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Abstract. Control systems of interest are often invariant under Lie groups of transforma-
tions. For such control systems, a geometric framework based on Lie symmetry is formulated,
and from this a sufficient condition for dynamic feedback linearizability obtained. Addition-
ally, a systematic procedure for obtaining all the smooth, generic system trajectories is
shown to follow from the theory. Besides smoothness and the existence of symmetry, no
further assumption is made on the local form of a control system, which is therefore per-
mitted to be fully nonlinear and time varying. Likewise, no constraints are imposed on the
local form of the dynamic compensator. Particular attention is given to the consideration
of geometric (coordinate independent) structures associated to control systems with sym-
metry. To show how the theory is applied in practice we work through illustrative examples
of control systems, including the vertical take-off and landing system, demonstrating the
significant role that Lie symmetry plays in dynamic feedback linearization. Besides these,
a number of more elementary pedagogical examples are discussed as an aid to reading the
paper. The constructions have been automated in the Maple package DifferentialGeo-
metry.
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integrability; flat outputs; principal bundle

2020 Mathematics Subject Classification: 53A55; 58A17; 58A30; 93C10

1 Introduction

A very interesting question in geometric control theory is how to determine whether a given
control system is dynamic feedback linearizable, and if so how to construct such a lineariza-
tion. The notion of dynamic feedback linearization is closely related to the notion of explicit
integrability. A smooth control system

ẋ = f(t, x, u), x ∈ Rn, u ∈ Rm (1.1)
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is said to be explicitly integrable if the set of all its generic, time-parametrized, smooth trajectories
can be locally expressed in the form

x(t) = A
(
t, za(t), (za)′(t), . . . , (za)(ra)(t)

)
,

u(t) = B
(
t, za(t), (za)′(t), . . . , (za)(sa)(t)

)
, (1.2)

where a ranges over the integers 1 ≤ a ≤ m and for some integers ra > 0, sa > 0, where
the za(t) are arbitrary, smooth, vector-valued functions of time t, and A and B are assumed
to be smooth functions over an open subset of a finite jet space that have been composed with
a section of this space over its source manifold, R. Note that the highest-order derivatives ra, sa
of the functions za(t) appearing in (1.2) need not all be equal; in general they depend on a. The
expression (1.2) is also referred to as a Monge parametrization for the system (1.1); see, e.g., [5].

The appeal of explicit integrability is evident: An explicit Monge parametrization of the
form (1.2) allows the general solution of the system (1.1) to be expressed in terms of m arbitrary
functions z1(t), . . . , zm(t) and their derivatives, with no integrations required. This is extremely
useful for control engineering problems such as motion planning; see, e.g., [31]. And it turns
out that explicit integrability is equivalent to dynamic feedback linearizability. We will give
a detailed explanation of this equivalence in Section 2.

Apart from in a dedicated review, it is difficult to do justice to all the advances that have
been made in this area, but a non-exhaustive list might include [3, 4, 5, 6, 9, 10, 12, 16, 17, 24,
31, 38, 43, 44, 46, 47, 48, 50]. So far as we are aware, references particularly concerned with
methods for the explicit construction of dynamic feedback linearizations of various classes of
control systems include [5, 6, 9, 10, 24, 32, 43, 45, 44, 45]. Despite this progress, however, it
is fair to say that the theory of dynamic feedback linearizability is still under development and
numerous open questions remain before the class of dynamic feedback linearizable systems can
be said to be well understood.

The primary aim of this paper is to set out a new, widely applicable theory of dynamic
feedback linearization – and hence, of explicit integrability – in the presence of symmetry. Our
approach is independent of the local form of a given control system (driftless, control affine,
fully nonlinear, time-varying, etc), including the numbers of states and inputs. It relies on the
existence of a static feedback linearizable quotient, or “symmetry reduction”, which turns out
to be very powerful.

While the existence of such a quotient is a geometric (i.e., coordinate independent) phe-
nomenon, one might suppose that it is a rare event. Surprisingly, this does not appear to be the
case. We have by now examined dozens of control systems, both dynamic feedback linearizable
and not. It is very rare to come across a control system with symmetry that does not possess
a static feedback linearizable quotient control system, and there are usually numerous such quo-
tients for a given control system. By itself, existence of a static feedback linearizable quotient
does not imply dynamic feedback linearizability, but it is an important first step.

Let us briefly describe our approach in broad terms. Suppose that a control system is invariant
under a Lie group G acting by control symmetries (cf. Definition 3.22). Very often, there exist
subgroups K ⊆ G with the property that the quotient control system by the action of K is
static feedback linearizable [13]. In fact, checking for subgroups K that lead to static feedback
linearizable quotients1 is an algorithmic procedure which can often be accomplished quickly and
efficiently once the infinitesimal generators of the Lie transformation group G are known (see [13]
for further details and examples).

1For control systems with symmetry, the notion of a static feedback linearizable quotient [13] is a refinement
and generalization of the notion of partial feedback linearization studied in [34] and [33] with the role played
by static feedback linearizable “subsystem” introduced in these references being replaced by a group theoretic
quotient control system which is static feedback linearizable.
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We have found that, in practice, there is usually a plentiful supply of subgroups leading
to static feedback linearizable quotients. Once such a static feedback linearizable quotient is
constructed, a further step answers the questions of the existence and subsequently construction
of a dynamic feedback linearization and its explicit solution. (See Section 7 for details.)

Let us now give an outline of this paper, highlighting the main results. Section 2 sets out
our basic terminology and the notion of a regular dynamic feedback linearization satisfying the
solution correspondence condition. For such control systems it is proven that explicit integrabil-
ity and dynamic feedback linearization are equivalent. For completeness, we also comment on
the relationship between dynamic feedback linearization and the notion of (differential) flatness.
Section 3 begins to set out the technical tools we use to achieve our results. We introduce the
notion of a Goursat bundle and its invariants, an exposition of the main procedure we use for
determining static feedback linearizing transformations, and the notion of control admissible
symmetries. The latter is the main tool we need to determine dynamic feedback linearizations.
An important ingredient is a means of very quickly identifying static feedback linearizable quo-
tients of an invariant control system; this is discussed in Section 3.3.1. The fundamental notion
of a contact sub-connection is introduced in Section 4, and in Theorem 4.3, we prove a normal
form result for any invariant control system that has a static feedback linearizable quotient.

Section 5 gives a brief exposition of cascade feedback linearization and the notion of a partial
contact curve reduction that we use in our construction of dynamic feedback linearization of
control systems with symmetry. Section 6 proves the preliminary results we need for Section 7
in which we apply all previously discussed notions to establish our theory of dynamic feedback
linearization. There are two main results: Theorem 7.6, which proves that if a control system
is cascade feedback linearizable then its contact sub-connection has a canonical partial pro-
longation by differentiation that is static feedback linearizable, and Theorem 7.12, which gives
a dynamic feedback linearization constructed from an application of Theorem 7.6. As part of
this we determine which inputs are to be differentiated and obtain a bound on the number of dif-
ferentiations that must be performed to obtain a static feedback linearizable dynamic extension.
In the case of differentially flat invariant control systems, our procedure canonically determines
the flat outputs.

Throughout we discuss numerous local coordinate examples in some detail, including ped-
agogical examples that illustrate the various constructions. We believe the examples are an
important part of the paper, and have been included with the aim of making the paper easier
to follow.

Finally, we remark that the approach of this paper is not restricted to static feedback equiva-
lence. The theory of Goursat bundles allows one to replace all of the static feedback equivalences
by orbital feedback equivalences [17].

2 Background on explicit integrability,
dynamic feedback linearizability, and flatness

Throughout this paper, all assumptions and results are local, and singularities will not be con-
sidered. Statements such as “assume that X ̸= 0” should be interpreted as “assume that X is
not identically zero and restrict to the open set where X ̸= 0”. All functions are assumed to be
smooth (i.e., C∞) unless otherwise indicated.

Definition 2.1. A smooth control system (1.1) on the manifold M = R × Rn × Rm satisfying
the requirement that in local coordinates (t, x, u), the map u 7→ f(t, x, u) has maximal rank for
all (t, x) will be called regular, or nonsingular.

Throughout this paper, we will assume that all control systems under consideration are
regular.
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Definition 2.2. A control system of the form (1.1) is called static feedback linearizable (SFL)
if there exists a transformation of the form

x = θ(t, z), u = ψ(t, z, v), z ∈ Rn, v ∈ Rm (2.1)

such that (t, z, v) 7→ (t, θ(t, z), ψ(t, z, v)) is a local diffeomorphism that transforms the sys-
tem (1.1) to a controllable linear system of the form

ż = Az +Bv,

where A, B are constant matrices.

It was shown by Brunovský in [7] that every controllable linear system is locally static feed-
back equivalent to a system of the form

żaℓ = zaℓ+1, 0 ≤ ℓ ≤ ra − 1, 1 ≤ a ≤ m (2.2)

for some integers r1, . . . , rm ≥ 1. The system (2.2) is said to be in Brunovský normal form; it
models a system of m smooth functions z1(t), . . . , zm(t) with unconstrained dynamics, where
each jet coordinate zaℓ represents the ℓth derivative (za)ℓ(t) of the function za(t) and the highest-
order coordinates zara are the control inputs. Thus, an equivalent formulation of Definition 2.2
is the following:

Definition 2.3. A control system (1.1) is static feedback linearizable (SFL) if there exists a trans-
formation of the form (2.1) such that (t, z, v) 7→ (t, θ(t, z), ψ(t, z, v)) is a local diffeomorphism
that transforms the system (1.1) to a linear system in Brunovský normal form.

Remark 2.4. In Definitions 2.2 and 2.3, we allow the possibility that the transformation (2.1)
depends nontrivially on the time parameter t, even when the underlying system (1.1) is au-
tonomous, or time-independent. This flexibility will be important for some of our results, and it
does not impact well-known results regarding static feedback linearizability, such as those due
to Jakubczyk and Respondek [27], van der Schaft [49], and Gardner and Shadwick [20]. See [42]
for a full discussion.

Definition 2.5. A dynamic feedback (or dynamic compensator) for the system (1.1) is an aug-
mented control system of the form

ẋ = f(t, x, β(t, x, y, w)), ẏ = g(t, x, y, w), u = β(t, x, y, w), (2.3)

where x ∈ Rn, y ∈ Rk, w ∈ Rm′
with m′ ≥ m.

The dynamic feedback (2.3) is regular if m′ = m and it satisfies the solution correspondence
condition: For every smooth solution (x(t), u(t)) to the original system (1.1), there exist (not nec-
essarily unique) smooth functions (y(t), w(t)) that, together with the given functions (x(t), u(t)),
identically satisfy the system (2.3).

Definition 2.6. The system (1.1) is regularly dynamic feedback linearizable if it admits a regular
dynamic feedback (2.3) with the property that the augmented system (2.3) is static feedback
linearizable.

It is important to note that the dimension (n+k) of the state space for the augmented system
is, in principle, unbounded. Most existing results characterizing dynamic feedback linearizable
systems rely on assumptions restricting either the state dimension (n+k) or the particular form
of the dynamic compensator, leaving open the question of whether a control system that cannot
be linearized via a dynamic feedback of a particular state dimension and/or particular form
might still be linearizable via a dynamic feedback of some higher state dimension and/or some
more general form.
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Definition 2.7. The system (1.1) is explicitly integrable if it admits a Monge parametrization
of the form (1.2) that describes the set of all generic trajectories of the control system (1.1) in
terms of m arbitrary functions z1(t), . . . , zm(t) and their derivatives. We will also refer to the
Monge parametrization (1.2) as an explicit solution of the control system (1.1).

For purposes of this paper, we will often (though not exclusively) represent a control sys-
tem (1.1) as a codistribution ω on the manifold M = R × Rn × Rm, with local coordi-
nates

(
t, x1, . . . , xn, u1, . . . , um

)
by

ω = span
{
ξ1, . . . , ξn

}
,

where

ξi = dxi − f i(t, x, u)dt, 1 ≤ i ≤ n. (2.4)

The codistribution ω will also be referred to as a Pfaffian system, as it represents a set of Pfaffian
equations that must be satisfied by solutions to the control system (1.1). In this language, the
Brunovský system (2.2) is represented by the codistribution β on the manifold

Jβ = R× Rr1+1 × · · · × Rrm+1

generated by the 1-forms

β = span
{
η10, . . . , η

1
r1−1, . . . , η

m
0 , . . . , η

m
rm−1

}
, (2.5)

where

ηaℓ = dzaℓ − zaℓ+1dt, 0 ≤ ℓ ≤ ra − 1, 1 ≤ a ≤ m.

The following proposition shows that the notions of “explicitly integrable” and “regularly
dynamic feedback linearizable” are equivalent for regular control systems.

Proposition 2.8. A regular control system of the form (1.1) is explicitly integrable if and only
if it is regularly dynamic feedback linearizable.

Proof. Suppose that the control system (1.1) admits a regular dynamic feedback linearization

of the form (2.3). Then this augmented system is defined on the manifold M̂ = R×Rn×Rk×Rm

with local coordinates (t, x, y, w), and is represented by the Pfaffian system

ω̂ = span
{
ξ1, . . . , ξn+k

}
,

where

ξi = dxi − f i(t, x, β(t, x, y, w)) dt, 1 ≤ i ≤ n,

ξn+j = dyj − gj(t, x, y, w) dt, 1 ≤ j ≤ k. (2.6)

We have deliberately used the same notation for the 1-forms ξ1, . . . , ξn in equations (2.4)
and (2.6), and this should be interpreted as follows: The solution correspondence condition

for the dynamic feedback (2.3) implies that the map π̄ : M̂ →M defined by

(t, x, u) = π̄(t, x, y, w) = (t, x, β(t, x, y, w)),

is a local submersion onto M . Consequently, the pullback map π̄∗ : Ω∗(M) → Ω∗(M̂) is an
immersion, and so any differential form θ on M may naturally be identified with its pull-
back π̄∗(θ) on M̂ . Using this identification, we regard the 1-forms ξ1, . . . , ξn defined by equa-
tion (2.4) as identical to those defined by the first equation in (2.6), and the Pfaffian sys-
tem ω = span

{
ξ1, . . . , ξn

}
as a subsystem of the system ω̂ = span

{
ξ1, . . . , ξn+k

}
on M̂ .



6 J.N. Clelland, T.J. Klotz and P.J. Vassiliou

Now, the assumption that (2.3) is static feedback linearizable means that there exists a diffeo-
morphism Φ: Jβ → M̂ for some Brunovský normal form β, with the property that Φ∗(ω̂) = β.
By applying the composition π∗ = Φ∗ ◦ π̄∗ (where π = π̄ ◦ Φ) to the Pfaffian system ω
on M , we may regard ω as a subsystem of the Brunovský system β on Jβ. Furthermore,
the map π : Jβ →M is a local submersion that provides an explicit Monge parametrization

xi = Ai
(
t, z10 , . . . , z

1
r1 , . . . , z

m
0 , . . . , z

m
rm

)
,

ua = Ba
(
t, z10 , . . . , z

1
r1 , . . . , z

m
0 , . . . , z

m
rm

)
. (2.7)

Therefore, the system (1.1) is explicitly integrable.
Observe that equations (2.7) imply that the codistribution

ω ⊕ span{dt} = span
{
dt,dx1, . . . ,dxn

}
is a subbundle of the codistribution

β ⊕ span{dt} = span
{
dt,dz10 , . . . ,dz

1
r1−1, . . . ,dz

m
0 , . . . ,dz

m
rm−1

}
.

It follows that the functions A1, . . . ,An are independent of the highest-order variables z1r1, . . . ,z
m
rm ,

while the functions B1, . . . , Bm may depend nontrivially on these variables. Thus, since Φ is
a static feedback transformation, we can write

xi = Ai
(
t, z10 , . . . , z

1
r1−1, . . . , z

m
0 , . . . , z

m
rm−1

)
,

ua = Ba
(
t, z10 , . . . , z

1
r1 , . . . , z

m
0 , . . . , z

m
rm

)
. (2.8)

Conversely, suppose that the system (1.1) admits a Monge parametrization of the form (2.8).
From the definition of explicit integrability, it follows that the formulas (2.8) define a lo-
cal submersion π : Jβ → M . This submersion may be extended to a local diffeomorphism
Φ: Jβ → M̂ ∼=M × Rk, where k = r1 + · · · + rm − n, as follows: Let y1, . . . , yk be a relabeling
of a subset of the variables z10 , . . . , z

1
r1−1, . . . , z

m
0 , . . . , z

m
rm−1 with the property that the map(

t, z10 , . . . , z
1
r1−1, . . . , z

m
0 , . . . , z

m
rm−1

)
7→
(
t, x1, . . . , xn, y1, . . . , yk

)
, (2.9)

with x1, . . . , xn defined by the first set of equations in (2.8), is a local diffeomorphism. Then set

wa = zara , 1 ≤ a ≤ m. (2.10)

The derivatives ẏ1, . . . , ẏk are determined by the derivatives of the appropriate coordinates zaj
in the Brunovský system β on Jβ, while the second set of equations in (2.8), together with the
inverse of the local diffeomorphism defined by (2.9) and (2.10), determine the functions

ua = βa(t, x, y, w).

Together with the original system (1.1), these equations constitute a regular dynamic feedback
linearization for the system (1.1) of the form (2.3). ■

Definition 2.9. A regular dynamic feedback linearization (2.3) for the control system (1.1) is
called endogenous if there exists an integer K ≥ 0 and functions φ1, . . . , φm, each depending
on the variables t and

{
xi, ub0, u

b
1, . . . , u

b
K | 1 ≤ i ≤ n, 1 ≤ b ≤ m

}
, such that for every

solution (x(t), u(t)) of the system (1.1), the functions

za0(t) = φa
(
t, xi(t), ub(t),

(
ub
)′
(t), . . . ,

(
ub
)(K)

(t)
)
, 1 ≤ a ≤ m, (2.11)

identically satisfy the Monge parametrization equations (2.8) determined by the dynamic feed-
back linearization (2.3).

The control system (1.1) is called flat if it admits an endogenous regular dynamic feedback
linearization. In this case, the functions

(
z10 , . . . , z

m
0

)
determined by equation (2.11) are called

flat outputs for the system.
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Flatness may be thought of as follows: Suppose that π : Jβ →M is the local submersion cor-
responding to a regular dynamic feedback linearization. The solution correspondence condition
implies that every solution curve

t 7→ (t, x(t), u(t)) (2.12)

of the system (1.1) in M lifts to at least one contact curve

t 7→
(
t, za(t), (za)′(t), . . . , (za)(ra)(t)

)
(2.13)

in Jβ. The dynamic feedback is endogenous – which implies that the system is flat – if and only
if every solution curve (2.12) can be lifted to a unique contact curve (2.13).

3 Geometry of control systems

In this section, we review a geometric formulation of control systems expressed in terms of dif-
ferential geometry on finite smooth manifolds. The exposition emphasizes those aspects relevant
to the applications that follow. More details can be found in [13, 28, 51, 52, 53].

Definition 3.1. A control system is a parametrized family of ordinary differential equations

ẋ = f(t, x, u), x ∈ Rn, u ∈ Rm

in which the vector x is comprised of the state variables taking values in some open set X ⊆ Rn

and the vector u is comprised of the inputs or controls taking values in some open set U ⊆ Rm.
Time t takes values in a connected subset of the real line.

Throughout, we very often invoke the Pfaffian system representation of a control system as
the vanishing of differential 1-forms

ω = span
{
dx1 − f1(t, x, u)dt, dx2 − f2(t, x, u)dt, . . . , dxn − fn(t, x, u)dt

}
defining a sub-bundle of the cotangent bundle ω ⊂ T ∗(R×X×U), and we exploit the geometric
properties of ω under local changes of variable. By the same token, we often express our control
systems dually as a sub-bundle of the tangent bundle kerω = V ⊂ T (R×X×U)

V = span

{
∂t +

n∑
i=1

f i(t, x, u)∂xi , ∂u1 , ∂u2 , . . . , ∂um

}
,

and frequently switch between the two representations as the need arises. We often refer to ω
and V themselves as control systems.

Definition 3.2. A diffeomorphism φ : M → N of the form

φ : (t, x, u) 7→ (t, θ(t, x), ψ(t, x, u))

is called a static feedback transformation (SFT). Two control systems (M,ω) and (N,η) are
called static feedback equivalent (SFE) if φ∗η = ω for some SFT φ : M → N .

Static feedback linearizable control systems represent a special case of static feedback equiv-
alence, namely, those that are SFE to the Brunovsky normal forms.

Let M := R ×X ×U. When we wish to draw attention to the state space or control space
factors of a manifold M carrying a control system, we write X(M) or U(M), respectively.
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Definition 3.3. Suppose that ω is a dynamic feedback linearizable control system on a man-
ifold M with explicit solution s : R → M . The number of arbitrary functions in an explicit
solution is equal to the number of inputs associated to ω. To an explicit solution s we can
associate the notion of a signature,

κ = ⟨ρ1, ρ2, . . . , ρk⟩,

where ρj is the number of arbitrary functions occurring to highest order j in the explicit solu-
tion s, where 1 ≤ j ≤ k.

We now present some definitions and notation from the geometry of distributions that are used
in this paper. Let us denote by V(j) the jth derived bundle of V := V(0), defined recursively by

V(j) = V(j−1) +
[
V(j−1),V(j−1)

]
, j ≥ 1.

The sequence

V ⊂ V(1) ⊂ · · · ⊂ V(k) ⊆ TM

is the derived flag of (M,V) and the integer k is its derived length. This is the smallest integer k
such that V(k) = V(k+1). Throughout we always assume that V(k) = TM .

Definition 3.4. Let V ⊂ TM be a sub-bundle of derived length k > 1. The velocity of V is the
ordered list of k integers

vel(V) = ⟨∆1,∆2, . . . ,∆k⟩, where ∆j = dim
(
V(j)

)
− dim

(
V(j−1)

)
, 1 ≤ j ≤ k.

The deceleration of V is the ordered list of k integers

decel(V) =
〈
−∆2

2,−∆2
3, . . . ,−∆2

k,∆k

〉
, where ∆2

j = ∆j −∆j−1.

Denote by CharV(j) the Cauchy bundle of V(j),

CharV(j) = span
{
X ∈ V(j)|[X,V(j)] ⊂ V(j)

}
, j ≥ 0.

We assume that for all j ≥ 0, V(j) and CharV(j) have constant rank; we refer to such sub-bundles
as totally regular. In this totally regular case CharV(j) can be shown to be integrable for each j.
Define the intersection bundles

CharV(i)
i−1 := V(i−1) ∩ CharV(i), 1 ≤ i ≤ k − 1. (3.1)

Unlike the Cauchy bundles, the intersection bundles CharV(i)
i−1 are not guaranteed to be inte-

grable; however, this will arise as a condition in the definition of Goursat bundle (cf. Defini-
tion 3.14).

Notation 3.5. We will sometimes denote the codistribution version of Cauchy and intersection
bundles respectively by

Ξ(i) = annCharV(i), Ξ
(i)
i−1 = annCharV(i)

i−1.

Definition 3.6. Let

mi = dimV(i),

χi = dimCharV(i),

χj
j−1 = dimCharV(j)

j−1, 0 ≤ i ≤ k, 1 ≤ j ≤ k − 1,

called the type numbers of (M,V). The list of lists of type numbers

dr(V) =
[[
m0, χ

0
]
,
[
m1, χ

1
0, χ

1
]
,
[
m2, χ

2
1, χ

2
]
, . . . ,

[
mk−1, χ

k−1
k−2, χ

k−1
]
,
[
mk, χ

k
]]

(3.2)

is called the refined derived type of (M,V).
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3.1 Brunovský normal forms

In this section, we will give an exposition of the partial prolongations of jet spaces and the
Brunovský normal form.

Definition 3.7. Let Jk(R,Rm) be the standard jet space of order k and let βk
m be the standard

contact system on Jk(R,Rm). We will drop the subscript m in the notation βk
m and use the

shorthand notation Jk when the integer m is known by context.

We now introduce another notion of signature beside that of an explicit solution (see Defini-
tion 3.3); namely the signature of a control system itself. It is proven in [51] that the deceleration,
decel(V) (Definition 3.4), is a diffeomorphism invariant that uniquely identifies the Brunovský
normal form of any linearizable control system V and we therefore call decel(V) the signature
of V. As in the case of the signature of an explicit solution, the signature of a control system
consists of k non-negative integers decel(V) = ⟨ρ1, ρ2, . . . , ρk⟩, where k is the derived length of V.
While these are numerical invariants for any control system, if V is diffeomorphic to a Brunovský
normal form then ρj in decel(V) is the number of sequences of differential forms of order j in
the Brunovský normal form of V. The signature of a control system is widely used in this paper
and it is also convenient as a means of classifying Brunovský normal forms. Only when a control
system is feedback linearizable are the two notions of signature equal.

Definition 3.8. A partial prolongation of the Pfaffian system
(
J1(R,Rm),β1

)
is a Brunovský

form defined in the sense of equation (2.5), i.e., the Pfaffian system associated to the Brunovský
normal form of mixed orders. We use (Jκ(R,Rm),βκ) to refer to the partial prolongation of
signature κ = ⟨ρ1, . . . , ρk⟩ where k is the derived length of βκ.

Remark 3.9. In the case of a linear control system ẋ = Ax + Bu, the signature of its dis-
tribution representation V agrees precisely with the collection of Kronecker indices of the pair
of matrices (A,B). However, the definition of signature is far more versatile since it can be
found without putting the control system into the above linear form required to compute the
Kronecker indices. Furthermore, it is defined for general control systems and by its definition is
manifestly a diffeomorphism invariant. The two notions of signature play a central role in this
paper.

It is helpful for us to arrange our Brunovský normal forms according to their signature.
In particular, we will think of the new partially prolonged jet space Jκ(R,Rm) as being con-
structed from jet spaces J i(R,Rρi) of fixed order. However, we cannot use a strict product of jet
spaces. We must identify the independent variables (i.e., the source) of each jet space together
in a product like so,

Jκ(R,Rm) :=

(∏
i∈I

J i(R,Rρi)

)/
∼, βκ

m :=
⊕
i∈I

βi
ρi , (3.3)

with

I = {1 ≤ a ≤ k | ρa ̸= 0}

and each βi
ρi is the Brunovký form on jet space J i(R,Rρi). The equivalence relation ‘∼’ in (3.3)

is defined by

πi
(
J i(R,Rρi)

)
= πj

(
J j(R,Rρj )

)
,

for all 1 ≤ i, j ≤ k, where πi, πj are source projection maps (i.e., projection on to the t-coordinate
on R).
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Example 3.10. A Brunovský normal form of signature κ = ⟨1, 2, 0, 0, 1⟩ on

Jκ
(
R,R5

)
=
(
J1(R,R)× J2

(
R,R2

)
× J5(R,R)

)
/∼

is generated by the 1-forms

θ44 = dz44 − z45 dt,

θ43 = dz43 − z44dt,

θ42 = dz42 − z43dt,

θ21 = dz21 − z22dt, θ31 = dz31 − z32dt, θ41 = dz41 − z42dt,

θ10 = dz10 − z11dt, θ20 = dz20 − z21dt, θ30 = dz30 − z31dt, θ40 = dz40 − z41dt.

In this example, one can say that Jκ has one variable of order 1, two of order 2, zero of orders 3
and 4, and one of order 5. So the signature κ represents a list of the local coordinates on Jκ

categorized by order.

Notation 3.11. For ease of notation, we will often use zκ to represent all the jet coordinates
save t on Jκ space, z⌈κ⌉ to refer to all highest order jet coordinates for Jκ, and z⌊κ⌋ to denote
all jet coordinates of Jκ that have order strictly smaller than maximal orders given by κ.

Notation 3.12. We will need to use the total derivative operator on each Jκ. Let Dt,ρi be the
usual total derivative on J i(R,Rρi). Then by the definition of Jκ it easy to see that the total
derivative on Jκ is

Dt = ∂t +
∑
i∈I

(Dt,ρi − ∂t). (3.4)

The following proposition characterizes the refined derived type (3.2) of the Brunovský normal
forms.

Proposition 3.13 ([52]). Let Bκ ⊂ TJκ be the distribution that annihilates the 1-forms in
a Brunovský normal form βκ with signature κ = ⟨ρ1, . . . , ρk⟩. Then the entries in the refined
derived type

dr(Bκ) =
[[
m0, χ

0
]
,
[
m1, χ

1
0, χ

1
]
, . . . ,

[
mk−1, χ

k−1
k−2, χ

k−1
]
,
[
mk, χ

k
]]

satisfy the following relations:

κ = decel(Bκ), ∆i =

k∑
l=i

ρℓ,

m0 = 1 +m, mj = m0 +

j∑
l=1

∆ℓ, 1 ≤ j ≤ k,

χj = 2mj −mj+1 − 1, 0 ≤ j ≤ k − 1,

χi
i−1 = mi−1 − 1, 1 ≤ i ≤ k − 1, (3.5)

where ∆j is given in Definition 3.4.
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3.2 Goursat bundles

Here we provide an brief exposition of the theory of Goursat bundles, [51, 52] used in this
paper and a discussion of the relevance of this topic to the present study. Certainly Brunovský
normal forms Bκ ⊂ TJκ are the local normal forms of Goursat bundles. But in the first instance
the theory of Goursat bundles handles the case in which a distribution is equivalent to some
Brunovský normal form via a general diffeomorphism of the ambient manifolds. That is, if
a distribution V ⊂ TM determines a Goursat bundle, there will exist an equivalence of V to
a Brunovský normal form but not necessarily by a SFT. In that case integral curves may not
have a parametrization by the time variable t, but by some other variable. There is a simple
check for when a Goursat bundle V has t as a parameter for integral curves (see Theorem 3.19),
and if satisfied then V is indeed SFE to a Brunovský normal form. A particular application
of the theory in this paper concerns the intersection bundle CharV(1)

0 , which is integrable and
can be used to geometrically characterize the control variables. This fact is exploited in the
construction of a dynamic extension in the proof of Theorem 7.12. The theory is also used in
the proof of Theorem 7.6 and elsewhere. In particular, the procedure contact [52] for efficiently
producing normal form coordinates for a Goursat bundle, has been adapted and automated
to determine linearizing maps for SFL systems. It has a structure similar to the well-known
GS algorithm [20] but expressed in the language of tangent distributions rather than Pfaffian
systems. A detailed description of contact together with application examples appear later in
this paper.

A Goursat bundle is described as follows.

Definition 3.14 ([51]). A totally regular subbundle V ⊂ TM of derived length k with ∆k = 1
will be called a Goursat bundle (of signature κ) if:

(1) the subbundle V has the refined derived type of a partial prolongation of J1(R,Rm) (as
characterized in Proposition 3.13) whose signature κ = decel(V);

(2) each intersection bundle CharV(i)
i−1 := V(i−1) ∩ CharV(i) is an integrable subbundle, the

rank of which agrees with the corresponding rank of Char(Bκ)
(i)
i−1. That is, intersection

bundle ranks satisfy equations (3.5).

In the case ∆k > 1, the full theory of Goursat bundles in [51, 52] requires one to construct
an additional bundle, which we can omit for the purposes of the present paper.

Theorem 3.15 below asserts that Goursat bundles are locally diffeomorphic to the Brunovský
normal forms at generic points; and conversely, every Brunovský normal form is a Goursat bun-
dle. However, this theorem has nothing to say about the singularities of the related Goursat
structures which have been the subject of recent work; see, for example, [36] and citations therein.
As is the case for the classical Goursat normal form, the generalized Goursat normal form is con-
cerned with generic local behaviour, in terms of which it geometrically characterizes the partial
prolongations of the contact system on J1(R,Rm) exclusively in terms of their derived type [8].

Theorem 3.15 (generalized Goursat normal form, [51]). Let V ⊂ TM be a Goursat bundle on
a manifold M , with derived length k > 1, and signature κ = decel(V). Then there is an open
dense subset U ⊂ M such that the restriction of V to U is locally equivalent to Bκ via a local
diffeomorphism of M . Conversely, any partial prolongation of B⟨m⟩ is a Goursat bundle.

The paper [51] establishes the local normal form for Goursat bundles constructively. However,
in [52], the construction of local coordinates is streamlined into a nearly algorithmic procedure.
We’ll next outline this procedure, often referred to as procedure contact, and apply it to an
example in detail.
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Definition 3.16 ([52]). Let V be a Goursat bundle of derived length k with ∆k = 1, τ a first
integral of CharV(k−1), and Z any section of V such that Zτ = 1. Then the fundamental
bundle Πk ⊂ V(k−1) is defined inductively as

Πℓ+1 = Πℓ +
[
Πℓ, Z

]
, Π0 = CharV(1)

0 , 0 ≤ ℓ ≤ k − 1.

The proof of [51, Theorem 4.2] shows that Πk is integrable and has corank 2 in TM while
in [52] it is proven that in any Goursat bundle, CharV(i)

i−1 and Πk have the form

Π(k) = span
{
Π0, ad(Z)Π0, . . . , adk−1(Z)Π0

}
,

CharV(i)
i−1 = span

{
C0, ad(Z)C0, . . . , ad

i−1(Z)C0

}
, C0 = Π0, 1 ≤ i ≤ k − 1, (3.6)

once Z and τ are known.
We shall be making use of the forms (3.6) for CharV(i)

i−1 and Πk in the proof of Theorem 7.6
in Section 7.

Definition 3.17. The first integrals ϕℓj ,j of the quotient bundles Ξ
(j)
j−1/Ξ

(j) and are known as
the fundamental functions of order j. We may also refer to the non-τ first integral of Πk as
a fundamental function of order k.

Procedure Contact (Procedure A) ([52]). Let V ⊂ TM be a Goursat bundle of signature
⟨ρ1, ρ2, . . . , ρk⟩ and derived length k > 1 such that ρk := ∆k = 1. Then one can do the following
to produce local contact coordinates for V:

(1) Compute CharV(k−1) and for j < k−1 such that ρj ̸= 0 compute CharV(j) and CharV(j)
j−1.

(2) Identify a first integral τ of CharV(k−1) and a section Z of V with the property Zτ = 1.
Then construct Πk as in (3.6).

(3) For each 1 ≤ j ≤ k− 1 such that ρj ̸= 0, compute the integrable quotient bundle Ξ
(j)
j−1/Ξ

(j)

using step 1.

(4) Compute the first integrals ϕℓj ,j of Ξ
(j)
j−1/Ξ

(j) (fundamental functions of order j).

(5) Define z1,k0 = ϕ1,k to be any first integral of Πk such that dτ ∧ dϕ1,k ̸= 0.

(6) For each 1 ≤ j ≤ k such that ρj ̸= 0, define z
ℓj ,j
0 = ϕℓj ,j, 1 ≤ ℓj ≤ ρj. The remaining

contact coordinates are

z
ℓj ,j
sj = Zz

ℓj ,j
sj−1 = Zsjz

ℓj ,j
0 , 1 ≤ sj ≤ j, 1 ≤ ℓj ≤ ρj . (3.7)

The local coordinates for Jκ(R,Rm) are given by τ , z
ℓj ,j
0 , and (3.7). In these coordinates V has

the form Bκ.

Remark 3.18. Note the restriction in above procedure to the case ∆k = 1. There is a slightly
different, Procedure B, for the remaining case ∆k > 1, which for simplicity of presentation, we
shall not discuss in this paper. Details of this can be found in [52]. In any case, if ∆k > 1,
then, in practice, it is often possible to convert it to the ∆k+1 = 1 case by performing a partial
prolongation.

Procedure contact produces a local equivalence between a Goursat bundle and a contact
system. In particular, the first integral τ in procedure contact plays the role of the source variable
of some Jκ, so that dτ forms the independence condition for the linear Pfaffian system (Jκ,βκ).
Therefore, if V represents a control system with dt as the independence condition, then integral
curves of V may not be sent to integrals curves of βκ that are parameterized by t. The following
theorem gives additional conditions under which procedure contact produces a static feedback
equivalence between a Goursat bundle V representing a control system and a Brunovský normal
form.
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Theorem 3.19 ([13]). Let V be a Goursat bundle of derived length k > 1 that represents a control
system on the manifold M ∼=loc R × X(M) × U(M). Then V is static feedback equivalent to
a Brunovský normal form if and only if

(1) CharV(1)
0 = span{∂u1 , . . . , ∂um},

(2) dt ∈ Ξ(k−1) if ∆k = 1.

Remark 3.20. If V is SFL, then τ = t will be a first integral of CharV(k−1) and contact will
produce a static feedback equivalence. Again, for this paper we need only be concerned with
those examples in which ∆k = 1.

We illustrate procedure contact using an example of Hunt–Su–Meyer [26], which was lin-
earized via the GS algorithm in [19]. As an aid to the reader, the example is presented with
almost no details suppressed. Most of the calculations to follow can be automated and executed
algorithmically using a software package. Throughout this paper we have used the Maple
package DifferentialGeometry.

Example 3.21 ([19, 26]).

dx1

dt
= sin

(
x2
)
,

dx2

dt
= sin

(
x3
)
,

dx3

dt
=
(
x4
)3

+ u1,

dx4

dt
= x5 +

(
x4
)3 − (x1)10, dx5

dt
= u2.

First, we will rewrite the control system as the distribution V = span{X, ∂u1 , ∂u2}, where

X = ∂t + sin
(
x2
)
∂x1 + sin

(
x3
)
∂x2 +

((
x4
)3

+ u1
)
∂x3 +

(
x5 +

(
x4
)3 − (x1)10)∂x4 + u2∂x5 .

Step 1. The derived flag of V is given by

V(1) = V + {∂x3 , ∂x5}, V(2) = V(1) + {∂x2 , ∂x4}, V(3) = V(2) + {∂x1} = TM.

Hence V has derived length 3, vel(V) = ⟨2, 2, 1⟩, and decel(V) = ⟨0, 1, 1⟩. Since ∆k = 1, we will
implement Procedure A. Next we compute the Cauchy bundles for V(1) and V(2). Let

C = TX + a1∂u1 + a2∂u2 + b1∂x3 + b2∂x5 ∈ V(1)

be a section of the Cauchy bundle of V(1), where T , b1, b2, c1, and c2 are smooth functions.
Then

[C, Y ] ∈ V(1) for all Y ∈ V(1).

It is enough to check the Lie derivative LC applied to the linearly independent sections gener-
ating V(1). Doing so, and solving for the coefficients in C yields

CharV(1) = span{∂u1 , ∂u2}.

We now repeat this calculation for V(2) and obtain

CharV(2) = span{∂u1 , ∂u2 , ∂x3 , ∂x4 , ∂x5}.

From here, it is easily deduced that

CharV(1)
0 = span{∂u1 , ∂u2}, CharV(2)

1 = span{∂u1 , ∂u2 , ∂x3 , ∂x5}.
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Thus the refined derived type of V is

dr(V) = [[3, 0], [5, 2, 2], [7, 4, 5], [8, 8]].

Checking that the relations in Proposition 3.13 are satisfied and seeing that all the Cauchy
and intersection bundles are integrable, we see that V is a Goursat bundle. Furthermore,
since dt ∈ annCharV(2); by Theorem 3.19 we deduce that V is SFL. Constructing the filtra-
tion of T ∗M (excluding the fundamental bundle) induced by V, we find

Ξ(2) = span
{
dt, dx1, dx2

}
⊂ Ξ

(2)
1 =span

{
dt, dx1, dx2, dx4

}
⊂ Ξ(1) =span

{
dt, dx1, dx2, dx3, dx4, dx5

}
= Ξ

(1)
0 .

Step 2. Notice that t is a first integral of CharV(2) and that X(t) = 1. Now the fundamental
bundle Π2 is given by

Π2 = span{∂u1 , ∂u2 , ∂x2 , ∂x3 , ∂x4 , ∂x5}.

Steps 3 and 4. There is only one non-trivial quotient bundle to be computed for this step,

Ξ
(2)
1 /Ξ(2) = span

{
dx4
}
,

and therefore z1,20 = x4 is the fundamental function of order 2.

Step 5. From Π2, we deduce the fundamental function of (highest) order 3 given by z1,30 = x1

since dt ∧ dx1 ̸= 0. For simplicity, we shall relabel these fundamental functions as z1,20 = z10
and z1,30 = z20 .

Step 6. Applying the final step of the procedure, we conclude that the remaining contact
coordinates are

z11 = X
(
z10
)
= x5 +

(
x4
)3 − (x1)10, (3.8)

z12 = X
(
z11
)
= u2 + 3

(
x4
)2(

x5 +
(
x4
)3 − (x1)10)− 10

(
x1
)9

sin
(
x2
)
, (3.9)

z21 = X
(
z20
)
= sin

(
x2
)
, z22 = X

(
z21
)
= cos

(
x2
)
sin
(
x3
)
, (3.10)

z23 = X
(
z22
)
= − sin

(
x2
)
sin2

(
x3
)
+
((
x4
)3

+ u1
)
cos
(
x2
)
cos
(
x3
)
. (3.11)

Thus t, z10 = x4, z20 = x1, and (3.8)–(3.11) define a static feedback transformation of V to the
Brunovský normal form β⟨0,1,1⟩.

3.3 Control admissible symmetries

Let µ : M × G → M be a smooth, regular right action of a Lie group G on a smooth mani-
fold M [39, 41]. Thus the orbit space M/G is a smooth manifold of dimension dimM − dimG,
and π : M →M/G denotes the natural projection.2 The quotient of V is V/G := dπ(V), where dπ
is the differential of π. The latter is a distribution onM/G, but not necessarily a control system.
One can therefore ask: when is the G-quotient of V also a control system? To answer this we
describe the appropriate Lie group action. Let Γ be the Lie algebra of infinitesimal generators
of the action of G on M . See [39, 40] for information on Lie symmetry.

Definition 3.22 (control symmetries, [13]). Let µ :M ×G→M be a Lie transformation group
with Lie algebra Γ leaving the control system (M,V) invariant, i.e., µg∗V = V, ∀g ∈ G where
µg(x) = µ(x, g). Then G is a control symmetry group if

2While regularity guarantees the quotient is a smooth manifold, it may nevertheless not have the Hausdorff
separation property. In this case, we restrict to open sets where this holds. For more details, see [39, Section 3.4].
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(1) G acts regularly on M ,

(2) the function t is invariant, i.e., µ∗gt = t for all g ∈ G, and

(3) rank
(
dp(Γ)

)
= dimG, where p is the projection p : M → R×X(M) given by p(t, x, u) =

(t, x).3

The elements of a control symmetry group are static feedback transformations. That is, they
have the form [13, Theorem 4.9]

t̄ = t, x̄ = θ(t, x), ū = ψ(t, x, u).

The class of control symmetries is essential for studying the general properties of smooth control
systems under the action of a Lie group.

Lemma 3.23. Let ω be a smooth control system on a manifold M and ∆ the Lie algebra of all
infinitesimal symmetries of ω. The subset Γ ⊆ ∆ of infinitesimal control symmetries is a Lie
subalgebra of ∆.

Proof. A control symmetry is a static feedback transformation that is also a self equivalence.
Consequently, an infinitesimal control symmetry has the form [13, Theorem 4.9]

X = ξi(t, x)∂xi + χa(t, x, u)∂ua ∈ Γ.

If Y ∈ Γ is another infinitesimal control symmetry, then it is easy to deduce that the Lie
bracket [X,Y ] also belongs to Γ. ■

Remark 3.24. There is a further subalgebra Σ ⊂ Γ of state-space symmetries which is better
known [15, 21]. This is the case χa ≡ 0 in the infinitesimal generators of Γ. But the restriction
to Σ is both unnecessary and inadequate for studying the full range of phenomena presented by
control systems.

We can now give criteria whereby the quotient (symmetry reduction) of a control system by
a control symmetry group G is also a control system on the quotient manifold M/G.

Theorem 3.25 ([13]). Let µ : M × G → M be a group of control symmetries of control sys-
tem (M,V) defined by (1.1). Let Γ, the Lie algebra of G satisfy

Γ ∩ V(1) = {0},

with dimG < dimX(M). Then the quotient (M/G,V/G) is a control system in which

dimX(M/G) = dimX(M)− dimG, dimU(M/G) = dimU(M).

Definition 3.26. An action of a Lie group G on the manifold M is control admissible for
a control system (M,V) defined by (1.1) if

(1) G is a control symmetry group of V,
(2) dimG < dimX(M),

(3) the action of G is strongly transverse, meaning Γ ∩ V(1) = 0.

Corollary 3.27. Let (M,V) be a control system defined by (1.1). If a Lie group G is control
admissible for (M,V), then the quotient V/G is a smooth control system on the smooth quotient
manifold M/G in which dimX(M/G) = dimM − dimG and dimU(M/G) = dimU(M).

3This ensures that the quotient control system will have dimX(M)−dimG state variables and that the number
of controls will be preserved in the quotient.
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Example 3.28. The control system on R8 in 5 states and 2 controls,

V = span
{
∂t +

(
x5x3 + x2

)
∂x1 +

(
x5x1 + x3

)
∂x2 + u1∂x3 + x5∂x4 + u2∂x5 , ∂u1 , ∂u2

}
,

has a 5-dimensional Lie group of control symmetries (calculated via Maple). It is easy to check
that the subgroup G generated by the Lie algebra

Γ = span
{
X := x1∂x1 + x2∂x2 + x3∂x3 + u1∂u1

}
is control admissible (Definition 3.26). On the G-invariant open set U ⊂ R8 where x1 ̸= 0, the
functions

t, q1 = x2/x1, q2 = x3/x1, q3 = x4, q4 = x5, v1 = u1/x1, v2 = u2

are invariant under the action of G, which is given by

x̄1 = εx1, x̄2 = εx2, x̄3 = εx3, x̄4 = x4, x̄5 = x5, ū1 = εu1, ū2 = u2,

where ε ∈ G is an element of the multiplicative group of positive real numbers. If we denote these
transformations by µε, then for all ε ∈ G, µε∗V|x = V|µε(x) . The functions (t, qi, v

a) form a local
coordinate system on an open subset of the quotient manifold M/G. Furthermore, these func-
tions on U ⊂ R8 are the components of a local representative of the projection π : R8 → R8/G
given by, π|U(t, x, u) = (t, qi(t, x, u), v

a(t, x, u)). A computation then gives

dπ|U(V) = V/G|π(U)
= span

{
∂t −

(
q1q2q4 + q21 − q2 − q4

)
∂q1

−
(
q22q4 + q1q2 − v1

)
∂q2 + q4∂q3 + v2∂q4 , ∂v1 , ∂v2

}
, (3.12)

a smooth control system on π(U) ⊂M/G in accordance with Corollary 3.27. While V/G has 4
states compared to the 5 states of V, its local form is more complicated, which is typical of
a symmetry reduction. On the other hand, while V is not static feedback linearizable, it turns
out that (3.12) is static feedback linearizable. We will see later that this property of control
systems V having static feedback linearizable quotients has very significant consequences for the
dynamic feedback linearizability of V.

3.3.1 Relative Goursat bundles

Each Brunovský normal form Bκ has trivial Cauchy bundle, CharBκ = {0}. However, there is
an important situation in which a sub-bundle can satisfy all the constraints of a Goursat bundle
except for the triviality of its Cauchy bundle.

Definition 3.29. A totally regular sub-bundle V ⊂ TM is a relative Goursat bundle if it satisfies
the requirements of a Goursat bundle (see Definition 3.14) except for the triviality of its Cauchy
bundle. That is, the type number χ0 need not be equal to zero in a relative Goursat bundle.

It is important to note that a relative Goursat bundle has refined derived type satisfying
equations (3.5).

The utility of relative Goursat bundles stems from the ability to very quickly determine the
existence of a linearizable quotient V/G of a G-invariant control system V. In this we always
assume that the action of G is control admissible. If its Lie algebra of infinitesimal generators of
the action is denoted by Γ, then our assumption of strong transversality implies that V ∩Γ = 0.
We often denote the direct sum V ⊕ Γ by V̂.

Theorem 3.30 ([13, Theorem 4.5]). Suppose that the control system V ⊂ TM has the control
admissible Lie group G with Lie algebra of infinitesimal generators Γ and satisfies CharV = 0.
If (M,V⊕Γ) is a relative Goursat bundle of derived length k > 1 and signature κ = decel(V⊕Γ),
then there is a local diffeomorphism φ : M/G→ Jκ such that φ∗ (V/G) = Bκ.
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An important observation is that even if V is not a Goursat bundle, it happens very often
that V ⊕ Γ is a relative Goursat bundle and this can be very significant. However, the local
diffeomorphism φ guaranteed by Theorem 3.30 may not be a static feedback transformation. To
guarantee the existence of such a transformation one imposes slightly more constraints on the
relative Goursat bundle. The following generalizes Theorem 3.19 to the case of static feedback
relative Goursat bundles and may be regarded as an “infinitesimal test” for the existence of
static feedback linearizable quotient systems.

Theorem 3.31 ([13]). Let the control system V ⊂ TM admit the control admissible Lie group G
with Lie algebra of infinitesimal generators Γ, and satisfy CharV = 0. Set V̂ := V ⊕Γ and sup-
pose that

(
M, V̂

)
is a relative Goursat bundle of derived length k > 1 and signature κ = decel

(
V̂
)
.

Then the local diffeomorphism φ : M/G → Jκ that identifies V/G with its Brunovský normal
form can be chosen to be a static feedback transformation if and only if

(1) {∂u1 , . . . , ∂um} ⊂ Char V̂(1)
0 ,

(2) dt ∈ annChar V̂(k−1) := Ξ̂
(1)
0 if ∆k = 1.

Note: Again, the case where ∆k > 1 is not discussed.

Theorem 3.31 [13, Theorem 4.12] is a geometric characterization of static feedback linearizable
quotients of an invariant control system. It is the relative version of Theorem 3.19, applied to
group quotients. In practice, an invariant control system has many SFL quotients depending on
the number of subgroups that satisfy Theorem 3.31.

Definition 3.32. If a relative Goursat bundle satisfies the hypotheses of Theorem 3.31, then
we call it a static feedback relative Goursat bundle.

An important point is that static feedback relative Goursat bundles are very easy to identify
in practice, once the Lie algebra Γ is known. Hence, static feedback linearizable quotients V/G
are similarly quickly identified.

Example 3.33. This example illustrates the various constructions encountered so far. Firstly,
we look at a system which is linearizable but not by static feedback transformations.

The control system,

V = span
{
∂t + x2∂x1 + u1∂x2 + u2∂x3 + x3

(
1− u1

)
∂x4 , ∂u1 , ∂u2

}
, (3.13)

occurs in [9]. Applying one of the well-known tests, for instance, [48, Theorem 1] or Theo-
rem 3.19, or otherwise, shows that V is not static feedback linearizable.

However, it happens in this case that by augmenting (3.13) by an integrator leads to an static
feedback linearizable system, revealing the hidden simplicity of (3.13).

But rather than performing this partial prolongation along u1
(
i.e., differentiating u1

)
, let

us instead reconsider the system (3.13) in the light of one of its symmetries. This calculation is
quite revealing.

It is easy to see that X = ∂x4 is an infinitesimal symmetry of V defined by (3.13); that is,
LXV ⊆ V. In fact, it is an infinitesimal control admissible symmetry. Let us then consider the
augmented distribution V̂ := V ⊕ span{X}, as in Theorems 3.30 and 3.31. That is, V̂ consists
of V “extended” by its infinitesimal symmetry X. The notation is justified since V ∩{X} = {0}.

While V̂ is not a control system, the generalized Goursat normal form can be applied to any
smooth sub-bundle V ⊂ TM whose generic solutions are smoothly immersed curves, as in this
case. Indeed, we find that the refined derived type of V̂ is

dr
(
V̂
)
= [[4, 1], [6, 3, 4], [7, 7]].
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This is not the refined derived type of a Brunovský normal form, however it satisfies equa-
tions (3.5) with signature decel

(
V̂
)
= ⟨1, 1⟩ and derived length k = 2. Furthermore, we have

exactly one non-trivial intersection bundle Char V̂(1)
0 = span{∂u1 , ∂u2 , X} which is integrable,

and

Char V̂(1) = Char V̂(1)
0 ⊕ {∂x3}.

Since ρ2 = 1, we check that t is an invariant of Char V̂(1), and conclude by Theorem 3.31 that V̂
is a static feedback relative Goursat bundle of signature ⟨1, 1⟩ which proves that V/G is static
feedback equivalent to B⟨1,1⟩, where G is the Lie transformation group generated by X = ∂x4 .
This is an important observation to which we shall return.

Remark 3.34. While it is very easy to compute the dynamic feedback linearization of the
particular system (3.13), this task is generally very difficult. However, much progress has been
made recently for deriving dynamic feedback linearizations of classes of control systems by
restricting the number of controls and the fiber dimension of the dynamic extension [14, 22,
23, 37, 38]. Our present aim is to develop a canonical, coordinate independent framework
that provides tools for deriving dynamic feedback linearizations in the case of invariant control
systems. Thus symmetry plays a commanding role. These tools permit one to study control
systems in which the number of controls and size of the dynamic extension are not restricted.
To illustrate this, we work through a number of elementary examples throughout the paper.
In particular, it will be illuminating to continue using (3.13) as a simple running example that
encapsulates the basic ideas.

4 The contact sub-connection

In previous sections, we have seen how one can often perform a symmetry reduction of a control
system (M,V) so that the resulting quotient is again a control system and is, importantly, static
feedback linearizable. Ultimately, we wish to use this property to construct an explicit solution
for the originally given control system V, which generally will not itself be static feedback
linearizable. We call this procedure of constructing an explicit solution for V from that of its
quotient, cascade feedback linearization. In this section, we begin to explain how this can be
achieved by describing a key geometric object in the theory.

Definition 4.1. Let G act regularly onM on the right, π : M →M/G be the right principal G-
bundle and VM the vertical bundle ker dπ. Let a given sub-bundle ΠG ⊆ T (M/G) together
with a constant rank distribution M ∋ p 7→ Hp ⊂ TpM satisfy

(1) Hp ∩VpM = {0},

(2) dπ(Hp) = ΠG
π(p),

(3) µg∗Hp = Hp·g, with µg(p) := p · g being the right G-action,

(4) p 7→ Hp is smooth,

∀g ∈ G, p ∈M . Then H will be called a (right) principal sub-connection relative to ΠG.

Evidently, this is the usual definition of a principal connection (see [29, Chapter II]) when
ΠG = T (M/G). A curve in M/G passing through the point q ∈M/G and all of whose tangent
vectors belong to ΠG has a unique lifting to M passing through a prescribed point p ∈ π−1(q)
such that the lifted curve is an integral submanifold of H. This is all we shall require for the
present time.
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Let Γ denote the Lie algebra of infinitesimal generators for the action of control admissible
symmetries G on M . By Theorem 3.31, there is a quotient control system (M/G,ω/G) that
is static feedback equivalent to a Brunovský normal form if V ⊕ Γ ⊂ TM is a static feedback
relative Goursat bundle (cf. Definition 3.32). We will now explain how this can, in principle, be
used to compute the integral manifolds of ω from those of ω/G.

If G is a control admissible symmetry group of ω, then finding an SFL quotient ω/G in fact
determines a local isomorphism of principal bundles as follows. Since ω/G is SFL, it can be
identified by a static feedback transformation φ : U ⊆ M/G → Jκ with a Brunovský normal
form βκ of some signature κ via the pullback ω/G = φ∗βκ.

The local diffeomorphism φ can be lifted to a local static feedback transformation φ̃ : M →
Jκ × G that realizes the G-principal bundle π : M → M/G as locally isomorphic to the trivial
bundle π′ : Jκ×G→ Jκ via a principal bundle isomorphism (φ, φ̃) as depicted in the commuting
diagram of Figure 1. That φ̃ is a static feedback transformation follows from the fact that φ
is a static feedback transformation and that G acts by static feedback transformations. In
coordinates, the map φ̃ is determined by

φ̃ : (t,x,u) 7→ (φ(t, q(t,x),v(t,x,u)), ε(t,x)), (4.1)

where ε(t,x) are local coordinates about the identity in G chosen so that the infinitesimal
generators {Xa}ra=1 for the action of G on M may be expressed as vector fields on G with local
coordinates εa. To achieve this, functions ε(t,x) may be chosen by solving for the

(
ε1, . . . , εr

)
parameters that appear in the action of G on M when restricted to an appropriate choice of
section of π : M → M/G. For this one first computes the transformation group by solving the
ODE systems defined by the infinitesimal generators so that each local Lie group coordinate εa

is the flow coordinate for a corresponding infinitesimal generator. By construction, there exists
a unique Pfaffian system γG on Jκ×G with the property that φ̃∗γG = ω. The dual sub-bundle

HG = φ̃∗(V) ⊂ T (Jκ ×G)

is a principal sub-connection relative to the contact distribution Bκ on Jκ.

Definition 4.2. Let (φ, φ̃) be the principal bundle isomorphism for the principal bundle π : M→
M/G. We call the principal sub-connection

HG = φ̃∗(V) ⊂ T (Jκ ×G)(
and its dual γG

)
the contact sub-connection on Jκ ×G of (M,V).

Now we present a theorem which gives a coordinate normal form for a contact sub-connection
arising from a control admissible symmetry group G and control system (M,V).

Theorem 4.3. Suppose G is a Lie group of control admissible symmetries of a control sys-
tem (M,V) acting on the right and Γ is its Lie algebra of infinitesimal generators. Assume V/G
is static feedback linearizable of signature κ. Let the principal bundle equivalence (φ, φ̃) be a local
trivialization of π : M →M/G to π′ : Jκ×G→ Jκ. Then the contact sub-connection HG = φ̃∗V
has the following local normal form:

HG = span

{
Dt +

r∑
a=1

λa(t, zκ)Ra, ∂z⌈κ⌉

}
, (4.2)

for some functions λa on Jκ, where Dt is the total differential operator (3.4) on Jκ, {Ra}ra=1 is
a basis for the Lie algebra of right-invariant vector fields on G and span {Dt, ∂z[κ]} = Bκ is the
Brunovský normal form of signature κ.
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Proof. Let V = span
{
∂t + f i(t, x, u)∂xi , ∂u1 , . . . , ∂um

}
be a smooth control system, invariant

under a control admissible Lie group G with SFL quotient control system V/G via a map
φ : M/G→ Jκ. Let (φ, φ̃) be a trivializing bundle isomorphism between π : M → M/G and
π′ : Jκ × G → Jκ. Since dπ′(HG) = Bκ, and because the rank of a bundle is a diffeomorphism
invariant, the principal sub-connection HG on Jκ ×G must be of the form

HG = {Dt +X, ∂z⌈κ⌉ + Yz⌈κ⌉},

where {X,Yz⌈κ⌉} are vector fields tangent to the fibers of π′. Furthermore, since the intersection
bundle CharV(1)

0 = span{∂u1 , . . . , ∂um} is integrable and a diffeomorphism invariant, then

φ̃∗CharV(1)
0 = Char (HG)

(1)
0 = span{∂z⌈κ⌉ + Yz⌈κ⌉}

must also be integrable. In particular, since φ̃ is a static feedback transformation,(
φ̃−1

)∗
Ξ
(1)
0 = span

{
dt, dx

(
t, z⌊κ⌋, ε

)}
= span

{
dt, dz⌊κ⌋, dε

}
,= annChar(HG)

(1)
0 .

Therefore, Char(HG)
(1)
0 = span{∂z⌈κ⌉} and each of the Yz⌈κ⌉ must be zero. Lastly, since X ∈

ker(dπ), then we can write

X =
r∑

a=1

λa(t, z, ε)Ra,

where {Ra}ra=1 form the basis of right invariant vector fields on G. The natural action of G
on Jκ × G is precisely µ̃g(t, z, ε) = (t, z, ε · g) where ε · g is multiplication on G with g on the
right. The infinitesimal generators of the action of G on M must push forward under φ̃ to the
infinitesimal generators of the action of G on Jκ × G. As such, the infinitesimal generators Γ̃
of µ̃G must be precisely the left-invariant vector fields Γ̃ = span{L1, . . . , Lr}. The contact sub-
connection HG is invariant under the infinitesimal action Γ̃ of G on Jκ×G and as such we must
have that [Lb,HG] ⊂ HG implying that

[Lb,Dt +X] =

r∑
a=1

Lb (λ
a(t, z, ε))Ra + λa(t, z, ε)[Lb, Ra] =

r∑
a=1

Lb (λ
a(t, z, ε))Ra,

since [Lb, Ra] = 0 for all 1 ≤ a, b ≤ r. Therefore, in order that [Lb,Dt +X] ∈ HG we must have

Lb (λ
a(t, z, ε)) = 0

for all 1 ≤ a, b ≤ r and therefore each λa has no dependence on ε. This provides the claimed
normal form. ■

Theorem 4.3 plays an important role in Section 7, where a method for constructing dynamic
feedback linearizations using symmetry is described. More generally, quite apart from dynamic
feedback linearization, it exhibits, in group theoretic terms, an obstruction to the static feedback
linearizability of control systems with symmetry.

Notation 4.4. It is sometimes convenient to use the differential forms version of the contact
sub-connection. We may write γG = annHG as

γG = βκ ⊕ΘG

with

ΘG = span{ηa − λa(t, zκ)dt}ra=1,

where each ηa is an entry of the right-invariant Maurer–Cartan form on G, i.e., ηa(Rb) = δab ,
where δab is the Kronecker delta.
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In order to construct solution curves for the original system (M,ω), we start with an ar-
bitrary contact curve c : R → Jκ; that is, an integral curve of the contact system βκ on Jκ.
The horizontal lift c̃ : R → Jκ × G of any contact curve to an integral curve of the contact
sub-connection HG on Jκ × G which corresponds to an integral curve (i.e., a solution) of the
system (M,ω) via composition with the map φ̃−1.

In general, constructing the lifted curve c̃ : R → Jκ × G might be expected to require the
solution of a system of ODE, as in the reconstruction theorem of [2]. Even in the best-case
scenario where G is a solvable Lie group, the solution would be expected to require quadratures.
But, as we will show in the following sections, if the contact sub-connection admits a reduction
by partial contact curves to a system which is also static feedback linearizable, then it will
be possible to obtain an explicit solution for the system (M,ω), which is quadrature free by
definition.

(M,ω) (Jκ ×G,γG)

(M/G,ω/G) (Jκ,βκ) R

π

φ̃

π′

φ
c

c̃

Figure 1. Principal bundle equivalence where γG = annHG and c : R → Jκ is an integral curve of βκ.

Example 4.5. Example 3.33 shows that V̂ := V ⊕ {∂x4}, consisting of the control system V
defined by (3.13) and the symmetry X = ∂x4 , is a static feedback relative Goursat bundle of
signature ⟨1, 1⟩, and hence V/G is static feedback equivalent to B⟨1,1⟩ by Theorem 3.31.

Here we construct the principal bundle equivalence (φ, φ̃) of Figure 1 and the contact sub-
connection HG of V, in local coordinates. As indicated above this can be done by first comput-
ing V/G and then applying contact to the result. In this case, since G is generated by ∂x4 , it is
easy to see by inspection that

V/G = span
{
∂t + x2∂x1 + u1∂x2 + u2∂x3 , ∂u1 , ∂u2

}
, (4.3)

in which, for simplicity, we have used identical labels for the coordinates on R7/G and on R7.
We compute

Char(V/G)(1)0 = span{∂u1 , ∂u2}, Char(V/G)(1) = span{∂x3 , ∂u1 , ∂u2},

and the latter is annihilated by dt. Hence V/G is a static feedback Goursat bundle by Theo-
rem 3.19, as predicted in Example 3.33. Procedure contact relies on finding the fundamental
functions of all relevant orders; in this case one fundamental function of order 1 and one of
order 2, in accordance with the signature ⟨1, 1⟩. The order 2 fundamental function is any in-
variant (first integral) ϕ2 of the fundamental bundle Π2 of (4.3) such that dt ∧ dϕ2 ̸= 0. Since
the derived length of V/G is k = 2, we have

Π2 = span{∂u1 , ∂u2 , [Z, ∂u1 ], [Z, ∂u2 ]} = span{∂u1 , ∂u2 , ∂x2 , ∂x3},

the invariants of which are spanned by t and x1; hence ϕ2 = x1. The order 1 fundamental
function ϕ1, is any invariant of the integrable quotient bundle

Ξ
(1)
0 /Ξ(1) = span

{
dt, dx1, dx2, dx3

}
/
{
dt, dx1, dx2

}
= span

{
dx3
}
,

where

Ξ
(1)
0 = annChar(V/G)(1)0 , Ξ(1) = annChar(V/G)(1).
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Thus a representative basis of this quotient bundle is
{
dx3
}
, and hence ϕ1 can be taken to be

equal to x3. Setting z = x3 and w = x1 and using t, z, z1, w, w1, w2 for the standard coordinates
on J ⟨1,1⟩, we generate the remaining contact coordinates for V/G as

z1 = LZz = u2, w1 = LZw = x2, w2 = L2
Zw = u1.

These functions are components of a local diffeomorphism φ : M → J ⟨1,1⟩, where Z can be taken
to be the first element in the basis (4.3) and M ⊂ R7/G is some open set. Explicitly, φ has the
form

t = t, z = x3, z1 = u2, w = x1, w1 = x2, w2 = u1.

The function ε = x4 is a local coordinate on G, which together with the components of φ define
a local diffeomorphism4 φ̃ : M → J ⟨1,1⟩ ×G given by

t = t, z = x3, z1 = u2, w = x1, w1 = x2, w2 = u1, ε = x4. (4.4)

Thus, we get the contact sub-connection for system (3.13) in the form

HG := φ̃∗V = span{∂t + z1∂z + w1∂w + w2∂w1 + z(1− w2)∂ε, ∂z1 , ∂w2},

which may be compared to (4.2). Dually, we have γG := annHG is given by

γG = span {dz − z1dt, dw − w1dt, dw1 − w2dt} ⊕ {dε− z(1− w2)dt}
= β⟨1,1⟩ ⊕ {dε− z(1− w2)dt}. (4.5)

Here, G is isomorphic to (R,+), so r := dimG = 1, and

λ1
(
t, z⟨1,1⟩

)
= z(1− w2).

While the local normal form (4.2) is static feedback equivalent to the originally given control
system (M,V), it embodies very significant advantages over the latter. One of these is that it
permits a reduction by partial contact curves that induces the dynamic feedback linearization
of V, as we will demonstrate in subsequent sections.

5 Cascade feedback linearization

So far, we have presented the construction of the integral submanifolds of control system ω as
a two-step process, as in Figure 1:

(1) Find a static feedback linearizable quotient (M/G,ω/G) of (M,ω) by a control admissi-
ble subgroup G of its Lie group of control symmetries, and construct the corresponding
diffeomorphism

φ̃ : (M,ω) →
(
Jκ ×G,γG

)
.

(2) For a general contact curve c : R → (Jκ,βκ), construct the horizontal lift

c̃ : R →
(
Jκ ×G,γG

)
.

4We show in Section 7 how φ is lifted to φ̃ in the general case.



Dynamic Feedback Linearization of Control Systems with Symmetry 23

This section will be devoted to the construction in the second step, originally introduced
in [53]. No novel results appear in this section and the reader may reference [28] for additional
results and exposition.

For m ≥ 2, we can always rewrite the Brunovský normal form βκ as βκ = βν ⊕ βν⊥ ,
where κ = ν + ν⊥ and m = mν +mν⊥ , so that βν and βν⊥ are the canonical contact systems

on Jν(R,Rmν ) and Jν⊥(R,Rm
ν⊥ ), respectively. For example, take κ = ⟨1, 2⟩ = ⟨1, 1⟩ + ⟨0, 1⟩

with ν = ⟨1, 1⟩ and ν⊥ = ⟨0, 1⟩. Then the Brunovský normal form βκ may be decomposed as

βκ = span
{
dz10 − z11dt, dz

2
0 − z21dt, dz

2
1 − z22dt, dz

3
0 − z31dt, dz

3
1 − z32dt

}
= span

{
dz10 − z11dt, dz

2
0 − z21dt, dz

2
1 − z22dt

}
⊕ span

{
dz30 − z31dt, dz

3
1 − z32dt

}
= βν ⊕ βν⊥ .

Definition 5.1. We say that a submanifold Σν
f ⊂ Jκ × G is a codimension s partial contact

curve of βκ = βν ⊕ βν⊥ if Σν
f is an integral manifold of βν and s is the sum of the entries in ν.

It is the image of a map

cνf : Jν⊥ ×G→ Jκ ×G

defined by

cνf
(
t, zν⊥ , ε

)
=
(
t, jνf(t), zν⊥ , ε

)
,

where zν⊥ represents the local contact coordinates on Jν⊥ , jνf(t) represents the integral curve
of βν corresponding to the jet of some smooth function f : R → Rmν , and ε represents local
coordinates on G.

In particular, we refer to a system γG restricted to the family of such submanifolds as f
ranges over the space of generic smooth functions as a partial contact curve reduction of γG and
denote it by γ̄G.

In general, the local coordinate expression for γ̄G will be t-dependent via explicit dependence
on the arbitrary function f and its derivatives up to some finite order, and its geometry will
be quite different from that of γG. In particular, γ̄G may turn out to be static feedback
linearizable even when the original connection γG is not. Matters being so, the second step
of the cascade feedback linearization process takes place under the assumption that the partial
contact curve reduction can be chosen in such a way that γ̄G is feedback linearizable. In this
case, an explicit linearization for this system provides a path to an explicit formula for the
desired lifted curves c̃ : R →

(
Jκ ×G,γG

)
that requires no integration.

We remark that the generic family of smooth functions that define a partial contact curve
are truly generic in the sense that certain ODE solutions must be avoided. See [28] for more.

Definition 5.2 (cascade feedback linearization). A control system (M,ω) invariant under a Lie
group of control admissible transformations G is called cascade feedback linearizable if

(1) (M/G,ω/G) is static feedback linearizable, and

(2) the contact sub-connection γG admits a static feedback linearizable partial contact curve
reduction γ̄G.

The above definition of cascade feedback linearization is visualized in Figure 2.

It follows by construction that a cascade feedback linearizable control system is explicitly
integrable. A detailed illustration of the cascade feedback linearization process is given in the
following example.
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(M,ω)
(
Jκ ×G,γG

)
=
(
Jν+ν⊥ ×G,γG

) (
Jν⊥ ×G, γ̄G

) (
J κ̄,βκ̄

)

(M/G,ω/G)
(
Jκ,βκ

)
=
(
Jν+ν⊥ ,βν+ν⊥

)
φ̃

π

G

π′ π′
cνf

φ̄

(2)

φ

(1)

Figure 2. Items (1) and (2) in Definition 5.2 are labelled by (1) and (2) in this diagram.

Example 5.3. Example 4.5 computed the contact connection HG := φ̃∗V of system (3.13).
Using this we now give a simple example of cascade feedback linearization.

Having computed the sub-connection HG, the next step is to check for the existence of
a static feedback linearizable partial contact curve reduction of HG. By inspection, we find
that c

⟨0,1⟩
f : J ⟨1⟩ ×G→ J ⟨1,1⟩ ×G given by

c
⟨0,1⟩
f (t, z, z1, ε) =

(
t, z, z1, ε, w = f(t), w1 = ḟ(t), w2 = f̈(t)

)
for an arbitrary smooth function f : R → R has the property that(

c
⟨0,1⟩
f

)∗
γG := γ̄G = span

{
dz − z1dt, dε− z

(
1− f̈(t)

)
dt
}

This system is static feedback linearizable for arbitrary f , since, letting H̄G := ker γ̄G, we have

H̄G = span{∂t + z1∂z + z
(
1− f̈(t)

)
∂ε, ∂z1},

and we compute that

dr
(
H̄G

)
= [[2, 0], [3, 1, 1], [4, 4]].

Therefore, we have decel
(
H̄G

)
= ⟨0, 1⟩. Since dt annihilates Char H̄(1)

G = span{∂z1}, we conclude
that H̄G is static feedback linearizable (see Theorem 3.19), hence explicitly integrable. This
proves that (3.13) is cascade feedback linearizable according to Definition 5.2.

We can apply cascade feedback linearization to construct an explicit solution to the original
system as follows. Since we can compute an explicit solution ς : R → J ⟨1⟩ × G of γ̄G, we have
that

c
⟨0,1⟩
f ◦ ς : R → J ⟨1,1⟩ ×G

is an explicit solution of γG. Therefore,(
φ̃
)−1 ◦ c⟨0,1⟩f ◦ ς : R →M

is an explicit solution of (M,ω) . Thus one obtains an explicit solution of the non-static feedback
linearizable system (M,ω) by a “cascade” of the explicit solutions of a pair of static feedback
linearizable systems, ω/G and γ̄G.

Let us explicitly demonstrate these calculations; this will also provide another illustration
of contact to find the explicit solution of γ̄G, hence of γG and finally of ω. Since ρ2 = 1, we
compute the highest order bundle

Π2 = span{∂z1 , [∂z1 , Z]} = span{∂z1 , ∂z},

which has first integrals {t, ε}, where Z is the first vector field in the given basis for H̄G. Hence ε
spans the fundamental functions of order 2, from which we compute contact coordinates by Lie
differentiation by Z:

a = ε, a1 = LZε = z
(
1− f̈

)
, a2 = L2

Zε = −z
...
f + z1

(
1− f̈

)
. (5.1)
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These are the components of the static feedback transformation

φ̄ : J ⟨1⟩ ×G→ J ⟨1,1⟩

that identifies H̄G with B⟨0,1⟩ := span{∂t + a1∂a + a2∂a1 , ∂a2}. Since for any smooth real-valued
function h, the functions

a = h(t), a1 = ḣ(t), a2 = ḧ(t)

form an explicit solution of the image B⟨0,1⟩ of H̄G under the map φ̄(t, z, z1, ε) = (t, a, a1, a2)
defined by (5.1), we can invert this to obtain the explicit solution ς of H̄G,

ε = h, z =
ḣ

1− f̈
, z1 =

d

dt

(
ḣ

1− f̈

)
.

Thus, the explicit solution of γG is c
⟨0,1⟩
f ◦ ς, given by

ε = h, z =
ḣ

1− f̈
, z1 =

d

dt

(
ḣ

1− f̈

)
, w = f, w1 = ḟ , w2 = f̈ ,

from which we obtain explicit solution φ̃−1 ◦ c⟨0,1⟩f ◦ ς of V, given by

x1 = f, x2 = ḟ , x3 =
ḣ

1− f̈
, x4 = h, u1 = f̈ , u2 =

d

dt

(
ḣ

1− f̈

)
,

upon referring to φ̃ in (4.4) from Example 4.5.

5.1 How hard is it to implement cascade linearization?

Cascade linearization relies on constructing a Lie group G of control symmetries for a given
control system V, and then a subgroup H ⊂ G which is control admissible. A reader may well
ask: How difficult is it to construct G and H, and then to check that H is control admissible?
Finally, how does then one show that V/H is static feedback linearizable without computing
this quotient explicitly?

One of Lie’s most significant contributions is that one does not need to work with the sym-
metries themselves but rather with the infinitesimal symmetries. These are vector fields on the
ambient manifold whose flows are symmetries. The infinitesimal symmetries are obtained from
solutions of linear, homogeneous partial differential equations called the determining equations.
These are very often easy to solve. Indeed, as a practical matter the general solution of the deter-
mining equations can often be constructed using software such as Maple on a laptop computer.
This leads to the Lie algebra Γ of the control symmetry transformation group G, consisting of
vector fields whose flows are symmetry transformations of the control system. However, the flows
themselves are not required for the analysis of control systems. Only the Lie algebra Γ is needed.

Once a basis {X1, . . . , Xr} for Γ has been constructed, it is very easy to write out the structure
equations of Γ by computing the Lie brackets [Xi, Xj ]. From these it is often possible to spot
Lie subalgebras Θ ⊂ Γ, corresponding to Lie subgroups H ⊂ G, just by inspection. This
approach, as a practical matter, is sufficient to find static feedback linearizable quotients and
most of our calculations so far have been done this way. This arises from the observation that
the most significant property of a subalgebra leading to a static feedback linearizable quotient is
its dimension. Its structure equations or the action it generates do not seem to play a significant
role.
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However, one can be much more systematic if one is interested in getting as much infor-
mation as possible from a given symmetry group. A Lie algebra usually has infinitely many
subalgebras but they will not all be “different”. A common way to classify Lie subalgebras
is to use the differential of the conjugation map C : G → G, defined by Cg(h) = ghg−1 for
all h ∈ G, and some g ∈ G. Two subgroups H1, H2 will be conjugate if there is a g ∈ G such
that H2 = Cg(H1) = gH1g

−1. This leads to a classification of subalgebras by the differential
of C and is a well-known, widely used method for producing a finite list of distinct subalgebras
and hence distinct Lie subgroups (see [39, Chapter 3]). One subgroup H from each class on the
list, with Lie algebra Θ, may then be used to check whether H is control admissible by check-
ing that V(1) ∩Θ = 0 (see Definition 3.26). If so, then to determine if V/H is static feedback
linearizable one checks whether V ⊕ Θ is a static feedback relative Goursat bundle (see Sec-
tion 3.3.1). There will only be a finite number of subalgebras to check. Each of these can then
be checked for the existence of a dynamic feedback linearization, as outlined in Section 7. Es-
sentially, all checking reduces to linear algebra because we are always working “infinitesimally”
and the number of choices is finite. In all such calculations, the burden is very significantly
eased by the use of dedicated software which often makes them very easy. For this paper, we
used the Maple package DifferentialGeometry [1].

Finally, checking contact curve reductions is straightforward. For instance, in the case of 2-
input systems there are two possible reductions, one for each input. In the case of 3-input
systems there are 3 single input reductions and 3 reductions in pairs, etc. Each reduction only
involves linear algebra and differentiation and is therefore algorithmic.

5.2 Relation between cascade linearization & differential flatness

Cascade linearization is an approach to finding dynamic feedback linearizations of a control
system by exploiting the existence of its Lie group of symmetries. A flat control system (see
Definition 2.9) is dynamic feedback linearizable. Conversely, according to [11, 30], a dynamic
feedback linearizable control system is flat. Granting this, one could also characterize cascade
linearization as a method for finding the flat outputs of a flat control system with symmetry.
It provides a sufficient condition for the existence of a complete set of flat outputs (see Defini-
tion 2.9) and it can be checked algorithmically once the Lie algebra of infinitesimal symmetries
has been found. The latter problem is discussed above in Section 5.1. The problem of con-
struction then relies on the Frobenius theorem. However, in developing the theory of cascade
linearization, we make crucial use of Definitions 2.5 and 2.6 of dynamic feedback linearization
because that is the framework that most appropriately serves the goals of this paper, as will be
shown in Section 7.

6 Framework for dynamic feedback linearization
of invariant control systems

In Example 5.3, it was possible to find an explicit solution for the system (3.13) after finding those
of ω/G and γ̄G by applying contact to each of them. While the system (3.13) is sufficiently
simple that this application of cascade feedback linearization succeeds, for more complicated
examples, finding the explicit solution to the SFL partial contact curve reduction γ̄G often
proves to be impractical due to the complexity of the computations arising from the arbitrary
functions of time present in the coefficients of γ̄G. In the following sections, it will be shown how
the contact sub-connection can be exploited to overcome this problem. Even when the solution
of γ̄G cannot be computed explicitly, it is straightforward to determine an upper bound for the
signature of its solution. This upper bound then determines a specific partial prolongation of
the original contact sub-connection γG which is guaranteed to be static feedback linearizable.
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In practice, the explicit solution to this prolonged sub-connection is far more straightforward to
compute than that for the reduced sub-connection, and it realizes an explicit dynamic feedback
linearization for the original system.

This framework will be developed in Section 7 to establish verifiable criteria for the existence
and construction of dynamic feedback linearizations as well as explicit solutions. Subsequently,
in running Examples 6.5, 7.1, 7.11, and in Sections 8 and 9, all features of the general theory
will be illustrated.

6.1 Signature of an explicit solution

Recall that to an explicit solution s : R →M of (M,ω), we can associate the notion of a signature,
ν = ⟨ρ1, ρ2, . . . , ρk⟩, where ρj is the number of arbitrary functions occurring to highest order j
in the explicit solution s (cf. Definition 3.3).

We use precisely the same notation to denote the signature of the jet space Jν , as explained
in Section 3. The dimension of Jν and rank of βν are

Nν = dim Jν = 1 +

k∑
j=1

(1 + j)ρj , rankβν =

k∑
j=1

jρj .

Now a given explicit solution s of signature ν naturally factors through a map ψ : Jν → M .
That is, s = ψ ◦ jνf, where jνf : R → Jν is the ν-jet of an arbitrary function f : R → Rm

and m =
∑k

j=1 ρj . Thus we have

0 = s∗ω = (jνf)∗ψ∗ω, ∀f.

It follows that the elements of ψ∗ω are contact forms since they are annihilated by the ν-jet of
an arbitrary function, and hence ψ∗ω ⊆ βν .

In the special case when dimM = dim Jν , rankω = rankβν , we prove that ψ is a local
diffeomorphism and we conclude that ψ∗ω = βν . Indeed, we have

Proposition 6.1. Let s : R → M be the explicit solution of a control system (M,ω) of signa-
ture ν = ⟨ρ1, ρ2, . . . , ρk⟩, and suppose that dimM = Nν and rankω = rankβν . Let ψ : Jν →M
be the smooth map that locally factors s as s = ψ◦jνf , where f : R → Rm is an arbitrary smooth
function and m =

∑k
i=1 ρi. Then ψ is a local diffeomorphism and ψ∗βν = ω. Furthermore, ψ is

a static feedback transformation.

Proof. Suppose the derivative map of ψ is singular in some open set U ⊆ Jν , and that
s(t) = (ψ|U ◦ jνf)(t). If ψ has components ψi, 1 ≤ i ≤ Nν := n, then dψ1 ∧ dψ2 ∧ · · · ∧ dψn ≡ 0
on U. Hence there is a regular function F at x ∈ Rn (i.e., dF is non-zero at x) such that
F
(
ψ1, . . . , ψn

)
≡ 0 in a neighborhood Nx of x. By the regularity of F , F (ψ) ◦ jνf = 0 can be

expressed as a locally solvable ordinary differential equation for f , if necessary by shrinking Nx.
This contradicts the hypothesis that f is arbitrary. Hence, by the inverse function theorem, we
deduce that ψ is a local diffeomorphism. Since time t is a parameter along trajectories, it follows
from [13, Theorem 3.11] that ψ is a static feedback transformation. ■

Proposition 6.2. Let (M,ω) be an explicitly integrable control system on a manifold M whose
explicit solution has signature ν. Then the explicit solution determines a static feedback lin-
earization of (M,ω) if and only if dimM = dim Jν . Consequently, (M,ω) is SFL if and only it
admits an explicit solution whose signature ν satisfies dimM = dim Jν .

Proof. Since the explicit solution s(t) has signature ν, we can express s by a formula of the
form x(t) = H(jνf(t)), where x denotes all the dynamical variables of the control system (M,ω).
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If dimM = dim Jν then we can invert x = H(zν), defining a local diffeomorphism θ : M → Jk

such that zν = θ(x) and satisfying θ∗βν = ω. For if the map zν 7→ H(zν) is not full rank, it
implies dependencies among the variables x. By Proposition 6.1, ω is static feedback linearizable.

Conversely, if (M,ω) is static feedback linearizable then it has some explicit solution with
the signature ν ′ = ⟨ρ1, ρ2, . . . , ρk⟩ of some Brunovský normal form βν′ , and therefore ω has an
explicit solution of signature ν ′. But the explicit solution of ω has signature ν and hence ν ′ = ν.
Thus dimM = 1 +

∑k
j=1(1 + j)ρj = dim Jν . ■

We now study the general case dimM < Nν .

Definition 6.3 (partial prolongation of a control system). Let (M,ω) be a DFL control system.
Suppose s : R →M is an explicit solution of ω; let ν denote the signature of s and assume that
dimM < Nν . Consider the augmented control system ω′ := π̃∗ω ⊕α, where

α = span{dua − pa1dt, dp
a
1 − pa2dt, . . . , dp

a
ka−1 − pakadt}, a ∈ {1, 2, . . . ,m},

on a manifold M ′, where π̃ : M ′ → M is the submersion. If the explicit solution s can be
augmented to an explicit solution s′ of ω′ without changing the signature of s (i.e., the signatures
of s and s′ are both equal to ν), then we call (M ′,ω′) the ν-prolongation of (M,ω) and s′ the ν-
prolonged explicit solution.

Example 6.4. Let ω be a rank 5 control system on the manifold M with states and in-
puts x1, . . . , x5, u1, u2. Suppose ω has explicit solution s given by

x1 = ġf2/ḟ , x2 =
(
ḟg + fġ

)
/ḟ , x3 = f, u1 = ḟ ,

x4 =
(
f̈g + fg̈

)
/ḟ3 =: F, x5 = dF/dt, u2 = d2F/dt2,

in terms of arbitrary functions f , g. The signature of s is ν = ⟨0, 0, 0, 2⟩ and we have 8 =
dimM < dim Jν = 11. We construct a ν-prolongation of s by adjoining the equations

p11 = f̈ , p12 =
...
f , p13 =

....
f .

The resulting augmented solution s′ also has signature ν = ⟨0, 0, 0, 2⟩ and factors through a static
feedback transformation ψ : Jν → M ′, where M ′ has local coordinates t, x1, . . . , x5, u1, u2, p11,
p12, p

1
3, and the ν-prolongation of ω is

ω′ = π̃∗ω ⊕
{
du1 − p11dt, dp

1
1 − p12dt, dp

1
2 − p13dt

}
.

Thereby we have carried out a partial prolongation by differentiating u1 three times, while u2

is left undifferentiated. We sometimes call this a 3-fold “partial prolongation along u1”. Then
we have rankω′ = 8 = rankβ⟨0,0,0,2⟩. Hence ψ∗ω′ = β⟨0,0,0,2⟩ by Proposition 6.1, where ψ is
a static feedback transformation.

Example 6.5. We work through an additional example of how the principal bundle isomor-
phism

(
φ, φ̃

)
of Figure 1 and the contact sub-connection HG, defined in (4.2), can be constructed

in practice by studying the well-known PVTOL control system [25, 35] given by

ẋ = x1, ẋ1 = −u1 sin θ + hu2 cos θ, ż = z1,

ż1 = u1 cos θ + hu2 sin θ − 1, θ̇ = θ1, θ̇1 = u2, (6.1)

in 6 states and 2 controls, where h is a parameter. We denote the ambient manifold of the system
by M . The Lie group of all control symmetries of (6.1) is studied in detail in forthcoming work.
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One of its subgroups consists of Galilean transformations in x and z, generated infinitesimally
by the abelian Lie algebra

Γ′ = span{t∂x + ∂x1 , ∂x, t∂z + ∂z1 , ∂z}.

It turns out that Γ′ is not strongly transverse to V and we instead use the subalgebra

Γ = span{t∂x + ∂x1 , ∂x, ∂z} ⊂ Γ′

to study (6.1). The subalgebra Γ generates Galilean transformations in x and translations in z
and we denote this group by G.

We calculate that V̂ := V ⊕Γ is a static feedback relative Goursat bundle of signature ⟨1, 1⟩.
This means V/G is static feedback equivalent to B⟨1,1⟩. The G-invariant functions are the first
integrals of Γ and are generated by

t = t, q1 = θ, q2 = θ1, q3 = z1, v1 = u1, v2 = u2,

and thus t, q1, q2, q3, v1, v2 form local coordinates on M/G. The quotient control system is
then easily computed and given by

V/G = span
{
∂t + q2∂q1 + v2∂q2 +

(
v1 cos q1 + hv2 sin q1 − 1

)
∂q3 , ∂v1 , ∂v2

}
.

Applying the procedure contact to V/G, we obtain the transformation φ : M/G→ J ⟨1,1⟩ given by

t = t, m = q1, m1 = q2, m2 = v2, n = q3,

n1 = u1 cos q1 + hv2 sin q1 − 1,

where t, m, m1, m2, n, n1 denote the standard contact coordinates on J ⟨1,1⟩. Then

φ∗(V/G) = span{∂t +m1∂m +m2∂m1 + n1∂n, ∂m2 , ∂n1} = B⟨1,1⟩,

as claimed. To construct φ̃, we need the coordinates of the local group G in terms of t and the
state variables of V. As per the discussion following equation (4.1), we find that

ε1 = x1, ε2 = x− tx1, ε3 = z.

Then as in Figure 1, we have the static feedback transformation

φ̃ = φ ◦ π ×
(
ε1 = x1, ε

2 = x− tx1, ε
3 = z

)
giving,

φ̃∗V = span

{
∂t +m1∂m +m2∂m1 + n1∂n +

(n1 + 1) sinm− hm2

cosm
(t∂ε2 − ∂ε1) + n∂ε3 ,

∂m2 , ∂n1

}
. (6.2)

The distribution HG := φ̃∗V is the contact sub-connection for the control system (6.1), with
respect to the control admissible symmetry group G. For completeness and later use, we also
record the annihilator γG of HG,

γG = {dm−m1dt, dm1 −m2dt, dn− n1dt}

⊕
{
dε1+

(n1 + 1) sinm− hm2

cosm
dt, dε2− t

(n1 + 1) sinm− hm2

cosm
dt, dε3− ndt

}
. (6.3)
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7 Dynamic linearization via symmetry reduction

We saw in Example 5.3 that to construct an explicit solution of a cascade feedback linearizable
control system it is sufficient to construct the integral submanifolds of the static feedback lin-
earizable reduced sub-connection H̄G. We called this procedure cascade feedback linearization.
While this direct approach is straightforward in principle, the presence of arbitrary functions
of time in H̄G usually makes the construction of an explicit solution, as a practical matter,
computationally challenging due to expression swell. One of the purposes of this section is to
prove (in Theorem 7.6) that, in fact, for the purpose of constructing an explicit solution the
integration of H̄G can be completely avoided. The only information we shall require of H̄G is
its derived length.

To construct an explicit solution we require a dynamic feedback linearization. We will es-
tablish a procedure for constructing dynamic feedback linearizations for control systems with
symmetry in accordance with the standard definition (see Definition 2.5).

7.1 Explicit solution via the contact sub-connection

In Example 5.3, we produced a formula for the explicit trajectories of the control system (3.13).
We did this by computing a reduced contact sub-connection H̄G which is SFL and led to the
explicit trajectories of HG as a control system in its own right. In this section, we apply the
main results of Section 6.1 to HG, showing that the linearization of H̄G can be avoided by
proving that one can always achieve a dynamic feedback linearization of HG via an integrator
chain (partial prolongation) when H̄G is SFL.

The information required to determine such a DFL of HG via partial prolongation need not
come from the contact coordinates of H̄G. These may be computationally unwieldy (though are
manageable in Example 5.3). Indeed, all we need is the signature of the explicit solution of HG,
which can be determined by carefully inspecting the highest order derivatives of the family of
partial contact curves featured in its fundamental functions, together with the derived length
of H̄G, without being required to explicitly compute the remaining contact coordinates. But we
will further show that, in practice, even the fundamental functions need not be computed.

Example 7.1. Recall that the partial contact curve reduction ofHG for the control system (3.13)
in Example 5.3 is given by

H̄G = span
{
∂t + z1∂z + z

(
1− f̈(t)

)
∂ε, ∂z1

}
≃SFE B⟨0,1⟩,

for arbitrary, smooth, real-valued functions f . As we saw, the fundamental function of H̄G

turned out to be ε. Letting t, a, a1, a2 be the contact coordinates for the Brunovsky normal
form of H̄G, we let a = ε and the remaining contact coordinates are determined from successive
Lie differentiation of the fundamental function by the vector field

Z̄ = ∂t + z1∂z + z
(
1− f̈(t)

)
∂ε.

Without carrying out the computations to determine the remaining contact coordinates a1=LZ̄a
and a2 = L2

Z̄
a, we notice that the highest order derivative of f(t) in the family of partial contact

curves that appears in Z̄ is two. As such, a1 must depend on f̈(t) and a2 must depend on
...
f (t).

Additionally, since the signature of the Brunovský form equivalent to H̄G is ⟨0, 1⟩, then we can
deduce that the signature of an explicit solution s of HG must be ν = ⟨0, 1, 1⟩. The dimension of
the associated jet space is Nν = 8 > 7 = dim

(
J ⟨1,1⟩ ×G

)
. As such, we confirm again (this time

via Proposition 6.2) that the system (3.13) is not SFL; however, if we perform a prolongation
of γG along the w jet coordinate by adjoining the 1-form dw2−w3dt to γG (see Definition 6.3) in
equation (4.5), we get γ̂

G
:= γG ⊕ {dw2 − w3dt}, which turns out to be a DFL of γG, since γ̂

G

is SFL by Proposition 6.2.



Dynamic Feedback Linearization of Control Systems with Symmetry 31

This example is an instance of a general result concerning prolongation of the jet coordinates
involved in the partial contact curve reduction. In fact, the order counting technique demon-
strated above can be generalized to any contact sub-connection and is the subject of Theorem 7.6
below. To prove this, we first introduce some helpful notation and establish a technical lemma
concerning the fundamental functions of a reduced contact sub-connection.

Notation 7.2. Given a signature ν = ⟨ρ1, . . . , ρk⟩, we will use subscripts to denote an increase
in order of all jets so that

νℓ = ⟨0, . . . , 0︸ ︷︷ ︸
ℓ entries

, ρ1, . . . , ρk⟩, ℓ ≥ 0,

and νℓ = ν if ℓ < 0.

Notation 7.3. Consider a collection of signatures S = {νℓ}kℓ=1 and their corresponding jet
spaces Jνℓ(R,Rmνℓ ), where mνℓ = mν for all 1 ≤ ℓ ≤ k and mν is the sum of the entries of ν.
We denote by ν∗S the signature of the smallest jet space Jν∗S (R,Rmν ) for which the collection of
jet spaces {Jνℓ(R,Rmνℓ )}kℓ=1 may be embedded into Jν∗S (R,Rmν ).

For example, if S = {ν0, ν1} where ν0 = ⟨1, 0, 1, 1⟩ and ν1 = ⟨0, 3⟩ then ν∗S = ⟨0, 1, 1, 1⟩
and Jνℓ ⊂ Jν∗S , ℓ = 0, 1; Jν∗S is the smallest such jet space.

Definition 7.4. If Jν1 and Jν2 are jet spaces, we say that ν1 is less than or equal to ν2
if Jν1 ⊆ Jν2 and we write ν1 ≤ ν2.

Lemma 7.5. Let HG = ker
(
βν⊥ ⊕ βν ⊕ ΘG

)
be the contact sub-connection of a G-invariant

control system ω, with G being control admissible. Assume further that H̄G is an SFL contact
curve reduction of HG, where the family of partial contact curves cνf are induced by integral
manifolds of βν with ν = ⟨ρ1, . . . , ρkν ⟩ and βκ = βν⊥ ⊕ βν . Each order ℓ fundamental func-
tion ϕaℓ,ℓ, 1 ≤ aℓ ≤ ρℓ, 1 ≤ ℓ ≤ k̄ of H̄G defining its static feedback linearization depends on
derivatives of f(t) having signature no larger than νℓ−1, where νℓ−1 is the signature of the
order ℓ− 1 time derivative of jνf(t) and k̄ is the derived length of H̄G.

Proof. Let Z̄ ∈ H̄G denote the vector field

Z̄ = D̄t +

r∑
a=1

λa(z, jνf(t))Ra,

where the {Ra}ra=1 form a basis of right invariant vector fields on G and D̄t is the total derivative
operator on Jν⊥ . Notice that, depending on the functions λa, the vector field Z̄ may depend
on at most as many derivatives of f(t) as are defined by the Brunovský normal form βν . By
the procedure contact, there exist fundamental functions ϕaℓ,ℓ for each ℓ < k̄ − 1 such that the
quotient bundle Char H̄(ℓ)

G /Char
(
H̄G

)(ℓ)
ℓ−1

is nontrivial. In particular, the fundamental functions
are the invariants of the integrable quotient bundle Ξ̄

(ℓ)
ℓ−1/Ξ̄

(ℓ) where

Ξ̄(ℓ) = ann
(
Char H̄(ℓ)

G

)
, Ξ̄

(ℓ)
ℓ−1 = ann

(
Char

(
H̄G

)(ℓ)
ℓ−1

)
.

Each Cauchy bundle Char H̄(ℓ)
G satisfies

Char
(
H̄G

)(ℓ)
ℓ−1

⊆ Char H̄(ℓ)
G ⊆ Char

(
H̄G

)(ℓ+1)

ℓ
,

by definition of the intersection bundle; see (3.1). Furthermore, as per equation (3.6),

Char
(
H̄G

)(ℓ)
ℓ−1

= span
{
C̄0, ad(Z)C̄0, . . . , ad(Z)

ℓ−1C̄0

}
,

Char
(
H̄G

)(ℓ+1)

ℓ
= span

{
C̄0, ad(Z)C̄0, . . . , ad(Z)

ℓC̄0

}
, C̄0 := Char

(
H̄G

)(1)
0
.
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In particular, we notice that for each 1 ≤ i ≤ ℓ the coefficients of the vector fields in adi(Z)C̄0

will have at most i − 1 time derivatives of jνf(t). As such, with i = ℓ, the first integrals ϕaℓ,ℓ

of the non-trivial quotient bundles Ξ̄
(ℓ)
ℓ−1/Ξ̄

(ℓ) have at most dependence on ℓ− 1 time derivatives
of jνf(t), which we denote by jνℓ−1f(t). Finally, in case ∆̄k̄ = 1 the associated fundamental
bundle Π̄k̄ as given by equation (3.6) allows us to make the same conclusion when ℓ = k̄. In
case ∆̄k̄ > 1, a similar argument applies. ■

Theorem 7.6 (explicit solution via symmetry). Suppose the control system (M,ω) of derived
length k is cascade feedback linearizable with respect to a Lie group G. Let HG be its contact sub-
connection on Jκ ×G, where Jκ is decomposed as

(
Jν × Jν⊥

)
/∼ and H̄G is the static feedback

linearizable reduced contact sub-connection with respect to a generic family of partial contact
curves cνf . Finally, let prHG be the partial prolongation of HG along its Jν components with
the resulting signature of prHG given by κ′ = ν⊥ + ν ′ where ν ′ = ν∗S, with

S =
{
νaℓ,ℓℓ : aℓ ̸= 0, 1 ≤ ℓ ≤ k̄

}
where νaℓ,ℓ denotes the signature of the derivatives of f(t) appearing in each fundamental func-
tion ϕaℓ,ℓ. Then prHG is SFL.

Proof. Let us decompose the contact coordinates on Jκ =
(
Jν⊥ × Jν

)
/∼ such that Jν⊥ has

coordinates (t, z) and Jν has coordinates (t,w). Once we restrict HG to a family of partial
contact curves cνf we will have

H̄G = span

{
D̄t +

r∑
a=1

λa(z, jνf(t))Ra, ∂z
aj
j

}
, (7.1)

where z
aj
j are the highest order contact coordinates on Jν⊥ . By hypothesis, H̄G is static feed-

back linearizable of some signature κ̄. Consequently, the static feedback transformation that
implements the linearization is determined by the procedure contact [52]. According to this, one
computes the fundamental functions ϕaℓ,ℓ of all orders, after which the contact coordinates are
determined by Lie differentiation by the total differential operator Z̄, which in this case is given
by the first vector field in (7.1).5 Each fundamental function ϕaℓ,ℓ depends upon the contact
coordinates z, the local group coordinates ϵ and the jet jν

aℓ,ℓf(t) of the family of functions f(t)
that define the contact curve reduction. Let z̄ denote the contact coordinates for the static
feedback linearization of H̄G. Then,

z̄aℓ,ℓ
iℓ

= L
iℓ
Z̄
ϕaℓ,ℓ

(
z, jν

aℓ,ℓf(t), ε
)
, 0 ≤ iℓ ≤ ℓ, 1 ≤ ℓ ≤ k̄.

As such, each highest order contact coordinate z̄aℓ,ℓ
ℓ of the linearizing static feedback transfor-

mation depends upon, at most, the νaℓ,ℓℓ jet of f(t). That is,

ϕaℓ,ℓℓ = ϕaℓ,ℓℓ

(
z, jν

aℓ,ℓ

ℓ f(t), ε
)
, 0 ≤ l ≤ k̄. (7.2)

Let κ̄ be the signature of H̄G as a SFL control system, that is, H̄G
∼= annβκ̄. Note the list of

non-negative integers κ̄ does not contain information about the jet orders of f(t) that occur in
the fundamental functions ϕaℓ,ℓ. Let

ν ′ = ν∗S , S =
{
νaℓ,ℓℓ : aℓ ̸= 0, 1 ≤ ℓ ≤ k̄

}
.

Then solving for z and ε in (7.2) obtains the explicit solution of H̄G in the form (z, ε) =
ζ
(
jκ̄g, jν

′
f
)
, for an arbitrary, smooth function g(t), valued in Rm̄, where m̄ is the number of

5This is because we assume that H̄G has passed the test of being static feedback linearizable.
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inputs in H̄G. Combining this with the partial contact curve reduction in which w = jνf ,
obtains the explicit solution of HG. Thus we see that the signature of the explicit solution
of HG – say κ′ – is given by, κ′ = κ̄ + ν ′. We note in passing that κ′ is generally not the
signature of HG itself. Only if HG is static feedback linearizable will this be so.

To finish the proof, we invoke Proposition 6.1 by constructing a κ′-prolongation as in Defini-
tion 6.3. Toward this goal, we need some dimension counts:

dim Jκ ×G = r + 1 +
∑
ρi∈κ

(1 + i)ρi = r + 1 +
∑

ρi∈ν⊥
(1 + i)ρi +

∑
ρi∈ν

(1 + i)ρi,

dim Jν⊥ ×G = r + 1 +
∑

ρi∈ν⊥
(1 + i)ρi,

dim Jκ′
= 1 +

∑
ρi∈κ̄

(1 + i)ρi +
∑
ρi∈ν′

(1 + i)ρi,

where dim Jν⊥ ×G = dim J κ̄. Let Nν′−ν := dim Jν′ − dim Jν . Then it follows that

dim Jκ′
= Nν′−ν + dim Jκ ×G.

Let us then partially prolong the contact sub-connection γG = βκ⊕ΘG so that the βν Brunovský
form summand in βκ is prolonged to βν′ . In that case the Pfaffian system γG thus prolonged
will be denoted by γ̂

G
and we let prHG := ker γ̂

G
. Matters being so, this partial prolongation

is exactly the κ′-prolongation of Definition 6.3, and therefore by Proposition 6.2 we conclude
that prHG is SFL with signature κ′. ■

We point out that Theorem 7.6 can also be expressed by the diagram in Figure 3.

(
Jν′+ν⊥ ×G,βν′ ⊕ βν⊥ ⊕ΘG

) (
J κ̄+ν′ ,βκ̄+ν′

)
(
Jκ ×G,γG

)
=
(
Jν+ν⊥ ×G,γG

)
φ′

π̃′

Figure 3. Here φ′ is the static feedback map that linearizes the prolonged contact sub-connection.

The number of partial prolongations of HG described in Theorem 7.6 to achieve the static
feedback linearization prHG is exact. However, as far as possible we want to avoid the task
of computing the fundamental functions of H̄G explicitly by deducing the maximum number of
prolongations of HG required to achieve a static feedback linearization. Such a maximum is
provided by Corollary 7.8, below. Before that we need to state the following lemma.

Lemma 7.7. Let
(
Jν⊥+ν′ × G, prHG

)
be the minimally prolonged static feedback linearizable

contact connection provided by Theorem 7.6. Performing any partial prolongation along any of
the components corresponding to the nonzero entries in ν ′ preserves the static feedback lineariz-
ability of prHG.

Proof. This follows easily, for instance by using the Gardner–Shadwick test for static feedback
linearizability [20]. ■

Corollary 7.8. Let HG be as in the hypotheses of Theorem 7.6 and let k̄ be the derived length
of H̄G. Then, it is enough to prolong all the Jν components of HG by 2k̄ − 1 differentiations,
so as to achieve a SFL control system prHG.
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Proof. Recall that to compute an optimal set of contact coordinates for prHG we examined
the fundamental functions ϕaℓ,ℓ of H̄G which must be differentiated ℓ-times and then we min-
imized over the set of signatures S =

{
νaℓ,ℓℓ

}k̄
ℓ=1

. By Lemma 7.5, the ϕaℓ,ℓ depend upon jλf ,
where λ ≤ νℓ−1 and hence the ℓth derivatives of ϕaℓ,ℓ depend upon jµf , where µ ≤ ν2ℓ−1. Re-
placing S by S′ = {ν2ℓ−1}k̄ℓ=1 we have ν∗S′ = ν2k̄−1. By Lemma 7.7, we conclude that since
the partial prolongation of the summand βν in γG prolonged to βν

∗
S leads to an SFL partial

prolongation γ̂
G
, the partial prolongation of βν to βν2k̄−1 instead, will ensure that this partial

prolongation of γG will also be SFL. ■

Thus, the only data we require from H̄G to obtain an SFL prolonged contact connection prHG

is its derived length, which is algorithmically obtained. The number of prolongations described
in Corollary 7.8 agrees with the well-known sharp Sluis–Tilbury bound [48] in the case of 2-
input systems. In fact, we can immediately find an entire class of examples that satisfy the
sharp Sluis–Tilbury bound of 2n − 3 prolongations of a 2-input system where n is the number
of states.

Indeed, consider any contact sub-connection HG with 2 controls whose Brunovský component
has signature ⟨1, 0, . . . , 0, 1⟩, where the final ‘1’ is in position k for some k > 1. If the group G
has dimension r, then the contact sub-connection, as a control system, has 1 + k + r state
variables. If a static feedback linearizable partial contact curve reduction is performed along the
contact coordinate of order 1 then the signature of the Brunovský component of the reduced
sub-connection H̄G will have signature ⟨0, 0, . . . , 0, 1⟩, where the final ‘1’ continues to be in
position k. This means that H̄G will be a rank 2 Goursat bundle and its derived length will be
k̄ = k + r, where upon Corollary 7.8 tells us that HG requires at most

2k̄ − 1 = 2(k + r)− 1 = 2(1 + k + r)− 3 = 2n− 3

differentiations to achieve a SFL system.

Actually, the bound in Corollary 7.8 is far more efficient than the best known bounds [18] on
the required number of partial prolongations; there they are polynomial and/or exponential in
the number of states and controls, in contrast to the linear bounds provided by Corollary 7.8.
However, in [18] the authors permit themselves no additional information on the control systems
in question. In particular, unlike in the present paper no assumption on admitted symmetry is
made.

Example 7.9. Consider the following 4-input contact sub-connection on J ⟨1,2,1⟩ ×G, where G
is an abelian Lie group with local coordinates

(
ε1, ε2, ε3

)
,

HG = span
{
Dt + w1

2z
1
3∂ε1 + w1

2z
2
1∂ε2 + w2

2z
2
1∂ε3 , ∂z13 , ∂z21 , ∂w1

2
, ∂w2

2

}
,

whereDt is the total derivative operator on J
⟨1,2,1⟩. Furthermore, the coordinates of Jκ = J ⟨1,2,1⟩

are such that if we decompose κ = ν⊥ + ν such that ν⊥ = ⟨1, 0, 1⟩ and ν = ⟨0, 2, 0⟩ then the z
coordinates correspond to Jν⊥ and the w coordinates correspond to Jν . The refined derived
type of HG is

[[5, 0], [9, 0, 0], [15, 8, 13], [16, 16]],

which is clearly not that of a Brunovský form and hence this system is not SFL. However, let
us illustrate Theorem 7.6 by reducing HG by a family of partial contact curves cνf that entail
integral manifolds of βν . Indeed, let f(t) = (f1(t), f2(t)) such that cνf imposes(

wi
0, w

i
1, w

i
2

)
=
(
fi(t), ḟi(t), f̈i(t)

)
, i = 1, 2.
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The reduced contact sub-connection is therefore

H̄G = span
{
D̄t + z13 f̈1(t)∂ε1 + z21 f̈1(t)∂ε2 + z21 f̈2(t)∂ε3 , ∂z13 , ∂z21

}
,

where D̄t is the total derivative operator on Jν⊥ . By calculation, we find that the reduced
system H̄G is SFL with signature κ̄ = ⟨0, 0, 1, 1⟩. The fundamental functions of H̄G are easy to
compute,

ϕ1,3 =

...
f 2(t)...
f 1(t)

(
f̈1(t)z

2
0 − ε2

)
+
(
ε3 − f̈2(t)z

2
0

)
,

ϕ1,4 = ε1 −
....
f 1(t)z

1
0 +

...
f 1(t)z

1
1 − f̈2(t)z

1
2 .

Note that jνf(t) has signature ν = ⟨0, 2⟩ and the jet jν
1,3
f(t) appearing in ϕ1,3(ℓ = 3) is of sig-

nature ν1,3 = ⟨0, 0, 2⟩, which is predicted by the maximal bound of Lemma 7.5. For ϕ1,4(ℓ = 4)
the signature of the jet of f(t) that appears has signature ν1,4 = ⟨0, 1, 0, 1⟩, which is not the
maximum signature predicted by Lemma 7.5, since the lemma says the signature is no greater
than ν3 = ⟨0, 0, 0, 0, 2⟩. We have ν1,33 = ⟨0, 0, 0, 0, 0, 2⟩ and ν1,44 = ⟨0, 0, 0, 0, 0, 1, 0, 1⟩, so by The-

orem 7.6 we set S =
{
ν1,33 , ν1,44

}
and obtain ν ′ = ν∗S = ⟨0, 0, 0, 0, 0, 1, 0, 1⟩. Finally, recalling that

our partial contact curve reduction occurred along the two second order jet coordinates w1, w2,
we prolong βν to βν′ so that

ν⊥ + ν = ⟨1, 2, 1⟩ = ⟨1, 0, 1⟩+ ⟨0, 2, 0⟩ 7→ ⟨1, 0, 1⟩+ ⟨0, 0, 0, 0, 0, 1, 0, 1⟩ = ν⊥ + ν ′,

and thus we manage to construct prHG on J ⟨1,0,1,0,0,1,0,1⟩ ×G as

prHG = span
{
prDt + w1

2z
1
3∂ε1 + w1

2z
2
1∂ε2 + w2

2z
2
1∂ε3 , ∂z13 , ∂z21 , ∂w1

8
, ∂w2

6

}
,

where prDt is the total derivative operator on J
⟨1,0,1,0,0,1,0,1⟩. One can then apply Theorem 3.19

or the GS algorithm to discover that prHG is indeed SFL. The signature of prHG turns out to
be ⟨0, 0, 1, 1, 0, 1, 0, 1⟩. The GS algorithm or contact can now be used to construct an explicit
solution of prHG and hence that of HG. This verifies Theorem 7.6 in that the signature of
prHG is ⟨0, 0, 1, 1, 0, 1, 0, 1⟩ = κ̄+ ν ′, this being the signature of the explicit solution of HG.

Finally, if we did not have the expressions for the fundamental functions we could nevertheless
obtain an upper bound for the number of prolongations using Corollary 7.8. Since in this
case k̄=4, we would prolong ν = ⟨0, 2⟩ by 2k̄−1 = 7 derivatives giving ν∗S′ = ⟨0, 0, 0, 0, 0, 0, 0, 0, 2⟩
instead of ν ′ = ⟨0, 0, 0, 0, 0, 1, 0, 1⟩. Lemma 7.7 says that a prolongation of ν to ν∗S′ instead of ν ′

ensures that the resulting prolonged sub-connection prHG is also SFL.

Remark 7.10. Theorem 7.6 and Corollary 7.8 do more than provide a bound on the number of
partial prolongations required to produce a SFL control system prHG. They also tell us which
controls need to be prolonged. Moreover, as is by now clear, cascade linearization gives a general
canonical procedure for expressing a control system that is not DFL by differentiation of given
inputs to one that is.

Example 7.11 (Example 6.5 continued). This makes use of the contact connection worked out
in (6.2) and (6.3).

We now check the cascade feedback linearization of (6.1). We can perform a contact curve
reduction along m or n. For this example we fix a family of contact curve reductions by defining

the map c
⟨0,1⟩
f : J ⟨1⟩ ×G→ J ⟨1,1⟩ ×G given by

c
⟨0,1⟩
f

(
t, n, n1, ε

1, ε2, ε3
)
=
(
t, n, n1, ε

1, ε2, ε3,m,m1,m2

)
=
(
t, n, n1, ε

1, ε2, ε3, f(t), ḟ(t), f̈(t)
)
.
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Then

γ̄G =
(
c
⟨0,1⟩
f

)∗
γG = {dn− n1dt}

⊕

{
dε1 +

(n1 + 1) sin f − hf̈

cos f
dt, dε2 − t

(n1 + 1) sin f − hf̈

cos f
dt, dε3 − ndt

}
.

It can be checked that γ̄G is static feedback linearizable of signature ⟨0, 0, 0, 1⟩ and therefore
static feedback equivalent to the Brunovský normal form with that signature. Moreover, by
Theorem 7.6, we perform a 7

(
= 2k̄ − 1

)
-fold prolongation in m, in order that prHG is static

feedback linearizable, giving a dynamic feedback linearization of HG. In fact, it turns out that
it is sufficient to prolong to order 6 in m. That is,

prHG = span

{
∂t +m1∂m +m2∂m1 +m3∂m2 +m4∂m3 +m5∂m4 +m6∂m5 + n1∂n

+
(n1 + 1) sinm− hm2

cosm
(t∂ε2 − ∂ε1) + n∂ε3 , ∂m6 , ∂n1

}
is static feedback linearizable of signature ⟨0, 0, 0, 1, 0, 1⟩, which is also the signature of the
explicit solution.

7.2 From cascade to dynamic feedback linearization

So far we have shown how to construct the explicit solution of a smooth, invariant control
system (1.1) via the contact sub-connection, HG. The goal of this subsection is to give the
precise relationship between cascade feedback linearization and dynamic feedback linearization
and show how to construct a dynamic feedback linearization of an invariant control system (1.1)
in local coordinates, as expressed by Definition 2.5. The basic idea is that the map φ̃ should lift
to a map ˜̃φ between(

Jν′+ν⊥ ×G,βν′+ν⊥ ⊕ΘG
)

and some manifold and Pfaffian system
(
M̂, ω̂

)
with ω̂ encoding a dynamic extension of ω.

Constructing a dynamic feedback linearization:

(1) Construct prHG and γ̂
G
:= ann(prHG) as prescribed in Theorem 7.6.

(2) Compute the Goursat bundle θ =
(˜̃φ)∗γ̂G

and notice that the state and control variables
are not yet well defined.

(3) For T = ann θ, choose any t-preserving diffeomorphism χ : M̂ → M̂ such that the in-
tegrable bundle Char T (1)

0 is spanned by coordinate vector fields {∂W 1 , . . . , ∂Wm} ac-
cording to the Frobenius theorem. The diffeomorphism χ defines the dynamic com-
pensator u = β(t, x, y,W ) as in Definition 2.5 and thus defines the new control vari-
ables W and new additional state variables y for the SFL control system V̂ := ϑ−1

∗ (prHG)
where ϑ = ˜̃φ ◦ χ−1.

Theorem 7.12. If a control system (M,ω) is cascade feedback linearizable with respect to a con-
trol admissible symmetry group G, then there exists a dynamic compensator u = β(t,x,y,W )
together with linear dynamics in new state variables y such that the dynamic augmentation is
static feedback linearizable.
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(
M̂, ω̂

)
(
M̂, ω̂

) (
Jν⊥+ν′ ×G, γ̂

G)χ−1 ϑ˜̃φ
Figure 4. Deformation of ˜̃φ to a static feedback transformation ϑ.

Proof. Let M̂ be a manifold that locally has the form of an open subset of P ×M , where P is
some manifold with dimP = dim Jν′ − dim Jν and local coordinates denoted by (p). Moreover,
let π̃ : M̂ →M be the natural projection with typical fiber given by P . Let (t, z,w,w′) be local
coordinates on Jν′+ν⊥ with w′ denoting the coordinates along the fibers of Jν′+ν⊥ → Jν+ν⊥ .
Then we define the map ˜̃φ : M̂ → Jν′+ν⊥ ×G by

˜̃φ = φ̃ ◦ π̃ × {w′ = p}.

Furthermore, we will define the Pfaffian system and dual distribution by

θ =
(˜̃φ)∗γ̂G

, T = annθ.

Notice that ˜̃φ is not a static feedback transformation since the state and control variables for T
are not yet well defined; however it does leave t unchanged. Additionally, and again because
the state and control variables are not well defined, it is not obvious that T is static feedback
equivalent to prHG and hence static feedback linearizable. However, since ˜̃φ is a diffeomorphism
preserving the independent variable t, and since the refined derived type is a diffeomorphism
invariant, we do have that T is still a Goursat bundle whose integral curves are parameterized
by t. The intersection bundle Char T (1)

0 will allow us to make a well defined and canonical choice
of state and control variables via a diffeomorphism, as we now demonstrate.

Let Ξ̂
(1)

0 be the annihilator of Char(prHG)
(1)
0 . Then,

Ξ̂
(1)

0 = span
{
dt,dε, dz⌊ν⊥⌋,dw⌊ν⌋,dw⌈ν⌉,dw⌊ν′−ν⌋},

where w⌊ν′−ν⌋ denotes all the w′ variables of order strictly smaller than the highest order w′

variables. The first integrals of this bundle are precisely all the state variables for the control
system prHG and time t. Additionally, the flow box coordinates for Char(prHG)

(1)
0 provide the

control variables, which are precisely
(
z⌈ν⊥⌉,w⌈ν′⌉) for prHG. With this in mind, we now find the

pullback of the bundle Ξ̂
(1)

0 by ˜̃φ to be

(˜̃φ)∗Ξ̂(1)

0 = span
{
dt,dx,d

(
w⌈ν⌉(t,x,u)

)
,dp⌊ν′−ν⌋},

since (˜̃φ)∗ span{dt,dε, dz⌊ν⊥⌋, dw⌊ν⌋} = span{dt,dx},

by construction of ˜̃φ from φ̃. Without loss of generality, let us relabel the indices of the control
variables

(
u1, . . . , um

)
of (M,ω) so that of the m = mν⊥ + mν controls, the last mν control

variables
(
umν⊥+1, . . . , umν

)
may be determined from the equations y =

(
w⌈ν⌉(t,x,u),p⌊ν′−ν⌋)

in terms of x, y, and
(
u1, . . . , umν⊥

)
. Let χ : M̂ → M̂ be the diffeomorphism whose inverse is

given by

(t,x,u,p) 7→ (t,x,y,W ),
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where

y =
(
w⌈ν⌉(t,x,u),p⌊ν′−ν⌋), W =

(
u1, . . . , umν⊥ ,p⌈ν′⌉). (7.3)

Using this diffeomorphism, we find that(˜̃φ ◦ χ−1
)∗
Ξ̂
(1)

0 = span{dt,dx,dy}.

It follows that if X is a vector field on Jν⊥+ν′ ×G such that(˜̃φ ◦ χ−1
)
∗X ∈ ann Ξ̂

(1)

0 = Char(prHG)
(1)
0

then

χ−1
∗ X ∈ χ−1

∗ Char(prHG)
(1)
0 = Char T (1)

0 .

Therefore, χ∗Char T (1)
0 is annihilated by span{dt,dx, dy}, from which we have

χ∗
(
Char T (1)

0

)
= span{∂W 1 , . . . , ∂Wm}.

Now we have that

χ∗T = χ∗ ˜̃φ−1

∗ (prHG) := ψ∗(prHG)

and since prHG is SFL and ψ = χ ◦ ˜̃φ−1
is a diffeomorphism we have that χ∗T is a Goursat

bundle and so the latter has a Cauchy bundle Char
(
χ∗T (k−1)

)
with an annihilator which we

will denote by Λ(k′−1), where k′ is the derived length of T ; therefore, we have that

Λ(k′−1) =
(
ψ−1

)∗
Ξ̂
(k′−1)

.

In the case ∆k′ = 1, we have that dt ∈ Ξ̂
(k′−1)

and hence since ψ preserves t (t ◦ ψ = t), we see
that dt ∈ Λ(k′−1). Therefore, in the case ∆k′ = 1, the hypotheses of Theorem 3.19 are satisfied
and we can conclude that χ∗T is SFL. A similar argument holds in the case ∆k′ > 1.

Let V̂ := χ∗T and let ω̂ := ann V̂. Then, ω̂ is precisely the dynamic feedback augmentation
of ω with dynamic compensator u = β(t,x,y,W ) given by solving equations (7.3) for u.
We have that the map ϑ := ˜̃φ ◦ χ−1 : M̂ → Jν⊥+ν′ ×G is a static feedback transformation, and
since γ̂

G
is SFL, then ω̂ must also be SFL. Lastly, we show that the associated dynamics for y

are linear. Denote the ν ′ prolongation of γG by

α = span
{
dw⌈ν⌉ −w

⌊ν′−ν⌋
1 dt, . . . ,dw

⌊ν−ν′⌋
lν′−1 −w⌈ν′⌉dt

}
,

where lν′ is a place holder for the highest order jet variable determined by Theorem 7.6. Then
we merely observe that a pullback by ˜̃φ of α results in(˜̃φ)∗α = span

{
d
(
w⌈ν⌉(t,x,u)

)
− p

⌊ν′−ν⌋
1 dt, . . . ,dp

⌊ν−ν′⌋
lν′−1 − p⌈ν′⌉dt

}
.

Thus, one final pullback by χ−1 results in(˜̃φ ◦ χ−1
)∗
α = span

{
dy0 − y1dt, . . . ,dyl′ν−1 −W ⌈ν′⌉dt

}
,

where the subscripts on yi for 1 ≤ i ≤ lν are used to keep track of how the y variables are
assigned to the p variables and W ⌈ν′⌉ denotes those control variables arising from the highest
order p variables. Thus, we can see that the above Pfaffian system is that of a linear system. ■
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In Example 7.11, the coordinate change χ in Step 3 turns out to be the identity transfor-
mation, as we demonstrate at the end of this section. This can always be arranged for systems
which are dynamic feedback linearizable by differentiation of the given inputs. We note also that

sometimes Char T (1)
0 is already in a basis of coordinate vector fields, which defines the control

variables for a dynamic feedback linearization of V without the need for the map χ (which can
be chosen to be the identity). This choice can be made at the cost of having nonlinear dynamics
for the variables p; see Section 9 for an example. We also have the following corollary concerning
prolongation by differentiation.

Corollary 7.13. Let (M,ω) be a CFL control system with respect to a state-space symmetry
group G. Then (M,ω) is DFL by differentiation of the given inputs.

Proof. The proof of Theorem 7.12 essentially shows that the dynamic compensator consists of
components of the inverse of the map ˜̃φ which, in turn, is constructed from φ̃. The inverse of φ̃
may be written in terms of the inverse of φ which gives expressions for the control variables v
on M/G. That is, φ−1 acts as the identity on v. However, if G is only a state-space symmetry
group, then the controls of (M,ω) descend to (M/G,ω/G) since they are invariant functions of
the action of G, i.e., v = u. As a result, we have u =

(
W ,w⌈ν⌉) which is a dynamic compensator

by partial prolongation. ■

The need for – and the construction of – a nontrivial χ in the general case will be illustrated
by the example in Section 8. For now, we illustrate Corollary 7.13.

Example 7.14. We continue with Example 7.1. Recall that the contact sub-connection can be
prolonged to the SFL system

γ̂
G
= γG ⊕ {dw2 − w3dt}

and that the relevant symmetry of the original control system ω is translation in x4, i.e., a
state-space symmetry. We construct M̂ to be M ×P where P = R and has coordinate p1. Then
the map ˜̃φ is

t = t, ε = x4, z = x3, z1 = u2,

w = x1, w1 = x2, w2 = u1, w3 = p1.

It is immediate that γ̂
G
pulls back by ˜̃φ to θ = ω ⊕ span

{
du1 −W 2dt

}
, and since

Char T (1)
0 = span{∂u2 , ∂p1}

we find that χ is an identity map and so the dynamic compensator is u2 =W 1 and u1 = y0 and
the new controls are W 2 = p1 and W 1 = u2. Therefore, the control system ω of Example 3.33
is DFL by one partial prolongation of u1.

Finally, we summarize the relationship between CFL control systems and DFL control systems
by the diagram in Figure 5.

Example 7.15. We continue with Example 7.11. According to the outlined method, we now
compute ˜̃φ given by

t = t, m = θ, m1 = θ1, m2 = v2, n = z1,

n1 = v1 cos θ + hv2 sin θ − 1, ε1 = x1, ε2 = x− tx1,

ε3 = z, m3 = p1, m4 = p2, m5 = p3, m6 = p4.
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(
M̂, ω̂

)
(
M̂, ω̂

) (
Jν⊥+ν′ ×G, γ̂

G) (
J κ̄+ν′ ,βκ̄+ν′

)

(M,ω)
(
Jκ ×G,γG

) (
Jν⊥ ×G, γ̄G

) (
J κ̄,βκ̄

)
(M/G,ω/G) (Jκ,βκ)

χ−1 ϑ

π̃

˜̃φ
π̃′

φ′

φ̃

π

G

π′
cνf

φ̄

(2)

φ

(1)

Figure 5. In this diagram the signature κ decomposes as κ = ν + ν⊥. Additionally, the maps φ, φ̄, φ̃,

and ϑ are all SFTs.

We then find that

T =
(˜̃φ)−1

∗ prHG

=
{
∂t + x1∂x −

(
u1 sin θ − hu2 cos θ

)
∂x1 + z1∂z +

(
u1 cos θ + hu2 sin θ − 1

)
∂z1

+ θ1∂θ + u2∂θ1 + p1∂u2 + p2∂p1 + p3∂p2 + p4∂p3 , ∂u1 , ∂p4

}
.

This is precisely a dynamic feedback linearization by differentiation of the PVTOL by a 4-fold
prolongation of the control u2, which can be compared to the bound of 2k̄ − 1 = 7 established
in Corollary 7.8. Here χ is the identity transformation, but we still use the fact that

Char T (1)
0 = span{∂u1 , ∂p4}

to guarantee that the new control variables are u1 and p4, respectively. Thus ϑ = ˜̃φ ◦ χ−1 = ˜̃φ
is the static feedback transformation

ϑ : M̂ → Jκ′ ×G,

where κ′ = ⟨1, 0, 0, 0, 0, 1⟩. The fundamental functions of T are flat outputs of the PVTOL
system (6.1) with respect to the Galilean group generated by Γ in Example 7.11.

Remark 7.16. Example 7.15 highlights the fact that an invariant flat control system will
generally have distinct sets of flat outputs depending upon the Lie subgroup G being considered.
In each case the flat outputs are generated by the fundamental functions of the corresponding
dynamic linearization of V (i.e., the static feedback linearization of V̂). In Section 9, we will
derive the well-known flat outputs of (6.1) using a different subgroup of the control symmetry
group for this system.

8 A non-‘integrator chain’ dynamic feedback
linearization example

In this section, we illustrate the dynamic feedback linearization framework developed in this
paper via an elementary example. From [48], we deduce that this system does not possess
a linearization by the differentiation of the given inputs. The goal of this section is to system-
atically derive a dynamic feedback linearization in local coordinates using only the framework
established in this paper.
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While the system in question cannot be linearized by integrator chains, it can nevertheless be
transformed to such a system by a preliminary feedback transformation which can, in this case,
be guessed by inspection. However, the theory developed in this paper does not rely on such ad
hoc steps. In the search for a dynamic linearization, a preliminary feedback transformation, if
one is required, arises canonically from our general theory, as will be demonstrated in this case.

The control system to be studied is

ẋ1 = x2, ẋ2 = −x2u1
(
x1 + x5

)
+ u2, ẋ3 =

(
x3
)2
x4,

ẋ4 = −x5
(
x1x2u1 − u2

)
+ x2u1 − 1, ẋ5 = x6, ẋ6 = u2 − x1x2u1, (8.1)

in 6 states and 2 controls. We denote the ambient manifold of the system by M and calculate
that the abelian Lie algebra spanned by

Γ = span

{
Y1 = t∂x1 + ∂x2 −

u1

x2
∂u1 + tx2u1∂u2 , Y2 = ∂x1 + x2u1∂u2 , Y3 =

(
x3
)2
∂x3

}
generates a control admissible symmetry group. Let V ⊂ TM denote the given control system
for (8.1). Away from the submanifold x2 = 0 the functions

t, q1 = x4, q2 = x5, q3 = x6, v1 = x2u1, v2 = u2 − x1x2u1

are G-invariant, serve as local coordinates on M/G and determine the projection π in local
coordinates.

By Theorem 3.31, to determine the structure of the quotient of V by G we need only study the
refined derived type of the distribution V̂ = V ⊕ Γ. We find that V̂ is a static feedback relative
Goursat bundle (Definition 3.32) of signature ⟨1, 1⟩. By Theorem 3.31, it follows that V/G
is SFL with signature, ⟨1, 1⟩; that is, (M/G,V/G) is static feedback equivalent to Brunovský
normal form

(
J ⟨1,1⟩,B⟨1,1⟩

)
. An easy calculation shows that the quotient control system V/G

has the local form

V/G = span
{
∂t +

(
v2q2 + v1 − 1

)
∂q1 + q3∂q2 + v2∂q3 , ∂v1 , ∂v2

}
, (8.2)

where v1, v2 are the controls on M/G, and a further calculation verifies the above mentioned
properties of the quotient.6

Indeed, applying procedure contact [52] to (8.2) determines the local diffeomorphism φ : M/G
→ J ⟨1,1⟩ given by

φ =
(
t = t, z = q1, z1 = v2q2 + v1 − 1, w = q2, w1 = q3, w2 = v2

)
,

where (t, z, z1, w, w1, w2) are the standard contact coordinates on J ⟨1,1⟩. Next we consider the
static feedback linearization φ̃ constructed as per the discussion following equation (4.1). The
transformation group G generated by Γ consists of

x̄1 = x1 + tε1 + ε2, x̄2 = x2 + ε1, x̄3 =
x3

1− x3ε3
,

ū1 =
x2u1

x2 + ε1
, ū2 = u2 +

(
tε1 + ε2

)
x2u1,

with the remaining variables fixed by G. Routine calculation leads to the section

φ :
(
t, q1, q2, q3, v1, v2

)
7→
(
t, 0, 1, 0, x4, x5, x6, u1, u2

)
6The G-invariant functions v1, v2 are precisely those components of the preliminary feedback transformation

one would ordinarily choose to simplify system (8.1). This highlights the comments made at the beginning of this
section.
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yielding ε1 = x2 − 1, ε2 = x1 − t
(
x2 − 1

)
, ε3 = 1− 1

x3 and so

φ̃ =

(
t = t, z = x4, z1 = x5

(
u2 − x1x2u1

)
+ x2u1 − 1, w = x5, w1 = x6,

w2 = u2 − x1x2u1, ε1 = x2 − 1, ε2 = x1 − t(x2 − 1), ε3 = 1− 1

x3

)
.

In particular, we compute the contact sub-connection HG = φ̃∗V in this case to be

HG = span{∂t + z1∂z + w1∂w + w2∂w1 + λ∂ε1 + (1− tλ)∂ε2 + z∂ε3 , ∂z1 , ∂w2},

where λ = w2

(
w2 + 1

)
− w(z1 + 1).

To determine the existence of a dynamic feedback linearization of the system (8.1), we
carry out a partial contact curve reduction (see Section 5, Definition 5.1). As there are 2
inputs, we can do this along either the order 1 variable z or the order 2 variable w. In this
case we choose w and form the map c

⟨0,1⟩
f = j⟨0,1⟩f × IdJ⟨1⟩ × IdG→G : J ⟨1⟩ ×G→ J ⟨1,1⟩ ×G,

where j⟨0,1⟩f =
(
t, f(t), ḟ(t), f̈(t)

)
and f is an arbitrary, smooth real-valued function of t. As in

Section 5, we form the Pfaffian system
(
c
⟨0,1⟩
f

)∗
γG =: γ̄G. Then

H̄G = span
{
∂t + z1∂z + λ̄∂ε1 +

(
1− tλ̄

)
∂ε2 + z∂ε3 , ∂z1

}
,

where H̄G is the kernel of γ̄G on J ⟨1⟩ ×G and λ̄ = f̈
(
f2 +1

)
− f(z1 +1). By the results in Sec-

tions 3.1 and 3.2, we find that H̄G is static feedback linearizable with signature ⟨0, 0, 0, 1⟩. Thus,
the derived length of H̄G is k̄ = 4 and by Corollary 7.8, a maximum 7-fold partial prolongation
of HG along the w-series of contact coordinates is sufficient for a static feedback linearizable
control system. In fact, in this case it is enough to perform a 4-fold partial prolongation to
obtain,

prHG = span{∂t + z1∂z + w1∂w + w2∂w1 + w3∂w2 + w4∂w3 + w5∂w4 + w6∂w5

+ λ∂ε1 + (1− tλ)∂ε2 + z∂ε3 , ∂z1 , ∂w6},

on J ⟨1,0,0,0,0,1⟩ ×G, and a further calculation shows that

prHG ≃SF B⟨0,0,0,1,0,1⟩.

We have therefore proven that (8.1) is cascade feedback linearizable and hence dynamic feedback
linearizable with a dynamic extension of signature ⟨0, 0, 0, 1, 0, 1⟩. Our next goal is to derive the
linearizable dynamic extension of (8.1), according to Theorem 7.12.

For this we apply the results of Section 7.12 by computing ˜̃φ = φ̃ ◦ π̃ ×
{
w3 = p11, w4 =

p12, w5 = p13, w6 = p14
}
. Indeed,

˜̃φ =

(
t = t, z = x4, z1 = x5

(
u2 − x1x2u1

)
+ x2u1 − 1, w = x5, w1 = x6,

w2 = u2 − x1x2u1, w3 = p11, w4 = p12, w5 = p13, w6 = p14,

ε1 = x2 − 1, ε2 = x1 − t(x2 − 1), ε3 = 1− 1

x3

)
.

Calculating T := ˜̃φ−1

∗ prHG shows that this distribution has the form

T = span
{
Y, ∂u1 + x1x2∂u2 , ∂p14

}
,

where Y is the image of the first vector field in prHG; in particular,

Char T (1)
0 = span

{
∂u1 + x1x2∂u2 , ∂p14

}
. (8.3)



Dynamic Feedback Linearization of Control Systems with Symmetry 43

Because of the first vector field in (8.3), T does not yield a well-defined control system in its
current form. Therefore, we compose ˜̃φ with a map χ as in Figure 4, embodying the change of
variable u = β(t, x, y,W ) of Definition 2.5, chosen so that the flowbox coordinates of Char T (1)

0

are the new controls.
In this case, it is easy to see that (8.3) is transformed by

χ−1 =
(
t = t, xi = xi, y1 = u2 − x1x2u1, y2 = p11, y

3 = p12, y
4 = p13, W

1 = u1, W 2 = p14
)
,

where i = 1, . . . , 6. We see that the new controls are W 1 = u1, W 2 = p14 with additional states
given by y1 = u2−x1x2u1, y2 = p11, y

3 = p12, y
4 = p13. Thus the map u = β(t, x, y,W ) is given by

u1 =W 1, u2 = y1 + x1x2W 1. (8.4)

Hence the dynamic feedback linearization of (8.1), written symbolically in the form

ẋ = f
(
x, u1, u2

)
,

is given by

ẋ = f
(
x,W 1, y1 + x1x2W 1

)
ẏi = yi+1, i = 1, . . . , 3, ẏ4 =W 2. (8.5)

It can be checked directly that this control system is SFL. Its trajectories uniquely determine
those of (8.1). If s′ is a solution of V̂ then π̃ ◦ χ ◦ s′ : I ⊆ R → M solves V. The distribution V̂
is defined by (8.5).

It remains only to identify the fundamental functions which must be Lie differentiated by a
vector field Z ∈ V̂ satisfying LZ(t) = 1. By procedure contact (see Section 3.2), we deduce that
there is one fundamental function ϕ4 of order 4 and one function ϕ6 of order 6. Indeed,

ϕ6 = x5, ϕ4 =

((
2x4x5 + 2x2

)
x6 + x1y1

)
x3 − y1x5 + 2

(
x6
)2
)

2x6x3x5
.

If (t, αa, βb), 0 ≤ a ≤ 4, 0 ≤ b ≤ 6 are the contact coordinates on J ⟨0,0,0,1,0,1⟩, then the static
feedback transformation ψ : P × π−1(U) → J ⟨0,0,0,1,0,1⟩ that identifies V̂ with its Brunovský
normal form B⟨0,0,0,1,0,1⟩ is given by

αa(t, x, y,W ) = (LZ)
aϕ4, 0 ≤ a ≤ 4, βb(t, x, y,W ) = (LZ)

bϕ6, 0 ≤ b ≤ 6,

from which the explicit solution is readily deduced, but too lengthy to record here.
Note that the functions ϕ4 and ϕ6 are flat outputs for (8.1) and that they arise canonically as

the fundamental functions of the dynamic linearization (8.5), once y1 is replaced by u2−x1x2u1,
according to (8.4). Thus cascade feedback linearization provides a geometric method based on
symmetries for constructing flat outputs in the case of invariant flat control systems; see also
Section 9.

9 Yet another look at the PVTOL

In [35], the authors made a study of the well-known PVTOL control system (6.1) by writing down
a complete set of flat outputs and thereby derived a dynamic linearization feedback equivalent
to the Brunovský form of signature ⟨0, 0, 0, 2⟩. According to their account the authors achieved
this by inspired guesswork. In this section, we show how these flat outputs can be derived
systematically using only the symmetry considerations of the present paper. We remark that
additional recent work [22, 23] also give a method to systematically develop dynamic feedbacks
of the PVTOL system.
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We denote the ambient manifold of the control system (6.1) by M and calculate that the
abelian Lie algebra spanned (over R) by

Γ = span{X1, X2}, (9.1)

where

X1 = h sin2(θ) cos(θ)∂x + hθ1
(
3 cos2(θ)− 1

)
sin(θ)∂x1 +

(
x− h sin(θ) cos2(θ)

)
∂z

+
(
x1 + 2hθ1 cos(θ)− 3hθ1 cos

3(θ)
)
∂z1 + sin2(θ)∂θ + θ1 sin(2θ)∂θ1

+ cos(θ) sin(θ)
(
5hθ21 − u1

)
∂u1 +

(
2θ21 cos(2θ) + u2 sin(2θ)

)
∂u2 ,

X2 = ∂z

generates a control admissible symmetry group acting on an open subset of M . The action of
the control admissible symmetry group G generated by Γ can be found in the appendix. For
the present purposes, we will not record further details here about this subgroup of the maximal
Lie group of control symmetries of (6.1) and instead focus on its application to the dynamic
feedback linearization issue at hand.

Letting V denote the distribution for system (6.1), we have

V = span
{
∂t + x1∂x −

(
u1 sin θ − hu2 cos θ

)
∂x1 + z1∂z +

(
u1 cos θ + hu2 sin θ − 1

)
∂z1

+ θ1∂θ + u2∂θ1 , ∂u1 , ∂u2

}
.

We find that V̂ := V ⊕ Γ is a static feedback relative Goursat bundle of signature ⟨0, 2⟩, and
hence V has a contact sub-connection φ̃∗V = HG, which we calculate to be of the form7

HG = span

{
∂t + k1∂k + k2∂k1 + g1∂g + g2∂g1 −

1 + k1
g1

∂ε1

+
g1(k − g1) + g(1 + k1)

g1
∂ε2 , ∂k2 , ∂g2

}
.

To determine the existence of a dynamic feedback linearization of the system (6.1), we carry out
a partial contact curve reduction (Section 5, Definition 5.1). We can do this along either of the
variables k or g. It turns out that we can choose g and form the map

c
⟨0,1⟩
f = j⟨0,1⟩f × IdJ⟨0,1⟩×G : J ⟨0,1⟩ ×G→ J ⟨0,2⟩ ×G,

where j⟨0,1⟩f =
(
t, f(t), ḟ(t), f̈(t)

)
= (t, g, g1, g2) and f is an arbitrary, smooth, real-valued

function of t. As in Section 5, we form the Pfaffian system
(
c
⟨0,1⟩
f

)∗
γG =: γ̄G. Then

H̄G = span

{
∂t + k1∂k + k2∂k1 −

1 + k1

ḟ
∂ε1 +

ḟ(k − ḟ) + f(1 + k1)

ḟ
∂ε2 , ∂k2

}
,

where H̄G is the kernel of γ̄G on J ⟨0,1⟩×G. By Theorems 3.15 and 3.19, we find that H̄G is static
feedback linearizable with signature ⟨0, 0, 0, 1⟩. Thus, the derived length of H̄G is k̄ = 4 and by
Corollary 7.8, the 7-fold partial prolongation of HG along the g-series of contact coordinates is
sufficient to achieve a static feedback linearizable control system. However, this over-estimates
the number of prolongations and in fact, it is easy to discover that only 2 prolongations by

7See the appendix for the local trivialization φ̃, in this case. Here t, k, k1, k2, g, g1, g2 denote the standard
contact coordinates on J⟨0,2⟩.
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differentiation of g2 are required; this can be easily deduced by computing the fundamental
function of H̄G. With only 2 prolongations, we get

prHG = span

{
∂t + k1∂k + k2∂k1 + g1∂g + g2∂g1 + g3∂g2 + g4∂g3 −

1 + k1
g1

∂ε1

+
g1(k − g1) + g(1 + k1)

g1
∂ε2 , ∂k2 , ∂g4

}
on J ⟨0,1,0,1⟩ × G and a further calculation shows that prHG ≃ B⟨0,0,0,2⟩. We have therefore
proven that (6.1) is cascade feedback linearizable and hence dynamic feedback linearizable with
a dynamic linearization of signature ⟨0, 0, 0, 2⟩. Our next goal is to derive the linearizable
dynamic extension of (6.1).

The map ˜̃φ is given by ˜̃φ = φ̃ ◦ π̃ × {g3 = p1, g4 = p2}. We do not record the transforma-
tion ˜̃φ−1

here; however, the relevant part of ˜̃φ needed to construct the dynamic feedback is

g2 = sin(θ)
(
hθ21 − u1

)
. (9.2)

The distribution T := ˜̃φ−1

∗ prHG has the form

T = span
{
∂t + x1∂x −

(
u1 sin θ − hu2 cos θ

)
∂x1 + z1∂z

+
(
u1 cos θ + hu2 sin θ − 1

)
∂z1 + θ1∂θ + u2∂θ1

+
(
θ1
(
θ21h− u1

)
cot θ + 2hu2θ1 − p1

)
∂u1 + p2∂p1 , ∂u2 , ∂p2

}
.

We notice that

Char T (1)
0 = span{∂u2 , ∂p2},

which ensures that T is a dynamic extension of the original PVTOL control system V. Notice,
however, that we can still use equation (9.2) to construct a dynamic extension as described in
Theorem 7.12. Indeed, let χ−1 be the diffeomorphism such that(

y1, y2
)
=
(
sin(θ)

(
hθ21 − u1

)
, p1
)
,

(
W 1,W 2

)
=
(
u2, p2

)
,

together with the identity on all other variables. Then the dynamic compensator u = β(t,x,
y,W ) is u1 = hθ21 − csc(θ)y1, u2 = W 1. As such, the control system (6.1) is dynamically
extended to

ẋ = x1 ẋ1 = −hθ21 sin θ − y1 + hW 1 cos θ, ż = z1,

ż1 = hθ21 cos(θ)− cot(θ)y1 + hW 1 sin θ − 1, θ̇ = θ1, θ̇1 =W 1,

ẏ1 = y2, ẏ2 =W 2, (9.3)

which has linear dynamics along the fibers of the submersion, with the corresponding distribution
denoted by V̂.

To compute the flat outputs of (6.1), we compute the fundamental functions of either T
or V̂ in the usual way. These turn out to be x − h sin θ and z + h cos θ, the so called center
of oscillation flat outputs of (6.1) first deduced by Martin, Devasia and Paden in [35] but here
obtained canonically from the fundamental functions of the dynamic linearization (9.3). The
authors in [35] rather proceed in the opposite direction: the flat outputs are firstly ingeniously
guessed and then verified by deriving the dynamic linearization (9.3) from them.
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10 Conclusion

We have studied generic, smooth control systems (M,ω) that are invariant under a Lie group G
of control admissible transformations satisfying the further property that they admit static
feedback linearizable quotients by G (symmetry reductions). An infinitesimal test for rapidly
identifying static feedback linearizable quotients was given, based on the Lie algebra of infinites-
imal generators of the action of G. The requirement that an invariant control system possesses
a static feedback linearizable quotient appears to be very mild. In practice, it appears to hold
quite generally, in contrast to the static feedback linearizability of a control system itself, which
is rare.

We proved that a C∞ control system invariant under a Lie group G of control admis-
sible transformations and that has a static feedback linearizable quotient, admits the local
normal form γG = βκ ⊕ Θ on a local trivialization π′ : Jκ × G → Jκ of the principal bun-
dle π : (M,ω) → (M/G,ω/G) in which (Jκ,βκ) is the Brunovský normal form of (M/G,ω/G)
and Θ is a differential system for the reconstruction of the trajectories of ω from those of the quo-
tient ω/G. The present paper built on this result to construct dynamic feedback linearizations
of control systems with symmetry.

A widely applicable procedure was established showing that any cascade feedback linearizable
control system can be dynamically linearized with linear dynamics in the fiber coordinates. It
was proven that this can be achieved by a prolongation by differentiation of canonically chosen
inputs of the associated contact sub-connection HG. Theorem 7.6 and Corollary 7.8 established
a bound on the number of differentiations that must be performed to achieve a static feedback
linearizable dynamically extended control system that appears to outperform the best currently
known bounds [18], being linear in the derived length of the reduced sub-connection H̄G. For
instance, the sharp bound of Sluis and Tilbury [48] in the case of 2-input control systems is
achieved by our general bound. However, we have not, in this paper, made a rigorous general
comparison of efficiency. On the other hand, a procedure was given whereby the exact number
of differentiations can be predicted.

We have given numerous examples to show how the general theory can be applied in practice.
In particular, a symmetry-based construction of the centre of oscillation flat outputs of the PV-
TOL control system was described. These flat outputs together with the corresponding dynamic
linearization were first presented in [35]. It was also shown that the PVTOL also has a dynamic
linearization by differentiation of a given input by studying the control system’s invariance un-
der a subgroup of the Galilean transformations in x and z. These are instances of a general
symmetry-based procedure for deriving the flat outputs of flat control systems with symmetry.

Throughout we have emphasized intrinsic geometric structures underlying control systems
with symmetry to derive coordinate-free, canonical procedures that inform the local coordinate
calculations that lead to their dynamic feedback linearizations and explicit solutions.

A PVTOL group action

The local Lie group action generated by the 2-dimensional control admissible symmetry alge-
bra (9.1) of Section 9 is given by

t 7→ t, θ 7→ F (θ, ε1), θ1 7→ θ1 csc
2(θ) sin2(F (θ, ε1)),

x 7→ x+ h(sin(F (θ, ε1))− sin(θ)),

x1 7→ x1 − hθ1 cos(θ) + hθ1 csc
2(θ) cos(F (θ, ε1)) sin

2(F (θ, ε1)),

z 7→ ε1x+ z + ε2 + h cos(θ)− hε1 sin(θ)− h cos(F (θ, ε1)),

z1 7→ hθ1 csc
2(θ) sin3(F (θ, ε1)) + (x1 − hθ1 cos(θ))ε1 + z1 − hθ1 sin(θ),
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u1 7→
(
u1 sin(θ)− hθ21 sin(θ)

)
csc(F (θ, ε1)) + hθ21 csc

4(θ) sin4(F (θ, ε1)),

u2 7→
(
u2 csc(θ)− 2θ21 cos(θ) csc

3(θ)
)
sin2(F (θ, ε1))

+ 2θ21 csc
4(θ) cos(F (θ, ε1)) sin

3(F (θ, ε1)),

where F (θ, ε1) = arccot(cot(θ) − ε1), and ε1 and ε2 form the local coordinates of the control
admissible symmetry group G. With t, k, k1, k2, g, g1, g2 denoting the standard contact
coordinates on J ⟨0,2⟩, the local trivialization map φ̃ : M → J ⟨0,2⟩ ×G is given by

t = t, g = x− h sin(θ), g1 = x1 − hθ1 cos(θ), g2 =
(
hθ21 − u1

)
sin(θ),

ε1 = 1− cot(θ), k = (x1 cos(θ)− hθ1) csc(θ) + z1,

k1 =
(
hθ21 cos(θ)− θ1x1

)
csc2(θ)− 1,

k2 = − csc3(θ)θ21
(
θ1h− x1 cos(θ)

)
+ u1θ1 csc(θ)

− csc3(θ)
(
cos(θ)θ1h− x1

)(
θ21 cos(θ)− u2 sin(θ)

)
,

ε2 =

(
z − x− h√

2
+ h sin(θ)

)
sin(θ) + x cos(θ).
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[16] Fliess M., Lévine J., Martin P., Rouchon P., Flatness and defect of non-linear systems: introductory theory
and examples, Internat. J. Control 61 (1995), 1327–1361.
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