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ON ANOTHER TWO CRYPTOGRAPHIC
IDENTITIES IN UNIVERSAL OSBORN LOOPS

T. G. Jaiyéo. lá and J. O. Adéńıran

Abstract. In this study, by establishing an identity for universal Osborn loops, two other

identities (of degrees 4 and 6) are deduced from it and they are recognized and recommended for

cryptography in a similar spirit in which the cross inverse property (of degree 2) has been used

by Keedwell following the fact that it was observed that universal Osborn loops that do not have

the 3-power associative property or weaker forms of; inverse property, power associativity and

diassociativity to mention a few, will have cycles (even long ones). These identities are found to

be cryptographic in nature for universal Osborn loops and thereby called cryptographic identities.

They were also found applicable to security patterns, arrangements and networks which the CIP

may not be applicable to.

1 Introduction

Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L for all
x, y ∈ L, (L, ·) is called a groupoid. If the system of equations ;

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup.
Furthermore, if there exists a unique element e ∈ L called the identity element such
that for all x ∈ L, x · e = e · x = x, (L, ·) is called a loop. We write xy instead
of x · y, and stipulate that · has lower priority than juxtaposition among factors to
be multiplied. For instance, x · yz stands for x(yz). For each x ∈ L, the elements
xρ = xJρ, x

λ = xJλ ∈ L such that xxρ = e = xλx are called the right, left inverses
of x respectively. xλ2

= (xλ)λ and xρ2
= (xρ)ρ.

Definition 1. A loop (G, ·, /, \, e) is a set G together with three binary operations
(·), (/), (\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ G,
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(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ G and

(iii) x\x = y/y or e · x = x for all x, y ∈ G.

We also stipulate that (/) and (\) have higher priority than (·) among factors
to be multiplied. For instance, x · y/z and x · y\z stand for x(y/z) and x · (y\z)
respectively.

The left and right translation maps of G, Lx and Rx respectively can be defined
by

yLx = x · y and yRx = y · x.

Let
x\y = yL−1

x = yLx and x/y = xR−1
y = xRy.

L is called a weak inverse property loop (WIPL) if and only if it obeys the weak
inverse property (WIP);

xy · z = e implies x · yz = e for all x, y, z ∈ L

while L is called a cross inverse property loop (CIPL) if and only if it obeys the
cross inverse property (CIP);

xy · xρ = y.

The triple α = (A,B, C) of bijections on a loop (L, ·) is called an autotopism of the
loop if and only if

xA · yB = (x · y)C for all x, y ∈ L.

Such triples form a group AUT (L, ·) called the autotopism group of (L, ·). In case
the three bijections are the same i.e A = B = C, then any of them is called an
automorphism and the group AUM(L, ·) which such forms is called the automor-
phism group of (L, ·). For an overview of the theory of loops, readers may check
[36, 7, 9, 13, 22, 38, 25].

Osborn [35], while investigating the universality of WIPLs discovered that a
universal WIPL (G, ·) obeys the identity

yx · (zθy · y) = (y · xz) · y for all x, y, z ∈ G (1.1)

where θy = LyLyλ = R−1
yρ R−1

y = LyRyL
−1
y R−1

y .

A loop that necessarily and sufficiently satisfies this identity is called an Osborn
loop.

Eight years after Osborn’s [35] 1960 work on WIPL, in 1968, Huthnance Jr.
[24] studied the theory of generalized Moufang loops. He named a loop that obeys
(1.1) a generalized Moufang loop and later on in the same thesis, he called them
M-loops. On the other hand, he called a universal WIPL an Osborn loop and this
same definition was adopted by Chiboka [10]. Basarab [3, 4, 5] and Basarab and
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Belioglo [6] dubbed a loop (G, ·) satisfying any of the following equivalent identities
an Osborn loop:

OS2 : x(yz · x) = (xλ\y) · zx (1.2)

OS3 : (x · yz)x = xy · (zE−1
x · x) (1.3)

where Ex = RxRxρ = (LxLxλ)−1 = RxLxR−1
x L−1

x for all x, y, z ∈ G

and the binary operations ’\’ and ’/’ are respectively defines as ; z = x · y if and
only if x\z = y if and only if z/y = x for all x, y, z ∈ G.

It will look confusing if both Basarab’s and Huthnance’s definitions of an Osborn
loop are both adopted because an Osborn loop of Basarab is not necessarily a uni-
versal WIPL(Osborn loop of Huthnance). So in this work, Huthnance’s definition
of an Osborn loop will be dropped while we shall stick to that of Basarab which
was actually adopted by M. K. Kinyon [28] who revived the study of Osborn loops
in 2005 at a conference tagged ”Milehigh Conference on Loops, Quasigroups and
Non-associative Systems” held at the University of Denver, where he presented a
talk titled ”A Survey of Osborn Loops”.

Let t = xλ\y in OS2, then y = xλt so that we now have an equivalent identity

x[(xλy)z · x] = y · zx.

Huthnance [24] was able to deduce some properties of Ex relative to (1.1). Ex =
Exλ = Exρ . So, since Ex = RxRxρ , then Ex = Exλ = RxλRx and Ex = (LxρLx)−1.
So, we now have the following equivalent identity defining an Osborn loop.

OS0 : x(yz · x) = x(yxλ · x) · zx (1.4)

Definition 2. A loop (Q, ·) is called:

(a) a 3 power associative property loop(3-PAPL) if and only if xx · x = x · xx for
all x ∈ Q.

(b) a left self inverse property loop(LSIPL) if and only if xλ · xx = x for all x ∈ Q.

(c) a right self inverse property loop(RSIPL) if and only if xx ·xρ = x for all x ∈ Q.

The identities describing the most popularly known varieties of Osborn loops are
given below.

Definition 3. A loop (Q, ·) is called:

(a) a VD-loop if and only if

(·)x = (·)L−1
x Rx and x(·) = (·)R−1

x Lx

i.e R−1
x Lx ∈ PSλ(Q, ·) with companion c = x and L−1

x Rx ∈ PSρ(Q, ·) with
companion c = x for all x ∈ Q where PSλ(Q, ·) and PSρ(Q, ·) are respectively
the left and right pseudo-automorphism groups of Q. Basarab [5]
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(b) a Moufang loop if and only if the identity

(xy) · (zx) = (x · yz)x

holds in Q.

(c) a conjugacy closed loop(CC-loop) if and only if the identities

x · yz = (xy)/x · xz and zy · x = zx · x\(yx)

hold in Q.

(d) a universal WIPL if and only if the identity

x(yx)ρ = yρ or (xy)λx = yλ

holds in Q and all its isotopes.

All these three varieties of Osborn loops and universal WIPLs are universal
Osborn loops. CC-loops and VD-loops are G-loops. G-loops are loops that are
isomorphic to all their loop isotopes. Kunen [32] has studied them.

In the multiplication group Mult(Q) of a loop (G, ·) are found three important
permutations, namely, the right, left and middle inner mappings R(x,y) = RxRyR

−1
xy ,

L(x,y) = LxLyL
−1
yx and T(x) = RxL−1

x respectively which form the right inner map-
ping group Innλ(G), left inner mapping group Innρ(G) and the middle inner map-
ping Innµ(G). In a Moufang loop G, R(x,y), L(x,y), T(x) ∈ PSρ(G) with companions
(x, y), (x−1, y−1), x−3 ∈ G respectively.

Theorem 4. (Kinyon [28])
Let G be an Osborn loop. R(x,y) ∈ PSρ(G) with companion (xy)λ(yλ\x) and

L(x,y) ∈ PSλ(G) ∀ x, y ∈ G. Furthermore, R−1
(x,y) = [L−1

yρ , R−1
x ] = L(yλ,xλ) ∀ x, y ∈ G.

The second part of Theorem 4 is trivial for Moufang loops. For CC-loops, it was
first observed by Drápal and then later by Kinyon and Kunen [31].

Theorem 5. Let G be an Osborn loop. Innρ(G) = Innλ(G).

Still mysterious are the middle inner mappings T(x) of an Osborn loop. In a Mo-
ufang loop, T(x) ∈ PSρ with a companion x−3 while in a CC-loop, T(x) ∈ PSλ with
companion x. So, Kinyon [28] possessed a question asking of which group(whether
PSρ and PSλ) to which T(x) belongs to in case of an arbitrary Osborn loop and
what its companion will be.

Theorem 6. (Kinyon [28])
In an Osborn loop G with centrum C(G) and center Z(G):
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1. If T(a) ∈ AUM(G), then a · aa = aa · a ∈ N(G). Thus, for all a ∈ C(G),
a3 ∈ Z(G).

2. If (xx)ρ = xρxρ holds, then xρρρρρρ = x for all x ∈ G.

Some basic loop properties such as flexibility, left alternative property(LAP), left
inverse property(LIP), right alternative property(RAP), right inverse property(RIP),
anti-automorphic inverse property(AAIP) and the cross inverse property(CIP) have
been found to force an Osborn loop to be a Moufang loop. This makes the study
of Osborn loops more challenging and care must be taking not to assume any of
these properties at any point in time except the WIP, automorphic inverse property
and some other generalizations of the earlier mentioned loop properties(LAP, LIP,
e.t.c.).

Lemma 7. An Osborn loop that is flexible or which has the LAP or RAP or LIP or
RIP or AAIP is a Moufang loop. But an Osborn loop that is commutative or which
has the CIP is a commutative Moufang loop.

Theorem 8. (Basarab, [4])
If an Osborn loop is of exponent 2, then it is an abelian group.

Theorem 9. (Huthnance [24])
Let G be a WIPL. G is a universal WIPL if and only if G is an Osborn loop.

Lemma 10. (Lemma 2.10, Huthnance [24])
Let L be a WIP Osborn loop. If a = xρx, then for all x ∈ L:

xa = xλ2
, axλ = xρ, xρa = xλ, ax = xρ2

, xa−1 = ax, a−1xλ = xλa, a−1xρ = xρa.

or equivalently

Jλ : x 7→ x · xρx, Jρ : x 7→ xρx · xλ, Jλ : x 7→ xρ · xρx, J2
ρ : x 7→ xρx · x,

x(xρx)−1 = (xρx)x, (xρx)−1xλ = xλ · xρx, (xρx)−1xρ = xρ(xρx).

Consider (G, ·) and (H, ◦) been two distinct groupoids or quasigroups or loops.
Let A,B and C be three bijective mappings, that map G onto H. The triple α =
(A,B, C) is called an isotopism of (G, ·) onto (H, ◦) if and only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

So, (H, ◦) is called a groupoid(quasigroup, loop) isotope of (G, ·).
If C = I is the identity map on G so that H = G, then the triple α = (A,B, I)

is called a principal isotopism of (G, ·) onto (G, ◦) and (G, ◦) is called a principal
isotope of (G, ·). Eventually, the equation of relationship now becomes

x · y = xA ◦ yB ∀ x, y ∈ G
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which is easier to work with. But if A = Rg and B = Lf , for some f, g ∈ G, the
relationship now becomes

x · y = xRg ◦ yLf ∀ x, y ∈ G

or
x ◦ y = xR−1

g · yL−1
f ∀ x, y ∈ G.

With this new form, the triple α = (Rg, Lf , I) is called an f, g-principal isotopism
of (G, ·) onto (G, ◦), f and g are called translation elements of G or at times written
in the pair form (g, f), while (G, ◦) is called an f, g-principal isotope of (G, ·).

The last form of α above gave rise to an important result in the study of loop
isotopes of loops.

Theorem 11. (Bruck [7])
Let (G, ·) and (H, ◦) be two distinct isotopic loops. For some f, g ∈ G, there

exists an f, g-principal isotope (G, ∗) of (G, ·) such that (H, ◦) ∼= (G, ∗).

With this result, to investigate the isotopic invariance of an isomorphic invariant
property in loops, one simply needs only to check if the property in consideration
is true in all f, g-principal isotopes of the loop. A property is isotopic invariant if
whenever it holds in the domain loop i.e (G, ·) then it must hold in the co-domain
loop i.e (H, ◦) which is an isotope of the formal. In such a situation, the property in
consideration is said to be a universal property hence the loop is called a universal
loop relative to the property in consideration as often used by Nagy and Strambach
[34] in their algebraic and geometric study of the universality of some types of loops.
For instance, if every loop isotope of a loop with property P also has the property
P, then the formal is called a universal P loop. So, we can now restate Theorem 11
as :

Theorem 12. Let (G, ·) be a loop with an isomorphic invariant property P. (G, ·)
is a universal P loop if and only if every f, g-principal isotope (G, ∗) of (G, ·) has
the P property.

Definition 13. (Universal Osborn Loop) A loop is called a universal Osborn loop if
all its loop isotopes are Osborn loops.

The aim of this study is to identify some identities that are appropriate for
cryptography in universal Osborn loops. These identities hold in universal Osborn
loops like CC-loops, introduced by Goodaire and Robinson [20, 21], whose algebraic
structures have been studied by Kunen [33] and some recent works of Kinyon and
Kunen [29, 31], Phillips et. al. [30], Drápal [14, 15, 16, 18], Csörgő et. al. [12, 19, 11]
and VD-loops whose study is yet to be explored. In this study, by establishing an
identity for universal Osborn loops, two other identities(of degrees 4 and 6) are
deduced from it and they are recognized and recommended for cryptography in a
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similar spirit in which the cross inverse property(of degree 2) has been used by
Keedwell following the fact that it was observed that universal Osborn loops that
do not have the 3-power associative property or weaker forms of; inverse property,
power associativity and diassociativity to mention a few, will have cycles(even long
ones). These identities are found to be cryptographic in nature for universal Osborn
loops and thereby called cryptographic identities. They were also found applicable to
security patterns, arrangements and networks which the CIP may not be applicable
to.

We shall make use of the following results.

Results of Bryant and Schneider [8]

Theorem 14. Let (Q, ·, \, /) be a quasigroup. If Q(a, b, ◦)
θ∼= Q(c, d, ∗) for any

a, b, c, d ∈ Q, then Q(f, g,})
θ∼= Q

(
(f · b)θ/d, c\(a · g)θ, ?

)
for any a, b, c, d, f, g ∈ Q.

If (Q, ·) is a loop, then

(f · b)θ/d = [f · (a\cθ−1)]θ and c\(a · g)θ = [(dθ−1/b) · g]θ for any a, b, c, d, f, g ∈ Q.

2 Main Results

2.1 Identities In Universal Osborn Loops

Theorem 15. Let (Q, ·, \, /) be an Osborn loop, (Q, ◦) an arbitrary principal isotope
of (Q, ·) and (Q, ∗) some principal isotopes of (Q, ·). Let

φ(x, u, v) = (u\([(uv)/(u\(xv))]v))

and γ = γ(x, u, v) = RvR[u\(xv)]LuLx for all x, u, v ∈ Q, then (Q, ·, \, /) is a univer-
sal Osborn loop if and only if the commutative diagram

(Q, ∗)

(Q, ·) (Rv ,Lx,I)

principal isotopism
>

(Rφ(x,u,v),Lu,I) >

(Q, ◦)

(γ,γ,γ) isomorphism
∨

(2.1)

holds.

Proof. Let Q = (Q, ·, \, /) be an Osborn loop with any arbitrary principal isotope
Q = (Q,N,↖,↗) such that

xNy = xR−1
v · yL−1

u = (x/v) · (u\y) ∀ u, v ∈ Q.

If Q is a universal Osborn loop then, Q is an Osborn loop. Q obeys identity OS0

implies
xN[(yNz)Nx] = {xN[(yNxλ′)Nx]}N(zNx) (2.2)
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where xλ′ = xJλ′ is the left inverse of x in Q. The identity element of the loop Q is
uv. So,

xNy = xR−1
v · yL−1

u implies yλ′Ny = yλ′R−1
v · yL−1

u = uv implies

yλ′R−1
v RyL−1

u
= uv implies yJλ′ = (uv)R−1

yL−1
u

Rv = (uv)R−1
(u\y)Rv = [(uv)/(u\y)]v.

Thus, using the fact that
xNy = (x/v) · (u\y),

Q is an Osborn loop if and only if

(x/v)·u\{[(y/v)·(u\z)]/v·(u\x)} = ((x/v)·u\{[(y/v)(u\([(uv)/(u\x)]v))]/v·(u\x)})/v·u\[(z/v)(u\x)].

Do the following replacements:

x′ = x/v ⇒ x = x′v, z′ = u\z ⇒ z = uz′, y′ = y/v ⇒ y = y′v

we have

x′·u\{(y′z′)/v·[u\(x′v)]} = (x′·u\{[y′(u\([(uv)/(u\(x′v))]v))]/v·[u\(x′v)]})/v·u\[((uz′)/v)(u\(x′v))].

This is precisely identity OS′0 below by replacing x′, y′ and z′ by x, y and z
respectively.

x · u\{(yz)/v · [u\(xv)]} = (x · u\{[y(u\([(uv)/(u\(xv))]v))]/v · [u\(xv)]})/v · u\[((uz)/v)(u\(xv))].
| {z }

OS′
0

Writing identity OS′0 in autotopic form, we will obtain the fact that the triple(
α(x, u, v), β(x, u, v), γ(x, u, v)

)
∈ AUT (Q) for all x, u, v ∈ Q where α(x, u, v) =

R
(u\([(uv)/(u\(xv))]v))

RvR[u\(xv)]LuLxRv, β(x, u, v) = LuRvR[u\(xv)]Lu and γ(x, u, v) =
RvR[u\(xv)]LuLx are elements of Mult(Q). The triple(

α(x, u, v), β(x, u, v), γ(x, u, v)
)

=
(
R

(u\([(uv)/(u\(xv))]v))
γRv, LuγLx, γ

)
can be written as the following compositions(

R
(u\([(uv)/(u\(xv))]v))

, Lu, I
)
(γ, γ, γ)(Rv, Lx, I).

Let (Q, ◦) be an arbitrary principal isotope of (Q, ·) and (Q, ∗) a particular principal
isotope of (Q, ·) under the isotopism (Rφ(x,u,v), Lu, I) where

φ(x, u, v) = (u\([(uv)/(u\(xv))]v)).

Then, the composition above can be expressed as:

(Q, ·)
(Rφ(x,u,v),Lu,I)
−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−→
isomorphism

(Q, ◦) (Rv ,Lx,I)−−−−−−−−−−−→
principal isotopism

(Q, ·).
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The proof of the converse is as follows. Let Q = (Q, ·, \, /) be an Osborn loop.
Assuming that the composition in equation (2.1) holds, then doing the reverse of
the proof of necessity,

(
α(x, u, v), β(x, u, v), γ(x, u, v)

)
∈ AUT (Q) for all x, u, v ∈ Q

which means that Q obeys identity OS′0 hence, it will be observed that equation
(2.2) is true for any arbitrary u, v-principal isotope Q = (Q,N,↖,↗) of Q. So,
every f, g-principal isotope Q of Q is an Osborn loop. Following Theorem 12, Q is
a universal Osborn loop if and only if Q is an Osborn loop.

Theorem 16. A universal Osborn loop (Q, ·, \, /) obeys the identity

(u[x\(zv)])/[u\(xv)] · v = ({u · x\{z · u\((u/v)[u\(xv)])}}/[u\(xv)] · v) · u\([(uv)/(u\(xv))]v).
| {z }

OSI10

for all x, z, u, v ∈ Q.

Furthermore, z = x · {[x\(zx)]/x · xλ}x︸ ︷︷ ︸
OSI1.1

0

and (xλ · xy)xλ · x = y︸ ︷︷ ︸
double left inverse property(DLIP)

are also satisfied for all x, y, z ∈ Q.

Proof. By equation (2.1) of Theorem 15, it can be deduced that if (Q, ◦) and (Q, ∗)
are principal isotopes of (Q, ·) and γ(x, u, v) = RvR[u\(xv)]LuLx, then

(Q, x, v, ◦)
γ−1

∼= (Q, u, φ(x, u, v), ∗) where φ(x, u, v) = (u\([(uv)/(u\(xv))]v))
for all x, u, v ∈ Q.

Let Q(z, y,}) be an arbitrary principal isotope of (Q, ·). We now switch to Theo-
rem 14. Let a = x, b = v, c = u, d = φ(x, u, v) = (u\([(uv)/(u\(xv))]v)), f = z and
g = y. θ = γ(x, u, v)−1 = LxLuR[u\(xv)]Rv while θ−1 = γ(x, u, v) = RvR[u\(xv)]LuLx.

(f · b)θ/d = {(u[x\(zv)])/[u\(xv)] · v}/{u\([(uv)/(u\(xv))]v)} and

[f · (a\cθ−1)]θ = {u · x\{z · u\((u/v)[u\(xv)])}}/[u\(xv)] · v.

Thus, (f · b)θ/d = [f · (a\cθ−1)]θ if and only if identity OSI10 is obeyed by (Q, ·, \, /).
The next formulae after OSI10 derived by putting u = v = e into OSI10. Con-

sequently, T(x) = LxRxRxλRx. In an Osborn loop, T(x) = LxλRx, so we have the
DLIP.

2.2 Application Of Two Universal Osborn Loops Identities To Cryp-
tography

Among the few identities that have been established for universal Osborn loops in
Theorem 16, we would recommend two of them; OSI1.1

0 and DLIP for cryptography
in a similar spirit in which the cross inverse property has been used by Keedwell
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[27]. It will be recalled that CIPLs have been found appropriate for cryptography
because of the fact that the left and right inverses xλ and xρ of an element x do not
coincide unlike in left and right inverse property loops, hence this gave rise to what
is called ’cycle of inverses’ or ’inverse cycles’ or simply ’cycles’ i.e finite sequence of
elements x1, x2, · · · , xn such that xρ

k = xk+1 mod n. The number n is called the
length of the cycle. The origin of the idea of cycles can be traced back to Artzy [1, 2]
where he also found there existence in WIPLs apart form CIPLs. In his two papers,
he proved some results on possibilities for the values of n and for the number m of
cycles of length n for WIPLs and especially CIPLs. We call these ”Cycle Theorems”
for now.

In Corollary 3.4 of Jaiyéo. lá and Adéńıran [26], it was established that in a
universal Osborn loop, Jλ = Jρ, 3-PAP, LSIP and RSIP are equivalent conditions.
Furthermore, in a CC-loop, the power associativity property, 3-PAPL, xρ = xλ,
LSIP and RSIPL were shown to be equivalent in Corollary 3.5. Thus, universal
Osborn loops without the LSIP or RSIP will have cycles(even long ones). This
exempts groups, extra loops, and Moufang loops but includes CC-loops, VD-loops
and universal WIPLs. Precisely speaking, non-power associative CC-loops will have
cycles. So broadly speaking, universal Osborn loops that do not have the LSIP
or RSIP or 3-PAPL or weaker forms of inverse property, power associativity and
diassociativity to mention a few, will have cycles(even long ones). The next step
now is to be able to identify suitably chosen identities in universal Osborn loops,
that will do the job the identity xy ·xρ = y or its equivalents does in the application
of CIPQ to cryptography. These identities will be called Osborn cryptographic
identities(or just cryptographic identities).

Definition 17. (Cryptographic Identity and Cryptographic Functional)
Let Q = (Q, ·, \, /) be a quasigroup. An identity w1(x, x1, x2, x3, · · · , xn) =

w2(x, x1, x2, x3, · · · , xn) where x ∈ Q is fixed,

x1, x2, x3, · · · , xn ∈ Q, x 6∈ {x1, x2, x3, · · · , xn}

is said to be a cryptographic identity(CI) of the quasigroup Q if it can be written
in a functional form xF (x1, x2, x3, · · · , xn) = x such that F (x1, x2, x3, · · · , xn) ∈
Mult(Q). F (x1, x2, x3, · · · , xn) = Fx is called the corresponding cryptographic func-
tional(CF) of the CI at x.

Lemma 18. Let Q = (Q, ·, \, /) be a loop with identity element e and let CFx(Q) be
the set of all CFs in Q at x ∈ Q. Then, CFx(Q) ≤Mult(Q) and CFe(Q) ≤ Inn(Q).

Proof. The proof is easy and can be achieved by simply verifying the group axioms
in CFx(Q) and CFe(Q).

1. Closure Obviously by definition, CFx(Q) ⊂Mult(Q). Let F1, F2 ∈ CFx(Q).
So, xF1F2 = xF2 = x which implies that F1F2 ∈ CFx(Q).
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Associativity Trivial.

Identity xI = x. So, I ∈ CFx(Q).

Inverse F ∈ CFx(Q) ⇒ xF = x ⇒ xF−1 = x ⇒ F−1 ∈ CFx(Q).

∴ CFx(Q) ≤Mult(Q).

2. Obviously by definition, CFe(Q) ⊂ Inn(Q). The procedure of the proof that
CFe(Q) ≤ Inn(Q) is similar to that for CFx(Q) ≤Mult(Q)

Definition 19. (Degree of Cryptographic Identity and Cryptographic Functional)
Let Q = (Q, ·, \, /) be a quasigroup and I an identity in Q. If I is a CI with

CF F , then the functions F1, F2, F3, · · ·Fn ∈ Mult(Q) are called the n-components
of F , written F = (F1, F2, F3, · · · , Fn) if F = F1 ◦ F2 ◦ F3 ◦ · · · ◦ Fn. The maximum
n ∈ Z+ such that F = F1 ◦ F2 ◦ F3 ◦ · · · ◦ Fn is called the degree of F or I.

Example 20. Consider a CIPQ L. The identity I : xy · xρ = y is a CI at any
point y ∈ L with CF F (x) = Fy = LxRxρ. It can be seen that F (x) = F1(x)F2(x)
where F1(x) = Lx and F2(x) = Rxρ, thus, F (x) = (Lx, Rxρ). I is of degree 2. Note
that an F of rank 1 is the identity mapping I.

Lemma 21. Let Q = (Q, ·, \, /) be a quasigroup and I an identity in Q. If I is a
CI with CF F at any point x ∈ Q such that F = (F1, F2), then F1 ∈ CFx(Q) if and
only if F2 ∈ CFx(Q).

Proof. F = (F1, F2) implies that xF = xF1F2 = x. Thus, F1 ∈ CFx(Q) ⇔ xF2 =
x ⇔ F2 ∈ CFx(Q).

Lemma 22. Let Q = (Q, ·, \, /) be a quasigroup and I an identity in Q. If I
is a CI with CF F at any point x ∈ Q such that F = (F1, F2, F3, · · · , Fn), then
F1, F2, F3, · · · , Fn−1 ∈ CFx(Q) implies Fn ∈ CFx(Q).

Proof. F = (F1, F2, F3, · · · , Fn) implies that xF = xF1F2F3 · · ·Fn = x. Thus,
F1, F2, F3, · · · , Fn−1 ∈ CFx(Q) ⇒ xFn = x ⇒ Fn ∈ CFx(Q).

Lemma 23. Let Q = (Q, ·, \, /) be a quasigroup.

1. T(x) ∈ CFz(Q) if and only if z ∈ C(x) for all x, z ∈ Q,

2. R(x,y) ∈ CFz(Q) if and only if z ∈ Nλ(x, y) for all x, y, z ∈ Q,

3. L(x,y) ∈ CFz(Q) if and only if z ∈ Nρ(x, y) for all x, y, z ∈ Q,

where Nλ(x, y) = {z ∈ Q | zx · y = z · xy}, Nρ(x, y) = {z ∈ Q | y · xz = yx · z}
and C(z) = {y ∈ Q | zy = yz}.
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Proof. 1. T(x) ∈ CFy(Q) ⇔ yT(x) = y ⇔ yRx = yLx ⇔ yx = xy ⇔ y ∈ C(x).

2. R(x,y) ∈ CFz(Q) ⇔ zR(x,y) = z ⇔ zRxRy = zRxy ⇔ zx · y = z · xy ⇔ z ∈
Nλ(x, y).

3. L(x,y) ∈ CFz(Q) ⇔ zL(x,y) = z ⇔ zLxLy = zLyx ⇔ y · xz = yx · z ⇔ z ∈
Nρ(x, y).

Lemma 24. Let Q = (Q, ·, \, /) be a left universal Osborn loop. Then, the identities
OSI1.1

0 and DLIP are CIs with degrees 6 and 4 respectively.

Proof. From Theorem 16:

OSI1.1
0 is z = x·{[x\(zx)]/x·xλ}x, which can be put in the form z = zRxLxRxRxλRxLx.
Thus, OSI1.1

0 is a CI with CF F (x) = RxLxRxRxλRxLx of degree 6.

DLIP is xλ ·xy)xλ ·x = y, which can be put in the form yLxLxλRxλRx = y. Thus,
OSI1.1

0 is a CI with CF F (x) = LxLxλRxλRx of degree 4.

2.3 Discussions

Since the identities OSI1.1
0 and DLIP have degrees 6 and 4 respectively, then they are

”stronger” than the CIPI which has a degree of 2 and hence will posse more challenge
for an attacker(than the CIPI) to break into a system. As described by Keedwell, for
a CIP, it is assumed that the message to be transmitted can be represented as single
element x of a CIP quasigroup and that this is enciphered by multiplying by another
element y of the CIPQ so that the encoded message is yx. At the receiving end,
the message is deciphered by multiplying by the inverse of y. But for the identities
OSI1.1

0 and DLIP, procedures of enciphering and deciphering are more than one in
a universal Osborn loop. For instance, if the CFs of identities OSI1.1

0 and DLIP are
F and G, respectively such that F = F1F2 and G = G1G2 where

F1 = RxLxRx, F2 = RxλRxLx, G1 = LxLxλ and G2 = RxλRx.

If it is assumed that the message to be transmitted can be represented as single
element y of a universal Osborn loop and that this is enciphered by transforming
with F1 or G1 so that the encoded message is xF1 or xG1. At the receiving end,
the message is deciphered by transforming by F2 or G2. Note that the components
of F and G are not necessarily unique. This gives room for any choice of set of
components. F1 or G1 will be called the sender’s functional component(SFC) while
F2 or G2 will be called the receiver’s functional component(RFC).
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2.4 Many Receivers

So far, we have considered how to secure information in a situation whereby there
is just one sender and one receiver(this is the only case which the CIP is useful
for). There are some other advanced and technical information dissemination pat-
terns(which the CIP may not be applicable to) in institutions and organization
such as financial institutions in which the information or data to be sent must pass
through some other parties(who are not really cautious of the sensitive nature of the
incoming information) before it gets to the main receiver. For instance, let us con-
sider a network structure of an organization which has n terminals. Say terminals Ai,
1 ≤ i ≤ n. Imagine that terminal A1 wants to get a secured information across to ter-
minal An such that the information must pass through terminals A2, A3, · · · , An−1.
Then, we need a CI I with CF F of degree n so that F = (F1, F2, F3, · · · , Fn). Thus,
by making Fi to be Ai’s functional component, then if the information x is not to
be known by A2, A3, · · · , An−1, we would make use of a F which does not obey the
hypothesis of Lemma 22. That is, F1, F2, F3, · · · , Fn−1 6∈ CFx. But if it is the other
way round, an F which obeys the hypothesis of Lemma 22 must be sort for. The
advantage of a CF F of higher degrees n ≥ 3 over the CIPI relative to the number
of attackers is illustrated below.

A1
F1 Secured−−−−−−−→
↑Attacker 1↑

A2
F2 Secured−−−−−−−→
↑Attacker 2↑

A3 · · · −→ · · ·An−1
Fn Secured−−−−−−−−−→

↑Attacker n−1↑
An.

Let us now illustrate with an example, the use of universal Osborn loops for cryp-
tography. But before then, it must be mentioned that experts have found it very
difficult to construct a non-universal Osborn loop. According to Michael Kinyon
during our personal contact with him, there are two difficulties with using software
for looking for non-universal Osborn loops. One is that non-Moufang, non-CC Os-
born loops are very sparse: they do not start to show up until order 16(and the two
of order 16 happen to be G-loops.) The other difficulty is that once you start to
pass about order 16, the software slows down considerably. One of the two Osborn
loops that are G-loops constructed by Kinyon is shown in Table 2.

Example 25. We shall now use the universal Osborn loop(it is a G-loop) of order
16 in Table 2 to illustrate encoding and decoding.

Message: OSBORN.

CI: DLIP.

CF: G(x) = LxLxλRxλRx

Degree of CF: 4.

Encipherer: x = 16, xλ = 16λ = 10.
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LETTER ENCIPHERING DECIPHERING DECODED LETTER
y′ = yG1 y′G1G2 = y

B 10(16 · 7) = 7 (7 · 10)16 = 7 7
N 10(16 · 9) = 12 (12 · 10)16 = 9 9
O 10(16 · 11) = 9 (9 · 10)16 = 11 11
R 10(16 · 12) = 10 (10 · 10)16 = 12 12
S 10(16 · 13) = 16 (16 · 10)16 = 13 13

Table 1: A Table of cryptographic Process using identity DLIP in a universal Osborn
loop

SFC: G1 = LxLxλ.

RFC: G2 = RxλRx.

Representation(y): B ↔ 7, N ↔ 9, O ↔ 11, R ↔ 12, S ↔ 13.

The information to be transmitted is ”OSBORN”. The encoded message is

(9, 16, 7, 9, 10, 12)

while the message decoded is (11, 13, 7, 11, 12, 9). The computation for this is as
shown in Table 1.
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