ENCLOSING ROOTS OF POLYNOMIAL EQUATIONS AND THEIR APPLICATIONS TO ITERATIVE PROCESSES

Ioannis K. Argyros and Saïd Hilout

Abstract

We introduce a special class of real recurrent polynomials $f_{n}(n \geq 1)$ of degree n, with unique positive roots s_{n}, which are decreasing as n increases. The first root s_{1}, as well as the last one denoted by s_{∞} are expressed in closed form, and enclose all $s_{n}(n>1)$.

This technique is also used to find weaker than before [5] sufficient convergence conditions for some popular iterative processes converging to solutions of equations.

1 Introduction

We introduce a special class of recurrent polynomials $f_{n}(n \geq 1)$ of degree n with real coefficients.

Then, we find sufficient conditions under which each polynomial f_{n} has a unique positive root s_{n}, such that $s_{n+1} \leq s_{n}(n \geq 1)$. The first root s_{1}, as well as the last one denoted by s_{∞} are expressed in simple closed form.

Two applications are provided. In the first one, we show how to use s_{1} and s_{∞} to locate any s_{n} belonging in $\left(s_{\infty}, s_{1}\right](n \geq 1)$.

In the second one, using this technique on Newton's method (3.1), we show that the famous for its simplicity and clarity Newton-Kantorovich condition (3.2) for solving equations can always replaced by a weaker one (2.16).

Moreover, the ratio of the quadratic convergence of Newton's method $2 q_{0}$ (see, (2.16), (2.24), and (3.2)) under our approach is smaller than $2 q_{K}$ given in [5].

2 Locating roots of polynomials

We need the main result on locating roots of polynomials.
Theorem 1. Let $a>0, b>0$, and $c<0$ be given constants. Define polynomials $f_{n}(n \geq 1), g$ on $[0,+\infty)$ by:

$$
\begin{equation*}
f_{n}(s)=b s^{n}+a s^{n-1}+b\left(s^{n-1}+s^{n-2}+\cdots+1\right)+c, \tag{2.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
g(s)=b s^{2}+a s-a . \tag{2.2}
\end{equation*}
$$

\]

Set

$$
\begin{equation*}
d=\frac{2 a}{a+\sqrt{a^{2}+4 a b}} . \tag{2.3}
\end{equation*}
$$

Assume:

$$
\begin{equation*}
d \leq 1+\frac{b}{c} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a+b+c<0 . \tag{2.5}
\end{equation*}
$$

Then, each polynomial $f_{n}(n \geq 1)$ has a unique positive root s_{n}.
Moreover, the following estimates hold for all $n \geq 1$:

$$
\begin{equation*}
1+\frac{b}{c} \leq s^{\star} \leq s_{n+1} \leq s_{n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(d) \leq 0, \tag{2.7}
\end{equation*}
$$

where,

$$
s^{\star}=\lim _{n \longrightarrow} s_{n} .
$$

Proof. Each polynomial f_{n} has a unique positive root $s_{n}(n \geq 1)$, by the Descarte's rule of signs.

Polynomial f_{n} can be written for $s \in[0,1)$:

$$
\begin{equation*}
f_{n}(s)=b s^{n}+a s^{n-1}+b \frac{1-s^{n}}{1-s}+c . \tag{2.8}
\end{equation*}
$$

By letting $n \longrightarrow \infty$, we get:

$$
\begin{equation*}
f_{\infty}(s)=\lim _{n \longrightarrow \infty} f_{n}(s)=\frac{b}{1-s}+c . \tag{2.9}
\end{equation*}
$$

Function f_{∞} has a unique positive root denoted by s_{∞}, and given by:

$$
\begin{equation*}
s_{\infty}=1+\frac{b}{c}<1 . \tag{2.10}
\end{equation*}
$$

Function f_{∞} is also increasing, since

$$
\begin{equation*}
f_{\infty}^{\prime}(s)=\frac{b}{(1-s)^{2}}>0 . \tag{2.11}
\end{equation*}
$$

Furthermore, we shall show estimates (2.6), and (2.7) hold.

We need the relationship between two consecutive polynomials f_{n} 's $(n \geq 1)$:

$$
\begin{align*}
f_{n+1}(s)= & b s^{n+1}+a s^{n}+b\left(s^{n}+\cdots+1\right)+c \\
= & b s^{n}+a s^{n-1}+b\left(s^{n-1}+\cdots+1\right)+c+ \\
& a s^{n}-a s^{n-1}+b s^{n+1} \tag{2.12}\\
= & f_{n}(s)+s^{n-1}\left(b s^{2}+a s-a\right) \\
= & f_{n}(s)+g(s) s^{n-1}
\end{align*}
$$

Note that d is the unique positive root of function g.
Then, using (2.12), we obtain for all $n \geq 1$:

$$
f_{n}(d)=f_{n-1}(d)=\cdots=f_{1}(d) .
$$

Let i be any fixed but arbitrary natural number. Then, we get:

$$
\begin{equation*}
f_{i}(d)=\lim _{n \longrightarrow \infty} f_{n}(d)=f_{\infty}(d) \leq f_{\infty}\left(s_{\infty}\right)=0 \tag{2.13}
\end{equation*}
$$

since, function f_{∞} is increasing, and $d \leq s_{\infty}$ by hypothesis (2.4). It follows from the definition of the zeros s_{n} and (2.13) that

$$
\begin{equation*}
d \leq s_{n} \quad \text { for all } n \geq 1 \tag{2.14}
\end{equation*}
$$

Polynomials f_{n} are increasing which together with (2.14) imply

$$
f_{n}(d) \leq f_{n}\left(s_{n}\right)=0 .
$$

In particular

$$
f_{\infty}(d)=\lim _{n \longrightarrow \infty} f_{n}(d) \leq 0
$$

Hence, estimate (2.7) holds.
We then get from (2.12), and (2.14):

$$
f_{n+1}\left(s_{n+1}\right)=f_{n}\left(s_{n+1}\right)+g\left(s_{n+1}\right) s_{n+1}^{n-1} \eta
$$

or

$$
\begin{equation*}
f_{n}\left(s_{n+1}\right) \leq 0, \tag{2.15}
\end{equation*}
$$

since $f_{n+1}\left(s_{n+1}\right)=0$, and $g\left(s_{n+1}\right) s_{n+1}^{n-1} \eta \geq 0$, which imply

$$
s_{n+1} \leq s_{n} \quad(n \geq 1)
$$

Sequence $\left\{s_{n}\right\}$ is non-increasing, bounded below by zero, and as such it converges to s^{\star}.

We shall show $s_{\infty} \leq s^{\star}$. Using (2.12), we have:

$$
\begin{aligned}
f_{i+1}\left(s_{i}\right) & =f_{i}\left(s_{i}\right)+g\left(s_{i}\right) s_{i}^{i-1} \eta \\
& =g\left(s_{i}\right) s_{i}^{i-1} \eta \geq 0
\end{aligned}
$$

so,

$$
f_{i+2}\left(s_{i}\right)=f_{i+1}\left(s_{i}\right)+g\left(s_{i}\right) s_{i}^{i} \eta \geq 0
$$

If, $f_{i+m}\left(s_{i}\right) \geq 0, m \geq 0$, then

$$
f_{i+m+1}\left(s_{i}\right)=f_{i+m}\left(s_{i}\right)+g\left(s_{i}\right) s_{i}^{i+m-1} \eta \geq 0
$$

Hence, by the definition of function f_{∞}, we get:

$$
f_{\infty}\left(s_{n}\right) \geq 0 \quad \text { for all } n \geq 1
$$

But we also have $f_{\infty}(0)=b+c<0$. That is $s_{\infty} \leq s_{n}$ for all $n \geq 1$, and consequently $s_{\infty} \leq s^{\star}$.

That completes the proof of Theorem 1.
Set $a=L \eta, b=2 L_{0} \eta$, and $c=-2$, in Theorem 1 .
It is simple algebra to show that conditions (2.4), and (2.5) reduce to (2.16) in the majorizing lemma that follows:

Lemma 2. Assume there exist constants $L_{0} \geq 0, L \geq 0$, and $\eta \geq 0$, with $L_{0} \leq L$, such that:

$$
q_{0}=\bar{L} \eta\left\{\begin{array}{l}
\leq \frac{1}{2} \quad \text { if } \quad L_{0} \neq 0 \tag{2.16}\\
<\frac{1}{2} \quad \text { if } \quad L_{0}=0
\end{array}\right.
$$

where,

$$
\begin{equation*}
\bar{L}=\frac{1}{8}\left(L+4 L_{0}+\sqrt{L^{2}+8 L_{0} L}\right) \tag{2.17}
\end{equation*}
$$

Then, sequence $\left\{t_{k}\right\}(k \geq 0)$ given by

$$
\begin{equation*}
t_{0}=0, \quad t_{1}=\eta, \quad t_{k+1}=t_{k}+\frac{L\left(t_{k}-t_{k-1}\right)^{2}}{2\left(1-L_{0} t_{k}\right)} \quad(k \geq 1) \tag{2.18}
\end{equation*}
$$

is nondecreasing, bounded above by $t^{\star \star}$, and converges to its unique least upper bound $t^{\star} \in\left[0, t^{\star \star}\right]$, where

$$
\begin{gather*}
t^{\star \star}=\frac{2 \eta}{2-\delta} \tag{2.19}\\
\delta=\frac{4 L}{L+\sqrt{L^{2}+8 L_{0} L}}<2 \quad \text { for } L_{0} \neq 0 \tag{2.20}
\end{gather*}
$$

Moreover the following estimates hold:

$$
\begin{gather*}
L_{0} t^{\star} \leq 1, \tag{2.21}\\
0 \leq t_{k+1}-t_{k} \leq \frac{\delta}{2}\left(t_{k}-t_{k-1}\right) \leq \cdots \leq\left(\frac{\delta}{2}\right)^{k} \eta, \quad(k \geq 1), \tag{2.22}\\
t_{k+1}-t_{k} \leq\left(\frac{\delta}{2}\right)^{k}\left(2 q_{0}\right)^{2^{k}-1} \eta, \quad(k \geq 0), \tag{2.23}\\
0 \leq t^{\star}-t_{k} \leq\left(\frac{\delta}{2}\right)^{k} \frac{\left(2 q_{0} 2^{2^{k}-1} \eta\right.}{1-\left(2 q_{0}\right)^{2^{k}}}, \quad\left(2 q_{0}<1\right), \quad(k \geq 0) . \tag{2.24}
\end{gather*}
$$

Proof. We shall show using induction on k that for all $k \geq 0$:

$$
\begin{gather*}
L\left(t_{k+1}-t_{k}\right)+\delta L_{0} t_{k+1}<\delta, \tag{2.25}\\
0<t_{k+1}-t_{k} \tag{2.26}\\
L_{0} t_{k+1}<1, \tag{2.27}
\end{gather*}
$$

and

$$
\begin{equation*}
0<t_{k+1}<t^{\star \star} . \tag{2.28}
\end{equation*}
$$

Estimates (2.25)-(2.28) hold true for $k=0$ by the initial condition $t_{1}=\eta$, and hypothesis (2.16). It then follows from (2.18) that

$$
0<t_{2}-t_{1} \leq \frac{\delta}{2}\left(t_{1}-t_{0}\right) \quad \text { and } \quad t_{2} \leq \eta+\frac{\delta}{2} \eta=\frac{2+\delta}{2} \eta<t^{\star \star} .
$$

Let us assume estimates (2.25)-(2.28) hold true for all integer values n : $n \leq k$ ($n \geq 0$).

We also get

$$
\begin{align*}
t_{k+1} & \leq t_{k}+\frac{\delta}{2}\left(t_{k}-t_{k-1}\right) \\
& \leq t_{k-1}+\frac{\delta}{2}\left(t_{k-1}-t_{k-2}\right)+\frac{\delta}{2}\left(t_{k}-t_{k-1}\right) \\
& \leq \eta+\left(\frac{\delta}{2}\right) \eta+\cdots+\left(\frac{\delta}{2}\right)^{k^{2}} \eta \\
& =\frac{1-\left(\frac{\delta}{2}\right)^{k+1}}{1-\frac{\delta}{2}} \eta \tag{2.29}\\
& <\frac{2 \eta}{2-\delta}=t^{\star \star} .
\end{align*}
$$

We have:

$$
\begin{equation*}
L\left(t_{k+1}-t_{k}\right)+\delta L_{0} t_{k+1} \leq L\left(\frac{\delta}{2}\right)^{k} \eta+L_{0} \delta \frac{1-\left(\frac{\delta}{2}\right)^{k+1}}{1-\frac{\delta}{2}} \eta \tag{2.30}
\end{equation*}
$$

In view of estimate $(2.30),(2.25)$ holds, if

$$
\begin{equation*}
\left\{L\left(\frac{\delta}{2}\right)^{n}+\delta L_{0} \frac{1-\left(\frac{\delta}{2}\right)^{n+1}}{1-\frac{\delta}{2}}\right\} \eta \leq \delta \tag{2.31}
\end{equation*}
$$

Estimate (2.31) motivates us to define for $s=\frac{\delta}{2}$, the sequence $\left\{f_{n}\right\}$ of polynomials on $[0,+\infty)$ by

$$
\begin{equation*}
f_{n}(s)=\left(L s^{n-1}+2 L_{0}\left(1+s+s^{2}+\cdots+s^{n}\right)\right) \eta-2 . \tag{2.32}
\end{equation*}
$$

In view of Theorem 1, the induction for (2.25)-(2.28) is completed.
Hence, sequence $\left\{t_{n}\right\}$ is non-decreasing, bounded above by $t^{\star \star}$, and as such that it converges to its unique least upper bound t^{\star}. The induction is completed for (2.21), and (2.22).

If $L_{0}=0$, then (2.21) holds trivially. In this case, for $L>0$, an induction argument shows that

$$
t_{k+1}-t_{k}=\frac{2}{L}\left(2 q_{0}\right)^{2^{k}} \quad(k \geq 0)
$$

and therefore

$$
t_{k+1}=t_{1}+\left(t_{2}-t_{1}\right)+\cdots+\left(t_{k+1}-t_{k}\right)=\frac{2}{L} \sum_{m=0}^{k}\left(2 q_{0}\right)^{2^{m}}
$$

and

$$
t^{\star}=\lim _{k \rightarrow \infty} t_{k}=\frac{2}{L} \sum_{k=0}^{\infty}\left(2 q_{0}\right)^{2^{k}}
$$

Clearly, this series converges, since $k \leq 2^{k}, 2 q_{0}<1$, and is bounded above by the number

$$
\frac{2}{L} \sum_{k=0}^{\infty}\left(2 q_{0}\right)^{k}=\frac{4}{L(2-L \eta)}
$$

If $L=0$, then, since, $0 \leq L_{0} \leq L$, we deduce: $L_{0}=0$, and $t^{\star}=t_{k}=\eta(k \geq 1)$.
In the rest of the proof, we assume that $L_{0}>0$.

In order for us to later complete the induction for (2.23), we first need to show the estimate:

$$
\begin{equation*}
\frac{1-\left(\frac{\delta}{2}\right)^{k+1}}{1-\frac{\delta}{2}} \eta \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \bar{L}}\right) \quad(k \geq 1) \tag{2.33}
\end{equation*}
$$

For $k=1$, (2.33) becomes

$$
\left(1+\frac{\delta}{2}\right) \eta \leq \frac{4 \bar{L}-L}{4 \bar{L} L_{0}}
$$

or

$$
\left(1+\frac{2 L}{L+\sqrt{L^{2}+8 L_{0} L}}\right) \eta \leq \frac{4 L_{0}-L+\sqrt{L^{2}+8 L_{0} L}}{L_{0}\left(4 L_{0}+L+\sqrt{L^{2}+8 L_{0} L}\right)}
$$

In view of (2.16), it suffices to show:

$$
\frac{L_{0}\left(4 L_{0}+L+\sqrt{L^{2}+8 L_{0} L}\right)\left(3 L+\sqrt{L^{2}+8 L_{0} L}\right)}{\left(L+\sqrt{L^{2}+8 L_{0} L}\right)\left(4 L_{0}-L+\sqrt{L^{2}+8 L_{0} L}\right)} \leq 2 \bar{L}
$$

which is true as equality.
Let us now assume estimate (2.33) is true for all integers smaller or equal to k. We must show (2.33) holds for k replaced by $k+1$:

$$
\frac{1-\left(\frac{\delta}{2}\right)^{k+2}}{1-\frac{\delta}{2}} \eta \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k} \frac{L}{4 \bar{L}}\right) \quad(k \geq 1)
$$

or

$$
\begin{equation*}
\left(1+\frac{\delta}{2}+\left(\frac{\delta}{2}\right)^{2}+\cdots+\left(\frac{\delta}{2}\right)^{k+1}\right) \eta \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k} \frac{L}{4 \bar{L}}\right) \tag{2.34}
\end{equation*}
$$

By the induction hypothesis to show (2.34), it suffices

$$
\frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \bar{L}}\right)+\left(\frac{\delta}{2}\right)^{k+1} \eta \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k} \frac{L}{4 \bar{L}}\right)
$$

or

$$
\left(\frac{\delta}{2}\right)^{k+1} \eta \leq \frac{1}{L_{0}}\left(\left(\frac{\delta}{2}\right)^{k-1}-\left(\frac{\delta}{2}\right)^{k}\right) \frac{L}{4 \bar{L}}
$$

or

$$
\delta^{2} \eta \leq \frac{L(2-\delta)}{2 \bar{L} L_{0}} .
$$

In view of (2.16) it suffices to show

$$
\frac{2 \bar{L} L_{0} \delta^{2}}{L(2-\delta)} \leq 2 \bar{L},
$$

which holds as equality by the choice of δ given by (2.20).
That completes the induction for estimates (2.33).
We shall show (2.23) using induction on $k \geq 0$: estimate (2.23) is true for $k=0$ by (2.16), (2.18), and (2.20). The inductive argument later in the proof requires the second base case of $k=1$. In order for us to show estimate (2.23) for $k=1$, since $t_{2}-t_{1}=\frac{L\left(t_{1}-t_{0}\right)^{2}}{2\left(1-L_{0} t_{1}\right)}$, it suffices:

$$
\frac{L \eta^{2}}{2\left(1-L_{0} \eta\right)} \leq \delta \bar{L} \eta^{2}
$$

or

$$
\frac{L}{1-L_{0} \eta} \leq \frac{8 \bar{L} L}{L+\sqrt{L^{2}+8 L_{0} L}} \quad(\eta \neq 0)
$$

or

$$
\eta \leq \frac{1}{L_{0}}\left(1-\frac{L+\sqrt{L^{2}+8 L_{0} L}}{8 \bar{L}}\right) \quad\left(L_{0} \neq 0, L \neq 0\right) .
$$

But by (2.16)

$$
\eta \leq \frac{4}{L+4 L_{0}+\sqrt{L^{2}+8 L_{0} L}} .
$$

It then suffices to show

$$
\frac{4}{L+4 L_{0}+\sqrt{L^{2}+8 L_{0} L}} \leq \frac{1}{L_{0}}\left(1-\frac{L+\sqrt{L^{2}+8 L_{0} L}}{8 \bar{L}}\right)
$$

or

$$
\frac{L+\sqrt{L^{2}+8 L_{0} L}}{8 \bar{L}} \leq 1-\frac{4 L_{0}}{L+4 L_{0}+\sqrt{L^{2}+8 L_{0} L}}
$$

or

$$
\frac{L+\sqrt{L^{2}+8 L_{0} L}}{8 \bar{L}} \leq \frac{L+\sqrt{L^{2}+8 L_{0} L}}{L+4 L_{0}+\sqrt{L^{2}+8 L_{0} L}},
$$

which is true as equality by (2.17).
Let us assume (2.34) holds for all integers smaller or equal to k. We shall show (2.34) holds for k replaced by $k+1$.

Using (2.18), and the induction hypothesis, we have in turn

$$
\begin{aligned}
t_{k+2}-t_{k+1} & =\frac{L}{2\left(1-L_{0} t_{k+1}\right)}\left(t_{k+1}-t_{k}\right)^{2} \\
& \leq \frac{L}{2\left(1-L_{0} t_{k+1}\right)}\left(\left(\frac{\delta}{2}\right)^{k}\left(2 q_{0}\right)^{2^{k}-1} \eta\right)^{2} \\
& \leq \frac{L}{2\left(1-L_{0} t_{k+1}\right)}\left(\left(\frac{\delta}{2}\right)^{k-1}\left(2 q_{0}\right)^{-1} \eta\right)\left(\left(\frac{\delta}{2}\right)^{k+1}\left(2 q_{0}\right)^{2^{k+1}-1} \eta\right) \\
& \leq\left(\frac{\delta}{2}\right)^{k+1}\left(2 q_{0}\right)^{2^{k+1}-1} \eta
\end{aligned}
$$

since,

$$
\begin{equation*}
\frac{L}{2\left(1-L_{0} t_{k+1}\right)}\left(\left(\frac{\delta}{2}\right)^{k-1}\left(2 q_{0}\right)^{-1} \eta\right) \leq 1, \quad(k \geq 1) \tag{2.35}
\end{equation*}
$$

Indeed, we can show instead of (2.35):

$$
t_{k+1} \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \bar{L}}\right)
$$

which is true by (2.33), since, in view of (2.22), and the induction hypothesis:

$$
\begin{aligned}
t_{k+1} & \leq t_{k}+\frac{\delta}{2}\left(t_{k}-t_{k-1}\right) \\
& \leq t_{1}+\frac{\delta}{2}\left(t_{1}-t_{0}\right)+\cdots+\frac{\delta}{2}\left(t_{k}-t_{k-1}\right) \\
& \leq \eta+\left(\frac{\delta}{2}\right) \eta+\cdots+\left(\frac{\delta}{2}\right)^{k} \eta \\
& =\frac{1-\left(\frac{\delta}{2}\right)^{k+1}}{1-\frac{\delta}{2}} \eta \\
& \leq \frac{1}{L_{0}}\left(1-\left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \bar{L}}\right)
\end{aligned}
$$

That completes the induction for estimate (2.23).

Surveys in Mathematics and its Applications 4 (2009), 119 - 132
http://www.utgjiu.ro/math/sma

In view of (2.23), we obtain in turn for $2 q_{0}<1$, and $j \geq k$:

$$
\begin{align*}
t_{j+1}-t_{k} & =\left(t_{j+1}-t_{j}\right)+\left(t_{j}-t_{j-1}\right)+\cdots+\left(t_{k+1}-t_{k}\right) \\
& \leq\left(\left(\frac{\delta}{2}\right)^{j}\left(2 q_{0}\right)^{2^{j}-1}+\left(\frac{\delta}{2}\right)^{j-1}\left(2 q_{0}\right)^{2^{j-1}-1}+\cdots+\left(\frac{\delta}{2}\right)^{k}\left(2 q_{0}\right)^{2^{k}-1}\right) \eta \\
& \leq\left(1+\left(2 q_{0}\right)^{2^{k}}+\left(\left(2 q_{0}\right)^{2^{k}}\right)^{2}+\cdots\right)\left(\frac{\delta}{2}\right)^{k}\left(2 q_{0}\right)^{2^{k}-1} \eta \\
& =\left(\frac{\delta}{2}\right)^{k} \frac{\left(2 q_{0}\right)^{2^{k}-1} \eta}{1-\left(2 q_{0}\right)^{2^{k}}} \tag{2.36}
\end{align*}
$$

Estimate (2.24) follows from (2.36) by letting $j \longrightarrow \infty$.
That completes the proof of Lemma 2.

3 Applications and examples

As a first application, we show how to locate a root of a polynomial $f_{n}(n \geq 2)$, using, say e.g. s_{n-1}, and s_{∞}.

Application 3. Let $a=b=1$, $c=-3$, and $n=2$. We obtain using (2.1)-(2.3), and (2.10):

$$
\begin{aligned}
& f_{1}(s)=s-1, \quad f_{2}(s)=s^{2}+2 s-2 \\
& s_{1}=1, \quad s_{\infty}=\frac{2}{3}, \quad d=.618033989 .
\end{aligned}
$$

Conditions (2.4), and (2.5) become:

$$
.618033989<\frac{2}{3}
$$

and

$$
-1<0
$$

Hence, the conclusions of Theorem 1 hold. In particular, we know $s_{2} \in\left(s_{\infty}, s_{1}\right)$. Actual direct computation justifies the theoretical claim, since

$$
s_{2}=\sqrt{3}-1=.732050808 \in\left(\frac{2}{3}, 1\right)
$$

Application 4. As a second application, we show how to use Theorem 1 to derive sufficient convergence conditions for scalar majorizing sequences of certain popular iterative methods such that as Newton's method:

$$
\begin{equation*}
x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right) \quad(n \geq 0), \quad\left(x_{0} \in \mathcal{D}\right) \tag{3.1}
\end{equation*}
$$

where, F is a Fréchet-differentiable operator defined on a convex subset \mathcal{D} of Banach space \mathcal{X} with values in a Banach space \mathcal{Y}.

Let us consider the famous Kantorovich hypotheses for solving nonlinear equations [5]:
(K):
$x_{0} \in \mathcal{D}$, with $F^{\prime}\left(x_{0}\right)^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$,

$$
\begin{gather*}
\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| \leq \eta \\
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}(y)\right)\right\| \leq L\|x-y\| \quad \text { for all } \quad x, y \in \mathcal{D} \\
q_{K}=L \eta \leq \frac{1}{2} \tag{3.2}\\
\bar{U}\left(x_{0}, r\right)=\left\{x \in \mathcal{X}:\left\|x-x_{0}\right\| \leq r\right\} \subseteq \mathcal{D}
\end{gather*}
$$

for

$$
r=\frac{1-\sqrt{1-2 q_{K}}}{\ell}
$$

Under the (\mathcal{K}) hypotheses, the Newton-Kantorovich method converges quadratically (if $2 q_{K}<1$) to a unique solution $x^{\star} \in \bar{U}\left(x_{0}, r\right)$ of equation $F(x)=0$.

Moreover, scalar iteration $\left\{v_{n}\right\}(n \geq 0)$, given by

$$
v_{0}=0, \quad v_{1}=\eta, \quad v_{n+2}=v_{n+1}+\frac{L\left(v_{n+1}-v_{n}\right)^{2}}{2\left(1-L v_{n+1}\right)}
$$

is a majorizing sequence for $\left\{x_{n}\right\}$ in the sense that for all $n \geq 0$:

$$
\left\|x_{n+1}-x_{n}\right\| \leq v_{n+1}-v_{n}
$$

and

$$
\left\|x_{n}-x^{\star}\right\| \leq r-v_{n} .
$$

Let us consider our hypotheses:
$(\mathcal{A}):$
$x_{0} \in \mathcal{D}$, with $F^{\prime}\left(x_{0}\right)^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$,

$$
\begin{gathered}
\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| \leq \eta \\
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}(y)\right)\right\| \leq L\|x-y\| \\
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right)\right\| \leq L_{0}\left\|x-x_{0}\right\| \quad \text { for all } \quad x, y \in \mathcal{D} \\
q_{0} \leq \frac{1}{2} \\
\bar{U}\left(x_{0}, t^{\star}\right) \subseteq \mathcal{D} \quad\left(\text { or } \bar{U}\left(x_{0}, t^{\star \star}\right) \subseteq \mathcal{D}\right)
\end{gathered}
$$

Surveys in Mathematics and its Applications 4 (2009), 119-132
http://www.utgjiu.ro/math/sma

Note that the center-Lipschitz condition is not an additional hypothesis, since, in practice the computation of L requires that of L_{0}.

The scalar iteration $\left\{t_{n}\right\}$ is a finer majorizing sequence for $\left\{x_{n}\right\}$ than $\left\{v_{n}\right\}$ provided that $L_{0}<L$ [1], [3], [5].
Remark 5. In general

$$
L_{0} \leq L
$$

holds, and $\frac{L}{L_{0}}$ can be arbitrarily large [1]-[4].
Condition (2.16) coincides with the Newton-Kantorovich hypothesis (3.2).
if $L=L_{0}$. Otherwise (2.16) is weaker than (3.2). Moreover the ratio $2 q_{0}$ is also smaller than $2 q_{K}$.

That is, (2.16) can always replace (3.2) in the Newton-Kantorovich theorem [5]. Hence, the applicability of Newton's method has been extended.

Example 6. Define the scalar function F by $F(x)=c_{0} x+c_{1}+c_{2} \sin e^{c_{3} x}, x_{0}=0$, where $c_{i}, i=1,2,3$ are given parameters. Then it can easily be seen that for c_{3} large and c_{2} sufficiently small, $\frac{L}{L_{0}}$ can be arbitrarily large. That is (2.16) may be satisfied but not (3.2).
Example 7. Let $\mathcal{X}=\mathcal{Y}=\mathbb{R}^{2}$, be equipped with the max-norm, and

$$
x_{0}=(1,1)^{T}, \quad U_{0}=\left\{x:\left\|x-x_{0}\right\| \leq 1-\beta\right\}, \quad \beta \in\left[0, \frac{1}{2}\right) .
$$

Define function F on U_{0} by

$$
\begin{equation*}
F(x)=\left(w^{3}-\beta, z^{3}-\beta\right), \quad x=(w, z)^{T} . \tag{3.3}
\end{equation*}
$$

The Fréchet-derivative of operator F is given by

$$
F^{\prime}(x)=\left[\begin{array}{cc}
3 w^{2} & 0 \tag{3.4}\\
0 & 3 z^{2}
\end{array}\right] .
$$

Using our hypotheses, we get:

$$
\eta=\frac{1}{3}(1-\beta), \quad L_{0}=3-\beta, \quad \text { and } \quad L=2 \quad(2-\beta) .
$$

The Kantorovich condition (3.2) is violated, since

$$
\frac{4}{3}(1-\beta)(2-\beta)>1 \quad \text { for all } \quad \beta \in\left[0, \frac{1}{2}\right)
$$

Hence, there is no guarantee that Newton's method (3.1) converges to $x^{\star}=(\sqrt[3]{\beta}, \sqrt[3]{\beta})^{T}$, starting at x_{0}.

However, our condition (2.16) is true for all $\beta \in I=\left[.450339002, \frac{1}{2}\right)$.
Hence, our results apply to solve equation (3.3) for all $\beta \in I$.

Other applications where $L_{0}<L$ can be found in [1], [3].
Remark 8. Define scalar sequence $\left\{\alpha_{n}\right\}$ by

$$
\begin{equation*}
\alpha_{0}=0, \quad \alpha_{1}=\eta, \quad \alpha_{n+2}=\alpha_{n}+\frac{L_{1}\left(\alpha_{n+1}-\alpha_{n}\right)^{2}}{2\left(1-L_{0} \alpha_{n+1}\right)} \quad(n \geq 0), \tag{3.5}
\end{equation*}
$$

where,

$$
L_{1}=\left\{\begin{array}{lll}
L_{0}, & \text { if } & n=0 \\
L, & \text { if } & n>0
\end{array} .\right.
$$

It follows from (2.18), and (3.5) that $\left\{\alpha_{n}\right\}$ converges under the hypotheses of Lemma 2. Note that, under the (\mathcal{K}) hypotheses, $\left\{\alpha_{n}\right\}$ is a finer majorizing sequence for $\left\{x_{n}\right\}$ than $\left\{t_{n}\right\}$. More precisely, we have the following estimates (if $L_{0}<L$):

$$
\begin{gathered}
\left\|x_{n+1}-x_{n}\right\| \leq \alpha_{n+1}-\alpha_{n}<t_{n+1}-t_{n}<v_{n+1}-v_{n}, \quad(n \geq 1), \\
\left\|x_{n}-x^{\star}\right\| \leq \alpha^{\star}-\alpha_{n}<t^{\star}-t_{n}<v^{\star}-v_{n}, \quad(n \geq 0), \\
\alpha_{n}<t_{n}<v_{n}, \quad(n \geq 2),
\end{gathered}
$$

and

$$
\alpha^{\star} \leq t^{\star} \leq r,
$$

where,

$$
\alpha^{\star}=\lim _{n \longrightarrow} \alpha_{n} .
$$

Remark 9. Our new technique of recurrent functions can be used on other Newtontype methods [1]-[9], so we can obtain the similar improvements as in the case of Newton's method above. These advantages are generalized, since we use the (needed, and more precise than the Lipschitz) center-Lipschitz condition for the computation of the upper bounds of the norms $\left\|F^{\prime}\left(x_{n}\right)^{-1} F^{\prime}\left(x_{0}\right)\right\|$. This modification leads to more precise majorizing sequences, which in turn motivate the introduction of the recurrent functions.

Acknowledgement. The authors would like to thank the referees for the helpful suggestions.

References

[1] I. K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), 315-332. MR2072881(2005c:65047). Zbl 1055.65066.
[2] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), 374-397. MR2086964. Zbl 1057.65029.
[3] I. K. Argyros, Convergence and applications of Newton-type iterations, Springer-Verlag Pub., New York, 2008. MR2428779. Zbl 1153.65057.
[4] I. K. Argyros, On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math. 228 (2009), 115-122. MR2514268. Zbl 1168.65349.
[5] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. MR0664597(83h:46002). Zbl 0484.46003.
[6] J. M. McNamee, Numerical methods for roots of polynomials, part I, 14, Elsevier, 2007. MR2483756. Zbl 1143.65002.
[7] F. A. Potra, On the convergence of a class of Newton-like methods. Iterative solution of nonlinear systems of equations (Oberwolfach, 1982), Lecture Notes in Math., 953 (1982), Springer, Berlin-New York, 125-137. MR0678615(84e:65057). Zbl 0507.65020.
[8] F. A. Potra, On an iterative algorithm of order $1.839 \cdots$ for solving nonlinear operator equations, Numer. Funct. Anal. Optim. 7 (1984/85), 75-106. MR0772168(86j:47088). Zbl 0556.65049.
[9] F. A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84. MR0816258(87f:65073). Zbl 0581.47050.

Ioannis K. Argyros Cameron University, Department of Mathematics Sciences, Lawton, OK 73505, USA.
e-mail: iargyros@cameron.edu

Saïd Hilout Poitiers University, Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex, France. e-mail: said.hilout@math.univ-poitiers.fr

[^0]: 2000 Mathematics Subject Classification: 26C10; 12D10; 30C15; 30C10; 65J15; 47J25.
 Keywords: real polynomials; enclosing roots; iterative processes; nonlinear equations.

