|
SIGMA 21 (2025), 008, 33 pages arXiv:2404.12303
https://doi.org/10.3842/SIGMA.2025.008
Wall Crossing and the Fourier-Mukai Transform for Grassmann Flops
Nathan Priddis a, Mark Shoemaker b and Yaoxiong Wen c
a) Department of Mathematics, 275 TMCB, Brigham Young University, Provo, UT 84602, USA
b) Department of Mathematics, Colorado State University, 1874 Campus Delivery Fort Collins, CO 80523, USA
c) School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, South Korea
Received April 26, 2024, in final form January 27, 2025; Published online February 06, 2025
Abstract
We prove the crepant transformation conjecture for relative Grassmann flops over a smooth base $B$. We show that the $I$-functions of the respective GIT quotients are related by analytic continuation and a symplectic transformation. We verify that the symplectic transformation is compatible with Iritani's integral structure, that is, that it is induced by a Fourier-Mukai transform in $K$-theory.
Key words: Fourier-Mukai; Grassmannian flops; wall-crossing; Gromov-Witten theory; variation of GIT.
pdf (638 kb)
tex (41 kb)
References
- Aleshkin K., Liu C.-C.M., Higgs-Coulomb correspondence and wall-crossing in abelian GLSMs, arXiv:2301.01266.
- Atiyah M.F., Bott R., The moment map and equivariant cohomology, Topology 23 (1984), 1-28.
- Ballard M.R., Chidambaram N.K., Favero D., McFaddin P.K., Vandermolen R.R., Kernels for Grassmann flops, J. Math. Pures Appl. 147 (2021), 29-59, arXiv:1904.12195.
- Bertram A., Ciocan-Fontanine I., Kim B., Two proofs of a conjecture of Hori and Vafa, Duke Math. J. 126 (2005), 101-136, arXiv:math.AG/0304403.
- Bertram A., Ciocan-Fontanine I., Kim B., Gromov-Witten invariants for abelian and nonabelian quotients, J. Algebraic Geom. 17 (2008), 275-294, arXiv:math.AG/0407254.
- Brion M., Equivariant cohomology and equivariant intersection theory, in Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 514, Kluwer, Dordrecht, 1998, 1-37, arXiv:math.AG/9802063.
- Brown J., Gromov-Witten invariants of toric fibrations, Int. Math. Res. Not. 2014 (2014), 5437-5482, arXiv:0901.1290.
- Bryan J., Graber T., The crepant resolution conjecture, in Algebraic Geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., Vol. 80, American Mathematical Society, Providence, RI, 2009, 23-42, arXiv:math.AG/0610129.
- Buchweitz R.-O., Leuschke G.J., Van den Bergh M., Non-commutative desingularization of determinantal varieties, II: Arbitrary minors, Int. Math. Res. Not. 2016 (2016), 2748-2812, arXiv:1106.1833.
- Chiodo A., Iritani H., Ruan Y., Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216, arXiv:1201.0813.
- Chiodo A., Ruan Y., Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165, arXiv:0812.4660.
- Ciocan-Fontanine I., Kim B., Maulik D., Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014), 17-47, arXiv:1106.3724.
- Ciocan-Fontanine I., Kim B., Sabbah C., The abelian/nonabelian correspondence and Frobenius manifolds, Invent. Math. 171 (2008), 301-343, arXiv:math.AG/0610265.
- Coates T., Iritani H., Jiang Y., The crepant transformation conjecture for toric complete intersections, Adv. Math. 329 (2018), 1002-1087, arXiv:1410.0024.
- Coates T., Iritani H., Jiang Y., Segal E., $K$-theoretic and categorical properties of toric Deligne-Mumford stacks, Pure Appl. Math. Q. 11 (2015), 239-266, arXiv:1410.0027.
- Coates T., Iritani H., Tseng H.-H., Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744, arXiv:math.AG/0611550.
- Coates T., Lutz W., Shafi Q., The abelian/nonabelian correspondence and Gromov-Witten invariants of blow-ups, Forum Math. Sigma 10 (2022), e67, 33 pages, arXiv:2108.10922.
- Coates T., Ruan Y., Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier (Grenoble) 63 (2013), 431-478, arXiv:0710.5901.
- Edidin D., Graham W., Riemann-Roch for equivariant Chow groups, Duke Math. J. 102 (2000), 567-594, arXiv:math.AG/9905081.
- Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), Vol. 2, Springer, Berlin, 1984.
- González E., Woodward C.T., A wall-crossing formula for Gromov-Witten invariants under variation of git quotient, Math. Ann. 388 (2024), 4135-4199, arXiv:1208.1727.
- Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
- Iwao Y., Lee Y.-P., Lin H.-W., Wang C.-L., Invariance of Gromov-Witten theory under a simple flop, J. Reine Angew. Math. 663 (2012), 67-90, arXiv:0804.3816.
- Katzarkov L., Kontsevich M., Pantev T., Hodge theoretic aspects of mirror symmetry, in From Hodge Theory to Integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., Vol. 78, American Mathematical Society, Providence, RI, 2008, 87-174, arXiv:0806.0107.
- Lee Y.-P., Lin H.-W., Wang C.-L., Flops, motives, and invariance of quantum rings, Ann. of Math. 172 (2010), 243-290, arXiv:math.AG/0608370.
- Lee Y.-P., Lin H.-W., Wang C.-L., Invariance of quantum rings under ordinary flops II: A quantum Leray-Hirsch theorem, Algebr. Geom. 3 (2016), 615-653, arXiv:1311.5725.
- Li A.-M., Ruan Y., Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151-218, arXiv:math.AG/9803036.
- Lutz W., Shafi Q., Webb R., Crepant transformation conjecture for the Grassmannian flop, arXiv:2404.12302.
- Oh J., Quasimaps to GIT fibre bundles and applications, Forum Math. Sigma 9 (2021), e56, 39 pages, arXiv:1607.08326.
- Okounkov A., Lectures on K-theoretic computations in enumerative geometry, in Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., Vol. 24, American Mathematical Society, Providence, RI, 2017, 251-380, arXiv:1512.07363.
- Ruan Y., Surgery, quantum cohomology and birational geometry, in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, Vol. 196, American Mathematical Society, Providence, RI, 1999, 183-198, arXiv:math.AG/9810039.
- Thomason R.W., Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), 447-462.
- Webb R., The abelian-nonabelian correspondence for $I$-functions, Int. Math. Res. Not. 2023 (2023), 2592-2648, arXiv:1804.07786.
- Webb R., Abelianization and quantum Lefschetz for orbifold quasimap $I$-functions, Adv. Math. 439 (2024), 109489, 59 pages, arXiv:2109.12223.
|
|