|
SIGMA 21 (2025), 005, 63 pages arXiv:1912.00261
https://doi.org/10.3842/SIGMA.2025.005
The Ooguri-Vafa Space as a Moduli Space of Framed Wild Harmonic Bundles
Iván Tulli
Department of Pure Mathematics, University of Sheffield, Sheffield, S3 7RH, UK
Received April 08, 2024, in final form January 05, 2025; Published online January 14, 2025
Abstract
The Ooguri-Vafa space is a 4-dimensional incomplete hyperkähler manifold, defined on the total space of a singular torus fibration with one singular nodal fiber. It has been proposed that the Ooguri-Vafa hyperkähler metric should be part of the local model of the hyperkähler metric of the Hitchin moduli spaces, near the most generic kind of singular locus of the Hitchin fibration. In order to relate the Ooguri-Vafa space with the Hitchin moduli spaces, we show that the Ooguri-Vafa space can be interpreted as a set of rank 2, framed wild harmonic bundles over $\mathbb{C}P^1$, with one irregular singularity. Along the way we show that a certain twistor family of holomorphic Darboux coordinates, which describes the hyperkähler geometry of the Ooguri-Vafa space, has an interpretation in terms of Stokes data associated to our framed wild harmonic bundles.
Key words: Higgs bundles; hyperkähler geometry; twistor spaces; Stokes data.
pdf (1110 kb)
tex (193 kb)
References
- Balser W., Jurkat W.B., Lutz D.A., Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
- Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
- Biswas I., Inaba M., Komyo A., Saito M.-H., On the moduli spaces of framed logarithmic connections on a Riemann surface, C. R. Math. Acad. Sci. Paris 359 (2021), 617-624, arXiv:2103.12121.
- Boalch P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
- Boalch P., $G$-bundles, isomonodromy, and quantum Weyl groups, Int. Math. Res. Not. 2002 (2002), 1129-1166, arXiv:math.DG/0108152.
- Boalch P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
- Corlette K., Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.
- Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127-131.
- Dumas D., Neitzke A., Asymptotics of Hitchin's metric on the Hitchin section, Comm. Math. Phys. 367 (2019), 127-150, arXiv:1802.07200.
- Fredrickson L., Exponential decay for the asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 375 (2020), 1393-1426, arXiv:1810.01554.
- Fredrickson L., Mazzeo R., Swoboda J., Weiss H., Asymptotic geometry of the moduli space of parabolic ${\rm SL}(2,\mathbb C)$-Higgs bundles, J. Lond. Math. Soc. 106 (2022), 590-661, arXiv:2001.03682.
- Freed D.S., Special Kähler manifolds, Comm. Math. Phys. 203 (1999), 31-52, arXiv:hep-th/9712042.
- Gaiotto D., Moore G.W., Neitzke A., Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010), 163-224, arXiv:0807.4723.
- Gaiotto D., Moore G.W., Neitzke A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403, arXiv:0907.3987.
- Gibbons G., Hawking S.W., Gravitational multi-instantons, Phys. Lett. B 78 (1978), 430-432.
- Gross M., Wilson P.M.H., Large complex structure limits of $K3$ surfaces, J. Differential Geom. 55 (2000), 475-546, arXiv:math.DG/0008018.
- Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
- Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Phys. D 4 (1981), 26-46.
- Konno H., Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Japan 45 (1993), 253-276.
- Kostant B., Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
- Levinson N., The asymptotic nature of solutions of linear systems of differential equations, Duke Math. J. 15 (1948), 111-126.
- Mazzeo R., Swoboda J., Weiss H., Witt F., Asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 367 (2019), 151-191, arXiv:1709.03433.
- Mehta V.B., Seshadri C.S., Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), 205-239.
- Mochizuki T., The Stokes structure of a good meromorphic flat bundle, J. Inst. Math. Jussieu 10 (2011), 675-712.
- Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque 340 (2011), x+607 pages, arXiv:0803.1344.
- Mochizuki T., Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces, J. Topol. 9 (2016), 1021-1073, arXiv:1508.05997.
- Mochizuki T., Good wild harmonic bundles and good filtered Higgs bundles, SIGMA 17 (2021), 068, 66 pages, arXiv:1902.08298.
- Mochizuki T., Asymptotic behaviour of the Hitchin metric on the moduli space of Higgs bundles, arXiv:2305.17638.
- Nakajima H., Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, in Moduli of Vector Bundles, Lecture Notes in Pure and Appl. Math., Vol. 179, Dekker, New York, 1996, 199-208.
- Neitzke A., Notes on a new construction of hyperkahler metrics, in Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., Vol. 15, Springer, Cham, 2014, 351-375, arXiv:1308.2198.
- Neitzke A., Hitchin systems in ${\mathcal N}=2$ field theory, in New Dualities of Sypersymmetric Gauge Theories, Math. Phys. Stud., Springer, Cham, 2016, 53-77, arXiv:1412.7120.
- Ooguri H., Vafa C., Summing up Dirichlet instantons, Phys. Rev. Lett. 77 (1996), 3296-3298, arXiv:hep-th/9608079.
- Seshadri C.S., Desingularisation of the moduli varieties of vector bundles on curves, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 155-184.
- Simpson C.T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.
- Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
- Simpson C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
- Vagabov A.I., On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class $L_q$, Differ. Equ. 46 (2010), 17-23.
- Wasow W., Asymptotic expansions of ODE's, Dover, New York, 1987.
- Witten E., Gauge theory and wild ramification, Anal. Appl. 6 (2008), 429-501, arXiv:0710.0631.
|
|