Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 007, 25 pages      arXiv:2207.05028      https://doi.org/10.3842/SIGMA.2025.007

Numerators in Parametric Representations of Feynman Diagrams

Marc P. Bellon
Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, Paris, France

Received May 23, 2024, in final form January 24, 2025; Published online February 06, 2025

Abstract
The parametric representation has been used since a long time for the evaluation of Feynman diagrams. As a dimension independent intermediate representation, it allows a clear description of singularities. Recently, it has become a choice tool for the investigation of the type of transcendent numbersappearing in the evaluation of Feynman diagrams. The inclusion of numerators has however stagnated since the ground work of Nakanishi. I here show howto greatly simplify the formulas through the use of Dodgson identities. In the massless case in particular, reduction to the completion to a vacuum graph allows for a strong reduction of the maximal power of the Symanzik polynomial in the denominator.

Key words: Feynman integrals; parametric representation; Dodgson identities.

pdf (449 kb)   tex (40 kb)  

References

  1. Bellon M.P., Schaposnik F.A., Renormalization group functions for the Wess-Zumino model: Up to 200 loops through Hopf algebras, Nuclear Phys. B 800 (2008), 517-526, arXiv:0801.0727.
  2. Bellon M.P., Schaposnik F.A., Higher loop corrections to a Schwinger-Dyson equation, Lett. Math. Phys. 103 (2013), 881-893, arXiv:1205.0022.
  3. Brown F., On the periods of some Feynman integrals, arXiv:0910.0114.
  4. Brown F., The massless higher-loop two-point function, Comm. Math. Phys. 287 (2009), 925-958, arXiv:0804.1660.
  5. Brown F., Schnetz O., A K3 in $\phi^4$, Duke Math. J. 161 (2012), 1817-1862, arXiv:1006.4064.
  6. Brown F., Yeats K., Spanning forest polynomials and the transcendental weight of Feynman graphs, Comm. Math. Phys. 301 (2011), 357-382, arXiv:0910.5429.
  7. Cvitanovic P., Kinoshita T., Feynman-Dyson rules in parametric space, Phys. Rev. D 10 (1974), 3978-3991.
  8. Dodgson R.C.L., IV. Condensation of determinants, being a new and brief method for computing their arithmetical values, Proc. Roy. Soc. London 15 (1867), 150-155.
  9. Gambuti G., Kosower D.A., Novichkov P.P., Tancredi L., Finite Feynman integrals, arXiv:2311.16907.
  10. Golz M., Dodgson polynomial identities, Commun. Number Theory Phys. 13 (2019), 667-723, arXiv:1810.06220.
  11. Gorishny S., Larin S., Surguladze L., Tkachov F., Mincer: Program for multiloop calculations in quantum field theory for the Schoonschip system, Comput. Phys. Commun. 55 (1989), 381-408.
  12. Knuth D.E., Two notes on notation, Amer. Math. Monthly 99 (1992), 403-422, arXiv:math.HO/9205211.
  13. Kreimer D., Sars M., van Suijlekom W.D., Quantization of gauge fields, graph polynomials and graph homology, Ann. Physics 336 (2013), 180-222, arXiv:1208.6477.
  14. Kreimer D., Yeats K., Properties of the corolla polynomial of a 3-regular graph, Electron. J. Combin. 20 (2013), 41, 12 pages, arXiv:1207.5460.
  15. Larin S., Tkachov F., Vermaseren J., The FORM version of MINCER, 1991, nIKHEF-H-91-18, available at http://inis.iaea.org/search/search.aspx?orig_q=RN:23012874.
  16. Nakanishi N., Graph theory and Feynman integrals, Vol. 11, Gordon and Breach, New York, 1971.
  17. Panzer E., On the analytic computation of massless propagators in dimensional regularization, Nuclear Phys. B 874 (2013), 567-593, arXiv:1305.2161.
  18. Schnetz O., Quantum periods: A census of $\phi^4$-transcendentals, Commun. Number Theory Phys. 4 (2010), 1-47, arXiv:0801.2856.
  19. Schnetz O., Geometries in perturbative quantum field theory, Commun. Number Theory Phys. 15 (2021), 743-791, arXiv:1905.08083.
  20. Stirling J., Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum, Londini, Typis Gul. Bowyer, 1730, available at http://archive.org/details/bub_gb_71ZHAAAAYAAJ.
  21. Travaglini G. et al., The SAGEX review on scattering amplitudes*, J. Phys. A 55 (2022), 443001, 12 pages, arXiv:2203.13011.
  22. Ueda T., Ruijl B., Vermaseren J.A.M., Calculating four-loop massless propagators with Forcer, J. Phys. Conf. Ser. 762 (2016), 012060, 6 pages, arXiv:1604.08767.
  23. von Manteuffel A., Panzer E., Schabinger R.M., A quasi-finite basis for multi-loop Feynman integrals, J. High Energy Phys. 2015 (2015), no. 2, 120, 20 pages, arXiv:1411.7392.

Previous article  Next article  Contents of Volume 21 (2025)