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ALMOST-PERIODIC SOLUTION FOR BAM
NEURAL NETWORKS

Hamid A. Jalab and Rabha W. Ibrahim

Abstract. In this paper, we study the existence and uniqueness solution and investigate the

conditions that make it almost-periodic solution for BAM neural networks with retarded delays.

The existence of solution established by using Schauder fixed point theorem. The uniqueness

established by using Banach fixed point theorem. Moreover we study the parametric stability of

such a solution. Also we illustrate our results with an example.

1 Introduction and Preliminaries

Recently, the concept of almost periodicity solutions (see[4, 17]), for differential
and integral equations is an important area of research. It naturally arises in diverse
fields such as population biology, economics, neural networks and chemical processes
(see[5, 6]). Our aim is to study the existence and uniqueness of almost-periodic so-
lution for a class of two-layer associative networks, called bidirectional associative
memory BAM neural networks (see[11, 8]) with and without delays, has been pro-
posed and used in many fields (see[13, 12]). The study in neural dynamic systems
involves a discussion of stability properties (see[10, 7]), periodic and almost-periodic
oscillatory [1, 2], chaos [3] and bifurcation [16]. Moreover, we examine the para-
metric stability of this solution. The parametric stability(see[9, 15]) together with
robust stability for nonlinear systems admits the stability of equilibrium points for
such systems. The problem of robust stability is to find how much we can perturb
the parameters of the systems and still retain stability of the equilibrium points.
And the maximal value of parameter that retains stability of the equilibrium is
called the parametric stability margin.
The main subject of this paper is to study the existence and uniqueness solution
and investigate the conditions that make this solution is almost-periodic solution for
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the BAM neural networks

x′i = −Aixi(t) + pi(t)
m∑

j=1

µjifj(yj(t− js)) + Ii(t), (1.1)

y′j = −Bjyj(t) + qj(t)
n∑

i=1

ωijfi(xi(t− is)) + Jj(t),

subject to the initial conditions

xi(t0) = xi0, yj(t0) = yj0, t0 ∈ [−T, 0], T < ∞ and t ∈ J := [−T, T ] (1.2)

where s is a positive number. i = 1, ..., n, j = 1, ...,m, xi : J → R, yj : J → R, are the
activation of the i−th and j−th neurons respectively. Ai, Bj , are positive constants
which are denoting the connected matrices. pi(t) and qj(t) are continuous functions.
µji and ωij are connection weights. Ii(t) and Jj(t) are continuous functions and they
denoted the external bias on the i− th and j − th units respectively.

Definition 1. [4, 17] A function f ∈ B (B is a Banach space) is called almost
periodic in t ∈ R uniformly in any K ⊂ B a bounded subset, if for each ε > 0, there
exists δε > 0 such that every interval of length δε > 0 contains a number s with the
following property:

‖f(t + s, u)− f(t, u)‖ < ε, t ∈ R, u ∈ K.

Definition 2. [9, 15] Consider the nonlinear system of the form

x. = f(x, µ) = fµ(x), (1.3)

which has an equilibrium at x∗ = 0 when µ = µ∗. The equilibrium x∗ = 0 is called
parametrically stable at µ∗ if there exists a small neighborhood N(µ∗) such that
for any µ ∈ N(µ∗), the following two conditions hold: (a) There exists an equi-
librium xe(µ) of the nonlinear system (1.3). (b) For any given ε > 0, there exist
correspondingly a δ = δ(ε, µ) > 0 such that

‖x0 − xe(µ)‖ < δ implies ‖x(t;x0, µ)− xe(µ)‖ < ε for all t ≥ 0.

The equilibrium x∗ = 0 is called parametrically unstable at µ∗ if it is not paramet-
rically stable.

Definition 3. [9, 15] Consider the system (1.3) which has an equilibrium at x∗ = 0
when µ = µ∗. The equilibrium x∗ = 0 is called parametrically asymptotically stable
at µ∗ if there exists a small neighborhood N(µ∗) such that for any µ ∈ N(µ∗), the
following two conditions hold:
(a) The equilibrium x∗ = 0 is parametrically stable at µ∗.
(b) For all µ ∈ N(µ∗), there exists a number δ(µ) > 0 such that

‖x0 − xe(µ)‖ < δ implies ‖x(t;x0, µ)− xe(µ)‖ → 0 as t →∞.
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Definition 4. [9, 15] Consider the system (1.3) which has an equilibrium at x∗ = 0
when µ = µ∗. The equilibrium x∗ = 0 is called parametrically exponentially stable
at µ∗ if there exists a small neighborhood N(µ∗) such that for any µ ∈ N(µ∗), the
following two conditions hold:
(a) The equilibrium x∗ = 0 is parametrically stable at µ∗.
(b) For all µ ∈ N(µ∗), there exists a number δ(µ) > 0 such that

‖x0 − xe(µ)‖ < δ implies ‖x(t;x0, µ)− xe(µ)‖ < Me−at‖x(0)− xe(µ)‖,

for some positive constants M,a.

Lemma 5. [15] The equilibrium point x∗ of the nonlinear system (1.3) is paramet-
rically exponentially stable at µ∗ if the nonlinear system x. = f(x, µ∗) = fµ∗(x) is
locally exponentially stable at x = 0.

2 The existence and uniqueness solution.

In this section we give conditions for the existence and uniqueness of a solution for the
system (1.1). For arbitrary vector: (x(t), y(t)) := (x1(t), ..., xn(t), y1(t), ..., ym(t))T ,
t ∈ J, define the norm: ‖(x, y)‖ = ‖x‖+‖y‖ where, ‖x‖ = supt∈Jmax1≤i≤n{|xi(t)|}
and ‖y‖ = supt∈Jmax1≤j≤m{|yj(t)|}. Set Bn+m := {(x, y)|(x, y) = (x1, ..., xn, y1, ..
., ym)T } then Bn+m is a Banach space endowed with the above norm. To facilitate
our discussion, let us first state the following assumption denoted (A) :

1. Ai is a positive constant such that A := max1≤i≤n{|Ai|} < ∞.

2. Bj is a positive constant such that B := max1≤j≤m{|Bj |} < ∞.

3. Ii(t) is a continuous function on J such that I := supt∈Jmax1≤i≤n{|Ii(t)|}
< ∞.

4. Jj(t) is a continuous function on J such that J := supt∈Jmax1≤j≤m{|Jj(t)|}
< ∞.

5. pi(t) is a continuous function on J such that p := supt∈Jmax1≤i≤n{|pi(t)|}
< ∞.

6. qj(t) is a continuous function on J such that q := supt∈Jmax1≤i≤n{|qi(t)|}
< ∞.

7. µji is a parameter such that µ := max{|µji|} < ∞.

8. ωij is a parameter such that ω := max{|ωij |} < ∞.

9. Denotes R := {A + B + a[mµp + nωq]} such that 0 < 2TR < 1.
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10. fk is a continuous function on R such that |fk(x)| ≤ a(t)|x|, where a : J → J
is a positive continuous function with a = supt∈Ja(t).

The solution of the system (1.1), subject to the initial conditions (1.2), can be
written as

xi(t) = xi0 +
∫ t

−T
[−Aixi(τ) + pi(τ)

m∑
j=1

µjifj(yj(τ − js)) + Ii(τ)]dτ, (2.1)

yj(t) = yj0 +
∫ t

−T
[−Bjyj(τ) + qj(τ)

n∑
i=1

ωijfi(xi(τ − is)) + Jj(τ)]dτ.

Define an operator P : Bn+m → Bn+m by

P (x, y) := (
∫ t

−T
[−A1x1(τ) + p1(τ)

m∑
j=1

µj1fj(yj(τ − js)) + I1(τ)]dτ, ...,

∫ t

−T
[−Anxn(τ) + pn(τ)

m∑
j=1

µjnfj(yj(τ − js))

+ In(τ)]dτ,

∫ t

−T
[−B1y1(τ) + q1(τ)

n∑
i=1

ωi1fi(xi(τ − is)) + J1(τ)]dτ, ...,

∫ t

−T
[−Bmym(τ) + qm(τ)

n∑
i=1

ωimfi(xi(τ − is)) + Jm(τ)]dτ)T .

Let Br be a convex close subset of Bn+m define by Br := {(x, y)|(x, y) ∈ Bn+m,
‖(x, y)− (x0, y0)‖ ≤ r} where (x0, y0) = (

∫ t
−T I1(τ)dτ, ...,

∫ t
−T In(τ)dτ,

∫ t
−T J1(τ)dτ, ..

.,
∫ t
−T Jm(τ)dτ)T and r ≥ 4T 2R[I+J ]

1−2TR .

Theorem 6. Let assumption (A) hold. Then the modelling system (1.1) has a
solution.

Proof. In order to show that (1.1) has a solution we only need to prove that P has
a fixed point. According to the definition of the norm of Banach space Bn+m, we
have ‖(x0, y0)‖ ≤ 2T [I + J ]. Now we prove that P has a fixed point.

‖P (x, y)− (x0, y0)‖ ≤ supt∈J

∫ t

−T
max1≤i≤n{| −Aixi(τ)|

+ |pi(τ)
m∑

j=1

µjifj(yj(τ − js))|}dτ + supt∈J

∫ t

−T
max1≤j≤m{| −Bjyj(τ)|

+ |qj(τ)
n∑

i=1

ωijfi(xi(τ − is))|}dτ ≤ 2T{A‖x‖+ mµpa‖y‖+ B‖y‖+ nωqa‖x‖}

≤ 2T{A + B + a[mµp + nωq]}‖(x, y)‖ ≤ 2TR(‖(x, y)− (x0, y0)‖+ ‖(x0, y0)‖)
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we obtain that

‖P (x, y)− (x0, y0)‖ ≤
2TR‖(x0, y0)‖

1− 2TR
≤ 4T 2R[I + J ]

1− 2TR
,

that is P : Br → Br. Then P maps Br into itself. In fact, P maps the convex
closure of P [Br] into itself. Since f are bounded on Br, P [Br] is equicontinuous and
the Schauder fixed point Theorem shows that P has a fixed point (x, y) ∈ Bn+m

such that P (x, y) = (x, y), which is corresponding to the solution of (1.1).
In the next theorem, we study the uniqueness solution of (1.1).

For this purpose, we illustrate the following assumption denoted (B) :

1. There exists `i > 0 such that |fi(φi)− fi(%i)| ≤ `i‖φi − %i‖ for all i = 1, ..., n.

2. There exists `j > 0 such that |fj(ξj)− fj(νj)| ≤ `j‖ξj − νj‖ for all j = 1, ...,m.

3. 2T{A+B+`[mµp+nωq]} < 1, where ` := max{`k} such that k = 1, ...,max{n, m}.

Theorem 7. Let assumptions (A) and (B) hold. Then system (1.1) has a unique
solution.

Proof. We only need to prove that the fixed point of P is unique. Let (x, y) and
(u, v) in U. By the definition of the norm we have ‖(x, y)−(u, v)‖ = ‖(x−u, y−v)‖ =
‖x− u‖+ ‖y − v‖.

‖P (x, y)− P (u, v)‖ = supt∈J{|
∫ t

−T
max1≤i≤n[−Ai(xi(τ)− ui(τ))

+ pi(τ)
m∑

j=1

µji(fj(yj(τ − js))− fj(vj(τ − js)))]dτ |}

+ supt∈J{|
∫ t

−T
max1≤j≤m[−Bj(yj(τ)− vj(τ))

+ qj(τ)
n∑

i=1

ωij(fi(xi(τ − is))− fi(ui(τ − is)))]dτ |}

≤ supt∈J

∫ t

−T
max1≤i≤n{| −Ai||(xi(τ)− ui(τ))|

+ |pi(τ)|
m∑

j=1

|µji||(fj(yj(τ − js))− fj(vj(τ − js)))|}dτ

+ supt∈J

∫ t

−T
max1≤j≤m{| −Bj ||(yj(τ)− vj(τ))

+ |qj(τ)|
n∑

i=1

|ωij ||(fi(xi(τ − is))− fi(ui(τ − is)))|}dτ
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≤ 2T{A‖x− u‖+ mpµ`‖y − v‖+ B‖y − v‖+ nqω`‖x− u‖}
= 2T{A + nqω`}‖x− u‖+ 2T{B + mpµ`}‖y − v‖
≤ 2T{A + nqω`}(‖x− u‖+ ‖y − v‖) + 2T{B + mpµ`}(‖x− u‖+ ‖y − v‖)
= 2T{A + B + `[mµp + nωq]}(‖x− u‖+ ‖y − v‖)

by assumption (B), implies that P is a contraction mapping then by Banach fixed
point theorem, P has a unique fixed point which is corresponds to the solution of
system (1.1).

3 Almost periodic solution.

In this section, we introduce the conditions that let every solution of system (1.1)
be almost periodic solution. we illustrate the following assumption denoted (C) :

Setting ‖(x, y)‖ := κ. And suppose pi(t), qj(t), Ii(t) and Jj(t) are almost periodic
functions of period s, such that

|pi(t + s)− pi(t)| <
ε[1− 2T (A + B)]

8mµTκa
, |qj(t + s)− qj(t)| <

ε[1− 2T (A + B)]
8nωTκa

,

|Ii(t + s)− Ii(t)| <
ε[1− 2T (A + B)]

8T
and |Ji(t + s)− Ji(t)| <

ε[1− 2T (A + B)]
8T

.

Lemma 8. Let assumption (C) hold. Then operator P is almost periodic function.

Proof. By the proof of Theorem 2.1, P is bounded operator. By assumption (C),
we have ∀ε > 0 there exist δε such that there exist s ∈ [γ, γ + δε] with the following
properties:

|P (x(t + s), y(t + s))− P (x(t), y(t))| ≤ supt∈J

∫ t

−T
max1≤i≤n| −Ai||(x(τ + s),

y(τ + s))− (x(τ), y(τ))|dτ + (mµa(t)‖y‖)supt∈J

∫ t

−T
max1≤i≤n|pi(τ + s)− pi(τ)|dτ

+ supt∈J

∫ t

−T
max1≤i≤n|Ii(τ + s)− Ii(τ)|dτ

+ supt∈J

∫ t

−T
max1≤j≤m| −Bj ||(x(τ + s), y(τ + s))− (x(τ), y(τ))|dτ
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+ (nωa(t)‖x‖)supt∈J

∫ t

−T
max1≤j≤m|qj(τ + s)− qj(τ)|dτ

+ supt∈J

∫ t

−T
max1≤j≤m|Jj(τ + s)− Jj(τ)|dτ + 2T |(x(t + s), y(t + s))

− (x(t), y(t))|(A + B) ≤ (mµa(t)‖(x, y)‖)supt∈J

∫ t

−T
max1≤i≤n|pi(τ + s)− pi(τ)|dτ

+ supt∈J

∫ t

−T
max1≤i≤n|Ii(τ + s)− Ii(τ)|dτ

+ (nωa(t)‖(x, y)‖)supt∈J

∫ t

−T
max1≤j≤m|qj(τ + s)

− qj(τ)|dτ + supt∈J

∫ t

−T
max1≤j≤m|Jj(τ + s)− Jj(τ)|dτ

then we have

|P (x(t + s), y(t + s))− P (x(t), y(t))| ≤ 2mµTκa

[1− 2T (A + B)]
× ε[1− 2T (A + B)]

8mµTκa

+
2nωTκa

[1− 2T (A + B)]
× ε[1− 2T (A + B)]

8nωTκa
+

2T

[1− 2T (A + B)]
× ε[1− 2T (A + B)]

8T

+
2T

[1− 2T (A + B)]
× ε[1− 2T (A + B)]

8T
= ε.

Implies that P is almost periodic function.

Theorem 9. Let assumptions (A), (B) and (C) hold. Then system (1.1) has a
unique almost periodic solution.

Proof. By Theorems 6 , 7 and Lemma 8.

4 Parametric stability.

In this section, we discuss the conditions of parametric stability for the almost
periodic solution of modelling system (1.1). The study of stability of system (1.1)
is equivalent to the study of stability of the system

x′i = −Aixi(t) + pi(t)
m∑

j=1

µjifj(yj(t− js)) (4.1)

y′j = −Bjyj(t) + qj(t)
n∑

i=1

ωijfi(t− is)).

It is easy to prove the following result
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Lemma 10. (x∗, y∗) := (0, 0) is an equilibrium point for system (4.1) at
(µ∗, ω∗) := (0, 0).

Theorem 11. If for small values ci and dj , the system

[−Aixi(t)+pi(t)
m∑

j=1

µjifj(yj(t−js)) = ci, −Bjyj(t)+qj(t)
n∑

i=1

ωijfi(xi(t−js)) = dj ]

(4.2)
is solvable, then the equilibrium point for system (4.1) is parametric asymptotically
stable.

Proof. (By [14] section3) or [15] .

Lemma 12. For the homogeneous system

[x′i = −Aixi(t), y′j = −Bjyj(t)], (4.3)

(x, y) = (0, 0) is an exponentially stable point.

Proof. We can put the system in a matrix formula X́ = WX, where W is n +
m × n + m diagonal matrix. It is easily seen to be a Hurwitz matrix with the
eigenvalues −A1, ....,−An, B1, ..., Bm. Thus system (4.3) is exponentially stable at
(x, y) = (0, 0).

Theorem 13. System (4.1) is parametric exponentially stable in the equilibrium
point (x∗, y∗) = (0, 0) at (µ∗, ω∗) = (0, 0).

Proof. At (µ∗, ω∗) = (0, 0), system (4.1) reduce to the homogeneous system (4.3).
Then by Lemma 4.2, (x, y) = (0, 0) is exponentially stable. Thus in view of Lemma
1.1, the equilibrium point (x∗, y∗) = (0, 0) for system (4.1) is parametric exponen-
tially stable at (µ∗, ω∗) = (0, 0).

5 An example.

In this section, we give an example to illustrate our results. Consider the following
simple BAM networks with almost periodic coefficients of period 2π.

x′i = −Aixi(t) + pi(t)
2∑

j=1

µjifj(yj(t− js)) + Ii(t), (5.1)

y′j = −Bjyj(t) + qj(t)
2∑

i=1

ωijfi(xi(t− is)) + Jj(t),

******************************************************************************
Surveys in Mathematics and its Applications 4 (2009), 53 – 63

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v04/v04.html
http://www.utgjiu.ro/math/sma


Almost-periodic solution for BAM neural networks 61

subject to the initial conditions xi(t0) = xi0 = 0.25, yi(t0) = yi0 = 0.25, t ∈
J := [−1/8, 1/8], where i = j = 1, 2, A = 1/2, B = 1/2, pi(t) = (1, sin(t))T with
p = 1 and qj(t) = (sin(t), 1)T with q = 1 and Ii = Jj = 1. Setting(

µ11 µ12

µ21 µ22

)
=

(
0.5 0.5
0.1 0.1

)
(

ω11 ω12

ω21 ω22

)
=

(
0.3 0.3
0.5 0.5

)
with µ = 0.5, ω = 0.5. Define the function f as follows fi(x) = x and fj(y) = y
where a(t) = 1. From above, we see that the functions involved in the previous
example satisfy assumption (A). Then in view of Theorem 7, the system has a
solution in U := {(x, y)|‖(x, y) − (x0, y0)‖ ≤ r = 3/2}. Now if ` = 0.5, the solution
is unique (Theorem 6). Also all the parameters of the example are almost-periodic
functions in t. Thus the system has a unique almost-periodic solution. It is clear
that (x∗, y∗) = (0, 0) is an equilibrium point for the system at (µ∗, ω∗) = (0, 0). In
order to examine the parametric stability of the system, we can easy to show that
the following system is solvable:

−Aixi(t) + pi(t)
m∑

j=1

µjifj(yj(t− js)) = ci (5.2)

−Bjyj(t) + qj(t)
n∑

i=1

ωijfi(xi(t− js)) = dj

for fixed constants c1, c2, d1 and d2. Thus we obtain that the system is parametric
asymptotically stable (see Theorem 11). Now, since the system

x′i = −Aixi(t)

y′j = −Bjyj(t)

is locally exponentially stable at (x, y) = (0, 0), where

W =


w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

 =


−0.5 0 0 0

0 −0.5 0 0
0 0 −0.5 0
0 0 0 −0.5


then in view of Theorem 13, the equilibrium point (x∗, y∗) = (0, 0) for system (5.1)
is parametric exponentially stable at (µ∗, ω∗) = (0, 0).
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