
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 20 (2024), 100, 30 pages

Lagrangian Multiform for Cyclotomic Gaudin Models

Vincent CAUDRELIER a, Anup Anand SINGH a and Benôıt VICEDO b
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Abstract. We construct a Lagrangian multiform for the class of cyclotomic (rational)
Gaudin models by formulating its hierarchy within the Lie dialgebra framework of Semenov-
Tian-Shansky and by using the framework of Lagrangian multiforms on coadjoint orbits.
This provides the first example of a Lagrangian multiform for an integrable hierarchy whose
classical r-matrix is non-skew-symmetric and spectral parameter-dependent. As an impor-
tant by-product of the construction, we obtain a Lagrangian multiform for the periodic Toda
chain by choosing an appropriate realisation of the cyclotomic Gaudin Lax matrix. This
fills a gap in the landscape of Toda models as only the open and infinite chains had been
previously cast into the Lagrangian multiform framework. A slightly different choice of re-
alisation produces the so-called discrete self-trapping (DST) model. We demonstrate the
versatility of the framework by coupling the periodic Toda chain with the DST model and
by obtaining a Lagrangian multiform for the corresponding integrable hierarchy.
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1 Introduction

A characteristic property of an integrable system is that its equations of motion can be seen
as members of a hierarchy of compatible equations. Traditional Lagrangians fail to capture
this notion of commuting (Hamiltonian) flows, or its discrete analog known as multidimensional
consistency [9, 25]. This obstacle to describing integrable hierarchies variationally was overcome
for the first time in [23] by introducing a new object – a Lagrangian multiform – together with
a generalised variational principle applied to an appropriate generalisation of a classical action,
and noticing a fundamental property of the multiform: the so-called closure relation. Since
its introduction, this idea has been developed in several directions. Its connections with more
traditional features of integrability (Lax pairs and Hamiltonian structures, for instance) have
been established in the various realms of integrable systems: discrete and continuous finite-
dimensional systems [11, 27, 36, 43], continuous infinite-dimensional systems – field theories in
1 + 1 dimensions [13, 14, 15, 28, 32, 33, 37] and in 2 + 1 dimensions [26, 34] – and semi-discrete
systems [35]. The relations between discrete and continuous multiforms were explored in [40].
The concept has even been extended to non-commuting flows in [12].

In general, hierarchies of models in d spacetime dimensions are described by a Lagrangian
multiform which is a d-form integrated over a hypersurface of dimension d in a so-called multi-
time space of dimension greater than d to yield an action functional depending not only on
the field configurations but also on the hypersurface itself. This last point is the crucial new
ingredient of the generalised variational principle used in Lagrangian multiform theory. One
postulates a principle of least action which must be valid for any hypersurface embedded in the

mailto:v.caudrelier@leeds.ac.uk
mailto:anupanandsingh@gmail.com
mailto:b.vicedo@york.ac.uk
https://doi.org/10.3842/SIGMA.2024.100


2 V. Caudrelier, A.A. Singh and B. Vicedo

multi-time space. This captures the commutativity of the flows variationally and was adopted
as a definition of pluri-Lagrangian systems, see [27, 28] and references therein. In Lagrangian
multiform theory, there is an additional postulate which leads to the closure relation. The
latter has been shown [11, 36] to be equivalent to the Poisson involutivity of Hamiltonians, the
Liouville criterion for integrability.

The generalised variational principle produces equations that come in two flavours: 1) Euler–
Lagrange equations associated with each of the coefficients of the Lagrangian multiform which
form a collection of Lagrangian densities; 2) Corner or structure equations on the Lagrangian
coefficients themselves which select possible models and ensure the compatibility of the vari-
ous equations of motion imposed on a common set of fields. This paper deals with a finite-
dimensional system, so let us illustrate the ingredients for this case. The basic objects are
a Lagrangian 1-form

L [q] =
N∑
k=1

Lk[q] dtk

and the related generalised action

S[q,Γ] =

∫
Γ

L [q],

where Γ is a curve in the multi-time RN with (time) coordinates t1, . . . , tN , and q denotes generic
configuration coordinates. For instance, q could be a position vector in Rd for some d, or as will
be the case for us, an element of a (matrix) Lie group. The notations L [q] and Lk[q] mean that
these quantities depend on q and a finite number of derivatives of q with respect to the times
t1, . . . , tN . In this paper, we restrict ourselves only to the case of first derivatives and simply
write Lk for the Lagrangian coefficients. The application of the generalised variational principle
leads to the following multi-time Euler–Lagrange equations [36]:

∂Lk

∂q
− ∂tk

∂Lk

∂qtk
= 0, (1.1)

∂Lk

∂qtℓ
= 0, ℓ ̸= k, (1.2)

∂Lk

∂qtk
=

∂Lℓ

∂qtℓ
, k, ℓ = 1, . . . , N. (1.3)

Note that (1.1) is simply the standard Euler–Lagrange equation for each Lk. Equations (1.2)
and (1.3) are the corner equations. It turns out that these corner equations will, in fact, be
identically satisfied by our Lagrangian multiforms, but in general they can represent non-trivial
equations for q. The closure relation then stipulates that

dL [q] = 0 ⇔ ∂tkLj − ∂tjLk = 0

on solutions of (1.1)–(1.3).
Gaudin models are a general class of integrable systems associated with Lie algebras with

a nondegenerate invariant bilinear form. They were first introduced for the Lie algebra sl(2,C)
by M. Gaudin in [19] as quantum integrable spin chains with long-range interactions, and then
generalised for arbitrary semi-simple Lie algebras in [20]. At both the classical and quantum
levels, the integrable structure of this model, associated with a Lie algebra g, is underpinned by
the rational skew-symmetric solution

r0
12
(λ, µ) =

C12

µ− λ
(1.4)
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of the classical Yang–Baxter equation1 (CYBE)[
r12(λ, µ), r13(λ, ν)

]
+
[
r12(λ, µ), r23(µ, ν)

]
+
[
r32(ν, µ), r13(λ, ν)

]
= 0.

The rational classical r-matrix (1.4) takes values in g ⊗ g and depends on spectral parameters
λ, µ ∈ C, and the tensor Casimir C12 ∈ g⊗ g appearing in (1.4) is defined as

C12 = Ia ⊗ Ia,

where {Ia} and {Ia} are dual bases of g with respect to a fixed nondegenerate invariant bilinear
form. The main property of C12 which gives it its name is

[
C12 , X1 +X2

]
= 0 for all X ∈ g and

where we use the standard tensorial notation X1 ≡ X ⊗ 1 and X2 ≡ 1⊗X.
The cyclotomic Gaudin model of interest in this paper arises as a specialisation of a general

procedure which can be traced back to reduction group ideas [24], first applied in the form of an
averaging procedure [29] to the rational classical r-matrix (1.4) in order to produce the trigono-
metric and elliptic r-matrices. This was generalised in various ways, for instance, in [4, 5, 6]
in the context of Sklyanin’s (linear) Poisson algebra

{U1(λ), U2(µ)} =
[
r0
12
(λ, µ), U1(λ) + U2(µ)

]
, (1.5)

where, as above, the index denotes which factor in the tensor product g⊗ g the g-valued func-
tion U sits in, that is, U1(λ) ≡ U(λ)⊗ 1 and U2(µ) ≡ 1⊗ U(µ).

The idea is to use a Lie algebra automorphism appropriately extended to a loop algebra
automorphism. For our purpose, we use an automorphism σ of order T on g and define

ϕ : U(λ) 7→ ωσ−1(U(ωλ)),

where ω is a T -th root of unity. Thus, ϕ is an automorphism of the Poisson algebra (1.5). This
leads us to consider the fixed point subalgebra generated by

L(λ) =
1

T

T−1∑
k=0

ω−kσkU
(
ω−kλ

)
, σ(L(λ)) = ωL(ωλ). (1.6)

The Poisson algebra for L(λ) closes into{
L1(λ), L2(µ)

}
=
[
r12(λ, µ), L1(λ)

]
−
[
r21(µ, λ), L2(µ)

]
, (1.7)

where

r12(λ, µ) =
1

T

T−1∑
k=0

σk
1
C12

µ− ω−kλ
(1.8)

is a non-skew-symmetric solution of CYBE. These facts are special cases of [10, Propositions 2.2
and 4.1]. It is well known [8] that the Poisson algebra (1.7) ensures that the quantities TrL(λ)p

Poisson commute and the equations of motion generated by them with respect to (1.7) take the
Lax form. More precisely, the generating Hamiltonian

H(µ) =
1

p+ 1
TrL(µ)p+1, p ∈ Z≥0,

satisfies

{L(λ), H(µ)} = [M(λ, µ), L(λ)],

1Note that this is the general version of the CYBE applicable to non-skew-symmetric matrices.
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where by definition {L(λ), H(µ)} = {La(λ), H(µ)}Ia, and

M1(λ, µ) = Tr2 r12(λ, µ)L2(µ)
p.

This yields an infinite number of Hamiltonians by specifying p and extracting coefficients at
the poles of L(µ). Of course, only a finite number of these Hamiltonians are independent when
acting on a finite-dimensional phase space. They generate mutually compatible flows forming
an integrable hierarchy.

If one applies this construction to a Lax matrix of rational Gaudin model type, with poles in
the finite set D = {0, ζ1, . . . , ζN ,∞} ⊂ CP 1,

U(λ) =

N0−1∑
n=0

U
(n)
0

λn+1
+

N∑
r=1

Nr−1∑
n=0

U
(n)
r

(λ− ζr)n+1
+

N∞∑
n=0

U (n)
∞ λn, U (n)

s ∈ g, (1.9)

then one obtains the so-called cyclotomic Gaudin model [31, 41, 42] and its associated integrable
hierarchy. Note that in (1.9), we have anticipated that the pole at 0 and at infinity behave
differently in (1.6) compared to the poles at λ = ζr ̸= 0,∞. Although we will present the general
algebraic setup, for simplicity, in our examples we will only consider the case where U(λ) has
simple poles at all ζr, r ∈ {1, . . . , N}, and double poles at the origin and at infinity. This will
be sufficient for our application to the periodic Toda chain and the discrete self-trapping (DST)
model. The corresponding Lax matrix of the cyclotomic Gaudin model then takes the form

L(λ) =
X

(0)
0

λ
+

X
(1)
0

λ2
+

1

T

N∑
r=1

T−1∑
k=0

σkXr

λ− ωkζr
+X∞ (1.10)

with σX
(j)
0 = ω−jX

(j)
0 and σX∞ = ωX∞.

Our goal is to give a Lagrangian multiform description of the cyclotomic Gaudin hierarchy. In
a nutshell, what is required is to interpret L(λ) as an element of an appropriate coadjoint orbit
so that we can write our Lagrangian multiform following the construction introduced in [11].
The latter is based on using the Lie dialgebra formalism [30] which is reviewed in Section 2.
In Section 3, we show how to construct the required algebraic ingredients for the cyclotomic
Gaudin model. This is applied in Section 3.4, where we obtain a Lagrangian multiform for the
cyclotomic Gaudin hierarchy and discuss its properties.

Section 4 deals with two special realisations of the cyclotomic Gaudin model: the periodic
Toda chain (Section 4.1) and the integrable case of the DST model (Section 4.2). We derive
Lagrangian multiforms for the hierarchies corresponding to these two theories using our results
from Section 3. The construction of the periodic Toda multiform, in particular, complements the
results of [11] where a Lagrangian multiform for the open Toda chain was derived, while in [35]
the infinite Toda chain was considered within a semi-discrete Lagrangian multiform. Finally,
in Section 4.3, we illustrate how to couple the periodic Toda and DST hierarchies together in
a straightforward manner and derive a Lagrangian multiform for this coupled hierarchy. We end
with concluding remarks in Section 5.

2 Lagrangian multiforms on coadjoint orbits

In this section, we briefly review the results of [11] where a Lagrangian multiform was obtained
which produces a hierarchy of equations of motion in Lax form as its multi-time Euler–Lagrange
equations. We will, in fact, be interested in applying this framework in the infinite-dimensional
setting for which we refer more precisely to [11, Section 7]. In order to avoid confusion with
the finite-dimensional Lie algebra g used throughout the rest of this paper, in this section we
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denote by g the infinite-dimensional Lie algebra of interest. The construction of the specific Lie
algebra g relevant for the cyclotomic Gaudin model will be the subject of the next section.

The framework of Lie dialgebras for constructing hierarchies of compatible Lax equations
involves a number of ingredients. For the purpose of this paper, we will actually only require
a particular instance of this general framework corresponding to the so-called Adler–Kostant–
Symes scheme [2, 21, 38], so we will mainly focus on this case to ease the comparison with later
sections. The ingredients are:

1. A Lie algebra g, with Lie group G, which we assume is equipped with a nondegenerate
invariant bilinear pairing

⟨·, ·⟩ : V × g −→ C (2.1)

with some representation V of G, allowing one to use V as a model for the dual space g∗

of g. We will denote the representation of G by Ad∗ : G× V → V , (φ, ξ) 7→ Ad∗φ ξ and the
corresponding Lie algebra representation by ad∗ : g × V → V , (X, ξ) 7→ ad∗X ξ, and refer
to these as the coadjoint representations.

Note that if g were finite-dimensional then a good choice of representation space V would
be the algebraic dual g′ of g, in which case (2.1) is given by the canonical pairing. In the
infinite-dimensional setting we are considering, the algebraic dual is too big. When g is
equipped with a nondegenerate invariant symmetric bilinear form (·, ·) : g × g → C then
one possible replacement for the algebraic dual is afforded by the smooth dual (g, ·) ⊂ g′

which is canonically isomorphic to g itself. However, in our present setting it turns out
that the smooth dual will not be the appropriate notion of dual space, which is why we
need the above more general working definition for the dual space g∗.

2. A linear map R : g→ g satisfying the modified classical Yang–Baxter equation (mCYBE)

[R(X), R(Y )]−R ([R(X), Y ] + [X,R(Y )]) = −[X,Y ], ∀X,Y ∈ g. (2.2)

This is the crucial ingredient providing us with the Lie dialgebra (g, gR) where gR is the
vector space g equipped with a second Lie bracket [X,Y ]R = 1

2([R(X), Y ] + [X,R(Y )]).
In the Adler–Kostant–Symes scheme, this is determined by a direct sum decomposition2

g = g+ ∔ g− (2.3)

into complementary subalgebras g± ⊂ g. A solution to (2.2) is then given by R = P+−P−,
where P± : g → g± denote the projections onto these respective subalgebras. In this case,
the Lie algebra gR is the direct sum of Lie algebras gR = g+ ⊕ g−. Now (2.3) induces
a corresponding direct sum decomposition of the model V for the dual space g∗, namely

V = V+ ∔ V−, (2.4)

where V± is the orthogonal complement of g± with respect to the pairing (2.1). We will
denote by P± : V → V± the projections onto these respective subspaces.

Let G± denote the Lie subgroups of G associated with g±, and GR denote the Lie group
associated with gR, so that (at least locally) GR ≃ G+ × G−. It will be useful to note for
later that the coadjoint representation of GR on V ≡ g∗ can be expressed in terms of that
of the subgroups G± ⊂ G as

AdR∗
φ ξ = P−

(
Ad∗φ+

ξ
)
+ P+

(
Ad∗φ− ξ

)
(2.5)

for any φ = (φ+, φ−) ∈ GR and ξ ∈ g∗.

2Throughout the text, we use ∔ to denote a direct sum of vector spaces, and ⊕ to denote a direct sum of Lie
algebras. This is a convenient convention borrowed from [30].
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3. A collection of independent Ad∗-invariant functions on g∗, say Hk, for k = 1, . . . , N . It
follows from their Ad∗-invariance that these functions are in involution with respect to the
Lie–Poisson bracket on g∗ given by

{f, g}R(ξ) = ⟨ξ, [∇f(ξ),∇g(ξ)]R⟩, f, g ∈ C∞(g∗),

and generate a hierarchy of compatible flows on the Poisson manifold (g∗, { , }R) which
take the form of Lax equations

∂tkL := {L,Hk}R = ad∗Mk(L)
L, Mk(L) =

1

2
R∇Hk(L). (2.6)

When g and V are subspaces of a common ambient Lie algebra and the coadjoint action
ad∗ : g× V → V is given by a Lie bracket in this ambient Lie algebra, as will be the case
for us in Section 3 below, the Lax equations (2.6) take the more familiar form

∂tkL = [Mk(L), L].

This is the content of Semenov-Tian-Shansky’s theorem, see, for instance, [30].

The symplectic leaves of the Poisson manifold
(
g∗, { , }R

)
are given by the coadjoint orbits

OΛ =
{
AdR∗

φ Λ | φ ∈ GR

}
for Λ ∈ g∗, (2.7)

which therefore provide natural phase spaces for integrable systems. The key idea of [11] was
to define a Lagrangian multiform on such a coadjoint orbit which produces the hierarchy (2.6)
as its Euler–Lagrange equations. Specifically, let L = AdR∗

φ Λ and define

L [φ] =
N∑
k=1

Lk dtk, Lk =
〈
L, ∂tkφ ·R φ−1

〉
−Hk(L), (2.8)

where ·R denotes the multiplication in GR. Then, we have the following.

Theorem 2.1 ([11]). The Lagrangian 1-form (2.8) satisfies the corner equations (1.2)–(1.3) of
the multi-time Euler–Lagrange equations. The standard Euler–Lagrange equations (1.1) associ-
ated with the Lagrangian coefficients Lk give the hierarchy of compatible Lax equations (2.6)

∂tkL = ad∗Mk(L)
L, k = 1, . . . , N. (2.9)

The closure relation3 holds: on solutions of (2.9) we have

∂tkLj − ∂tjLk = 0, j, k = 1, . . . , N.

In short, the machinery of [11] provides a systematic way of constructing a Lagrangian multi-
form for a hierarchy of Lax equations (2.6) on a coadjoint orbit (2.7). To apply this result to the
cyclotomic Gaudin model we must identify its Lax matrix (1.10) as an element of an appropriate
coadjoint orbit OΛ ⊂ g∗, as in (2.7), for a suitable Lie algebra g and R-matrix. In particular,
we will need to build a suitable model V for the dual space g∗ via a corresponding pairing
⟨·, ·⟩ : V × g→ C. This will be the central goal of the next section.

3The closure relation for the Lagrangian one-form L is, in fact, equivalent to the involutivity of the Hamil-
tonians Hk with respect to the Lie–Poisson R-bracket { , }R. We do not discuss this result here and refer the
interested reader to [11, Corollary 3.4].
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3 Cyclotomic Gaudin model

The purpose of this section is to formulate a Lagrangian multiform for the cyclotomic Gaudin
model using the machinery developed in [11]. As outlined at the end of Section 2, the first
immediate task is to introduce the relevant infinite-dimensional Lie algebra g and a suitable
model V for its dual space g∗ by constructing a nondegenerate invariant bilinear pairing as
in (2.1). This will be achieved in Section 3.1, which culminates in a description of the relevant
coadjoint orbits OΛ ⊂ g∗ in Lemma 3.5. In Section 3.2, we specialise to the case of simple
poles at ωkζr, k ∈ {0, . . . , T − 1}, r ∈ {1, . . . , N}, and double poles at the origin and at infinity,
and then describe the Lax matrix (1.10) of the cyclotomic Gaudin model as an element of this
coadjoint orbit. In Section 3.3, we then describe the Lax equations as flows on this coadjoint
orbit, as in (2.6). Finally, in Section 3.4, we put everything together to obtain the Lagrangian
multiform for the cyclotomic Gaudin model.

3.1 Lie dialgebra framework

Let us fix T ∈ Z≥1 and pick a primitive T -th root of unity ω ∈ C×. We can then define

Γ :=
{
1, ω, ω2, . . . , ωT−1

}
,

a copy of the cyclic group ZT of order T that acts on C by multiplication. Further, we introduce
the finite set of points D = {0, ζ1, . . . , ζN ,∞} ⊂ CP 1 including the point at infinity such that
the Γ-orbits of the points ζ1, . . . , ζN are pairwise disjoint, that is,

Γζr ∩ Γζs = ∅ for all 1 ≤ r ̸= s ≤ N.

Note that unlike the non-zero finite points ζ1, . . . , ζN , the origin and the point at infinity are
fixed under the action of Γ.

Let g be a finite-dimensional Lie algebra over C with an automorphism σ of order T . For
simplicity, we will only consider matrix Lie algebras in this work, with the Lie bracket being the
commutator, and a nondegenerate invariant bilinear pairing given by the trace. We also assume
that the automorphism σ preserves the trace, that is, Tr(σ(x)σ(y)) = Tr(xy) for any x, y ∈ g.
The eigenspaces of σ,

g(k) =
{
X ∈ g | σ(X) = ωkX

}
, k ∈ {0, . . . , T − 1}, (3.1)

form a ZT -gradation of g, namely

g = g(0) ∔ · · ·∔ g(T−1) with
[
g(k1), g(k2)

]
= g(k1+k2 modT ). (3.2)

From now on, we will simply write g(n) to mean g(nmodT ). Further, let us define the local
parameters

λ0 = λ, λr = λ− ζr for r ∈ {1, . . . , N}, λ∞ =
1

λ
. (3.3)

It will be convenient to also introduce an additional set of local parameters λr,k = λ− ωkζr for
all k ∈ {0, . . . , T − 1} and r ∈ {1, . . . , N}. We also introduce an index set S = {0, 1, . . . , N,∞}
where 0 and ∞ denote labels for indices rather than points in CP 1.

Let us denote by FD′ the algebra of rational functions in the formal variable λ with values
in g that are regular outside D′ =

{
ωkζr | k ∈ {0, . . . , T − 1}, r ∈ {1, . . . , N}

}
∪ {0,∞}. Two

subspaces of this algebra will be of relevance here: the subspace FΓ
D′ of equivariant functions

and the subspace ΩΓ
D′ of equivariant one-forms that we define as

FΓ
D′ := {f ∈ FD′ | σ(f(λ)) = f(ωλ)}, ΩΓ

D′ := {g ∈ FD′ | σ(g(λ)) = ωg(ωλ)}.
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In general, equivariant functions and equivariant one-forms take the forms

f =

M0−1∑
n=0

X
(n)
0

λn+1
+

N∑
r=1

T−1∑
k=0

Mr−1∑
n=0

σkX
(n)
r(

ω−kλ− ζr
)n+1 +

M∞∑
n=0

X
(n)
∞

λn
∞

,

g =

N0−1∑
n=0

Y
(n)
0

λn+1
+

N∑
r=1

T−1∑
k=0

Nr−1∑
n=0

ω−kσkY
(n)
r(

ω−kλ− ζr
)n+1 +

N∞∑
n=0

Y
(n)
∞
λn
∞

,

respectively, with

X
(n)
0 ∈ g(−n−1), X(n)

r ∈ g for r ∈ {1, . . . , N}, X(n)
∞ ∈ g(n),

Y
(n)
0 ∈ g(−n), Y (n)

r ∈ g for r ∈ {1, . . . , N}, Y (n)
∞ ∈ g(n+1). (3.4)

One can check that the subspace FΓ
D′ is, in fact, a Lie subalgebra of FD′ . The subspace ΩΓ

D′ ,
on the other hand, contains the Lax matrix (1.10) of the model. To construct the cyclotomic
Gaudin multiform à la [11], we will realise this Lax matrix as an element of a certain coadjoint
orbit. To do so, let us define the loop algebra of formal Laurent series in the local parameter λr

with coefficients in g, for each r ∈ S,

g̃r = g⊗ C((λr)), (3.5)

with Lie bracket[
Xλi

r, Y λj
r

]
= [X,Y ]λi+j

r , X, Y ∈ g, (3.6)

and then consider the direct sum

g̃D =
⊕
r∈S

g̃r.

The Lie bracket of two elements X,Y ∈ g̃D is defined component-wise

[X,Y ]r(λr) = [Xr(λr), Yr(λr)].

Of interest to us here are two particular subspaces of g̃D,

g̃
(0)
D = g̃Γ,00 ⊕

N⊕
r=1

g̃r ⊕ g̃Γ,0∞ and g̃
(1)
D = g̃Γ,10 ⊕

N⊕
r=1

g̃r ⊕ g̃Γ,1∞ ,

where the twisted spaces attached to the origin and infinity are defined as

g̃Γ,k0 =
{
X0(λ0) ∈ g̃0 | σ(X0(λ0)) = ωkX0(ωλ0)

}
,

g̃Γ,k∞ =
{
X∞(λ∞) ∈ g̃∞ | σ(X∞(λ∞)) = ωkX∞

(
ω−1λ∞

)}
(3.7)

for k = 0, 1. Elements of g̃
(0)
D and g̃

(1)
D are tuples of the form

X =

(
M0−1∑
n=−∞

X
(n)
0

λn+1
,

M1−1∑
n=−∞

X
(n)
1

(λ− ζ1)n+1
, . . . ,

MN−1∑
n=−∞

X
(n)
N

(λ− ζN )n+1
,

M∞∑
n=−∞

X
(n)
∞

λn
∞

)
, (3.8)

and

Y =

(
N0−1∑
n=−∞

Y
(n)
0

λn+1
,

N1−1∑
n=−∞

Y
(n)
1

(λ− ζ1)n+1
, . . . ,

NN−1∑
n=−∞

Y
(n)
N

(λ− ζN )n+1
,

N∞∑
n=−∞

Y
(n)
∞
λn
∞

)
, (3.9)
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respectively, where the coefficients X
(n)
r and Y

(n)
r , r ∈ S, satisfy the conditions in (3.4). Note

that each coefficient in (3.8) and (3.9) is a g-valued Laurent series, i.e., an element of (3.5)
for r ∈ S. This is clear from changing variables in each sum from n to −n. The reason for the
unusual choice of range for the indices n in each of the above sums is to make the expressions
for the maps in (3.12) defined below slightly more transparent.

The subspace g̃
(0)
D is a Lie subalgebra of g̃D which defines the desired infinite-dimensional Lie

algebra g = g̃
(0)
D in the notation of Section 2. Continuing the identification of the different

ingredients from the Lie dialgebra framework listed in Section 2, notice that V = g̃
(1)
D is clearly

a representation of the Lie algebra g = g̃
(0)
D since we have

[
g̃Γ,0r , g̃Γ,1r

]
⊂ g̃Γ,1r for r ∈ {0,∞}. In the

notation of Section 2, the representation ad∗ : g×V → V is given explicitly by (X,Y ) 7→ [X,Y ].
The next proposition identifies V = g̃

(1)
D as a suitable model for the dual space g∗.

Proposition 3.1. The bilinear pairing ⟨·, ·⟩ : g̃(1)D × g̃
(0)
D → C defined by

⟨Y,X⟩ = T

N∑
r=1

Resλr=0Tr(Yr(λr)Xr(λr))dλ+
∑

r∈{0,∞}

Resλr=0Tr(Yr(λr)Xr(λr))dλ (3.10)

for any Y ∈ g̃
(1)
D and X ∈ g̃

(0)
D , is nondegenerate and invariant under the adjoint action of g̃

(0)
D .

Proof. Recall that the trace Tr: g × g → C, (x, y) 7→ Tr(xy) is a nondegenerate invariant
bilinear pairing on g and invariant under the action of σ. Given any x ∈ g(m) and y ∈ g(n),
we have Tr(xy) = Tr(σ(x)σ(y)) = ωm+nTr(xy). Therefore, Tr(xy) = 0 for all x ∈ g(m) and
y ∈ g(n) if m+ n ̸= 0 mod T . Now, since Tr: g× g → C is nondegenerate on g, given y ∈ g(n),
there is x ∈ g such that Tr(xy) ̸= 0. From (3.2), we have x = x(0) + · · ·+ x(T−1), and from the
previous result Tr(xy) = Tr

(
x(m)y

)
with m+ n = 0 mod T . Hence, Tr

(
x(m)y

)
̸= 0 and we get

a nondegenerate pairing between the subspaces g(m) and g(n) with m+ n = 0 mod T .

Now given any non-zero element Y ∈ g̃
(1)
D , it has a non-zero component Y

(m)
r λ−m−1

r for some
m ∈ Z and r ∈ S. If r = 0 then Y

(m)
0 ∈ g(−m) by (3.4), and we can find an X

(−m−1)
0 ∈ g(m)

which pairs non-trivially with it under the trace. So, X
(−m−1)
0 λm pairs non-trivially with Y .

Likewise, if r = ∞ then Y
(m)
∞ ∈ g(m+1) by (3.4) and we can find an X

(−m−1)
∞ ∈ g(−m−1) which

pairs non-trivially with it under the trace so that X
(−m−1)
∞ λm+1

∞ pairs non-trivially with Y . And
if r ∈ {1, . . . , N} then pick any X

(−m−1)
r ∈ g which pairs non-trivially with Y

(m)
r ∈ g under the

trace so that X
(−m−1)
r λm

r pairs non-trivially with Y . Therefore, the bilinear pairing ⟨·, ·⟩ is
nondegenerate in the first argument. A similar argument establishes the nondegeneracy in the
second argument.

Finally, the invariance of the bilinear pairing ⟨·, ·⟩ under the adjoint action of g̃
(0)
D follows from

the definition (3.6) of the Lie bracket in g̃D and the invariance of the trace under the adjoint
action of g. ■

Next, we turn to the identification of the subalgebras g± ⊂ g and the corresponding subspaces
V± ⊂ V in the notation of Section 2. Crucially for us, the spaces FΓ

D′ and ΩΓ
D′ embed into g̃

(0)
D

and g̃
(1)
D , respectively,

ιλ : FΓ
D′ ↪−→ g̃

(0)
D , f 7−→ (ιλ0f, ιλ1f, . . . , ιλN

f, ιλ∞f),

ιλ : ΩΓ
D′ ↪−→ g̃

(1)
D , g 7−→ (ιλ0g, ιλ1g, . . . , ιλN

g, ιλ∞g), (3.11)

where, for each r ∈ S, ιλrf and ιλrg respectively denote the formal Laurent expansion of f and g
about the point ζr. It will also be useful to define left inverses for these embeddings:

π
(0)
λ : g̃

(0)
D −→ FΓ

D′ ,

π
(1)
λ : g̃

(1)
D −→ ΩΓ

D′ , (3.12)
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defined explicitly as

π
(0)
λ

(
M0−1∑
n=−∞

X
(n)
0

λn+1
,

M1−1∑
n=−∞

X
(n)
1

(λ− ζ1)n+1
, . . . ,

MN−1∑
n=−∞

X
(n)
N

(λ− ζN )n+1
,

M∞∑
n=−∞

X
(n)
∞

λn
∞

)

=

M0−1∑
n=0

X
(n)
0

λn+1
+

N∑
r=1

T−1∑
k=0

Mr−1∑
n=0

σkX
(n)
r

(ω−kλ− ζr)n+1
+

M∞∑
n=0

X
(n)
∞

λn
∞

,

and

π
(1)
λ

(
N0−1∑
n=−∞

Y
(n)
0

λn+1
,

N1−1∑
n=−∞

Y
(n)
1

(λ− ζ1)n+1
, . . . ,

NN−1∑
n=−∞

Y
(n)
N

(λ− ζN )n+1
,

N∞∑
n=−∞

Y
(n)
∞
λn
∞

)

=

N0−1∑
n=0

Y
(n)
0

λn+1
+

N∑
r=1

T−1∑
k=0

Nr−1∑
n=0

ω−kσkY
(n)
r

(ω−kλ− ζr)n+1
+

N∞∑
n=0

Y
(n)
∞
λn
∞

.

We will also need to define the following subspaces of g̃
(0)
D and g̃

(1)
D , respectively:

g̃
(0)
D+ = g̃Γ,00+ ⊕

N⊕
r=1

g̃r+ ⊕ g̃Γ,1∞+ and g̃
(1)
D+ = g̃Γ,10+ ⊕

N⊕
r=1

g̃r+ ⊕ g̃Γ,1∞+,

where for k = 0, 1, we introduced (cf. (3.5) and (3.7))

g̃Γ,k0+ = g̃Γ,k0 ∩ g⊗ C[[λ0]],

g̃r+ = g⊗ C[[λr]], r ∈ {1, . . . , N},

g̃Γ,k∞+ = g̃Γ,k∞ ∩ g⊗ λ∞C[[λ∞]].

Here we denoted by g ⊗ C[[λr]] the algebra of formal Taylor series in λr with coefficients in g,
for r ̸= ∞, and by g⊗λ∞C[[λ∞]] the algebra of formal Taylor series in λ∞ with coefficients in g
without constant term.

Coming back to the identification of the Lie dialgebra ingredients from Section 2, the next
proposition identifies the desired decomposition (2.3) of g = g̃

(0)
D into complementary subalge-

bras g± ⊂ g. Explicitly, we have the identifications g+ = g̃
(0)
D+ and g− = ιλFΓ

D′ . We also identify
a decomposition (2.4) of our model V = g̃

(1)
D for the dual space g∗ into complementary subspaces

V± ⊂ V , where explicitly V+ = g̃
(1)
D+ and V− = ιλΩ

Γ
D′ , but will show only later in Proposition 3.4

that this decomposition of V is the desired one induced by that of g.

Proposition 3.2. The spaces g̃
(0)
D and g̃

(1)
D admit the vector space decompositions

g̃
(0)
D = g̃

(0)
D+ ∔ ιλFΓ

D′ , (3.13)

g̃
(1)
D = g̃

(1)
D+ ∔ ιλΩ

Γ
D′ , (3.14)

respectively. Moreover, the subspaces g̃
(0)
D+ and ιλFΓ

D′ are Lie subalgebras of g̃
(0)
D .

Proof. To anyX=(X0, X1, . . . , XN , X∞)∈ g̃
(0)
D , we associate an equivariant function f=π

(0)
λ X.

Notice that for all r ∈ S, Xr−ιλrf is a formal Taylor series in λr. It follows thatX splits uniquely
as the direct sum of the tuples (X0 − ιλ0f,X1 − ιλ1f, . . . ,XN − ιλN

f,X∞ − ιλ∞f) ∈ g̃
(0)
D+ and

(ιλ0f, ιλ1f, . . . , ιλN
f, ιλ∞f) ∈ ιλFΓ

D′ , as required.

One can repeat the above steps
(
with the map π

(1)
λ acting on some Y ∈ g̃

(1)
D

)
to prove

that (3.14) defines a vector space decomposition as well. ■
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Let P+ and P− denote the projectors onto the subspaces g̃
(0)
D+ and ιλFΓ

D′ respectively, rel-
ative to the decomposition in (3.13), and P+ and P− the projectors onto g̃

(1)
D+ and ιλΩ

Γ
D′ re-

spectively, relative to the decomposition in (3.14), in line with the notation from Section 2.
As recalled in Section 2, the linear map

R = P+ − P− (3.15)

is a solution of the mCYBE on g̃
(0)
D . It is also useful to define the maps

R± =
1

2
(R± id),

which can be related to the projectors onto g̃
(0)
D+ and ιλFΓ

D′ relative to direct sum decomposi-
tion (3.13) as

R± = ±P±.

The linear map R is related to the non-skew-symmetric r-matrix (1.8) underlying the cyclotomic
Gaudin model, as one would naturally expect from the construction. More precisely, the expres-
sion (1.8) provides the kernel of the linear map (3.15) with respect to the bilinear pairing (3.10).
To show this, we will use standard tensor product space notation as follows. Given any rational
function U12(λ, µ) in the parameters λ and µ such that ιµιλU12 , ιλιµU12 ∈ g̃

(0)
D ⊗̃ g̃

(1)
D , where the

first tensor factor in the formally completed tensor product is the loop algebra g̃
(0)
D with the

loop parameter λ, and the second tensor factor is the space g̃
(1)
D with the loop parameter µ, we

introduce the following shorthand notations:

〈
ιµιλU12 , X2

〉
2
= T

N∑
r=1

Resµr=0Tr2
(
ιµr ιλU12(λ, µ)Xr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιµr ιλU12(λ, µ)Xr2(µr)

)
dµ,

and

〈
ιλιµU12 , X2

〉
2
= T

N∑
r=1

Resµr=0Tr2
(
ιλιµrU12(λ, µ)Xr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιλιµrU12(λ, µ)Xr2(µr)

)
dµ

for any X ∈ g̃
(0)
D , where the parameters µr are defined analogously to the parameters λr in (3.3),

and the linear map ιµ is defined as in (3.11), returning the tuple of formal Laurent expansions
in µr, r ∈ S.

Proposition 3.3. For all X ∈ g̃
(0)
D , the linear maps R+ and R− satisfy

R+(X) =
〈
ιµιλr12 , X2

〉
2

and R−(X) =
〈
ιλιµr12 , X2

〉
2
, (3.16)

respectively, where

r12(λ, µ) =
1

T

T−1∑
k=0

σk
1
C12

µ− ω−kλ
.
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Proof. In what follows, to treat the origin on the same footing as the points ζr, r ∈ {1, . . . , N},
it will be convenient to introduce the notation ζ0 = 0. We have

ιλs

(
1

T

T−1∑
k=0

σk
1
C12

µ− ω−kλ

)

=


1

T

T−1∑
k=0

∞∑
m=0

ω−km(λ− ζs)
mσ−k

2
C12(

µ− ω−kζs
)m+1 for s ∈ {0, 1, . . . , N},

− 1

T

T−1∑
k=0

∞∑
m=0

ωk(m+1)µmσ−k
2

C12

λm+1
for s = ∞,

(3.17)

and

ιµr

(
1

T

T−1∑
k=0

σk
1
C12

µ− ω−kλ

)

=


− 1

T

T−1∑
k=0

∞∑
m=0

ωk(m+1)(µ− ζr)
mσk

1
C12(

λ− ωkζr
)m+1 for r ∈ {0, 1, . . . , N},

1

T

T−1∑
k=0

∞∑
m=0

ω−kmλmσk
1
C12

µm+1
for r = ∞.

(3.18)

It follows that both ιµιλr12 and ιλιµr12 are elements of g̃
(0)
D ⊗̃ g̃

(1)
D where the loop parameter λ is

in the first tensor factor and µ in the second. Now, pick an arbitrary X ∈ g̃
(0)
D and let X = W+Z

be its decomposition relative to (3.13) where the two components can be written explicitly as

W =

( ∞∑
n=0

W
(n)
0 λn,

∞∑
n=0

W
(n)
1 (λ− ζ1)

n, . . . ,

∞∑
n=0

W
(n)
N (λ− ζN )n,

∞∑
n=1

W (n)
∞ λn

∞

)
∈ g̃

(0)
D+,

and

Z = ιλ

(
N0−1∑
n=0

Z
(n)
0

λn+1
+

N∑
r=1

T−1∑
k=0

Nr−1∑
n=0

σkZ
(n)
r(

ω−kλ− ζr
)n+1 +

N∞∑
n=0

Z
(n)
∞
λn
∞

)
∈ ιλFΓ

D′ .

Using the expansion (3.17), we get

T
N∑
r=1

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Wr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Wr2(µr)

)
dµ

=

∞∑
m=0

W (m)
s (λ− ζs)

m, when s ∈ {0, 1, . . . , N},

and

T
N∑
r=1

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Wr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Wr2(µr)

)
dµ

=

∞∑
m=1

W (m)
∞ λm

∞, when s = ∞.
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So, we find that〈
ιµιλr12 ,W2

〉
2
= W. (3.19)

To evaluate
〈
ιµιλr12 , Z2

〉
2
, we note that for an arbitrary equivariant rational function f ∈ FΓ

D′

and equivariant rational one-form g ∈ ΩΓ
D′ , we have the following relation:

Resλr=0Tr(g(λ)f(λ))dλ = Resλr=0Tr
(
σk(g(λ))σk(f(λ))

)
dλ

= Resλr=0Tr
(
ωkg(ωkλ)f(ωkλ)

)
dλ

= Resλr,k=0Tr(g(λ)f(λ))dλ (3.20)

for all k ∈ {0, . . . , T − 1}. This allows us to rewrite each entry of the tuple
〈
ιµιλr12 , Z2

〉
2
as

T
N∑
r=1

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Zr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Zr2(µr)

)
dµ

=
N∑
r=1

T−1∑
k=0

Resµr,k=0Tr2
(
ιµr ιλsr12(λ, µ)Zr2(µr)

)
dµ

+
∑

r∈{0,∞}

Resµr=0Tr2
(
ιµr ιλsr12(λ, µ)Zr2(µr)

)
dµ, s ∈ S,

which is a sum over all the residues of a meromorphic one-form on CP 1. Hence, we deduce〈
ιµιλr12 , Z2

〉
2
= 0. (3.21)

From (3.19) and (3.21), we then have〈
ιµιλr12 , X2

〉
2
= W = P+(X) = R+(X).

Since X ∈ g̃
(0)
D was arbitrary, this establishes the first relation in (3.16). Similarly, using the

expansion (3.18), we find
〈
ιλιµr12 ,W2

〉
2
= 0 and

〈
ιλιµr12 , Z2

〉
2
= −Z from which we conclude

that 〈
ιλιµr12 , X2

〉
2
= −Z = −P−(X) = R−(X).

Again, since X ∈ g̃
(0)
D was arbitrary, this establishes the second relation in (3.16). ■

It follows from Proposition 3.3 that the kernel of the linear map R = P+ − P− and that of
the identity map Id = P+ + P− (with respect to the bilinear pairing of Proposition 3.1) are

(ιµιλ + ιλιµ)r12(λ, µ) and (ιµιλ − ιλιµ), r12(λ, µ),

respectively.
Recall that in Proposition 3.2 we identified the Lax matrix (1.9) of the cyclotomic Gaudin

model, or rather its image under the embedding ιλ in (3.11), as living in the subspace V− = ιλΩ
Γ
D′

of our model V = g̃
(1)
D for the dual space g∗. The next proposition establishes that this sub-

space V− ⊂ V is the orthogonal complement of ιλFΓ
D′ ⊂ g̃

(0)
D , i.e., g− ⊂ g, with respect to

the nondegenerate bilinear pairing of Proposition 3.1. This completes the proof of the claim
that the decomposition V = V+ ∔ V− obtained in Proposition 3.2 is the one induced from the
corresponding decomposition of the Lie algebra g = g+ ∔ g−.
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Proposition 3.4. An element Y ∈ g̃
(1)
D lies in ιλΩ

Γ
D′ if and only if ⟨Y,X⟩ = 0 for all X ∈ ιλFΓ

D′.
Moreover, Y ∈ g̃

(1)
D lies in g̃

(1)
D+ if and only if ⟨Y,X⟩ = 0 for all X∈ g̃

(0)
D+.

Proof. This is a particular case of the Γ-equivariant strong residue theorem [41, Appendix A].
We recall the proof here in the present setting for completeness. We start by proving that if
Y ∈ ιλΩ

Γ
D′ , then ⟨Y,X⟩ = 0 for all X ∈ ιλFΓ

D′ . Let us pick elements f ∈ FΓ
D′ and g ∈ ΩΓ

D′ , and
let X = ιλf and Y = ιλg. Since g(λ)f(λ)dλ is a meromorphic one-form on CP 1, by the residue
theorem we have

N∑
r=1

T−1∑
k=0

Resλr,k=0Tr
(
ιλr,k

g(λ)ιλr,k
f(λ)

)
dλ+

∑
r∈{0,∞}

Resλr=0Tr
(
ιλrg(λ)ιλrf(λ)

)
dλ = 0.

Using the relation (3.20) valid for any f ∈ FΓ
D′ and g ∈ ΩΓ

D′ , we may rewrite the first term on
the left-hand side as T times a sum over the residues at the points ζr for r ∈ S, so that

T
N∑
r=1

Resλr=0Tr
(
ιλrg(λ)ιλrf(λ)

)
dλ+

∑
r∈{0,∞}

Resλr=0Tr
(
ιλrg(λ)ιλrf(λ)

)
dλ = 0. (3.22)

By definition of the bilinear pairing from Proposition 3.1, we thus have ⟨Y,X⟩ = 0, as desired.

Let us now prove the converse. Namely, let Y ∈ g̃
(1)
D be arbitrary and suppose that ⟨Y,X⟩ = 0

for all X ∈ ιλFΓ
D′ . We must show that, in fact, Y (λ) ∈ ιλΩ

Γ
D′ . It follows from Proposition 3.2

that Y = (Y0, Y1, . . . , YN , Y∞) ∈ g̃
(1)
D has a unique decomposition as a direct sum of the tu-

ples P+(Y ) = (P0+(Y0),P1+(Y1), . . . ,PN+(YN ),P∞+(Y∞)) ∈ g̃
(1)
D+ and P−(Y ) = ιλg for some

g ∈ ΩΓ
D′ . Now, let X = ιλf for some f ∈ FΓ

D′ . Since ⟨Y,X⟩ = 0, writing this out explicitly
means

T
N∑
r=1

Resλr=0Tr
(
Pr+(Yr(λr))ιλrf(λ)

)
dλ+

∑
r∈{0,∞}

Resλr=0Tr
(
Pr+(Yr(λr))ιλrf(λ)

)
dλ

+ T

N∑
r=1

Resλr=0Tr
(
ιλrg(λ)ιλrf(λ)

)
dλ+

∑
r∈{0,∞}

Resλr=0Tr
(
ιλrg(λ)ιλrf(λ)

)
dλ = 0.

From (3.22), we have that the last two terms on the left-hand side vanish on their own. Therefore,
we get

T
N∑
r=1

Resλr=0Tr
(
Pr+(Yr(λr))ιλrf(λ)

)
dλ+

∑
r∈{0,∞}

Resλr=0Tr
(
Pr+(Yr(λr))ιλrf(λ)

)
dλ = 0.

One can then show, along the same lines as the argument in the proof of Proposition 3.1, that
if P+(Y ) ̸= 0 then by picking a suitable f ∈ FΓ

D′ adapted to P+(Y ) ∈ g̃
(1)
D+, one can ensure

that the expression on the left-hand side is non-zero, which is a contradiction. Therefore, we
conclude that P+(Y ) = 0, and hence Y ∈ ιλΩ

Γ
D′ , as required. The proof of the “moreover” part

is completely analogous. ■

The upshot of Proposition 3.4 is that we are now exactly in the setting recalled in points 1
and 2 of Section 2. In particular, the coadjoint representation AdR∗ : GR × V → V of the
group GR on our model V = g̃

(1)
D for the dual space g∗ is given by formula (2.5). This will be

used below in Lemma 3.5 to give a concise description of the desired coadjoint orbit for the Lax
matrix of the cyclotomic Gaudin model.
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Before stating the lemma, we first give an explicit description of the infinite-dimensional
Lie group G+= G̃

(0)
D+ associated with the Lie algebra g+= g̃

(0)
D+. Its elements are of the form

φ+ = (φ0+, φ1+, . . . , φN+, φ∞+), (3.23)

where φr+(λr) is a Taylor series in the local parameter λr with values in G, the matrix Lie group
associated with the Lie algebra g,

φr+(λr) =
∞∑
n=0

ϕ(n)
r λn

r , r ̸= ∞,

φ∞+(λ∞) = 1+
∞∑
n=1

ϕ(n)
∞ λn

∞. (3.24)

The Lie group G+ = G̃
(0)
D+ has a natural action on V = g̃

(1)
D given by conjugation. This defines

the coadjoint representation Ad∗ : G+ × V → V from Section 2 explicitly as

(φ+, Y ) 7−→ Ad∗φ+
Y =

(
φ0+Y0φ

−1
0+, φ1+Y1φ

−1
1+, . . . , φN+YNφ−1

N+, φ∞+Y∞φ−1
∞+

)
.

We are now in a position to give an explicit description of the GR-coadjoint orbit where the Lax
matrix of the cyclotomic Gaudin model lives and which will act as our phase space.

Lemma 3.5. The orbit of the coadjoint action of GR =
(
G̃

(0)
D

)
R
on an element ιλΛ ∈ V− = ιλΩ

Γ
D′

has the explicit form

OΛ =
{
P−
(
Ad∗φ+

ιλΛ
)
| φ+ ∈ G̃

(0)
D+

}
.

Proof. By definition, the coadjoint orbit of
(
G̃

(0)
D

)
R
on any ιλΛ ∈ ιλΩ

Γ
D′ is given by

OΛ =
{
AdR∗

φ ιλΛ | φ ∈
(
G̃

(0)
D

)
R

}
.

Using the explicit form (2.5) for the coadjoint action of GR, we have

AdR∗
φ ιλΛ = P−

(
Ad∗φ+

ιλΛ
)
+ P+

(
Ad∗φ− ιλΛ

)
= P−

(
Ad∗φ+

ιλΛ
)
,

where the last equality follows from the fact that ιλΛ ∈ V− = ιλΩ
Γ
D′ , so that Ad∗φ− ιλΛ ∈ V−

also and hence P+

(
Ad∗φ− ιλΛ

)
= 0. ■

It will be useful in practice to express the action of the projector P− on Y ∈ g̃
(1)
D as

P−(Y ) = ιλ ◦ π(1)
λ (Y ). (3.25)

In the remaining sections, we will put this setup to use to describe the Lax matrix of the
cyclotomic Gaudin model (1.9) as a point in a coadjoint orbit OΛ for some suitable Λ ∈ ΩΓ

D′ and
then introduce the ingredients from point 3 in Section 2 to derive the associated Lax equations.

3.2 Lax matrix

Our algebraic setup covers the case of the cyclotomic Gaudin model with arbitrary multiplicities.
However, as mentioned at the start of this section, from now on we will restrict to the case with
simple poles at all ωkζr, k ∈ {0, . . . , T − 1}, r ∈ {1, . . . , N}, and double poles at the origin and
at infinity, since this is the setting required for our examples in Section 4. The discussion in the
remaining sections is easily generalised to the case of arbitrary multiplicities.
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To describe a coadjoint orbit OΛ ∈ ιλΩ
Γ
D′ from Lemma 3.5 corresponding to the Lax ma-

trix (1.9) of the cyclotomic Gaudin model, we fix a non-dynamical element Λ ∈ ΩΓ
D′ with the

same pole structure as (1.9), namely we introduce

Λ(λ) =
Λ
(0)
0

λ
+

Λ
(1)
0

λ2
+

1

T

N∑
r=1

T−1∑
k=0

σkΛr

λ− ωkζr
+ Λ∞ ∈ ΩΓ

D′ .

According to Lemma 3.5 and formula (3.25), the corresponding coadjoint orbit OΛ then consists
of elements of the form

P−

(
φ+ιλ

(
Λ
(0)
0

λ
+

Λ
(1)
0

λ2
+

1

T

N∑
r=1

T−1∑
k=0

σkΛr

λ− ωkζr
+ Λ∞

)
φ−1
+

)

= ιλ ◦ π(1)
λ

(
A

(0)
0

λ
+

A
(1)
0

λ2
,
1

T

A1

λ− ζ1
, . . . ,

1

T

AN

λ− ζN
, A∞

)

= ιλ

(
A

(0)
0

λ
+

A
(1)
0

λ2
+

1

T

T−1∑
r=1

T−1∑
k=0

σkAr

λ− ωkζr
+A∞

)
≡ ιλL(λ), (3.26)

where, recalling the definitions (3.23) and (3.24), we have set

A
(0)
0 = ϕ

(0)
0 Λ

(0)
0 ϕ

(0)−1
0 +

[
ϕ
(1)
0 ϕ

(0)−1
0 , ϕ

(0)
0 Λ

(1)
0 ϕ

(0)−1
0

]
,

A
(1)
0 = ϕ

(0)
0 Λ

(1)
0 ϕ

(0)−1
0 ,

Ar = ϕrΛrϕ
−1
r , r ∈ {1, . . . , N},

A∞ = Λ∞, (3.27)

with ϕ
(0)
r denoted by ϕr, for r ∈ {1, . . . , N}, to simplify notations. Notice that we have the re-

lations σϕ
(0)
0 = ϕ

(0)
0 and σϕ

(1)
0 = ωϕ

(1)
0 for the field elements which ensure that A

(0)
0 ∈ g(0) and

A
(1)
0 ∈ g(−1). This gives us the desired parameterisation of the cyclotomic Gaudin Lax matrix

L(λ) =
A

(0)
0

λ
+

A
(1)
0

λ2
+

1

T

N∑
r=1

T−1∑
k=0

σkAr

λ− ωkζr
+A∞ (3.28)

viewed as an element of the coadjoint orbit OΛ.

3.3 Lax equations

To derive Lax equations for the Lax matrix (3.28) of the cyclotomic Gaudin model, let us return
to the hierarchy of Lax equations (2.6) induced by the family of Hamiltonians in involution with
respect to { , }R. In our current setup, { , }R is the Lie–Poisson bracket on g̃

(1)
D associated with

the linear map R = P+ − P−. Invariant functions on g̃
(1)
D take the form

Hp,r : Y ∈ g̃
(1)
D 7−→ Resλr=0

(
ℓp,r(λr) Tr

(
Yr(λr)

p+1
))
dλ, p ≥ 1, r ∈ S, (3.29)

where ℓp,r(λr) ∈ C((λr)) is a collection of Laurent polynomials for p ≥ 1 and r ∈ S. It follows
from Proposition 3.1 that for these functions to be non-trivial, the Laurent polynomials ℓp,r(λr)
for r ∈ {0,∞} should be chosen such that ℓp,r(λr)Yr(λr)

p ∈ g̃Γ,0r , while ℓp,r(λr) for r ∈ {1, . . . , N}
can be any Laurent polynomials. Let us then choose

ℓp,r(λr) = ιλr

λp

p+ 1
for r ∈ {0,∞},

ℓp,r(λr) = ιλr

Tλp

p+ 1
for r ∈ {1, . . . , N}. (3.30)
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The restriction of the functions Hp,r to ιλL are Hamiltonians (in involution) of the model and
generate the elementary (pairwise-commuting) flows ∂trp . However, by virtue of the choice (3.30)
we made, it follows from (3.20) that

∑
r∈S Hp,r(ιλL) = 0 by the residue theorem, for each p ≥ 1.

In what follows, it will thus be sufficient to focus on the Hamiltonians Hp,r for r ̸= ∞ and
look at the associated equations of motion they produce through (2.6). Using R± = 1

2(R± id),
these equations can be rewritten as

∂trpιλL =
[
R±∇Hp,r(ιλL), ιλL

]
. (3.31)

As it suffices to calculate only one of the two expressions R+∇Hp,r(ιλL) and R−∇Hp,r(ιλL), let
us compute the latter. The gradient of Hp,r(ιλL) is an element of g̃

(0)
D and satisfies

lim
ϵ→0

Hp,r(ιλL+ ϵη)−Hp,r(ιλL)

ϵ
= ⟨η,∇Hp,r(ιλL)⟩ (3.32)

for all η ∈ g̃
(1)
D . Using Proposition 3.2, we may decompose this gradient as follows:

∇Hp,r(ιλL) = N (p)
r + ιλh

(p)
r , N (p)

r ∈ g̃
(0)
D+, h(p)r ∈ FΓ

D′ ,

and rewrite (3.31) as

∂trpιλL = [R−∇Hp,r(ιλL), ιλL] = −[P−(∇Hp,r(ιλL)), ιλL] = −
[
ιλh

(p)
r , ιλL

]
.

Since ιλ is an embedding which also clearly commutes with the Lie brackets [·, ·] : FΓ
D′ ×ΩΓ

D′ →
ΩΓ
D′ and [·, ·] : g̃(0)D × g̃

(1)
D → g̃

(1)
D , the above equation implies

∂trpL = −
[
h(p)r , L

]
. (3.33)

In order to calculate h
(p)
r ∈ FΓ

D′ , by virtue of Proposition 3.4, it is sufficient to restrict η in (3.32)
to live in g̃

(1)
D+. We then have〈

η,N (p)
r

〉
= 0 for all η ∈ g̃

(1)
D+, N (p)

r ∈ g̃
(0)
D+,

and the right-hand side of (3.32) becomes

T
N∑
s=1

Resλs=0Tr
(
ηs(λs)ιλsh

(p)
r

)
+

∑
s∈{0,∞}

Resλs=0Tr
(
ηs(λs)ιλsh

(p)
r

)
,

while for the left-hand side we find

lim
ϵ→0

Hp,r(ιλL+ ϵη)−Hp,r(ιλL)

ϵ
= (p+ 1)Resλr=0Tr

(
ℓp,r(λr)ηr(λr)ιλrL

p
)
, r ∈ S,

for any ηs(λs) ∈ g̃s+, s ∈ {1, . . . , N}, and ηs(λs) ∈ g̃Γ,1s+ , s ∈ {0,∞}. By definition of ℓp,r(λr)
in (3.30), this implies

(
ιλsh

(p)
r

)
− =

{
0 for s ̸= r,(
ιλrλ

pιλrL
p
)
− for s = r

for all r ∈ S, whereX− denotes the principal part of a Laurent seriesX. Plugging the equivariant

functions h
(p)
r obtained from the above conditions into (3.33) gives a hierarchy of Lax equations

corresponding to our choice of invariant functions Hp,r in (3.29).
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Explicitly, for p = 1, we get the Lax equations

∂tr1L = −
[
h(1)r , L

]
with h(1)r =


A

(1)
0

λ
for r = 0,

1

T

T−1∑
k=0

ωkζrσ
kAr

λ− ωkζr
for r ∈ {1, . . . , N}.

(3.34)

Finally, we turn to the primary goal of this paper which is to give a Lagrangian multiform
for the cyclotomic Gaudin model that will provide a variational description of the hierarchy
of Lax equations in (3.33). Having just described the cyclotomic Gaudin model within the
Lie dialgebra framework, we now have all the necessary ingredients to achieve this goal: the
non-dynamical element Λ ∈ ΩΓ

D′ that fixes the phase space, the field element φ+ ∈ G̃
(0)
D+ con-

taining the dynamical degrees of freedom, the linear map R that equips the phase space with the
required Poisson structure, and the invariant functions Hp,r which induce non-trivial equations
of motion with respect to this Poisson structure.

3.4 Lagrangian multiform for the cyclotomic Gaudin hierarchy

We can now define a Lagrangian 1-form on the coadjoint orbit OΛ of the cyclotomic Gaudin
model as

L =
M∑
p=1

∑
r∈S\{∞}

Lp,r dt
r
p,

using the expression (2.8) for the Lagrangian coefficients. It will be useful to recall the notations
in (3.27) associated with the parameterisation of the cyclotomic Gaudin Lax matrix. The el-
ementary times tk that appear in (2.8) are now naturally labelled by a pair of indices p ≥ 1
and r ∈ S, namely we now have elementary times trp, associated with the corresponding Hamil-
tonians (3.29). Explicitly, we have the following.

Theorem 3.6. The Lagrangian coefficients of the cyclotomic Gaudin multiform L take the form

Lp,r =
N∑
s=1

Tr
(
As∂trpϕsϕ

−1
s

)
+Tr

(
A

(0)
0 ∂trpϕ

(0)
0 ϕ

(0)−1
0

)
−Hp,r(ιλL), (3.35)

with the potential part

Hp,r(ιλL) = Resλr=0

(
ℓp,r(λr) Tr

(
ιλrL

p+1
))
dλ, r ∈ {0, 1, . . . , N}, (3.36)

where ℓp,r(λr) are the Laurent polynomials

ℓp,0 = ιλ0

λp

p+ 1
and ℓp,r = ιλr

Tλp

p+ 1
for r ∈ {1, . . . , N}.

The Lagrangian 1-form L satisfies the corner equations (1.2)–(1.3) of the multi-time Euler–
Lagrange equations, while the standard Euler–Lagrange equations for Lp,r give the hierarchy of
Lax equations in (3.33). Further, on solutions of (3.33), we have the closure relation

∂tsqLp,r − ∂trpLq,s = 0

for all possible combinations of (p, r) and (q, s) in Z≥1 × S.
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Proof. Let us start by reinterpreting the formula in (2.8) in the present context of the cy-
clotomic Gaudin model. First, note that on the coadjoint orbit OΛ, where the Lagrangian
1-form L lives, the role of the Lax matrix is played by the image of L in g̃

(1)
D under the

embedding ιλ, given by (3.26). Next, the bilinear pairing used to define the kinetic part is
the one constructed in Proposition 3.1. Furthermore, in the Adler–Kostant–Symes scheme
where (locally) GR ≃ G+ × G−, we explicitly have ∂trpφ ·R φ−1 = ∂trpφ+φ

−1
+ + ∂trpφ−φ

−1
− , and

since ιλL ∈ V− = ιλΩ
Γ
D′ , it follows from Proposition 3.4 that only the ∂trpφ+φ

−1
+ piece con-

tributes to the kinetic term. Finally, the potential part is simply the restriction of the invariant
functions Hp,r in (3.29) to ιλL. Therefore, in the present setup, the Lagrangian coefficients
in (2.8) can be expressed as

Lp,r =
〈
ιλL, ∂trpφ+φ

−1
+

〉
−Hp,r(ιλL)

=
〈
ιλΛ, φ

−1
+ ∂trpφ+

〉
−Hp,r(ιλL), r ∈ {0, 1, . . . , N}, (3.37)

where in the second step we used the fact (3.26) that ιλL = P−
(
φ+(ιλΛ)φ

−1
+

)
. The kinetic term

can be written out more explicitly in terms of the component fields (3.24) as

〈
ιλΛ, φ

−1
+ ∂trpφ+

〉
= T

N∑
s=1

Resλs=0Tr
(
ιλsΛφs+(λs)

−1∂trpφs+(λs)
)
dλ

+
∑

s∈{0,∞}

Resλs=0Tr
(
ιλsΛφs+(λs)

−1∂trpφs+(λs)
)
dλ

=

N∑
s=1

Tr
(
As∂trpϕsϕ

−1
s

)
+Tr

(
A

(0)
0 ∂trpϕ

(0)
0 ϕ

(0)−1
0

)
+ ∂trp Tr

(
ϕ
(1)
0 ϕ

(0)−1
0 A

(1)
0

)
+

1

2
∂trp Tr

(
A∞
(
ϕ(1)
∞
)2)

.

The last two terms associated to the poles at the origin and at infinity are total derivatives and
do not contribute to the multi-time Euler–Lagrange equations since dropping them amounts

to changing the Lagrangian 1-form L by dTr
(
ϕ
(1)
0 ϕ

(0)−1
0 A

(1)
0 + 1

2A∞
(
ϕ
(1)
∞
)2)

which is a total
horizontal differential. Discarding these two terms, we are left with the required expression for
the Lagrangian coefficients.

Since the Lagrangian coefficients Lp,r in (3.37) are of the form (2.8), it follows directly from
Theorem 2.1 that the Lagrangian 1-form L satisfies all the required conditions and the closure
relation. ■

To close this section, let us present the explicit expressions for the first set of Lagrangian
coefficients L1,r with r ∈ {0, 1, . . . , N}. The kinetic terms are obtained by simply substituting
p = 1 in the kinetic part in (3.35), while the potential terms defined by (3.36) read

H1,0 =
1

2
Tr
(
A

(0) 2
0

)
−

N∑
r=1

Tr
(
A

(1)
0 Ar

)
ζr

+Tr
(
A

(1)
0 A∞

)
,

H1,r = Tr
(
A

(0)
0 Ar

)
+

Tr
(
A

(1)
0 Ar

)
ζr

+
1

2T

T−1∑
k=0

Tr
(
Arσ

kAr

)
+

1

T

∑
s ̸=r

T−1∑
k=0

Tr
(
Arσ

kAs

)
ζr

ζr − ωkζs
+Tr(ArA∞)ζr, r ∈ {1, . . . , N}.

Upon varying L1,r with respect to ϕs, s = 1, . . . , N , ϕ
(0)
0 , and ϕ

(1)
0 , it can be checked that the

associated Euler–Lagrange equations correspond to the set of Lax equations for p = 1 in (3.34),
as it should be from Theorem 3.6.
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4 Realisations of the cyclotomic Gaudin model

In this section, we study two different realisations of the cyclotomic Gaudin model – the peri-
odic Toda chain and the discrete self-trapping (DST) model – with the objective of describing
their corresponding hierarchies variationally. We will then go on to show how our framework
allows for a straightforward coupling of integrable hierarchies, by using the approach devised
in [15, Section 7] to couple together hierarchies of integrable field theories.

In what follows, we will work with the cyclotomic Gaudin model associated with the Lie
algebra g := glT (C) and the automorphism σ ∈ Aut g defined by σ(Eij) = ωj−iEij , for every
i, j = 1, . . . , T . Here ω is a primitive T -th root of unity, and by Eij , i, j = 1, . . . , T , we denote
the standard basis of glT (C) taking the indices i and j modulo T by convention. The eigenspaces
of σ defined by (3.1) are then given by g(n) = span{Ei,i+n}Ti=1.

Let us also note the following useful identity that we shall frequently make use of

z
T−1−[l]
1 z

[l]
2

zT1 − zT2
=

1

T

T−1∑
k=0

ω−kl

z1 − ωkz2
(4.1)

for any z1, z2 ∈ C and l ∈ Z, where [l] ∈ {0, . . . , T − 1} is such that l = [l] mod T .

4.1 Periodic Toda chain

The periodic Toda chain [39] describes a system of particles connected by “exponential springs”
together with a periodic boundary condition, and has been extensively studied in the Hamil-
tonian formalism. See, for instance, [18] for the widely used Flaschka change of coordinates,
and [3] for a proof of its integrability.

Lax matrix. We will work with the Lax matrix

LToda(λ) =



p1λ
−1 1 0 . . . aTλ

−2

a1λ
−2 p2λ

−1 1 . . . 0

...
. . .

...
0 ai−1λ

−2 piλ
−1 1 0

...
. . .

...
0 . . . aT−2λ

−2 pT−1λ
−1 1

1 . . . 0 aT−1λ
−2 pTλ

−1


, (4.2)

where ai = eqi−qi+1 , and qi, pi are the canonical coordinates satisfying the canonical Poisson
bracket relations {pi, qj} = δij for i, j = 1, . . . , T . We also have the periodic boundary conditions
(p0, q0) = (pT , qT ) and (pT+1, qT+1) = (p1, q1).

The standard Lax matrix for the periodic Toda chain (see [7, Section 6], for instance)

L̃Toda(λ) =



p1 a
1/2
1 0 . . . a

1/2
T λ−1

a
1/2
1 p2 a

1/2
2 . . . 0

...
. . .

...

0 a
1/2
i−1 pi a

1/2
i 0

...
. . .

...

0 . . . a
1/2
T−2 pT−1 a

1/2
T−1

a
1/2
T λ . . . 0 a

1/2
T−1 pT





Lagrangian Multiform for Cyclotomic Gaudin Models 21

is related to LToda(λ) by conjugation by the diagonal matrix Q=diag
(
e−q1/2λ−1, . . . , e−qT /2λ−T

)
and multiplication by an overall factor of λ−1, together with a change of λ-dependence, as follows:

LToda(λ) = λ−1QL̃Toda

(
λT
)
Q−1. (4.3)

The Poisson bracket of the Lax matrix L̃Toda(λ) can be written as{
L̃Toda 1(λ), L̃Toda 2(µ)

}
=
[
r̃12(λ, µ), L̃Toda 1(λ) + L̃Toda 2(µ)

]
,

where r̃12(λ, µ) is the skew-symmetric r-matrix

r̃12(λ, µ) =
1

2

µ+ λ

µ− λ

T∑
i=1

Eii ⊗ Eii +
1

µ− λ

(
µ
∑
i<j

+λ
∑
i>j

)
Eij ⊗ Eji.

Under the gauge transformation (4.3), on using the identity (4.1), we find that the Lax matrix
LToda(λ) satisfies the Poisson bracket{

LToda 1(λ), LToda 2(µ)
}
=
[
r12(λ, µ), LToda 1(λ)

]
−
[
r21(µ, λ), LToda 2(µ)

]
,

where r12(λ, µ) is the non-skew-symmetric cyclotomic r-matrix

r12(λ, µ) =
1

T

T−1∑
k=0

ωk(j−i)

µ− ω−kλ
Eij ⊗ Eji (4.4)

that we have been working with. This explains our choice of Lax matrix (4.2) as opposed to
the more traditional one. As just proved, it satisfies the Poisson algebra of the cyclotomic
glT (C)-Gaudin model and therefore allows us to obtain the periodic Toda chain as a certain
realisation of that model. Specifically, the Lax matrix LToda(λ) can be seen as a realisation of
the cyclotomic Gaudin Lax matrix with double poles at the origin and at infinity, that is,

LToda(λ) =
J
(0)
0

λ
+

J
(1)
0

λ2
+ J∞, (4.5)

where

J
(0)
0 =

T∑
i=1

piEii, J
(1)
0 =

T∑
i=1

eqi−qi+1Ei+1,i, J∞ =
T∑
i=1

Ei,i+1.

Orbit realisation. Set D = {0,∞}, and choose the non-dynamical element

ΛToda(λ) =
Λ
(1)
0

λ2
+ Λ∞ ∈ ΩΓ

D′ ,

where

Λ
(1)
0 =

T∑
i=1

Ei+1,i ∈ g(−1), Λ∞ =
T∑
i=1

Ei,i+1 ∈ g(1).

The group elements φ+ = (φ0+, φ∞+), defined by (3.24), contain the dynamical degrees of
freedom. From (3.27), we know that the components of LToda(λ) can now be expressed as

J
(0)
0 =

[
ϕ
(1)
0 ϕ

(0)−1
0 , J

(1)
0

]
, J

(1)
0 = ϕ

(0)
0 Λ

(1)
0 ϕ

(0)−1
0 , J∞ = Λ∞. (4.6)
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This gives us a parametrisation of the Lax matrix LToda(λ) in (4.5) as an element of the coadjoint
orbit OToda

Λ . Since σ(φ0+(λ)) = φ0+(ωλ), we have σϕ
(n)
0 = ωnϕ

(n)
0 . In particular, ϕ

(0)
0 and ϕ

(1)
0

have the form

ϕ
(0)
0 =

T∑
i=1

uiEii, ϕ
(1)
0 =

T∑
i=1

viEi,i+1.

For convenience, define (u0, v0) = (uT , vT ) and (uT+1, vT+1) = (u1, v1) to encode the periodic
boundary conditions. Then, from (4.6), we get

J
(0)
0 =

T∑
i=1

(
vi
ui

− vi−1

ui−1

)
Eii, J

(1)
0 =

T∑
i=1

ui+1

ui
Ei+1,i, J∞ =

T∑
i=1

Ei,i+1.

Defining

pi =
vi
ui

− vi−1

ui−1
and qi = − lnui for i = 1, . . . , T,

we now have the desired realisation of the coefficients of the Lax matrix LToda(λ). The coadjoint
orbit OToda

Λ where LToda(λ) lives is parameterised by ai, pi, i = 1, . . . , T , satisfying
∏T

i ai = 1

and
∑T

i pi = 0.
Lax equations. Let us now look at the Lax equations associated with the invariant functions

on g̃
(1)
D defined in (3.36) for the general case. The only functions we need to consider are

Hp,0 =
1

p+ 1
Resλ=0

(
λpTr

(
ιλ0L

p+1
Toda

))
dλ.

The set of functions Hp,∞ are not independent: we have Hp,∞ = −Hp,0 for all p ≥ 1. The Lax
equations for the periodic Toda chain with respect to the elementary times t0p are given by

∂t0pιλLToda = [R±∇Hp,0(ιλLToda), ιλLToda].

For p = 1, these take the form of the set of Lax equations in (3.34):

∂t01LToda = [M1,0, LToda] with M1,0 = −J
(1)
0

λ
. (4.7)

Taking residues on both sides in (4.7) gives the equations of motion for pi, qi for i = 1, . . . , T .
To get the equations of motion for qi it is most convenient to “undo” the dressing and write the
corresponding equation as[

∂t01ϕ
(0)
0 ϕ

(0)−1
0 − J

(0)
0 , J

(1)
0

]
= 0.

This tells us that the diagonal matrix

ϕ
(0)−1
0

(
∂t01ϕ

(0)
0 ϕ

(0)−1
0 − J

(0)
0

)
ϕ
(0)
0

must commute with Λ
(1)
0 , and is therefore equal to α1. Using the freedom ϕ

(0)
0 → ϕ

(0)
0 g, where

g is diagonal, to set detϕ
(0)
0 = 1, we see that α = 0 by taking the trace of

∂t01ϕ
(0)
0 ϕ

(0)−1
0 − J

(0)
0 = α1.

Thus, we have the desired Toda equations

∂t01qi = −pi,

∂t01pi = eqi−qi+1 − eqi−1−qi . (4.8)
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Lagrangian description. Using Theorem 3.6, we can now write a Lagrangian multiform
for the periodic Toda hierarchy as

LToda =

M∑
p=1

Lp,0 dt
0
p

with

Lp,0 = −
T∑
i=1

pi∂t0pqi −
1

p+ 1
Resλ=0

(
λpTr

(
Lp+1
Toda

))
dλ.

For p = 1, this gives us the Lagrangian coefficients for the periodic Toda chain with respect
to the time t01:

L1,0 = −
T∑
i=1

pi∂t01qi −
1

2

T∑
i=1

p2i −
T∑
i=1

eqi−qi+1 .

This is the expected phase space Lagrangian that our method produces and which gives Hamil-
ton’s equations (4.8) for periodic Toda. It corresponds to the (tangent bundle) Lagrangian

L1,0 =
1

2

T∑
i=1

(
∂t01qi

)2 − T∑
i=1

eqi−qi+1 .

4.2 DST model

The discrete self-trapping (DST) equation was introduced in [17] to describe the dynamics
of small molecules, which then led to detailed studies of the DST dimer using different methods.
The DST model we cast into our framework here is a generalisation of the dimer case to arbitrary
(finite) degrees of freedom. This general case first appeared in [16] where its relationship with
the periodic Toda chain was also hinted at. Our motivation here being different, we do not delve
into this connection between the two theories. The interested reader is referred to [22] where
this aspect was explored further.

Lax matrix. We work here with the following avatar of the Lax matrix of the DST model

LDST(λ) =
1

λ

T∑
i=1

ciEii +
1

T

T∑
i,j=1

T−1∑
k=0

ωk(j−i)xiXjEij

λ− ωkζ1
+

T∑
i=1

Ei,i+1,

where ci, for i = 1, . . . , T , are complex parameters, and xi, Xi are the canonical coordinates
satisfying the canonical Poisson bracket relations {Xi, xj} = δij for i, j = 1, . . . , T , and the
periodic conditions (X0, x0) = (XT , xT ) and (XT+1, xT+1) = (X1, x1).

The DST Lax matrix in [22, equation (3.8)] is given as

L̂DST(µ) =

T∑
i,j=1

bT+i−jxiXjEij

µ− bT
+ µET1 +

∑
i≥j

bi−jxiXjEij +
T∑
i=1

ciEii +
T−1∑
i=1

Ei,i+1,

where b, ci ∈ C are parameters of the model, and µ is the spectral parameter of the Lax matrix.
In the present setup where we realise the DST model as a cyclotomic Gaudin model, the role
of the parameter b is played by the location of the pole ζ1 on CP 1 \ {0,∞}. One obtains the
Lax matrix LDST(λ) by conjugating L̂DST

(
λT
)
by the diagonal matrix D = diag

(
λ−1, . . . , λ−T

)
followed by an overall multiplication by λ−1, together with a change of λ-dependence, that is,

LDST(λ) = λ−1DL̂DST

(
λT
)
D−1, (4.9)

and then using the identity (4.1).
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The Poisson bracket of the Lax matrix L̂DST(λ) is given as{
L̂DST 1(λ), L̂DST 2(µ)

}
=
[
r̂12(λ, µ), L̂DST 1(λ)

]
−
[
r̂21(µ, λ), L̂DST 2(µ)

]
,

where

r̂12(λ, µ) =
1

µ− λ

(
µ
∑
i≤j

+λ
∑
i>j

)
Eij ⊗ Eji.

Using the identity (4.1) once again, one finds that the gauge transformation (4.9) gives for
LDST(λ) the r-matrix (4.4) associated with the cyclotomic glT (C)-Gaudin model, as we would
have anticipated. We then have the Poisson bracket{

LDST 1(λ), LDST 2(µ)
}
=
[
r12(λ, µ), LDST 1(λ)

]
−
[
r21(µ, λ), LDST 2(µ)

]
.

Similar to the case of the periodic Toda chain, the Lax matrix LDST(λ) can be seen as a re-
alisation of the cyclotomic Gaudin Lax matrix, this time with simple poles at the origin and
all ωkζ1, k ∈ {0, . . . , T − 1}, for some ζ1 ∈ C×, and a double pole at infinity, that is,

LDST(λ) =
K

(0)
0

λ
+

1

T

T−1∑
k=0

σkK1

λ− ωkζ1
+K∞, (4.10)

where

K
(0)
0 =

T∑
i=1

ciEii, K1 =

T∑
i,j=1

xiXjEij , K∞ =

T∑
i=1

Ei,i+1. (4.11)

Orbit realisation. Set D = {0, 1,∞}, and choose the non-dynamical element

ΛDST(λ) =
Λ
(0)
0

λ
+

1

T

T−1∑
k=0

σkΛ1

λ− ωkζ1
+ Λ∞ ∈ ΩΓ

D′ ,

where

Λ
(0)
0 =

T∑
i=1

ciEii ∈ g(0), Λ1 = E11 ∈ g, Λ∞ =
T∑
i=1

Ei,i+1 ∈ g(1).

The coadjoint action of the group elements φ+ = (φ0+, φ1+, φ∞+), defined by (3.24), on ΛDST(λ)
gives the orbit where LDST(λ) lives. From (3.27), we know that the components of LDST(λ) can
then be expressed as

K
(0)
0 = ϕ

(0)
0 Λ

(0)
0 ϕ

(0)−1
0 , K1 = ϕ1Λ1ϕ

−1
1 , K∞ = Λ∞, (4.12)

where we have denoted ϕ
(0)
1 by ϕ1 for simplicity. This gives us a parameterisation of the Lax

matrix LDST(λ) in (4.14) as an element of the coadjoint orbit ODST
Λ . We parameterise ϕ1 as

ϕ1 =
T∑

i,j=1

sijEij ,

and denote by ŝij , i, j = 1, . . . , T , the entries of its inverse, that is,

ϕ−1
1 =

T∑
i,j=1

ŝijEij .
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From (4.12), we then have

K
(0)
0 =

T∑
i=1

ciEii, K1 =

T∑
i,j=1

si1ŝ1jEij , K∞ =

T∑
i=1

Ei,i+1.

Defining

xi = si1 and Xi = ŝ1i for i = 1, . . . , T,

gives us the desired realisation of the Lax matrix LDST(λ) as an element of the coadjoint or-
bit ODST

Λ . Notice that TrK1 =
∑T

i=1 xiXi = 1 is an orbit invariant and can be seen as being
generated by the symmetry xi → axi, Xi → a−1Xi.

Lax equations. Let us choose invariant functions Hp,r on g̃
(1)
D as defined in (3.36), and

treat Hp,0 and Hp,1 as the independent functions. The Lax equations for the DST model with
respect to the elementary times trp are then given by

∂trpιλLDST = [R±∇Hp,r(ιλLDST), ιλLDST].

For p = 1, these take the form of the set of Lax equations in (3.34):

∂tr1LDST = [M1,r, LDST] with M1,r =


0 for r = 0,

− 1

T

T−1∑
k=0

ωkζ1σ
kK1

λ− ωkζ1
for r = 1.

The t01 equations are trivial. Similar to the case of the periodic Toda chain, the easiest way
to get the t11 equations of motion for xi and Xi, for i = 1, . . . , T , is to undo the dressing.
With M = K

(0)
0 + ζ1K∞ + 1

T

∑T−1
k=1 σkK1, we find that ϕ−1

1 (∂t11ϕ1ϕ
−1
1 −M)ϕ1 must commute

with Λ1, and hence be block diagonal with a scalar “block”, say ρ, and a (T − 1)× (T − 1) block
which is irrelevant. Then we find, collecting xi in the vector x, and Xi in the vector X,

∂t11x−Mx = ρx, ∂t11X
T −XTM = ρXT .

Using the freedom xi → axi, Xi → a−1Xi mentioned above with a = eB, ∂t11B = ρ, we can
set ρ = 0. Explicitly, we obtain

∂t01Xi = 0,

∂t01xi = 0,

∂t11Xi = −ciXi − ζ1Xi−1 −
1

T

T−1∑
k=1

T∑
j=1

ωk(j−i)xjXjXi,

∂t11xi = cixi + ζ1xi+1 +
1

T

T−1∑
k=1

T∑
j=1

ωk(j−i)Xjxjxi. (4.13)

Lagrangian description. We can now write a Lagrangian multiform for the DST hierarchy
using Theorem 3.6 as

LDST =
M∑
p=1

Lp,0 dt
0
p +

M∑
p=1

Lp,1 dt
1
p
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with

Lp,r =
T∑
i=1

Xi∂trpxi −Hp,r(ιλLDST), r ∈ {0, 1},

where the potential term Hp,r(ιλLDST) is given by (3.36) for r ∈ {0, 1}. Notice that we have
dropped the kinetic contribution to Lp,r from the pole at origin since being a total derivative
it will not enter the Euler–Lagrange equations. For p = 1, the Lagrangian coefficients explic-
itly read

L1,0 =
T∑
i=1

Xi∂t01xi −
1

2

T∑
i=1

c2i ,

L1,1 =

T∑
i=1

Xi∂t11xi −
1

2T

T∑
i,j=1

T−1∑
k=0

ωk(j−i)xixjXiXj −
T∑
i=1

cixiXi − ζ1

T∑
i=1

xi+1Xi.

It can be checked that the Euler–Lagrange equations obtained from varying L1,0 and L1,1 with
respect to Xi, xi are exactly the equations in (4.13).

4.3 Coupled Toda-DST system

Finally, we turn to the task of coupling together the two hierarchies we have described varia-
tionally in this section. The Lax matrix of the coupled hierarchy can be expressed as

LToda-DST(λ) = LToda(λ) + βLDST(λ), (4.14)

where LToda(λ) is the Lax matrix of the periodic Toda chain in (4.5), LDST(λ) is the DST Lax
matrix (4.10), and the parameter β is a real-valued scalar parameter dictating the strength of
coupling between the two hierarchies. Naturally, the Lax matrix LToda-DST(λ) can be seen as
a realisation of the cyclotomic Gaudin Lax matrix:

LToda-DST(λ) =
J
(0)
0 + βK

(0)
0

λ
+

J
(1)
0

λ2
+

β

T

T−1∑
k=0

σkK1

λ− ωkζ1
+ J∞ + βK∞

with the g-valued coefficients defined in (4.6) and (4.11).

As the number of finite (non-zero) poles in a cyclotomic Gaudin model is arbitrary, our
construction allows us, in principle, to couple together an arbitrary number of copies of the
DST model and a copy of the periodic Toda chain. Here we only illustrate it for a single copy
each of the periodic Toda chain and the DST model.

Orbit realisation. Set D = {0, 1,∞}. Since we already have a parameterisation of the
Lax matrices LToda(λ) and LDST(λ) as orbit elements, we only need to check that the action of
a generic group element φ+ = (φ0+, φ1+, φ∞+) ∈ G̃

(0)
D+ defined by (3.24) on the non-dynamical

element

ΛToda-DST(λ) = ΛToda(λ) + βΛDST(λ) ∈ ΩΓ
D′ ,

where

ΛToda(λ) =
Λ
(1)
0

λ2
+ Λ∞, ΛDST(λ) =

Λ
(0)
0

λ
+

1

T

T−1∑
k=0

σkΛ1

λ− ωkζ1
+ Λ∞
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results in the Lax matrix LToda-DST(λ). Indeed, using the result in (3.27), we have that the
components of LToda-DST(λ) take the form

J
(0)
0 + βK

(0)
0 =

[
ϕ
(1)
0 ϕ

(0)−1
0 , J

(1)
0

]
+ βϕ

(0)
0 Λ

(0)
0 ϕ

(0)−1
0 ,

J
(1)
0 = ϕ

(0)
0 Λ

(1)
0 ϕ

(0)−1
0 ,

βK1 = βϕ1Λ1ϕ
−1
1 , and

J∞ + βK∞ = Λ∞ + βΛ∞,

as desired. This gives us a parameterisation of the Lax matrix LToda-DST(λ) in (4.14) as an
element of the coadjoint orbit OToda

Λ ×ODST
Λ .

Lax equations. As earlier, we will choose invariant functionsHp,r on g̃
(1)
D as defined in (3.36),

for r ∈ {0, 1}. The Lax equations for the DST-Toda model with respect to the elementary
times trp are given by

∂trpιλLToda-DST = [R±∇Hp,r(ιλLToda-DST), ιλLToda-DST].

For p = 1, these take the form of the set of Lax equations in (3.34):

∂tr1LToda-DST = [M1,r, LToda-DST] (4.15)

with

M1,r =


−J

(1)
0

λ
for r = 0,

−β

T

T−1∑
k=0

ωkζ1σ
kK1

λ− ωkζ1
for r = 1.

Taking residues on both sides in (4.15) gives the equations of motion for pi, qi, Xi, xi, for
i = 1, . . . , T . Like in the cases of the periodic Toda chain and the DST model, to get the
equations of motion for qi, Xi, xi, one can “undo” the dressing in the corresponding equations.
Explicitly, one gets the following equations for pi, qi for i = 1, . . . , T :

∂t01pi = (1 + β)
(
eqi−qi+1 − eqi−1−qi

)
+

β

ζ1

(
eqi−1−qixi−1Xi − eqi−qi+1xiXi+1

)
,

∂t01qi = −pi − βci,

∂t11pi =
β

ζ1

(
eqi−qi+1xiXi+1 − eqi−1−qixi−1Xi

)
,

∂t11qi = −βxiXi, (4.16)

and the following equations for Xi, xi, for i = 1, . . . , T :

∂t01Xi =
1

ζ1
eqi−qi+1Xi+1,

∂t01xi = − 1

ζ1
eqi−1−qixi−1,

∂t11Xi = −piXi − βciXi −
1

ζ1
eqi−qi+1Xi+1 −

β

T

T∑
j=1

T−1∑
k=0

ωk(j−i)xjXjXi − (1 + β)ζ1Xi−1,

∂t11xi = pixi + βcixi +
1

ζ1
eqi−1−qixi−1 +

β

T

T∑
j=1

T−1∑
k=0

ωk(j−i)Xjxjxi + (1 + β)ζ1xi+1. (4.17)
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Setting β = 0 in the above equations produces the equations of motion in (4.8) for the
periodic Toda chain. In the limit β → ∞, these reduce to the equations of motion we obtained
for the DST model in (4.13). To see this, note that the Lax matrix LDST comes as βLDST in
the coupled system. Therefore, in the limit β → ∞, the time flow trp is rescaled such that ∂trp
rescales to βp∂trp .

Lagrangian description. Using Theorem 3.6, we can now write a Lagrangian multiform
for the Toda-DST hierarchy:

LToda-DST =
M∑
p=1

Lp,0dt
0
p +

M∑
p=1

Lp,1dt
1
p

with

Lp,r = Tr
(
J
(0)
0 ∂trpϕ

(0)
0 ϕ

(0)−1
0

)
+ β Tr

(
K

(0)
0 ∂trpϕ

(0)
0 ϕ

(0)−1
0

)
+ β Tr

(
K1∂trpϕ1ϕ

−1
1

)
−Hp,r(ιλLToda-DST), r ∈ {0, 1},

where the potential term Hp,r(ιλLToda-DST) is given by (3.36) for r ∈ {0, 1}. Notice that K(0)
0 =∑T

i=1 ciEii. So, the second term on the right-hand side is, in fact, a total derivative and will
not enter the Euler–Lagrange equations. So, we will simply drop it. In terms of the canonical
coordinates, we then have

Lp,r = −
T∑
i=1

pi∂trpqi + β
T∑
i=1

Xi∂trpxi −Hp,r(ιλLToda-DST), r ∈ {0, 1}. (4.18)

The decoupled limits of the periodic Toda and the DST hierarchies are easily recovered by
setting β = 0 and taking the limit β → ∞ in (4.18), respectively.

For p = 1, (4.18) gives the Lagrangian for the coupling of the periodic Toda chain and
the DST model with the potential terms

H1,0 =
1

2

T∑
i=1

p2i + β
T∑
i=1

cipi +
β2

2

T∑
i=1

c2i + (1 + β)
T∑
i=1

eqi−qi+1 − β

ζ1

T∑
i=1

eqi−qi+1xiXi+1,

H1,1 =
β2

2T

T∑
i,j=1

T−1∑
k=0

ωk(j−i)xixjXiXj + β

T∑
i=1

pixiXi + β2
T∑
i=1

cixiXi

+
β

ζ1

T∑
i=1

eqi−qi+1xiXi+1 +
(
β + β2

)
ζ1

T∑
i=1

xi+1Xi.

The variation δL1,r gives the Euler–Lagrange equations for the coupled system with respect
to the time flow tr1, for each r ∈ {0, 1}. It can be checked that these are exactly the equations
we obtained in (4.16) and (4.17).

5 Conclusion

From the point of view of Lagrangian multiforms, our main result is the construction of a La-
grangian multiform for the class of cyclotomic Gaudin models which includes, as a particular
example, the emblematic periodic Toda chain. The main technical aspect of this result lies in
the pinning down of the necessary algebraic setup (in Section 3) associated with the classical
r-matrix of the cyclotomic Gaudin model which is both non-skew-symmetric and depends on
spectral parameters. This is the first time that a Lagrangian multiform has been constructed
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for an r-matrix with both of these properties, as previous general constructions were either only
presented for skew-symmetric ones [11, 15] or for non-skew-symmetric r-matrices but without
spectral parameter [11].

The non-skew-symmetric r-matrix of the cyclotomic Gaudin model arises from a decomposi-
tion of a direct sum of (twisted) loop algebras into a pair of complementary subalgebras, which
controls the corresponding Lie dialgebra structure entering its Lagrangian multiform. While
finishing this work, the preprint [1] appeared on the construction of solutions of the general clas-
sical Yang–Baxter equation based on more general decompositions of such Lie algebras and to
which one can associate generalised notions of Gaudin models. In particular, it appears that the
cyclotomic setup considered here is a special case of their construction. It would be interesting
to investigate if our Lagrangian multiform construction can be extended to the more general
non-skew-symmetric r-matrices and associated generalised Gaudin models of [1].
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