|
SIGMA 21 (2025), 006, 17 pages arXiv:2211.14610
https://doi.org/10.3842/SIGMA.2025.006
Positive Intermediate Ricci Curvature on Fibre Bundles
Philipp Reiser a and David J. Wraith b
a) Department of Mathematics, University of Fribourg, Switzerland
b) Department of Mathematics and Statistics, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
Received August 15, 2024, in final form January 20, 2025; Published online January 23, 2025
Abstract
We prove a canonical variation-type result for submersion metrics with positive intermediate Ricci curvatures. This can then be used in conjunction with surgery techniques to establish the existence of metrics with positive intermediate Ricci curvatures on a wide range of examples which had previously only been known to admit positive Ricci curvature, such as highly connected manifolds and exotic spheres. Further, we extend results of the second author on the moduli space of metrics with positive Ricci curvature to positive intermediate Ricci curvatures.
Key words: positive intermediate Ricci curvature; fibre bundle; plumbing; homotopy sphere; moduli space.
pdf (427 kb)
tex (12 kb)
References
- Amann M., Quast P., Zarei M., The flavour of intermediate Ricci and homotopy when studying submanifolds of symmetric spaces, arXiv:2010.15742.
- Besse A.L., Einstein manifolds, Classics Math., Springer, Berlin, 1987.
- Bhatia R., Matrix analysis, Grad. Texts in Math., Vol. 169, Springer, New York, 1997.
- Cavenaghi L.F., Sperança L.D., Positive Ricci curvature on fiber bundles with compact structure group, Adv. Geom. 22 (2022), 95-104, arXiv:1911.03608.
- Crowley D., Wraith D.J., Positive Ricci curvature on highly connected manifolds, J. Differential Geom. 106 (2017), 187-243, arXiv:1404.7446.
- Dessai A., On the moduli space of nonnegatively curved metrics on Milnor spheres, arXiv:1712.08821.
- Dessai A., Klaus S., Tuschmann W., Nonconnected moduli spaces of nonnegative sectional curvature metrics on simply connected manifolds, Bull. Lond. Math. Soc. 50 (2018), 96-107, arXiv:1601.04877.
- Domínguez-Vázquez M., González-Álvaro D., Mouillé L., Infinite families of manifolds of positive $k$th-intermediate Ricci curvature with $k$ small, Math. Ann. 386 (2023), 1979-2014, arXiv:2012.11640.
- Frank D.L., An invariant for almost-closed manifolds, Bull. Amer. Math. Soc. 74 (1968), 562-567.
- Goodman M.J., On the moduli spaces of metrics with nonnegative sectional curvature, Ann. Global Anal. Geom. 57 (2020), 305-320, arXiv:1712.01107.
- Gromoll D., Walschap G., Metric foliations and curvature, Progr. Math., Vol. 268, Birkhäuser, Basel, 2009.
- Gromov M., Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195.
- Gu J.-R., Xu H.-W., The sphere theorems for manifolds with positive scalar curvature, J. Differential Geom. 92 (2012), 507-545, arXiv:1102.2424.
- Guijarro L., Wilhelm F., Focal radius, rigidity, and lower curvature bounds, Proc. Lond. Math. Soc. 116 (2018), 1519-1552, arXiv:1603.04050.
- Guijarro L., Wilhelm F., Restrictions on submanifolds via focal radius bounds, Math. Res. Lett. 27 (2020), 115-139, arXiv:1606.04121.
- Guijarro L., Wilhelm F., A softer connectivity principle, Comm. Anal. Geom. 30 (2022), 1093-1119, arXiv:1812.01021.
- Kervaire M.A., A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257-270.
- Kervaire M.A., Milnor J.W., Groups of homotopy spheres. I, Ann. of Math. 77 (1963), 504-537.
- Ketterer C., Mondino A., Sectional and intermediate Ricci curvature lower bounds via optimal transport, Adv. Math. 329 (2018), 781-818, arXiv:1610.03339.
- Kreck M., Stolz S., Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993), 825-850.
- Mouillé L., Local symmetry rank bound for positive intermediate Ricci curvatures, Geom. Dedicata 216 (2022), 23, 15 pages, arXiv:1901.05039.
- Mouillé L., Torus actions on manifolds with positive intermediate Ricci curvature, J. Lond. Math. Soc. 106 (2022), 3792-3821, arXiv:2101.05826.
- Nash J.C., Positive Ricci curvature on fibre bundles, J. Differential Geometry 14 (1979), 241-254.
- Poor W.A., Some exotic spheres with positive Ricci curvature, Math. Ann. 216 (1975), 245-252.
- Reiser P., Generalized surgery on Riemannian manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 376 (2023), 3397-3418, arXiv:2103.05517.
- Reiser P., Wraith D.J., Intermediate Ricci curvatures and Gromov's Betti number bound, J. Geom. Anal. 33 (2023), 364, 20 pages, arXiv:2208.13438.
- Sha J.-P., Yang D.-G., Positive Ricci curvature on the connected sums of $S^n\times S^m$, J. Differential Geom. 33 (1991), 127-137.
- Shen Z.M., On complete manifolds of nonnegative $k$th-Ricci curvature, Trans. Amer. Math. Soc. 338 (1993), 289-310.
- Stolz S., Hochzusammenhängende Mannigfaltigkeiten und ihre Ränder, Lecture Notes in Math., Vol. 1116, Springer, Berlin, 1985.
- Stolz S., Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992), 511-540.
- Tuschmann W., Wraith D.J., Moduli spaces of Riemannian metrics, Oberwolfach Seminars, Vol. 46, Birkhäuser, Basel, 2015.
- Vilms J., Totally geodesic maps, J. Differential Geometry 4 (1970), 73-79.
- Wermelinger J., Moduli space of non-negative sectional or positive Ricci curvature metrics on sphere bundles over spheres and their quotients, Geom. Dedicata 216 (2022), 50, 26 pages, arXiv:2006.13690.
- Wilhelm F., On intermediate Ricci curvature and fundamental groups, Illinois J. Math. 41 (1997), 488-494.
- Wraith D.J., Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997), 638-649.
- Wraith D.J., Surgery on Ricci positive manifolds, J. Reine Angew. Math. 501 (1998), 99-113.
- Wraith D.J., On the moduli space of positive Ricci curvature metrics on homotopy spheres, Geom. Topol. 15 (2011), 1983-2015, arXiv:0905.2533.
- Wu H., Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548.
|
|