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1 Introduction

In this paper, we are dealing with integrable systems, introduced first in [13], on a certain
Banach Lie–Poisson space related to the restricted Grassmannian Grres(H,H+). Let us clarify
that by the term “integrable system” in infinite dimensions we mean a system (or hierarchy)
of differential equations possessing an infinite family of independent commuting integrals of
motion, see, e.g., introduction in [15] or [6]. We do not imply complete integrability and do not
claim to be able to write down general solutions. However, in particular, cases we are able to
linearize these systems and obtain explicit formulas for solutions.

The restricted Grassmannian is an infinite-dimensional Kähler manifold modelled on a Hilbert
space that first appeared in the theory of the Korteweg–de Vries equation, see [27, 29], and
is also related to fermionic second quantization of quantum field theory [1, 20, 35] and loop
groups [26, 29]. Using the theory of Banach Lie–Poisson spaces [22, 23], it was shown in [4]
that the restricted Grassmannian is an affine co-adjoint orbit of the Banach Lie group Ures(H)
consisting of unitary operators on a polarized Hilbert space H with off-diagonal blocks Hilbert–
Schmidt. It turns out that Ures(H) is a Banach Poisson–Lie group in a non-trivial way [34]
and that the restricted Grassmannian inherits from Ures(H) a non-trivial Poisson structure
whose symplectic leaves are the Bruhat–Schubert cells. Moreover, the (co-)tangent space of the
restricted Grassmannian is naturally endowed with a structure of strong infinite-dimensional
hyperkähler manifold [31], which can be identified with a complex affine co-adjoint orbit of the
complexification of Ures(H) [32]. The diffeomorphism between (co-)tangent space and complex
orbit exists for all Hermitian-symmetric affine co-adjoint orbits of compact type [32, 33]. For
Hermitian-symmetric affine co-adjoint orbits of non-compact type, like the restricted Siegel
disc [8], the existence of analogous hyperkähler structures is investigated in [9].

Let us recall that affine co-adjoint orbits of Banach–Lie groups are co-adjoint orbits of their
central extensions. In particular, the Lie algebra ures(H) of the group Ures(H) possesses a central
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extension ũres(H) given by the cocycle called Schwinger term, which describes the failure of the
fermionic second quantization procedure of being a Lie algebra homomorphism [20, 28, 35].
From our point of view, it is interesting that this central extension leads to a bi-Hamiltonian
structure (i.e., a pencil of compatible Poisson brackets) on the predual Banach space u1res(H)
of the Banach Lie algebra ures(H). Namely, the Banach Lie–Poisson bracket of the central
extension of u1res(H) as introduced in [4] leads to the pencil of Poisson brackets on u1res(H) if
we reinterpret the variable of central extension as a pencil parameter. In this approach, we can
discover a version of a “frozen bracket” by Mishchenko and Fomenko [7], but with differences
due to the subtleties of the infinite-dimensional case. In the paper [13], a family of Casimirs
for this pencil was studied. Using Magri method, an infinite family of integrals of motion in
involution for a hierarchy of Hamilton equations is constructed.

Many properties of this hierarchy of equations were studied in the papers [12, 13, 21] and
more recently in [14]. These papers also include some examples, including finite-dimensional
ones. Moreover, the paper [21] describes possible physical interpretation of these integrable
systems to the description of the interaction of electromagnetic waves with a nonlinear dielectric
medium, including Kerr effect and parametric conversion. Finding more applications of the
results is still an open problem. The aim of the present paper is to present a more geometrical
picture of some of the results mentioned above, and to study the flows induced by those equations
on the set of partial isometries.

Note here that the set of partial isometries of a given Hilbert space (or even in an abstract C∗

or W ∗-algebra) possesses a structure of Banach Lie groupoid, see [2, 25]. An analogous structure
can also be introduced for the set of partial isometries associated to the restricted Grassmannian,
see [11].

The paper is organized as follows. Section 2 is devoted to preliminary notions about Banach
Lie–Poisson spaces, the restricted Grassmannian and to the construction of a pencil of Poisson
brackets. Section 3 recalls the construction of a hierarchy of integrable systems from [13] adapt-
ing some formulas to the particular case discussed in the present paper. Section 4 describes
the momentum map for the hierarchy and comments on the structure of the symplectic leaves.
Section 5 deals with the particular case of the equations under an assumption that one diagonal
block vanishes. Under this condition the system descends to the Banach Lie groupoid of partial
isometries. The partial isometries evolve in a particular way which preserves the initial space.
An example solution in the case of partial isometries of rank one is also presented. Section 6 is
dedicated to studying the considered system when restricted to a family of particular coadjoint
orbits for the coadjoint action of the central extension Ũres(H) of the Banach Lie group Ures(H),
which are diffeomorphic (even symplectomorphic) to the restricted Grassmannian Grres(H,H+).
It was shown in [13] that using homogeneous coordinates on Grres(H,H+) the systems become
linear. In this section, a more general result is obtained — namely that the systems become linear
on the coadjoint orbit itself. A solution for some equations from the hierarchy on Grres(H,H+)
is presented.

2 Restricted Grassmannian, related Banach Lie algebras,
and Poisson brackets

In this section, we will recall necessary information about the restricted Grassmannian and
objects around it, which will be used in the paper. More detailed exposition and background
can be found, e.g., in [4, 13, 20, 22, 26, 35].

A fundamental notion needed in the present paper is the notion of Banach Lie–Poisson space,
which was introduced in the paper [22, Definition 4.1 and Theorem 4.2]. It was useful, e.g., in
the study of such integrable systems as the infinite Toda lattice [24]. Later the notion was
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also extended to arbitrary duality pairing in [34, Definition 3.12 and Theorem 3.14], but this
extension is not used in the present paper.

Definition 2.1. A Banach Lie–Poisson space is a Banach space g∗ predual to a Banach Lie
algebra g such that g∗ ⊂ g∗ is preserved by the coadjoint action ad∗ : g∗ → g∗, ad∗

g g∗ ⊂ g∗
together with the canonical structure of Banach Poisson manifold given by the bracket

{f, g}(µ) = ⟨µ, [Df(µ), Dg(µ)]⟩

for f, g ∈ C∞(g∗).

In the formula above, we treat the derivatives Df(µ) and Dg(µ) as elements of the Banach
Lie algebra (g∗)

∗ = g. The Hamiltonian vector field for a Hamiltonian h ∈ C∞(g∗) with respect
to this bracket assumes the form

Xh(µ) = − ad∗
Dh(µ) µ. (2.1)

Now, in order to define the restricted Grassmannian, we consider a complex separable Hilbert
space H with a fixed polarization, i.e., orthogonal decomposition

H = H+ ⊕H−. (2.2)

We will denote by P+ and P− the orthogonal projectors onto H+ and H− respectively. It is
usually assumed that both closed subspaces H± are infinite-dimensional. Finite-dimensional
case can also be studied. However, in that case some geometrical properties break down, e.g.,
Grres(H,H+) as defined below is no longer a homogeneous space (in particular, it contains
Grassmannians of subspaces of different fixed finite dimensions). An example of solution of the
equations considered in the present paper in the finite-dimensional case was presented in [14].

Given the polarization (2.2), one introduces a block decomposition of an operator A acting
on H

A =

(
A++ A+−
A−+ A−−

)
. (2.3)

To simplify the notation, we will sometimes identify the operators A±± : H± → H± with
P±AP± : H → H when it will lead to no confusion.

Let Lp(H) denote the Schatten class of operators acting on H equipped with the norm

∥A∥p =
(
Tr |A|p

)1/p
.

The Lp(H) spaces are (not closed) ideals in the C∗-algebra L∞(H) of bounded operators in H.
Note that norm-closure of any space Lp(H) is the ideal of compact operators, which is the only
closed ideal in L∞(H). In particular, L1(H) denotes the ideal of trace-class operators and L2(H)
is the ideal of Hilbert–Schmidt operators. An important property is that the dual spaces of these
ideals are L∞(H) and L2(H) respectively and the pairing is given by the trace.

Definition 2.2. The restricted Grassmannian Grres(H,H+) is the set of closed subspaces
W ⊂ H such that

(i) the orthogonal projection p+ : W → H+ is a Fredholm operator;

(ii) the orthogonal projection p− : W → H− is a Hilbert–Schmidt operator.

It is sometimes useful to work with orthogonal projection onto the elementW ∈ Grres(H,H+),
which we will denote by PW . In this way, one can identify the set Grres(H,H+) with the set of
orthogonal projections {PW |W ∈ Grres(H,H+)} in H.

In the paper [30], it was demonstrated that one can easily describe the projections coming
from Grres(H,H+).
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Proposition 2.3.

W ∈ Grres(H,H+) ⇐⇒ PW − P+ ∈ L2(H).

One also introduces the Banach Lie group Ures(H) acting transitively on Grres(H,H+),

Ures(H) :=
{
u ∈ U(H) | [u, P+] ∈ L2(H)

}
,

where U(H) is the full unitary group of operators acting on H. The Banach Lie algebra
of Ures(H) is

ures(H) :=
{
X ∈ L∞(H) | X∗ = −X, [X,P+] ∈ L2(H)

}
.

Note that the commutator condition in these definitions means that off-diagonal blocks of the
operators with respect to the block decomposition (2.3) are Hilbert–Schmidt operators. Instead
of considering the commutator with P+, one can equivalently write this condition as [u, ϵ] = 0
with an involution ϵ = P+−P− = 2P+−1. In the case of the group Ures(H), invertibility implies
that diagonal blocks are Fredholm.

The restricted Grassmannian Grres(H,H+) can be viewed as the homogeneous space Ures(H)/
(U(H+) × U(H−)), where U(H+) × U(H−) is the stabilizer of H+ with respect to the natural
action. Moreover, the group Ures(H) possesses a structure of Banach Poisson–Lie group, see [34,
Theorem 7.12] and the subgroup U(H+)×U(H−) is a Banach Poisson–Lie subgroup [34, Propo-
sition 8.2]. Consequently, the restricted Grassmannian is not only a symplectic manifold (as
affine coadjoint orbit, see [4]) but admits also a non-trivial Bruhat Poisson structure, see [34,
Theorem 8.3].

In the papers [4, 23], a structure of Banach Lie–Poisson space on the predual

u1res(H) :=
{
µ ∈ ures(H) | µ++ ∈ L1(H+), µ−− ∈ L1(H−)

}
of ures(H) was investigated, see Definition 2.1. The duality pairing between µ ∈ u1res(H) and
A ∈ ures(H) is given by

⟨µ,A⟩ := Trres(µA), (2.4)

where Trres is the restricted trace defined on u1res(H) by Trres µ := Tr(µ+++µ−−). Note that Trres
is defined on a larger domain than L1(H) and it coincides with the standard trace Tr on trace-
class operators. The properties of the restricted trace are similar to the properties of the standard
trace but one needs to be more careful. For instance, one has

Trres(µν) = Trres(νµ) (2.5)

for µ ∈ u1res(H) and ν ∈ ures(H), see [13] for details.
From the pairing (2.4), we conclude that

(
u1res(H)

)∗ ∼= ures(H), i.e., the Banach space u1res(H)
is predual to ures(H). It is straightforward that u1res(H) is preserved by the coadjoint action due
to the fact that Lp spaces are ideals. Thus, u1res(H) is a Banach Lie–Poisson space with the
Poisson bracket

{f, g}0(µ) = Trres
(
µ[Df(µ), Dg(µ)]

)
. (2.6)

Next step is to construct a central extension of ures(H) by a cocycle called the Schwinger
term (see [4, 13, 20, 28, 35])

s(X,Y ) = Tr(X+−Y−+ − Y+−X−+), (2.7)
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where X,Y ∈ ures(H). The cocycle s gives rise to a Banach Lie algebra structure on

ũres(H) := ures(H) ⊕ iR

with the following Lie bracket [(X, γ), (Y, γ′)] =
(
[X,Y ],−s(X,Y )

)
.

Naturally, the predual of ũres(H) is ũ1res(H) := u1res(H) ⊕ iR with the pairing given by
⟨(µ, γ), (X, γ)⟩∼ = Trres(µX) + γλ, for µ ∈ u1res(H), X ∈ ures(H), γ, λ ∈ iR. In consequence, the
Banach space ũ1res(H) also possesses a structure of Banach Lie–Poisson space and the Poisson
bracket is given by

{F,G}(µ, γ) = ⟨(µ, γ), [DF (µ, γ), DG(µ, γ)]⟩∼
= Trres

(
µ[D1F (µ, γ), D1G(µ, γ)]

)
− γs(D1F (µ, γ), D1G(µ, γ)),

where D1 is the derivation with respect to the first argument of functions F,G ∈ C∞(ũ1res(H)
)
.

Note that since the extension is central, there is no derivative with respect to γ in this Poisson
bracket. Thus, we can consider the variable γ as a parameter and obtain a pencil of Poisson
brackets on u1res(H)

{f, g}γ(µ) = {f, g}0(µ) − γ{f, g}s(µ) (2.8)

for f, g ∈ C∞(u1res(H)
)
, where {·, ·}0 is the Lie–Poisson bracket (2.6) of u1res(H) and {·, ·}s is the

Schwinger bracket

{f, g}s(µ) = s(Df(µ), Dg(µ)) = Tr(Df(µ)+−Dg(µ)−+ −Dg(µ)+−Df(µ)−+). (2.9)

Remark 2.4. While working with the restricted trace one needs to keep in mind that in general
it is not possible to perform cyclic permutations in expressions containing commutators. As an
example, consider the Schwinger term (2.7) which can be expressed as

s(X,Y ) = Trres
(
X[Y, P+]

)
, (2.10)

where X and Y belong to ures(H). The result of a cyclic permutation would be, for example,
Trres(P+[X,Y ]), which does not make sense in general.

If one disregards that for a second, one can write a formal expression

{f, g}s(µ) = −Trres
(
P+[DF (µ), DG(µ)]

)
.

It looks just like a “frozen bracket” discovered by Mishchenko and Fomenko, but the freezing
point P+ does not lie in the Banach Lie–Poisson space. See, e.g., [5, 7] for the review of this
approach in the finite-dimensional setting. Generally when one considers a Banach Lie–Poisson
bracket on the predual g∗ of a Banach Lie algebra, one can consider the freezing point as any
element of g∗. However, the formula makes sense also for an element of g∗, which in infinite-
dimensional case can be larger. Additionally, the closed subspace spanned by the commutators
of elements in g can be significantly smaller than the whole g even taking into account zero-trace
condition, see, e.g., [16] and references therein. Regretfully in the case we consider, P+ does not
belong even to the dual of the subspace generated by commutators of operators from ures(H).
Even though, this insight allows one to correctly predict the form of the Casimir functions.

There exists a central U(1)-extension Ũres(H) of the group Ures(H) for which ũres(H) is the
Lie algebra. Note that there is no continuous global cross-section Ũres(H) → Ures(H). For the
details of the construction of Ũres(H), we refer the reader to [20, 26, 35]. For the purpose of this
paper it is enough to know the form of the coadjoint action of Ũres(H) on ũ1res(H), which can be
found in [4, 8, 13]

Ad∗
Γ(µ, γ) =

(
g−1µg + γ

(
P+ − g−1P+g

)
, γ
)
, (2.11)

where Γ ∈ Ũres(H) projects down to g ∈ Ures(H).
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3 Hierarchy of integrable systems on u1
res(H)

In order to introduce the integrable systems, which are the subject of this paper, we are looking
for Casimirs of the pencil (2.8), i.e., a family of functions Inγ on u1res(H) such that

{Inγ , ·}γ = 0. (3.1)

Following the viewpoint of Remark 2.4 it is natural to apply a kind of “shift of argument”
approach to functions Trres µ

n, which are Casimirs for {·, ·}0. In this case, the argument would
need to be shifted by the operator P+, which, as mentioned before, does not belong to u1res(H).
In effect the trace Trres would not make sense. The idea is to add extra terms to the Casimirs
for the formula to be well defined. In [13], a family of Casimirs was found following this general
idea (see formula (3.7) there). Originally, it was written for the complex Banach Lie–Poisson
space gl1res(H) := u1res(H) ⊕ iu1res(H) but we present here the expression adapted to the case of
the real Banach Lie–Poisson space u1res(H)

Inγ (µ) := in+1 Trres
(
(µ− γP+)n+1 − (−γ)n(µ− γP+)

)
. (3.2)

The proof that those are indeed Casimirs goes through the application of the coadjoint repre-
sentation (2.11) of the central extension Ũres(H), see [13, equation (3.2)].

We will use the following fact from the Magri method approach (see, e.g., [5, 17, 18] or [13,
Appendix B]).

Proposition 3.1. The coefficients of the expansion of the Casimirs of the Poisson bracket {·, ·}γ
in terms of the pencil parameter γ are in involution with respect to all the brackets from this
pencil. In consequence, the flows of the associated Hamiltonian vector fields commute and are
contained in the intersection of the symplectic leaves of those brackets.

Here, for simplicity, we expand the Casimirs into the series with respect to the parameter −γ
instead. We denote by Wn

k the polynomials defined by (µ + γP+)n =
∑n

k=0 γ
kWn

k (µ). They
are polynomials of degree n− k in µ and contain up to k occurrences of the projector P+. This
leads to the expansion of Casimirs in the form

Inγ (µ) = in+1
n∑

k=0

(−γ)k TrresW
n+1
k (µ) + in+1(−γ)n Trres µ. (3.3)

In this way, we obtain a family of functions on u1res(H)

hnk(µ) = in+1 TrresW
n+1
k (µ), 0 ≤ k ≤ n. (3.4)

Plugging in the formula (3.4) into the condition (3.1) gives rise to a bi-Hamiltonian hierarchy
of equations of motion

{hnk , ·}0 = {hnk+1, ·}s (3.5)

known also as a Magri chain. Iterating the relationship (3.5), we conclude that functions hnk are
in involution on u1res(H) for all Poisson brackets {hnk , hml }0 = {hnk , hml }s = 0 and thus can be
considered as a family of Hamiltonians for an integrable system.

Note that we discarded the last term of (3.3) as it is a Casimir for {·, ·}0 and {·, ·}s. Hence,
does not lead to any dynamics.

The Hamilton equations for the functions hnk with respect to the Lie–Poisson bracket {·, ·}0
assume the following Lax form:

∂

∂τnk
µ = −in+1(n+ 1)[µ,Wn

k (µ)] (3.6)
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or, equivalently,

∂

∂τnk
µ = in+1(n+ 1)[P+,W

n
k−1(µ)], (3.7)

where we have used the bi-Hamiltonian condition (3.5) and where τnk denotes the time variable
corresponding to the Hamiltonian hnk . However, in equations (3.6) and (3.7) the functions Wn

k

are linearly dependent. For instance, one can observed that

W k
k−1(µ) = µP+ + P+µ+ (k − 2)P+µP+

for k ≥ 2. Consequently, the family
{
W k

k−1(µ)
}
k≥2

spans only a two-dimensional subspace
generated by µP+ + P+µ and P+µP+. Thus, one might modify the system in question by
introducing linearly independent homogeneous polynomials

Hn
k (µ) :=

∑
i0,i1,...,in∈{0,1}
i0+···+in=k

P i0
+ µP

i1
+ µ · · ·µP

in
+ (3.8)

of degree n ∈ N in the operator variable µ ∈ u1res(H) and degree k in the operator P+, where k ≤
n+1. In [13, Proposition 3.1], it was shown that one can express the polynomials {Wn

k }0≤k≤n∈N
as linear combinations of {Hn

k }0≤k≤n+1∈N and vice-versa. Now consider the following hierarchy
of Lax equations:

∂

∂tnk
µ = in+1[µ,Hn

k (µ)], (3.9)

where n ∈ N and k = 1, . . . , n+ 1 and the time variables tnk are linear combinations of the time
variables τnk . The corresponding flows commute since the right-hand side of (3.9) are vector
fields on u1res(H) that can be expressed as linear combinations of the commuting Hamiltonian
vector fields in (3.6) corresponding to the functions hnk . These flows are still bi-Hamiltonian
with respect to {·, ·}0 and {·, ·}s (since the space of Hamiltonian vector fields is a vector space).
However, the explicit expression for the corresponding Hamiltonians is not easy to write.

Moreover, the polynomials {Hn
k }0≤k≤n+1∈N satisfy the recurrence relation

Hn+1
k+1 (µ) = P+µH

n
k (µ) + µHn

k+1(µ) (3.10)

for n ∈ N, where for consistency we use the convention Hn
k = 0 for k > n+ 1 or k < 0. One can

also write a “dual” recurrence relation by applying adjoint to (3.10)

Hn+1
k+1 (µ) = Hn

k (µ)µP+ +Hn
k+1(µ)µ (3.11)

for n ∈ N.

Proposition 3.2. The diagonal blocks µ++ and µ−− are constants of motion ∂
∂tnk

µ++ = 0,
∂

∂tnk
µ−− = 0.

Proof. A commutator of an operator with P+ has diagonal blocks equal to zero. Thus,
from (3.7) it follows that the flows given by Hamiltonians hnk keep the diagonal blocks constant.
Equations (3.9) are linear combinations of equations (3.7), so they retain this property. ■

This fact has also two geometrical explanations, which we will present in the next section.
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4 Momentum map and symplectic leaves

4.1 Momentum map and Noether theorem

First, let us notice that there is a natural coadjoint action of the Banach Lie group Ures(H) on the
Banach Lie–Poisson space u1res(H). We will write the momentum map in this case following the
conventions from [19, Definition 11.2.1]. Since we are dealing with non-reflexive Banach spaces
here, we replace the dual of the Lie algebra with a predual according to [22, Definition 8.1].

More precisely, u1res(H) sits inside the dual space to the Banach Lie algebra of Ures(H), and
is stable by coadjoint action. The left coadjoint action g · µ of g ∈ Ures(H) on µ ∈ u1res(H) is
defined by duality as

⟨g · µ, ξ⟩ :=
〈
µ,Ad−1

g (ξ)
〉

= Trres µg
−1ξg = Trres gµg

−1ξ =
〈
gµg−1, ξ

〉
,

where µ ∈ u1res(H), ξ ∈ ures(H) and g ∈ Ures(H), where we have used the property (2.5).
The non-degeneracy of the duality pairing (2.4) then implies g · µ = gµg−1 = Ad∗

g(µ). The
infinitesimal generator Xξ for the infinitesimal coadjoint action of ξ ∈ ures(H) is defined as

Xξ(µ) = − ad∗
ξ(µ) = −Trres µ[ξ, ·], (4.1)

where µ ∈ u1res(H). Using (2.5) and the duality pairing (2.4), it follows that Xξ(µ) = [ξ, µ] ∈
u1res(H).

Definition 4.1. A momentum map for the action of a Lie group G, with Lie algebra g, on
a Poisson manifold M is a function J : M → g∗ such that, for µ ∈ M and ξ ∈ g, the func-
tion µ 7→ jξ(µ) := ⟨J(µ), ξ⟩ is a Hamiltonian for the infinitesimal action of ξ on M , i.e.,

{jξ, f}(µ) = Xξ(f)(µ) =
〈
Df(µ), Xξ(µ)

〉
.

In our case, the momentum map takes naturally values in the predual u1(H+) ⊕ u1(H−) of
the Lie algebra u(H+) ⊕ u(H−):

Proposition 4.2. The momentum map J : u1res(H) → u1(H+) ⊕ u1(H−) for the action of the
subgroup U(H+)×U(H−) ⊂ Ures(H) on the Poisson manifold

(
u1res(H), {·, ·}0

)
is J(µ) = pD(µ),

where pD is the projection onto block-diagonal part

pD(µ) = P+µP+ + P−µP− ∈ u1(H+) ⊕ u1(H−).

Moreover, it is equivariant with respect to the action of the group U(H+) × U(H−).

Proof. Note that it is just the usual momentum map for the action of the Lie subalgebra h ⊂ g
on the Lie–Poisson space g∗ (or g∗ in finite-dimensional context), see, e.g., [19, Example 11.4.g].

Let us however go through the calculations to better illustrate the current context. Com-
paring (4.1) with (2.1), we see that the vector field Xξ generated by the infinitesimal coadjoint
action of ξ ∈ u(H+) ⊕ u(H−) is the Hamiltonian vector field corresponding to a function jξ
whose differential Djξ(µ) at µ is simply ξ. One sets the integration constant to zero in order to
obtain a linear map jξ(µ) = ⟨µ, ξ⟩. Now, since ξ belongs to the Lie subalgebra u(H+) ⊕ u(H−),
we would like to write jξ(µ) as a pairing with an element in u1(H+) ⊕ u1(H−). Using the block
decomposition (2.3), one sees that jξ(µ) = ⟨pD(µ), ξ⟩, where pD(µ) ∈ u1(H+) ⊕ u1(H−). It
follows that the momentum map J : u1res(H) → u1(H+) ⊕ u1(H−) for the infinitesimal coadjoint
action of u(H+) ⊕ u(H−) is J(µ) = pD(µ). Equivariance means J(g · µ) = Ad∗

g J(µ) and is now
straightforward. ■

Lemma 4.3. The family of Casimirs (3.2) is preserved by the action of the subgroup U(H+) ×
U(H−) ⊂ Ures(H).
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Proof. Since the subgroup U(H+) × U(H−) ⊂ Ures(H) is the stabilizer of P+, for any ele-
ment u ∈ U(H+) × U(H−), we have u∗P+u = P+. Using the formula (3.2), we obtain

Inγ (u∗µu) := in+1 Trres
(
(u∗µu− γP+)n+1 − (−γ)n(u∗µu− γP+)

)
= in+1 Trres u

∗((µ− γP+)n+1 − (−γ)n(µ− γP+)
)
u.

We get the claim using (2.5). ■

Lemma 4.4. The Hamiltonians (3.4) are also invariant with respect to the action of the sub-
group U(H+) × U(H−) ⊂ Ures(H).

Proof. Since we have

(u∗µu+ γP+)n = u∗(µ+ γP+)nu = u∗

(
n∑

k=0

γkWn
k (µ)

)
u,

we conclude that Wn
k (u∗µu) = u∗Wn

k (µ)u. In effect hnk(u∗µu) = hnk(µ) by application of for-
mula (2.5). ■

Corollary 4.5. By two previous lemmas, it follows by means of the Noether theorem (see,
e.g., [22, Theorem 8.2]) that the level sets J−1(c), c ∈ u1(H+) ⊕ u1(H−), are conserved by the
Hamiltonian flows, which is equivalent to the observation that µ++ and µ−− are constant.

Remark 4.6. While the Casimirs (3.2) are preserved by the coadjoint action of the central
extension Ũres(H) of Ures(H), the Hamiltonians are not. It is a consequence of the fact that
this action maps µ to a first order polynomial in γ, see (2.11). Hence, it mixes the terms in the
series expansion (3.3).

4.2 Magri method and symplectic leaves

The second observation is related to the symplectic leaves. It is a consequence of the bi-
Hamiltonian structure (3.5) and Magri method that the Hamiltonian flows corresponding to
the family of functions {hnk} defined in (3.4) preserve the symplectic leaves of both Poisson
structures appearing in the Poisson pencil. In our case, it means that both the symplectic leaves
of the Lie–Poisson bracket {·, ·}0 and the one given by Schwinger term {·, ·}s (2.9) are preserved.

Using equation (2.10), it is easy to see that the kernel of the bilinear mapping s contains the
space of block-diagonal operators which are exactly those commuting with P+. Moreover, when
restricted to the complement of block-diagonal operators given by off-diagonal operators, the
Schwinger term is non-degenerate. In particular, when restricted to the subspace

m =

{(
0 µ+−

−(µ+−)∗ 0

)
| µ+− ∈ L2(H+,H−)

}
⊂ u1res(H),

it defines a symplectic bilinear form

s(µ, ν) = Tr(−µ+−ν
∗
+− + ν+−µ

∗
+−) = 2i Im Tr ν+−µ

∗
+−,

which is used to construct the symplectic form on Grres(H,H+), see, e.g., [4, 35]. More precisely,
the symplectic form on the Banach space m ∼= TH+ Grres(H,H+) is propagated to the whole
tangent bundle by translation with the group Ures(H) (since Grres(H,H+) is a homogeneous
space with respect to this group). Since the Poisson bracket {·, ·}s is constant, it follows that
the symplectic leaves for {·, ·}s are the affine subspaces of u1res(H) defined by(

A 0
0 D

)
+ m ⊂ u1res(H)
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for fixed operators A ∈ u1(H+) and D ∈ u1(H−). In consequence, we again conclude that
diagonal blocks of µ are constant with respect to the flows given by (3.6). For more discussions
about symplectic leaves in Banach Lie–Poisson spaces, see [3].

5 Equations on the groupoid of partial isometries

In this section, we will restrict our attention to a special case of equations (3.9) given by the
condition µ++ = 0, which give rise to the evolution on the set of partial isometries.

Let us recall briefly here that by a partial isometry we mean an operator u acting on
the Hilbert space H such that it restricts to a unitary map between (keru)⊥ and imu. The
space (keru)⊥ is called the initial space of partial isometry u and will be denoted s(u), while the
space imu is called the final space and will be denoted t(u). Alternatively, partial isometries can
be characterized by any of the conditions u∗uu∗ = u∗, uu∗u = u, u∗u is a projection (on s(u)),
uu∗ is a projection (on t(u)). The set of all partial isometries of the Hilbert space has a natural
structure of Banach Lie groupoid, see [25]. In the sequel, we will use also partial isometries
between two different Hilbert spaces.

Let us begin by presenting an easier situation — namely we will restrict our attention to the
hierarchy of equations (3.9) with k = 1.

5.1 Special case of the hierarchy of equations with k = 1

In this situation, the operators (3.8) contain only one occurrence of P+, and the hierarchy of
equations (3.9) assume the explicit form

∂

∂tn1
µ = in+1

[
µ, P+µ

n + µP+µ
n−1 + · · · + µnP+

]
.

After expanding the commutator and canceling out most of the terms we arrive at

∂

∂tn1
µ = −in+1

[
P+, µ

n+1
]

(5.1)

or in the block decomposition

∂

∂tn1
µ++ = 0,

∂

∂tn1
µ+− = −in+1

(
µn+1

)
+−,

∂

∂tn1
µ−+ = in+1

(
µn+1

)
−+
,

∂

∂tn1
µ−− = 0,

(5.2a)

(5.2b)

(5.2c)

where equations (5.2a) and (5.2c) are also consequences of Proposition 3.2. Following the idea
from [10], we get the following proposition.

Proposition 5.1. In the case µ++ = 0, the modulus |µ−+| =
√
µ∗−+µ−+ is constant with respect

to times tn1 .

Proof. One can straightforwardly compute that

∂

∂tn1
(µ+−µ−+) = in+1

[(
µn+1

)
++
, µ++

]
.

Now if we assume that the block µ++ = 0 for all tn1 , we see that |µ−+| is constant. ■
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Corollary 5.2. The hierarchy of equations (5.1) induces a family of commuting flows on the
set of partial isometries u with fixed initial space s(u), depending on a fixed positive opera-
tor B ∈ L1

++ such that imB = s(u) and a fixed skew adjoint operator D ∈ L1
−−.

Proof. Consider µ given in the following form:

µ =

(
0 −Bu∗
uB D

)
. (5.3)

In this formula, µ−+ is given by the polar decomposition

µ−+ = uB, (5.4)

where u : H+ → H− is the unique partial isometry satisfying (5.4) with initial space s(u) = imB.
By Proposition 3.2, µ++ = 0 and µ−− = D are constants of motion for all the flows in the

hierarchy. By Proposition 5.1, if additionally µ++ = 0, the modulus |µ−+| = B is also constant.
Thus, the form of the operator µ is preserved. By uniqueness of the polar decomposition, each
flow on µ−+ given in (5.2b) induces a flow on u, which fixes the initial space s(u). ■

Remark 5.3. Observe that in general the dependence with respect to time of the partial isom-
etry u coming from the polar decomposition needs not to be smooth (or even continuous). It
can be demonstrated even in the simple case of a curve ϕ(t) = Mt for a non-zero matrix M .
Obviously, at the point t = 0 the partial isometry from the polar decomposition of ϕ(t) is zero,
while it is a non-zero operator for other values of t.

Proposition 5.4. The equations on the partial isometry u induced by the hierarchy of equa-
tions (5.2b) can be written as follows:

∂

∂tn1
u = in+1(µn)−−u (5.5)

for µ given by (5.3).

Proof. From the condition µ++ = 0 it follows that
(
µn+1

)
−+

= (µn)−−µ−+. Thus, the equa-
tion (5.2b) assumes the form

∂

∂tn1
uB = in+1(µn)−−uB.

Thus, equation (5.5) is satisfied on imB and by continuity of u, also on imB. By definition,
u is zero on imB

⊥
, what implies the stated result. ■

Remark 5.5. The partial isometry u can be extended trivially to a partial isometry in H. In
this way, we obtain a family of differential equations on the Banach Lie groupoid of partial
isometries U(H) constructed in [25] generating a flow on s−1

(
(kerB)⊥

)
∩ t−1(Gr(H−)) ⊂ U(H),

where Gr(H−) is the Grassmannian of all closed subspaces of H−.

For values n = 1 and n = 2, the flow (5.5) is linear

∂

∂t11
u = −Du, ∂

∂t21
u = i

(
uB2 −D2u

)
,

while for k = 3 it assumes the following form ∂
∂t31
u = −DuB2 − uB2u∗Du+D3u, which taken

together with its adjoint can be seen as a pair of coupled Riccati equations on u and u∗.
The projector u∗u onto the initial space s(u) is naturally constant by construction, but the

projector uu∗ onto the final space t(u) satisfies the following equation in Lax form

∂

∂tn1
(uu∗) = −in+1[uu∗, (µn)−−],

which can be obtained directly from (5.5). Note that the right-hand side depends on u and u∗,
so this equation cannot be viewed as an independent equation on the Grassmannian of H.
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5.2 The hierarchy of equations in the general case k ≤ n + 1

Now let us return to the study of the general case for an arbitrary value of k. First of all, we
will need a formula that comes from applying the recurrence (3.10) twice

Hn
k (µ) = P+µP+µH

n−2
k−2 (µ) +

(
P+µ

2 + µP+µ
)
Hn−2

k−1 (µ) + µ2Hn−2
k (µ). (5.6)

Using this formula, we will be in position to prove the following fact.

Proposition 5.6. In the case µ++ = 0, the modulus |µ−+| is constant along the bi-Hamiltonian
flows for all tnk , n ∈ N, k ≤ n+ 1.

Proof. Just like previously, we compute the time derivative of µ∗−+µ−+ but we use the equation
in the general form (3.9). After some work, we obtain

∂

∂tnk
(µ∗−+µ−+) = in+1P+

([
µ2, Hn

k (µ)
]

+ µP+[Hn
k (µ), µ] + [Hn

k (µ), µ]P+µ
)
P+.

Note that all terms but the first one vanish since µ++ = P+µP+ = 0. Now we need to prove
that the first term vanishes as well. To this end, let us apply formula (5.6) to one term of the
commutator and the adjoint formula to the other. We assume the convention that Hn

k (µ) = 0
for k > n + 1, so we can avoid worrying about the range of indices k and n. In this way, we
obtain after some cancellations

P+

[
µ2, Hn

k (µ)
]
P+ = P+µ

2
(
Hn−2

k−2 (µ) +Hn−2
k−1 (µ)

)
µP+µP+

− P+µP+µ
(
Hn−2

k−2 (µ) +Hn−2
k−1 (µ)

)
µ2P+.

Again, we conclude that this expression vanishes if µ++ = 0. ■

As in Corollary 5.2, when using the polar decomposition of µ−+ = uB, the hierarchy of
equations (3.9) gives rise to a family of commuting equations on the partial isometry u, which
can be written down explicitly.

Proposition 5.7. Assume that µ++ = 0. The equations for the evolution of the partial isome-
try u assume the form

∂

∂tnk
u = in+1

(
µHn−1

k−1 (µ)
)
−−u (5.7)

for n ∈ N, k ≤ n+ 1.

Proof. Directly from equation (3.9) using the condition P+µP+ = 0, we get

∂

∂tnk
uB = in+1P−[µ,Hn

k (µ)]P+ = in+1(P−µH
n
k (µ)P+ − P−H

n
k (µ)P−µP+).

Now, we use the rule (3.11) in the first term and the rule (3.10) in the second and obtain

∂

∂tnk
uB = in+1P−

(
µHn−1

k−1 (µ) + µHn−1
k (µ) − P+µH

n−1
k−1 (µ) − µHn−1

k (µ)
)
uB.

After simplifying the expression, we obtain expression (5.7) multiplied on the right by the
operator B. The same argument as in the proof of Proposition 5.4 gives the stated result. ■

Proposition 5.8. Since µ++ = 0, the right-hand side of equation (5.7) vanishes for k > n/2+1.

Proof. Recall from formula (3.8) that Hn−1
k−1 is a sum of expressions of the form P i0

+ µP
i1
+ µ · · ·

µP
in−1
+ with i0, i1, . . . , in−1 ∈ {0, 1} and i0 + i1 + · · ·+ in−1 = k−1. The expressions ending with

a P+ will not contribute in formula (5.7), since
(
µP i0

+ µP
i1
+ µ · · ·µP+

)
−− = 0, because P+P− = 0.

Moreover, if k > n/2+1 all expressions of the form P i0
+ µP

i1
+ µ · · ·µP

in−2
+ µ vanish, since necessarily

at least two subsequent indices ij , ij+1 need to be non-zero and P
ij
+ µP

ij+1

+ = µ++ = 0, see
also [14, Proposition 2]. ■
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5.3 Example: rank one case

Following the ideas from the finite-dimensional case described in [14], we will now present an
example of solutions in the case when the rank of the partial isometry u is equal to 1. The
approach we use is a generalization of the methods presented in [14, Section 4]. From the
properties of polar decomposition (see Corollary 5.2), it follows that also dim imB = 1. Since B
and iD are self adjoint trace-class and thus compact, one can choose an orthonormal basis {ei}
in H+ and {fi} in H− in which they are diagonal. We can further choose the basis in such a way
that imB is spanned by the first basis vector e1, so the operator B can be written as B = b|e1⟩⟨e1|
for some R ∋ b > 0. In consequence, the partial isometry u becomes an operator of the form
u = |ψ⟩⟨e1| for some ψ =

∑∞
j=1 αjfj ∈ H− with norm 1, see also formula (28) in [14] for matrix

expression of u in finite dimensions.
In consequence, we obtain a hierarchy of equations on the single vector ψ on the unit sphere

of H−

∂

∂tnk
ψ = in+1

(
µHn−1

k−1 (µ)
)
−−ψ (5.8)

depending on the single non-zero eigenvalue b of B and (possibly infinitely many) eigenval-
ues d1, d2, . . . ∈ iR of D

Proposition 5.9. The equations for the evolution of the coefficients α1, α2, . . . of the vector ψ
with respect to the arbitrary time tnk are of the form

∂

∂tnk
αj = ipnj,k

(
|α1|2 , |α2|2 , . . .

)
αj ,

where pnj,k are smooth real-valued functions depending on the eigenvalues of the matrices B
and D. Moreover, for fixed n, k, the absolute values of pnj,k are bounded with respect to j by
some sequence of positive constants {wn

k}n≥0,k≥0:∣∣pnj,k(|α1|2 , |α2|2 , . . .
)∣∣ ≤ wn

k .

Proof. We follow the steps of the proof of [14, Proposition 3]. First, we note that Bu∗u = B.
We see that the right-hand side of (5.8) is a sum of terms of the form

in+1
(
Di1uBj1u∗

)
·
(
Di2uBj2u∗

)
· · ·
(
DiluBjlu∗

)
u

= in+1Di1uBj1
(
u∗Di2uBj2

)
·
(
u∗Di3uBj3

)
· · ·
(
u∗DiluBjl

)
u∗u (5.9)

for some i1, . . . , il, j1, . . . , jl ∈ {0, 1, . . . }. In the second line of this formula, we moved the
parentheses in order to get products of terms of the form u∗DsuBr. Then we observe that

u∗DsuBr = br⟨ψ|Dsψ⟩|e1⟩⟨e1| = br
∞∑
i=1

dsi |αi|2 |e1⟩⟨e1|.

Note that dsi are bounded by ∥Ds∥ and the infinite sum above converges in the norm topology.
In the end plugging this equality into (5.9) and summing up, we get the equation of the form

∂

∂tnk
ψ = in+1

∑
i

bki

(
ri∏
j=0

⟨ψ|Dsijψ⟩

)
Dliψ (5.10)

for some ki, li, ri, sij ∈ N. The expression on the right-hand side is a diagonal operator, whose
eigenvalues are denoted by pnj,k, acting on the vector ψ. Splitting this equation into compo-
nents yields the thesis. The functions pnj,k are essentially algebraic combinations of expres-
sions ⟨ψ|Dsψ⟩, which smoothly depend on |α1|2 , |α2|2 , . . . . Moreover, for fixed n and k they
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are bounded by the norm of the operator on the right-hand side of (5.10). This norm in gen-
eral depends on the values of |α1|2 , |α2|2 , . . . , but by means of triangle inequality and the fact
that |αj | ≤ 1, we get the required bound.

It remains to show that the functions pnj,k are real. It follows from the fact that the matrix
in front of the matrix u on the right-hand side of equation (5.7) is skew hermitian. ■

Theorem 5.10. The solution to (5.8) for the case of partial isometries of rank one is the
following:

ψ
(
t11, t

2
1, t

2
2, . . .

)
=

∞∑
j=1

αj

(
t11, t

2
1, t

2
2, . . .

)
fj

for

αj

(
t11, t

2
1, t

2
2, . . .

)
= α0

j exp

(
i

∑
n,k≤n/2+1

pnj,k
(∣∣α0

1

∣∣2 , ∣∣α0
2

∣∣2 , . . . )tnk
)
, (5.11)

where α0
j ∈ C is the initial value of the j-th component of vector ψ. In order to ensure conver-

gence, we assume that the sequence of times tnk satisfies the condition∑
n,k≤n/2+1

wn
k |tnk |

2 <∞. (5.12)

Proof. We consider only k ≤ n/2 + 1 since due to Proposition 5.8 all other flows are trivial.
Using the polar form of the coefficients αj = rje

iφj we obtain from Proposition 5.9 the equations
in the following form:

∂

∂tnk
rj = 0,

∂

∂tnk
φj = pnj,k

(
(r1)

2, (r2)
2, . . .

)
.

In effect we conclude that rj
(
t11, t

2
1, t

2
2, . . .

)
= rj(0, 0, 0, . . . ) =

∣∣α0
j

∣∣ and

φj

(
t11, t

2
1, t

2
2, . . .

)
= φj(0, 0, 0, . . . ) +

∑
n,k≤n/2+1

pnj,k
(
|α0

1|2, |α0
2|2, . . .

)
tnk .

Convergence of this series is ensured by condition (5.12). Combining those results, we ob-
tain (5.11).

Note that since the absolute values of αj are preserved, the norm of the vector ψ is con-
stant. ■

The solution can be alternatively expressed in terms of the operator u as follows. Consider
a sequence of diagonal operators in H− with eigenvalues

Rn,k = diag
(
pnj,k
(∣∣α0

1

∣∣2 , . . . ), j = 1, 2, . . .
)

for n ∈ N, k ≤ n/2 + 1. Now the solution in terms of u looks like this

u
(
t11, t

2
1, t

2
2, . . .

)
= exp

(
iR1,1t

1
1 + iR1,2t

2
1 + iR2,2t

2
2 + · · ·

)
u(0, 0, . . . )

= exp

(
i

∑
n,k≤n/2+1

Rn,kt
n
k

)
u(0, 0, . . . ).

Note that the operators Rn,k depend on the initial value of u.
This approach does not work for partial isometries of higher rank. The solution obtained

here was due to the fact that the operator B acted effectively as a scalar what led to significant
simplification of the equations. That will not be the case even for partial isometries of rank 2. In
a more general case, another approach, possibly involving integrals of motion, would be needed.
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6 Flow on the restricted Grassmannian Grres(H,H+)

6.1 Linearity of the flows on the restricted Grassmannian

Let us consider Ũres(H), the central extension of Ures(H) with Lie algebra ũres(H). It was shown
in [4, Theorem 2.13] that the coadjoint orbits of Ũres(H) acting on ũ1res(H) passing through the
point (0, γ), γ ̸= 0, γ ∈ iR, are diffeomorphic to the restricted Grassmannian Grres(H,H+).
Note that since the extension is central, the coadjoint action (2.11) does not change the second
argument γ and it gives rise to the so-called affine coadjoint action of ures(H) on u1res(H). In
effect, it is possible to view the orbit as a subset of u1res(H). The diffeomorphism is given by

Φγ : Grres(H,H+) ∋W −→ µ = γ(PW − P+) ∈ O(0,γ) ⊂ u1res(H).

Proposition 6.1. An element µ ∈ u1res(H) belongs to the coadjoint orbit O(0,γ) if and only

if 1
γµ+ P+ is an orthogonal projection.

Proof. The inverse of the map Φγ is

Φ−1
γ : O(0,γ) ∋ µ −→ im(p) ∈ Grres(H,H+), where p =

1

γ
µ+ P+. (6.1)

Since Φγ is a diffeomorphism, µ ∈ u1res(H) belongs to the coadjoint orbit O(0,γ) if and only
if 1

γµ+ P+ is a projection PW onto an element W ∈ Grres(H,H+).

Thus, what remains to be proven is that if 1
γµ + P+ is a projection it is necessarily a pro-

jection onto a subspace belonging to Grres(H,H+). That fact follows from Proposition 2.3
since u1res(H) ⊂ L2(H). ■

The coadjoint orbit is preserved by the flows (3.9) and we can restrict the integrable system
to it.

Proposition 6.2. For initial conditions in the coadjoint orbit O(0,γ), the equations (3.9) are
linear.

Proof. By computing the square of the projection p := 1
γµ + P+ and using p2 = p as well as

the block decomposition of µ, we get that

µ2 = γ(µ− µP+ − P+µ) = γ(µ−− − µ++). (6.2)

From this and from Proposition 3.2, we conclude that µ2 is constant and block diagonal. More-
over, breaking it down into block form we conclude

µ++µ+− = −µ+−µ−−, µ−+µ++ = −µ−−µ−+, µ−+µ+− = const,

µ+−µ−+ = const . (6.3)

From (6.1), it follows that the polynomials Hn
k (µ) are at most linear in µ−+ and µ+−. Namely,

whenever we have an expression which contains an even number of those operators, it needs to
be built out of terms like µ−+µ

l
++µ+− or µ+−µ

j
−−µ−+, which can be shown to be equal to

(−1)lµl−−µ−+µ+− or µj−−µ−+µ+− respectively. Hence, they are constant. Analogously, an
expression with an odd number of those operators becomes linear in µ (up to the multiplication
by constant). ■
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6.2 Solutions of the hierarchy on the restricted Grassmannian for k = 1

Let us now consider the open neighborhood ΩH+ of H+ consisting of elements in Grres(H,H+)
such that the projection onto H+ is an isomorphism

ΩH+ = {W ∈ Grres(H,H+) | PW++ = P+PWP+ is invertible in H+}.

A chart ϕH+ on the restricted Grassmannian around H+ is

ϕH+ : ΩH+ → L2(H+,H−), W 7→ ϕH+(W ) = PW−+(PW++)−1, (6.4)

and it inverse is ϕ−1
H+

(A) = Γ(A), where Γ(A) is the graph of an operator. Moreover, the
orthogonal projection on W can be expressed as

PW = (1H+ +A)(1H+ +A∗A)−1(P+ +A∗P−),

see, e.g., [11]. Using (6.4) and (6.1), one has, for µ ∈ O(0,γ) ∩ Φγ(ΩH+),

A = ϕH+ ◦ Φ−1
γ (µ) = µ−+(µ++ + γP+)−1. (6.5)

Conversely, composing the chart ϕ−1
H+

with the diffeomorphism Φγ one obtains a parametrization
of the restricted Grassmannian realized as a coadjoint orbit inside u1res(H)

Φγ ◦ ϕ−1
H+

(A) = γ

(
(1 +A∗A)−1 − 1 (1 +A∗A)−1A∗

A(1 +A∗A)−1 A(1 +A∗A)−1A∗

)
, (6.6)

where A ∈ L2(H+,H−).
Let us now consider the equations (3.9) in terms of an operator A given as (6.5). Note that

relation (6.5) is actually linear in µ from the point of view of evolution according to the equa-
tions (3.9) since µ++ = const. Thus, from Proposition 6.2 we conclude that the equations (3.9)
are also linear when expressed in the chart ϕH+ .

One can also notice that since |A| is constant, we again get the flow on the Banach Lie
groupoid of partial isometries. However, it is not directly related to the case discussed in the
previous section, where we assumed the condition µ++ = 0. Moreover, all equations on the
partial isometry u defined by the polar decomposition A = u |A| are linear.

Let us write down several of the equations in coordinates (6.6). First of all, from (6.2) it
follows that all equations for k = 1 and n odd are trivial since µ2l is diagonal ∂

∂t2l+1
1

A = 0. The
equations for k = 1 and n even assume the form ∂

∂t2l1
A = (−1)liRlA, where

Rl =
(
A(A∗A+ 1)−1A∗)l = const .

In consequence, their solutions are

A
(
t11, t

2
1, t

3
1, . . .

)
= exp

(
−iR1t

2
1 + iR2t

4
1 − iR3t

6
1 + · · ·

)
A(0, 0, . . . )

with respect to the times t11, t
2
1, t

3
1, . . . , where, in order to ensure convergence, we assume that

the times tn1 decrease sufficiently rapidly, i.e.,
∑

n∈N ∥Rn∥
∣∣t2n1 ∣∣2 ≤ ∞.

Acknowledgement

This research of the authors was partially supported by joint National Science Centre, Poland
(number 2020/01/Y/ST1/00123) and Fonds zur Förderung der wissenschaftlichen Forschung,
Austria (number I 5015-N) grant “Banach Poisson–Lie groups and integrable systems”. The
authors would like to thank the Erwin Schrödinger Institute for its hospitality during the the-
matic programme “Geometry beyond Riemann: Curvature and Rigidity” in September 2023.
The stimulating atmosphere of the Workshop on Geometric Methods in Physics in Bia lowieża,
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[12] Goliński T., Odzijewicz A., Some integrable systems on Banach Lie–Poisson space iR ⊕ U1
res, in XXVIII

Workshop on Geometric Methods in Physics, AIP Conf. Proc., Vol. 1191, American Institute of Physics,
2009, 91–97, arXiv:2311.02449.
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