematics R. H. G. P. G. College Kashipur, U. S. Nagar, Uttarakhand, India. e-mail: knaresh.math @ gmail.com

B. D. PantG. P. G. College ChampavatUttarakhand, India.

e-mail: bd_math @ rediffmail.com
