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Abstract. A kind of combinatorial map, called arrow presentation, is proposed to encode
the data of the oriented closed polyhedral complexes Σ on which the Hopf algebraic Kitaev
model lives. We develop a theory of arrow presentations which underlines the role of the dual
of the double D(Σ)∗ of Σ as being the Schreier coset graph of the arrow presentation, explains
the ribbon structure behind curves on D(Σ)∗ and facilitates computation of holonomy with
values in the algebra of the Kitaev model. In this way, we can prove ribbon operator
identities for arbitrary f.d. C∗-Hopf algebras and arbitrary oriented closed polyhedral maps.
By means of a combinatorial notion of homotopy designed specially for ribbon curves, we
can rigorously formulate “topological invariance” of states created by ribbon operators.
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1 Introduction

The toric code and its generalizations [1, 3, 12] belong to the class of models called topological
orders which are thought to describe physical systems in which fault tolerant quantum compu-
tations can be realized. In its most general form, the model is a quantum system defined on the
surface Σ of an abstract polyhedron having no particular symmetry and with quantum spins
sitting on the edges of Σ and taking values in a finite-dimensional C∗-Hopf algebra H. The
mostly studied case is when H is the group algebra of a finite abelian group and Σ is the square
lattice. This abelian Kitaev model exhibits charges classified by the quantum double D(H)
that are created by semiinfinite string operators with the strings having no contribution to the
energy, like Dirac strings. These charges obey anyon statistics [12, 18]. Much less is known
beyond the abelian case. For general Hopf algebras, even the gauge theory interpretation is
a challenge [15, 16]. In this paper, we define the general model starting from scratch. As for
the lattice, we do not want to go beyond ribbon graphs used by [15] but wish to replace them
by something truly 2-dimensional on which taking duals and doubles are straightforward opera-
tions. As a matter of fact, the dual of the double of Σ is as important as the dual of the double
of H in the holonomy theory of [15]. Indeed, the dual of the double of the surface complex is
but the “fattening” of the ribbon graph. But it is more than that. It is a sort of Cayley graph
for the arrow presentation.

The idea of arrow presentation is well-known in the literature on graph embeddings, dessins
d’enfants and permutation representations of triangle groups under various names. For embed-
dings of finite, connected, simple graphs these are the “rotation schemes” of [21, Section 6-6]
and for finite, connected graphs these are the “combinatorial maps” of [13, Definition 1.3.23].
For more general maps see [11, 13]. A combinatorial map consists of a finite set A, the elements
of which can be called directed edges, half edges, edge ends, darts or arrows, and of 3 permu-
tations T0, T1, T2 of A such that (1) T2T1T0 = idA, (2) the group generated by the Ti-s acts
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transitively on A (connectedness) and (3) the T1 is an involution without fixed points. Such
combinatorial data encode a “map”, i.e., a kind of compact oriented 2-dimensional cellular com-
plex Σ without boundary, in such a way that the i-cells of Σ correspond bijectively to the cycles
of the permutation Ti. The arrow presentation we propose in this paper is a slight extension
but also a specialization of combinatorial maps. We relax finiteness of A and connectedness
but otherwise postulate stronger axioms on the permutations Ti. These stronger axioms lead to
a map Σ in which there are no loop edges, no degree 1 vertices and no repetitions of any cell
along the boundary of a face and along the coboundary of a vertex. Such a map Σ will be called
an oriented closed polyhedral map (OCPM). Although the cardinality of A is not restricted, the
connected OCPMs are always countable. By allowing infinite A-s such important examples as
the square lattice on the plane and many other periodic and non-periodic tilings of the plane
are given place among the connected OCPMs.

In Sections 2, 4 and 5, we sketch a theory of arrow presentations and of OCPMs. The emphasis
is on the structure of the dual of the double, D(Σ)∗, and on its ribbon curves. In Section 3,
we define the algebra M = M(Σ, H) of the Kitaev model on an OCPM Σ and for a finite-
dimensional semisimple Hopf algebra H. In contrast to its representations the algebra itself can
be presented without ever introducing an orientation of the edges. In Section 6, we introduce an
M-valued holonomy on curves of D(Σ)∗ which is motivated by previous works [3, 15] although
not depending on any relation to the Hopf algebra gauge theory of [16]. Here we find a notion of
central deformation of curves which will be useful in later Sections. In Section 7, we launch the
hard work of computing algebraic relations of ribbon operators, i.e., of the holonomies of ribbons.
The results agree with the earlier results of [1, 5] obtained for group algebras or square lattices.
More efficient relations exist not for the ribbon operators themselves but for their actions on
vacuum states which is the topic of Sections 9 and 10. In order to prepare for them we have to
introduce certain combinatorial notions of homotopy both for curves and ribbons. This is the
content of Section 8. In Theorem 9.2, we are at last able to formulate topological invariance,
or rather homotopy invariance, of states created by ribbon operators from the vacuum. Finding
evidence for string localization of the charges in Section 10 the paper ends abruptly leaving open
the question of existence of these charges, i.e., superselection sectors of the model.

2 Polyhedral maps

The main tool of this paper is the arrow presentation of certain surface complexes but arrow
presentations themselves form an interesting mathematical structure.

Definition 2.1. An arrow presentation is a triple ⟨Arr, T0, T2⟩, where Arr is a set and for i = 0, 2
the Ti : Arr → Arr are bijective functions satisfying the following axioms:

(AP-1) The orbits Oi(a) :=
{
Tn
i a | n ∈ N

}
are finite sets containing at least 2 elements for all

a ∈ Arr and for i = 0, 2.

(AP-2) Introducing T1 := T0T2 we require that T1T1 = idArr.

(AP-3) The intersection of a T0-orbit and a T2-orbit is either empty or a singleton.

The geometric meaning of the above definition will be unveiled gradually. Here is a rough pic-
ture of what is going on: The elements of Arr will be called arrows and will become the directed
edges of a surface complex. Assuming that the complex is closed and oriented the meaning of
the Ti transformations is this. Every directed edge a lies on the boundary of exactly 2 faces
but only one of these faces, call it f , has compatible orientation with the direction of a. The
orientation of f determines a cyclic order of its boundary edges and we define T2a to be the
successor of a within this cyclic order. Similarly one can define T0a as the successor of a with
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respect to rotating around the source vertex of a in counterclockwise direction. It is now easy
to imagine what the composite operation T1 does; it reverses the direction of the arrows.

a

T2a

T0T2a

If we added the axiom T 3
2 = idArr, then we would be dealing with simplicial complexes but

not doing so has the benefit of having a self-dual notion of complex, as we shall see later.
Now we derive some formal consequences of Definition 2.1. Note that the set Arr is not

assumed to be finite.

Lemma 2.2. Let ⟨Arr, T0, T2⟩ be an arrow presentation and let T1 = T0T2. Then

(i) T−1
2 = T1T0,

(ii) T−1
0 = T2T1,

(iii) Oi(a) ∩ Oj(a) = {a} for all a ∈ Arr and for 0 ≤ i < j ≤ 2,

(iv) T1(a) ̸= a for all a ∈ Arr.

Proof. (i) T1T0T2 = T1T1 = idArr shows that T2 has left inverse T1T0. Since T2 is invertible,
T1T0 is the inverse of T2.

(ii) Using (i), we have T2T1T0 = idArr. Therefore, T2T1 is a left inverse of T0. Since T0 is
invertible, T2T1 is the inverse of T0.

(iii) The i = 0, j = 2 case is trivial since a belongs to both orbits and by axiom (AP-3)
no other element does so. In the i = 0, j = 1 case, assume b ∈ O0(a) ∩ O1(a). Then either
b = a or b = T1a = Tm

0 a for some m. In the latter case, T−1
0 b = Tm−1

0 a = T2a belongs to
O0(a) ∩ O2(a) = {a} hence T2a = a which contradicts (AP-1). Similarly, in the i = 1, j = 2
case a c ∈ O1(a) ∩ O2(a) which is not a must satisfy c = T1a = Tn

2 a for some n and therefore
c = T0T2a = Tn−1

2 T2a belongs to O0(T2a) ∩ O2(T2a) hence c = T2a. Now we have T1a = T2a
which means that T2a is a fixed point of T0 which contradicts (AP-1).

(iv) Let T1a = a. Then T2a = T2T1a = T−1
0 a, so T2a ∈ O0(a) ∩ O2(a). By (iii), T2a = a is

a fixed point of T2 which contradicts (AP-1). ■

Out of an arrow presentation, we would like to build a 2-dimensional cellular complex, a kind
of abstract polyhedron. The necessary data are the following. Let

Σi := {O ⊆ Arr | ∃a ∈ Arr, Oi(a) = O} (2.1)

be the set of Ti-orbits for i = 0, 1, 2. We call the elements v ∈ Σ0 vertices, the elements
e ∈ Σ1 (undirected) edges and the elements f ∈ Σ2 faces. For an edge e = {a, T1a}, we say
that u = O0(a) and v = O0(T1a) are the endpoints, or boundary vertices, of e. In this case,
we write Bd(e) = {u, v} and call it the boundary of e. The coboundary of e is defined by
Cb(e) := {O2(a),O2(T1a)}. More generally, we define

Bd(x) := {Oi−1(a) | a ∈ x} ∀x ∈ Σi, i = 1, 2, (2.2)

Cb(x) := {Oi+1(a) | a ∈ x} ∀x ∈ Σi, i = 0, 1, (2.3)

and we declare the boundaries of vertices and the coboundaries of faces to be empty. Denoting
by Σ the disjoint union Σ0⊔Σ1⊔Σ2 the Σi-s can be recovered by setting up a dimension function
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dim: Σ → {0, 1, 2}. Then Bd and Cb become functions Σ → Fin(Σ) to the set of finite subsets
of Σ.

For a while, we forget about arrow presentations because first we have to formulate the
requirements for a bunch of data, such as the ⟨Σ,dim,Bd,Cb⟩ above, which qualifies it as
a polyhedral complex.

Definition 2.3. The data ⟨Σ,dim,Bd,Cb⟩ consisting of a set Σ and functions dim: Σ →
{0, 1, 2}, Bd,Cb: Σ → Fin(Σ) is called a closed polyhedral map (CPM) if the following axioms
hold:

(CPM-1) For s, t ∈ Σ, if s ∈ Bd(t), then dim t = 1 + dim s.

(CPM-2) s ∈ Bd(t) if and only if t ∈ Cb(s) for all s, t ∈ Σ.

(CPM-3) |Bd(e)| = 2 and |Cb(e)| = 2 for all edges e ∈ Σ1.

(CPM-4) For all v ∈ Σ0, the elements of the vertex neighbourhood Nb(v) := Cb(v)∪
⋃
{Cb(e) |

e ∈ Cb(v)} can be enumerated in such a way that it consists of edges e0, . . . , en−1

and faces f0, . . . , fn−1 for some n ≥ 2 with Cb(ek) = {fk, fk+1} for 0 ≤ k < n, where
fn = f0.

(CPM-5) For all f ∈ Σ2, the elements of the face neighbourhood Nb(f) := Bd(f) ∪
⋃
{Bd(e) |

e ∈ Bd(f)} can be enumerated in such a way that it consists of edges e0, . . . , en−1 and
vertices v0, . . . , vn−1 for some n ≥ 2 with Bd(ek) = {vk, vk+1} for 0 ≤ k < n, where
vn = v0.

For comparison of CPM-s with the complexes one obtains from combinatorial maps see Ex-
ample 2.8.

The geometric realization of a CPM ⟨Σ, dim,Bd,Cb⟩ is a 2-manifold [Σ] without boundary
that can be constructed from polygonal disks [f ] for each face f ∈ Σ2 by sewing edges together.
Axiom (CPM-5) ensures that the neighbourhood Nb(f) of a face f consists of nf edges and nf
vertices for some nf ≥ 2 which form a circular chain so we can associate to the abstract cell f
a topological closed disk [f ] the boundary of which is an nf -gon and the edges and vertices of
this polygon are labelled by the cells of Nb(f). Doing this for all f ∈ Σ2 every edge label e ∈ Σ1

occurs twice sitting on the boundary of two different polygonal disks, by axiom CPM-3. There
is only one way to identify two edges of the same label which is compatible with the labels on
their boundary vertices also by axiom CPM-3. Having done these identifications for all edges, we
get a topological space [Σ] in which every point has a neighbourhood homeomorphic to an open
disk, hence a topological closed surface. The points where this is non-trivial are the vertices but
for them axiom CPM-4 ensures open disk neighbourhoods.

[Σ] is compact if and only if Σ is finite. The non-trivial ‘only if’ part follows from the existence
of a cover of [Σ] by open disks, with one disk for each cell, such that no proper subset of the
cover is a cover.

Although Definition 2.3 deals only with closed complexes, i.e., ones without boundary and
without coboundary, it is intuitively clear how to modify the definition in order to get polyhedral
map (PM) satisfying the following theorem: Every PM can be obtained from a CPM by discarding
a set of faces (holes) and a set of vertices (punctures).

Lemma 2.4. For a vertex v and a face f of a CPM Σ the following conditions are equivalent:

(i) v ∈ Nb(f),

(ii) f ∈ Nb(v),

(iii) Cb(v) ∩ Bd(f) ̸= ∅.

Provided these conditions hold the intersection Cb(v) ∩ Bd(f) consists of precisely 2 edges.
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Proof. The relation v ∈ Nb(f) is the square of the boundary relation, i.e., ∃e (v ∈ Bd(e) ∧ e ∈
Bd(f)). By (CPM-2), the transpose of Bd is Cb so (i) is equivalent to both (ii) and (iii). If
v ∈ Nb(f), then axiom (CPM-5) shows explicitly the 2 coboundary edges of v that lie on the
boundary of f . ■

If the CPM Σ arises from an arrow presentation as in equations (2.1) and (2.2), then the
conditions of Lemma 2.4 can be supplemented by a fourth one, namely,

v ∩ f ̸= ∅ ⇔ Cb(v) ∩ Bd(f) ̸= ∅. (2.4)

In this case, the two edges can be explicitly given by

Cb(v) ∩ Bd(f) = {O1(a),O1(T0a)} where {a} = v ∩ f. (2.5)

Definition 2.5. A pair ⟨v, f⟩ ∈ Σ0×Σ2 satisfying the conditions of Lemma 2.4 is called a site.
Two sites si = ⟨vi, fi⟩, i = 1, 2, can be equal (if v1 = v2 and f1 = f2) or neighbour (if either
v1 = v2 or f1 = f2 but not both) or disjoint (if none of the 2 equations holds).

The following equivalent conditions define connectedness of a CPM Σ:

� For every u, v ∈ Σ0, there exists a sequence (v0, e1, v1, . . . , en, vn) of edges and vertices
such that v0 = u, vn = v and Bd(ek) = {vk−1, vk} for 0 < k ≤ n.

� For every p, q ∈ Σ2, there exists a sequence (f0, e1, f1, . . . , en, fn) of edges and faces such
that f0 = p, fn = q and Cb(ek) = {fk−1, fk} for 0 < k ≤ n.

� For every pair s, t of sites, there exists a sequence (si)
n
i=0 of sites such that s0 = s, sn = t

and the {si−1, si} are neighbours for 0 < i ≤ n.

If Σ is connected, then it is countable. As a matter of fact, such a Σ can be written as
a countable union of finite subsets.

Axioms (CPM-4) and (CPM-5) offer an easy way to define orientation of CPMs. Axiom
(CPM-5) allows to choose a cyclic order [v0, e0, v1, e1, . . . , vn−1, en−1] on every face neighbour-
hood Nb(f) where [x1, . . . , xk] denotes sequences (x1, . . . , xk) modulo cyclic permutations. Since
n ≥ 2 by assumption, this cyclically ordered set has at least 4 elements. Therefore, there ex-
ists exactly two cyclic orders on Nb(f) satisfying (CPM-5). (If we did not include the vertices
into Nb(f), we would be in trouble with the 2-gons.) Similarly, (CPM-4) allows to choose among
the two possible cyclic orders on every vertex neighbourhood Nb(v).

Definition 2.6. Let ⟨v, f⟩ be a site. Cyclic orders [f0, e0, f1, e1, . . . , fm−1, em−1] of Nb(v) and
[v0, e0, v1, e1, . . . , vn−1, en−1] of Nb(f) are called compatible if the predecessor and successor
edges ep < f < es of f in Nb(v) and the predecessor and successor edges e′p < v < e′s of v
in Nb(f) are related by e′p = es and e′s = ep. Otherwise

(
i.e., if e′p = ep and e′s = es

)
, they are

called incompatible.
A system of cyclic orders given on all vertex and face neighbourhoods of Σ is called an

orientation if for every site ⟨v, f⟩ on Σ the cyclic orders of Nb(v) and Nb(f) are compatible.
A CPM Σ is called orientable if it has an orientation.

Theorem 2.7. Given an arrow presentation ⟨Arr, T0, T2⟩ the associated data ⟨Σ,dim,Bd,Cb⟩
defined by (2.1), (2.2) and (2.3) is a closed polyhedral map in the sense of Definition 2.3. Fur-
thermore, the actions of T0 and T2 define canonical cyclic orders

[f0, e0, . . . , fm−1, em−1]

:=
[
O2(a),O1(T0a),O2(T0a),O1

(
T 2
0 a

)
, . . . ,O2

(
Tm−1
0 a

)
,O1(a)

]
(2.6)
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on vertex neighbourhoods Nb(O0(a)) and

[v0, e0, . . . , vn−1, en−1]

:=
[
O0(a),O1(a),O0(T2a),O1(T2a), . . . ,O0(T

n−1
2 a),O1

(
Tn−1
2 a

)]
(2.7)

on face neighbourhoods Nb(O2(a)). These cyclic orders are independent of the choice of a within
v = O0(a) and within f = O2(a), respectively, and constitute an orientation of Σ in the sense
of Definition 2.6. In this way every arrow presentation determines an oriented closed polyhedral
map.

Proof. (CPM-1) is clear. The relation s ∈ Bd(t) means that there is an a ∈ t such that
s = Oi−1(a) where i = dim t. But this is just the symmetric relation s ∩ t ̸= ∅. Inspecting
also Cb(s), we get

s ∈ Bd(t) ⇔ s ∩ t ̸= ∅ ⇔ t ∈ Cb(s), (2.8)

which proves (CPM-2).
Every edge e is a 2-element set {a, T1a} by (AP-2) and by Lemma 2.2 (iv). Therefore, both the

boundary and the coboundary of e can contain at most 2 elements. The case Oi(a) = Oi(T1a)
for i = 0 or i = 2, however, is forbidden because it implies that a ̸= T1a ∈ O1(a) ∩ Oi(a)
contradicting Lemma 2.2 (iii). This proves (CPM-3).

Let v ∈ Σ0. Then the transformation T0 gives a natural cyclic order on the set v of arrows,
hence also on the set Cb(v) of edges. Let an a ∈ v be fixed and set ek := O1

(
T k
0 a

)
for

0 ≤ k < n = |v|. The coboundary of ek is the pair Cb(ek) =
{
O2

(
T k
0 a

)
,O2

(
T1T

k
0 a

)}
. Noticing

that Lemma 2.2 (i) implies that O2

(
T1T

k
0 a

)
= O2

(
T k−1
0 a

)
, we will denote O2

(
T k−1
0 a

)
by fk and

then get the desired formula Cb(ek) = {fk, fk+1} for all k. It remains to show that there are
exactly n different ek-s and n different fk-s. If ek = el, then T

k
0 a is equal to either T l

0a or T1T
l
0a.

In the first case k = l mod n because n is the size of O0(a). In the second case T1T
l
0a belongs

to both the T1-orbit and the T0-orbit of b = T l
0a. So T1T

l
0a = b by Lemma 2.2 (iii) and b is

a fixed point of T1 contradicting Lemma 2.2 (iv). Thus, all ek-s are different. In particular,
n = |Cb(v)|. Now assume fk = fl for some 0 ≤ k < l < n. Then, there is a power Tm

2 such
that Tm

2 b = T l−k
0 b for b = T k−1

0 a. Again by Lemma 2.2 (iii), we obtain T l−k
0 b = b hence k = l

mod n. So all fk-s are different and the vertex neighbourhood Nb(v) has the required circular
structure. This proves (CPM-4).

The proof of (CPM-5) goes exactly as that of (CPM-4). Namely
〈
A, T−1

2 , T−1
0

〉
is also an

arrow presentation the T1-orbits of which coincide with the original because T−1
2 T−1

0 = T0T2.
The T0-orbits and T2-orbits in turn are interchanged so (CPM-5) for ⟨Arr, T0, T2⟩ is equivalent
to (CPM-4) for

〈
A, T−1

2 , T−1
0

〉
.

It remains to show compatibility of the cyclic orders given in (2.6) and (2.7) whenever v
and f form a site. By (2.4) and Lemma 2.4, this means that v ∩ f ̸= ∅ so we can choose the a
in both (2.6) and (2.7) to be the unique element of v ∩ f . Then the 2 common edges of Nb(v)
and Nb(f) are O1(a) and O1(T0a) = O1

(
T−1
2 a

)
the first of which is the predecessor of O2(a) = f

in Nb(v) and the successor of O0(a) = v in Nb(f) while the second is the successor of f in Nb(v)
and the predecessor of v in Nb(f). Therefore, they are compatible. ■

A CPM Σ together with an orientation will be called an oriented closed polyhedral map
(OCPM).

We will not formalize the converse of the above theorem which claims that every OCPM
determines an arrow presentation; the idea has already been sketched below Definition 2.1.
The two constructions AP −→ OCPM and OCPM −→ AP establish a bijective correspondence
between (isomorphism classes of) oriented closed polyhedral maps and arrow presentations. The
discussion of isomorphisms is postponed until Section 4.
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Example 2.8. In order to illustrate the difference between combinatorial maps and arrow
presentations, in particular, the role of axiom (AP-3), let us consider three maps on the torus:

Σ1×1 =

1

2

1

2

A = {1, 2, 1̄, 2̄},
T0 = (121̄2̄),

T2 = (121̄2̄),

Σ1#2 =
1

2
3

4

3 1

2

A = {1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄},
T0 = (123̄4̄)(1̄2̄34),

T2 = (143̄2̄)(321̄4̄),

Σ2×2 =

1
2

3
4

5
6

7
8 A = {1, 2, 3, 4, 5, 6, 7, 8, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄},

T0 = (123̄6̄)(341̄8̄)(567̄2̄)(785̄4̄),

T2 = (145̄2̄)(327̄4̄)(581̄6̄)(763̄8̄).

The arrows are named 1, . . . , n, 1̄, . . . , n̄ with k̄ being the reverse of k. The permutations Ti are
given by their cycle decompositions. So, in each of the cases T1 = (11̄) . . . (nn̄).

Σ1×1 arises from embedding the figure 8 graph (of 1 vertex and 2 loops) into the torus so that
the two loops become a pair of meridian and longitude. Σ1#2 arises from embedding
into the torus in the following way. First, we draw a length 2 longitude and two disjoint length 1
meridians of distance 1 from each other. Then, we cut along the longitude, shift it by 1 and
glue it back (half Dehn twist). Σ2×2 is also an embedding of a graph which can be best drawn
on the torus itself.

It is easy to see that in each of the three cases the data ⟨A, T0, T1, T2⟩ obey the three axioms of
combinatorial maps mentioned in the introduction. Moreover, neither of the Ti have a fixed point
so also the axioms (AP-1) and (AP-2) are fulfilled. In the map Σ1×1 we see the same face on both
hand sides of an edge (isthmus) because there is only one face. Also the edges are bordered by one
and the same vertex. So this example is breaking the axioms (CPM-3), (CPM-4) and (CPM-5).
In terms of the permutations, we see the weird identity T0 = T2 implying immediately that
(AP-3) fails. In the map Σ1#2, there are no loops and no isthmuses but there are repeated faces
in the vertex neighbourhoods and repeated vertices in the face neighbourhoods. So (CPM-4)
and (CPM-5) are broken. Both the first cycle of T0 and the second cycle of T2 contains 2 and 4̄
which means that (AP-3) fails. This is not an arrow presentation, either. The map Σ2×2 is
the only one among the three which is an OCPM and the only one for which ⟨A, T0, T2⟩ is an
arrow presentation. This example proves independence of the axiom (AP-3) and shows also
that in order to produce a map with given genus arrow presentations need more arrows than
combinatorial maps do.

Let us mention briefly two important constructions of CPMs which work also for non-
orientable Σ. See Figure 1.

Definition 2.9. Let Σ = ⟨Σ, dim,Bd,Cb⟩ be a closed polyhedral map. Its dual is

Σ∗ := ⟨Σ, 2− dim,Cb,Bd⟩ (2.9)

and its double D = D(Σ) =
〈
D0,D1,D2,Bd,Cb

〉
is defined by

D0 := Σ0 ⊔ Σ1 ⊔ Σ2,

D1 :=
{
⟨v, e⟩ ∈ Σ0 × Σ1 | v ∈ Bd(e)

}
⊔
{
⟨e, f⟩ ∈ Σ1 × Σ2 | e ∈ Bd(f)

}
,

D2 :=
{
⟨v, f⟩ ∈ Σ0 × Σ2 | Cb(v) ∩ Bd(f) ̸= ∅

}
,

Bd(⟨s, t⟩) := {s, t} for ⟨s, t⟩ ∈ D1,

Bd(⟨v, f⟩) := {⟨v, e1⟩, ⟨v, e2⟩, ⟨e1, f⟩, ⟨e2, f⟩},

where {e1, e2} = Cb(v) ∩ Bd(f) for ⟨v, f⟩ ∈ D2.
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Figure 1. A planar region of a CPM Σ and the same region of Σ∗, D(Σ) and D(Σ)∗. Blue dots are the

vertices, red dots are the faces. In the 2nd row the green dots are the edges, black ones are the sites.

The coboundary Cb is then obtained by transposing the relation x ∈ Bd(y).

Notice that the edges of D(Σ) are naturally divided into two classes: the ve-type edges and
the ef -type edges. Pairs of ve edges organize into the edges of Σ and pairs of ef edges do so
for the dual complex Σ∗, explaining the name “double” of Σ. The double D(Σ) is always free of
multiple edges and loops.

Notice that every face of D(Σ) is a quadrangle. The faces of the double are precisely the sites
of Definition 2.5. They are just the vertices of the dual of the double. Therefore, every vertex
of D(Σ)∗ is 4-valent.

Example 2.10. The minimal OCPM. Let Σmin be the CPM consisting of 2 vertices, 2 edges
and 2 faces. Topologically Σmin is a sphere made up of two hemispheres f1, f2 separated by
an equator consisting of two edges e1, e2 and two vertices v1, v2 such that Bd(e1) = Bd(e2) =
{v1, v2} and Cb(e1) = Cb(e2) = {f1, f2}. Fixing a to be one of the 4 arrows, we give an
orientation to Σmin by the arrow presentation

⟨{a, T1a, T0a, T2a}, T0, T2⟩,

where the action of T0 and T2 are fixed by the relations T 2
0 = id, T 2

2 = id. Since also (T0T2)
2 = id,

this is the standard presentation of the left regular G-set over the Klein four-group G = Z2×Z2.
It follows that if ⟨A, T0, T2⟩ is an arrow presentation of a connected OCPM Σ such that there is
an a ∈ A satisfying T 2

0 a = a = T 2
2 a then Σ = Σmin. The dual of the double

D(Σmin)
∗ = e1 e2v1 v2

f1

f2

is another spherical OCPM the faces of which are the cells of Σmin.

In the rest of the paper, we shall work mainly with connected oriented closed polyhedral
maps and freely mix the languages of ⟨Arr, T0, T2⟩ and ⟨Σ,dim,Bd,Cb⟩. We write Σ ::P if
P = ⟨Arr, T0, T2⟩ is a presentation of the OCPM Σ.
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3 Kitaev’s model over a Hopf algebra

Before launching the definition of the model, let us fix our conventions and notations about Hopf
algebras. We work with finite-dimensional Hopf algebras ⟨H, · , 1,∆, ε, S⟩ over a field K. Later
in Section 10, K will be the complex field. Let H∗ denote the dual Hopf algebra structure on
the space of linear functions H → K. The evaluation of φ ∈ H∗ on h ∈ H is denoted either
by φ(h) or, if φ is a long expression, by ⟨φ, h⟩ or even by ⟨h, φ⟩ since H∗∗ can be identified
with H. We use the standard Hopf algebraist notation ∆(h) = h(1) ⊗ h(2) for the coproduct of
an element which is a concise notation for a linear combination

∑
i h(1)i ⊗ h(2)i . We often push

this convention to the extreme and write, for example, φ ⊗ h ∈ H∗ ⊗ H but mean a general
linear combination

∑
i φi ⊗ hi of some φi ∈ H∗ and hi ∈ H. In want of enough letters and due

to abundance of ∗-s in this paper the antipode and counit of H∗ will be denoted also by S and ϵ,
respectively.

A basis {xi} of H and a basis {ξi} of H∗ are called dual bases if ξi(xj) = δi,j . For the indices
of these bases, we use Einstein’s summation convention: repeated indices are summed over. In
this sense, we have the useful identities

xi ⊗ xj ⊗ ξiξj = xk(1) ⊗ xk(2) ⊗ ξk, xixj ⊗ ξi ⊗ ξj = xk ⊗ ξk(1) ⊗ ξk(2),

S(xi)⊗ ξi = xi ⊗ S(ξi),

⟨φ, xi⟩ ξi = φ, xi⟨ξi, y⟩ = y.

The Hopf algebra H is a left and right module algebra over H∗ with respect to the actions
φ ⇀ h := h(1)φ

(
h(2)

)
and h ↼ φ := φ

(
h(1)

)
h(2), respectively.

The Drinfeld double D(H), a.k.a. the quantum double, is the following Hopf algebra structure
on the vector space H∗ ⊗H: The multiplication is

(φ⊗ g)(ψ ⊗ h) = φψ(2) ⊗ g(2)h · ψ(3)

(
g(1)

)
ψ(1)

(
S−1

(
g(3)

))
with unit 1D = ε⊗ 1 and the comultiplication is

∆(ψ ⊗ h) =
(
ψ(2) ⊗ h(1)

)
⊗
(
ψ(1) ⊗ h(2)

)
with counit εD(ψ ⊗ h) = ψ(1)ε(h). The antipode is given by the formula

SD(φ⊗ h) = S−1
(
φ(2)

)
⊗ S

(
h(2)

)
· φ(1)

(
h(3)

)
φ(3)

(
S−1

(
h(1)

))
.

Equipped with the R-matrix

R ≡ R1 ⊗R2 := (ε⊗ xi)⊗ (ξi ⊗ 1)

the double D(H) is a quasitriangular Hopf algebra for any finite-dimensional H.
The dual Hopf algebra of D(H) is denoted by D(H)∗. It is the vector space H⊗H∗ equipped

with algebra structure

(h⊗ φ)(g ⊗ ψ) = gh⊗ φψ, 1D∗ = 1⊗ ε, (3.1)

with coalgebra structure

∆D∗(h⊗ φ) =
(
h(1) ⊗ ξiφ(1)ξj

)
⊗
(
S−1(xj)h(2)xi ⊗ φ(2)

)
, εD∗(h⊗ φ) = ε(h)φ(1) (3.2)

and with antipode

SD∗(h⊗ φ) = xjS
−1(h)S−1(xi)⊗ ξiS(φ)ξj = (xi ⊗ ξi)

−1
(
S−1(h)⊗ S(φ)

)
(xj ⊗ ξj). (3.3)
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An element h ∈ H is called cocommutative if h(2) ⊗ h(1) = h(1) ⊗ h(2). The set CocomH of
cocommutative elements is a subalgebra (but not a subcoalgebra, in general) of H.

If H is involutive, i.e., S2 = idH , then so is H∗, D(H) and D(H)∗. Involutive Hopf algebras
are very close to being semisimple. By a theorem of Larson and Radford, finite-dimensional
involutive Hopf algebras are semisimple provided the ground field K has characteristic 0 [14].
The Hopf algebra H is semisimple if and only if it contains an element i satisfying hi = iε(h),
∀h ∈ H and ε(i) = 1. If it exists, such an element is unique and called the Haar integral. The
Haar integral further satisfies S(i) = i and i(2) ⊗ i(1) = i(1) ⊗ i(2). So i ∈ CocomH. If H is
semisimple, then so is H∗, D(H) and D(H)∗ with respective Haar integrals ι, iD = ι ⊗ i and
iD∗ = i⊗ ι.

After this preparation, we can define the algebra of the model as follows. Let Σ :: ⟨Arr, T0, T2⟩
be an OCPM and assume that Arr is finite. Let H be a finite-dimensional Hopf algebra which
is involutive. We construct the algebra M = M(Σ, H) as the tensor product algebra

M(Σ, H) =
⊗
e∈Σ1

Me,

where the algebras Me can be presented by a redundant set of generators

Pa(h), Qa(φ), where h ∈ H, φ ∈ H∗, a ∈ e

and by the relations

Pa(h), Qa(φ) are linear in h and φ, (3.4)

Pa(h)Pa(k) = Pa(hk), Pa(1) = 1M, (3.5)

Qa(φ)Qa(ψ) = Qa(φψ), Qa(ε) = 1M, (3.6)

Qa(φ)Pa(h) = Pa

(
φ(1) ⇀ h

)
Qa

(
φ(2)

)
, (3.7)

if {xi} and {ξi} are dual bases, then

PT1a(h) = Pa(xjS(h)xi)Qa(S(ξi)ξj), (3.8)

QT1a(φ) = Pa(xjS(xi))Qa(ξiS(φ)ξj) (3.9)

for all h, k ∈ H, φ,ψ ∈ H∗ and a ∈ e. The reader may observe that Pa and Qa are nothing
but the triangle operators L+ and T+ of [12], although defined as abstract operators without
representation on a (Hilbert) space. (The L− and T− are the L+ and T+ of the opposite
arrow T1a, as explained below.)

The first 4 relations tell us that for each a ∈ Arr the algebra generated by Pa(H) and Qa(H
∗)

is the Heisenberg double of H, also called the smash product algebra H#H∗.

The redundancy of the generators is made explicit by the last 2 relations so what needs
explanation is that why the PT1a and QT1a obey the same relations as the Pa and Qa. This
is closely related to involutivity of the antipode. But for the sake of explanation let H be any
finite-dimensional Hopf algebra. Recall [17] that the smash product algebra is isomorphic to the
full endomorphism algebra EndH. In fact, there are two canonical isomorphisms

L : H ⊗H∗ → EndH, L(h⊗ φ)(x) = h(φ ⇀ x), (3.10)

R : H ⊗H∗ → EndH, R(h⊗ φ)(x) =
(
x ↼ S−1(φ)

)
S(h) (3.11)

related by R(·) = S ◦ L(·) ◦ S−1. Introducing p(h) := L(h ⊗ ε), q(φ) := L(1 ⊗ φ) and
p̄(h) : R(h⊗ ε), q̄(φ) := R(1⊗ φ), we see that the operators p and q satisfy the same relations
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as p̄ and q̄, namely (3.5), (3.6) and (3.7). It is clear that p̄ and q̄ can be expressed in terms of p
and q and vice versa; we only have to compute

L−1 ◦ R(h⊗ φ) = xjS(h)S
−1(xi)⊗ ξiS

−1(φ)ξj , (3.12)

R−1 ◦ L(h⊗ φ) = xjS
−1(h)S−1(xi)⊗ ξiS(φ)ξj , (3.13)

which are identical expressions precisely if S is involutive. Specializing them by substituting
φ = ε or h = 1, we obtain the required expressions (3.8) and (3.9). At the end we did not have
to choose whether Pa and Qa were represented by L and PT1a and QT1a by R or vice versa. That
is to say, with the given generators, the presentation of M does not require any orientation of
the edges: a and T1a are treated symmetrically as well as the P , Q operators associated with
them. In representations, however, such a choice has to be made.

Summarizing, we have a full matrix algebra Me
∼= H#H∗ ∼= EndH for each edge e of Σ

and M(Σ) is the tensor product of these, so itself is a full matrix algebra. The long definition
above should therefore be considered not just as the definition of the algebra M but as the
definition of M together with a distinguished set of generators. This set of generators strongly
influences what we shall ask and what we can answer in this model.

Some consequences of the defining relations of M are the following:

PT1a(k) commutes with Pa(h), (3.14)

QT1a(ψ) commutes with Qa(φ), (3.15)

Pa(h)Qa(φ) = Qa

(
φ ↼ S

(
h(2)

))
Pa

(
h(1)

)
, (3.16)

Qa(φ)PT1a(h) = PT1a

(
h ↼ S

(
φ(2)

))
Qa

(
φ(1)

)
, (3.17)

PT1a(h)Qa(φ) = Qa

(
h(1) ⇀ φ

)
PT1a

(
h(2)

)
(3.18)

for all h, k ∈ H, φ,ψ ∈ H∗ and a ∈ Arr. (3.16) is the inverse of (3.7). (3.17) can be most
easily obtained using the L-R representations mentioned above. (3.18) is related to (3.17)
as (3.16) does to (3.7). Fortunately, we will never need the complicated relations (3.8) and (3.9);
the (3.14), (3.15) and (3.18) can be used as perfect substitutes for them.

The fact that the degrees of freedom are attached to the arrows of Σ suggests that we
should treat the Kitaev model as a gauge theory. Since there are two fields Pa and Qa at each
arrow satisfying Heisenberg double relations means something like having a quantized gauge
theory with an involutive finite-dimensional Hopf algebra H playing the role of the gauge group.
The field Qa can be interpreted as an exponential form of a vector potential and its conjugate
momentum Pa as an exponentiated electric field. In spite of this interpretation, we are not going
to follow the standard strategy of gauge theory of declaring the H-gauge invariant subalgebra as
the algebra of observables. Following [12], we shall treat to whole M as consisting of physically
realizable operators. There exist certain copies of the Drinfeld double D(H) within M as
subalgebras. Their induced action onM will be called “gauge transformations” with the warning
that we are just borrowing a word from gauge theory and applying it to a new situation in which
their role is yet to be explored.

In fact, there are plenty of ways to embed the double into M as a subalgebra.

Lemma 3.1. Let a = (a1, . . . , am) and b = (b1, . . . , bn) be sequences of arrows. Define

Ga1,...,am(h) := Pa1

(
h(1)

)
. . . Pam(h(m)), h ∈ H, (3.19)

Fb1,...,bn(ψ) := Qb1

(
ψ(1)

)
. . . Qbn(ψ(n)), ψ ∈ H∗. (3.20)

Assume that

(i) neither the sequence O1(a1), . . . ,O1(am) nor the sequence O1(b1), . . . ,O1(bn) contains re-
peated edges,
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(ii) am = b1, bn = T1a1,

(iii) if O1(ai) = O1(bj) then either i = 1 and j = n or i = m and j = 1.

Then the map D(ψ ⊗ h) := Fb(ψ)Ga(h) is an algebra homomorphism D(H) → M. That is to
say,

Ga(g)Ga(h) = Ga(gh),

Fb(φ)Fb(ψ) = Fb(φψ),

Ga(h)Fb(ψ) = Fb

(
ψ(2)

)
Ga

(
h(2)

)
· ψ(3)

(
h(1)

)
ψ(1)

(
S
(
h(3)

))
holds for all g, h ∈ H and for all φ,ψ ∈ H∗. If H is semisimple, then D is injective.

Proof. The first two relations are simple consequences of multiplicativity of the coproduct and
of assumption (i). The third can be proven by writing both F and G as a product of 3 terms
(disregarding implicit linear combinations hidden in the coproducts), two side terms and one
middle term where the middle term commutes with all other P -s and Q-s due to assumption (iii).
The essence of the calculation is the exchange relations (3.16) and (3.18) applied to the side
terms:

Ga(h)Fb(ψ) = Pa1

(
h(1)

)
P...

(
h(2)

)
Pam

(
h(3)

)
·Qb1

(
ψ(1)

)
Q...

(
ψ(2)

)
Qbn

(
ψ(3)

)
= Pa1

(
h(1)

)
P...

(
h(2)

)
Qb1

(
ψ(1) ↼ S

(
h(4)

))
Pam

(
h(3)

)
Q...

(
ψ(2)

)
Qbn

(
ψ(3)

)
= Qb1

(
ψ(1) ↼ S

(
h(4)

))
Q...

(
ψ(2)

)
Pa1

(
h(1)

)
Qbn

(
ψ(3)

)
P...

(
h(2)

)
Pam

(
h(3)

)
= Qb1

(
ψ(1) ↼ S

(
h(5)

))
Q...

(
ψ(2)

)
Qbn

(
h(1) ⇀ ψ(3)

)
Pa1

(
h(2)

)
P...

(
h(3)

)
Pam

(
h(4)

)
= ψ(1)

(
S
(
h(3)

))
· Fb

(
ψ(2)

)
Ga

(
h(2)

)
· ψ(3)

(
h(1)

)
.

It remains to show injectivity of D. Since the image of D lies in the tensor product of two copies
of H#H∗ at the edges e1 := O1(a1), e2 := O1(am) and copies of H or H∗ at the intermediate
edges O1(a2), . . . ,O1(am−1) and O1(b2), . . . ,O1(bn−1), respectively, if we compose D with the
counit of H, resp. H∗ at the intermediate places we obtain the m = n = 2 version of D. So
injectivity will follow from that of them = n = 2 case. Further composing with representation L
at both e1 and e2, the map becomes a representation on H ⊗H given by

D′(ψ ⊗ h) · (g ⊗ k) =
(
h(1)g

)
↼ S

(
ψ(2)

)
⊗ ψ(1) ⇀

(
h(2)k

)
.

Let i ∈ H be the Haar integral of H. We claim that i⊗1 is a cyclic vector of this representation.
As a matter of fact, if D′(ψ ⊗ h) · (i ⊗ 1) = i ↼ S

(
ψ(2)

)
⊗ ψ(1) ⇀ h is zero then so is λ ⊗ v :=

S
(
ψ(2)

)
⊗ ψ(1) ⇀ h, and therefore

0 = S
(
λ(1)

)
⊗ λ(2) ⇀ v = ψ(3) ⊗ S

(
ψ(2)

)
⇀

(
ψ(1) ⇀ h

)
= ψ ⊗ h.

Hence, the kernel of D′, containing the kernel of D, is zero. ■

Note that the sequences of arrows on which (3.20) and (3.19) are defined are arbitrary sets of
arrows with an ordering, they do not have to respect any neighbourhood relations on the surface
complex Σ. Of course, M is just the tensor product of edge algebras, so knows nothing about
how the edges organize into a complex.

By some vague analogy with gauge theory, we nevertheless consider those sequences a, b
which are closed curves on Σ: a Wilson loop of Q operators and a dual Wison loop of P
operators. (Although it works for the minimal loops, taking larger ones we have to realize that
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these are not going to define a holonomy!) The easiest way to construct such loops is to take
the T2-orbits or the T0-orbits of a fixed arrow. For a ∈ Arr, we define

Ga(h) := PT0a

(
h(1)

)
PT 2

0 a

(
h(2)

)
· · ·PTm

0 a

(
h(m)

)
, m = |O0(a)|, (3.21)

Fa(φ) := Qa

(
φ(1)

)
QT2a

(
φ(2)

)
· · ·QTn−1

2 a

(
φ(n)

)
, n = |O2(a)|. (3.22)

Ga is a sort of divergence of the electric field at the vertex O0(a) so we call it the Gauss’ law
operator. Fa is sort of curl of the vector potential at the face O2(a) so we call it the magnetic
flux operator. By Lemma 3.1, the operators

Da(φ⊗ h) := Fa(φ)Ga(h), φ⊗ h ∈ D(H)

provide homomorphic images of the double in M for each a ∈ Arr, and therefore

(ψ ⊗ k) ▷
a
M := Da

(
(ψ ⊗ k)(1)

)
M Da

(
SD

(
(ψ ⊗ k)(2)

))
= Fa

(
ψ(2)

)
Ga

(
k(1)

)
M Ga

(
S
(
k(2)

))
Fa

(
S
(
ψ(1)

))
,

M ◁
a
(ψ ⊗ k) := Da

(
SD

(
(ψ ⊗ k)(1)

))
M Da

(
(ψ ⊗ k)(2)

)
= Ga

(
S
(
k(1)

))
Fa

(
S
(
ψ(2)

))
M Fa

(
ψ(1)

)
Ga

(
k(2)

)
define a left D(H)-module algebra and a right D(H)-module algebra structure on M for each
a ∈ Arr. For different arrows, however, these actions do not necessarily commute. The Fa loop
operators are supported on the oriented boundary of the faceO2(a), so Fa(ψ) and Fb(φ) commute
whenever O2(a) ̸= O2(b) because of (3.15). Similarly, the Ga-s are supported on the oriented
coboundary (a star) of the vertex O0(a), so Ga(k) and Gb(h) commute whenever O0(a) ̸= O0(b)
because of (3.14). It follows that if O0(a) ̸= O0(b) and O2(a) ̸= O2(b) then the images of Da

and Db commute and so do the actions ▷a or ◁a with ▷b or ◁b. Thus, local D(H) gauge symmetry
cannot be thought as a fixed system of pairwise commuting D(H)-actions. Although there are
maximal systems of such actions, they are not unique and may not involve all F and G operators,
especially if

∣∣Σ0
∣∣ ̸= ∣∣Σ2

∣∣.
There is also another pair of left and right actions,

(ψ ⊗ k) ▶
a
M := Da

(
(ψ ⊗ k)(2)

)
M Da

(
SD

(
(ψ ⊗ k)(1)

))
= Fa

(
ψ(1)

)
Ga

(
k(2)

)
M Ga

(
S
(
k(1)

))
Fa

(
S
(
ψ(2)

))
,

M ◀
a
(ψ ⊗ k) := Da

(
SD

(
(ψ ⊗ k)(2)

))
M Da

(
(ψ ⊗ k)(1)

)
= Ga

(
S
(
k(2)

))
Fa

(
S
(
ψ(1)

))
M Fa

(
ψ(2)

)
Ga

(
k(1)

)
with respect to which, however, not M but Mop is a module algebra.

It is worth investigating the subspaces Pa(H) and Qa(H
∗) because they are the smallest

D(H)-invariant subspaces, in fact module subalgebras, of M or Mop. The exchange relations

Ga(k)Qa(φ) = Qa

(
φ ↼ S

(
k(2)

))
Ga

(
k(1)

)
, (3.23)

Fa(ψ)Qa(φ) = Qa

(
ψ(1)φS

(
ψ(2)

))
Fa

(
ψ(3)

)
, (3.24)

Qa(φ)GT2a(k) = GT2a

(
k(2)

)
Qa

(
S
(
k(1)

)
⇀ φ

)
, (3.25)

Qa(φ)FT2a(ψ) = FT2a

(
ψ(1)

)
Qa

(
S
(
ψ(2)

)
φψ(3)

)
(3.26)

follow easily from the defining relations of M, as well as

FT−1
0 a(ψ)Pa(h) = Pa

(
h ↼ S

(
ψ(2)

))
FT−1

0 a

(
ψ(1)

)
, (3.27)

GT−1
0 a(k)Pa(h) = Pa

(
k(1)hS

(
k(2)

))
GT−1

0 a

(
k(3)

)
, (3.28)

Pa(h)Fa(ψ) = Fa

(
ψ(2)

)
Pa

(
S
(
ψ(1)

)
⇀ h

)
, (3.29)

Pa(h)Ga(k) = Ga

(
k(1)

)
Pa

(
S
(
k(2)

)
hk(3)

)
. (3.30)
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From these relations, one infers that Pa(H) is an invariant subspace under ▷T−1
0 a and ◁a while

Qa(H
∗) is an invariant subspace under ▶a and ◀T2a. So we have

left D(H)-module subalgebras Pa(H) ⊂
〈
M, ▷

T−1
0 a

〉
, Qa(H

∗)op ⊂
〈
Mop,▶

a

〉
,

right D(H)-module subalgebras Pa(H) ⊂
〈
M, ◁

a

〉
, Qa(H

∗)op ⊂
〈
Mop, ◀

T2a

〉
.

Despite of having a left and a right action neither Pa(H) nor Qa(H
∗) is a bimodule over D(H),

the former because O0

(
T−1
0 a

)
= O0(a) and the latter because O2(T2a) = O2(a). Denoting these

modules by drawing an arrow from the left action to the right action,

DT−1
0 a

Pa(H)
Da, Da

Qa(H∗)
DT2a, (3.31)

we see that from the point of view of gauge transformations the Pa and the Qa seem to belong
to different edges and the vertices associated to individual D(H) actions are not the vertices
of Σ, not its faces either, but are in bijection with the arrows themselves. Such a complex is the
dual of the double of Σ and will be discussed, among others, in the next two sections.

The Hamiltonian of the model, however, can be introduced without moving to the dual of
the double. If we assume that H is semisimple then H has a Haar integral i. The Haar integral
being a cocommutative element its iterated coproducts i(1)⊗· · ·⊗ i(n) are invariant under cyclic
permutations. Therefore, Ga(i) does not depend on the starting point of the dual loop, i.e.,
GT0a(i) = Ga(i). So we may rename Ga(i) as Av, where v = O0(a). Similarly, H∗ also has
a Haar integral ι and FT2a(ι) = Fa(ι). Renaming Fa(ι) as Bf , where f = O2(a), we have
constructed a system of pairwise commuting projections Av, for v ∈ Σ0, and Bf , for f ∈ Σ2.
The Hamiltonian is the sum

HΣ,H =
∑
v∈Σ0

(1−Av) +
∑
f∈Σ2

(1−Bf ). (3.32)

There is a remarkable duality of these models. Replacing H with H∗ and Σ with Σ∗, there is an
algebra isomorphism M(Σ, H)

∼→ M(H∗,Σ∗) sending the Hamiltonian (3.32) to HΣ∗,H∗ . This
(non-canonical) isomorphism can be lifted to the ribbon operators, see the duality formula (7.19).
The general structure of this “duality” is still to be investigated. In this paper, we will use it
only as a technical tool to prove one half of Theorem 7.6.

4 Duals, mirror images and doubles in the arrow presentation

Let Σ :: ⟨Arr, T0, T2⟩ be an OCPM. The dual of Σ is easy to formulate in the Σ-language, see (2.9).
In the arrow presentation, however, we work with directed edges and there are several natural
and less natural ways to assign to an arrow of Σ an arrow of Σ∗. Such problems forces us to
speak about, at least, the isomorphisms of arrow presentations. (More general morphisms of
OCPMs or of their presentations would require to extend the theory to 3-complexes which we
cannot afford here.)

Definition 4.1. An isomorphism ⟨A,S0, S2⟩ → ⟨B, T0, T2⟩ of arrow presentations is a bijection
f : A→ B such that f ◦ Si = Ti ◦ f for i = 0, 2.

In order to see how this definition translates to the polyhedral maps, we need

Definition 4.2. An isomorphism ϕ of CPMs ⟨Σ, dim,Bd,Cb⟩ ϕ−→ ⟨Σ′,dim′,Bd′,Cb′⟩ is a bi-
jection ϕ : Σ → Σ′ which preserves the dimensions of cells, dim′ ◦ϕ = dim, and such that
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Bd(ϕ(x)) = {ϕ(y) | y ∈ Bd(x)}. If ϕ : Σ → Σ′ is an isomorphism of CPMs between oriented
closed polyhedral maps, then ϕ is called orientation preserving if for all v ∈ Σ0 and f ∈ Σ2

the restrictions of ϕ to the neighbourhoods Nb(v) and Nb(f) preserve the cyclic orders given
on them by the orientations. Such an orientation preserving isomorphism is called briefly an
isomorphism of OCPMs.

Lemma 4.3. Let Σ :: ⟨A, T0, T2⟩, Σ′ :: ⟨A′, T ′
0, T

′
2⟩ and let f : ⟨A, T0, T2⟩ → ⟨A′, T ′

0, T
′
2⟩ be an

isomorphism of arrow presentations. Then ϕ(Oi(a)) := O′
i(f(a)) is an isomorphism of OCPMs.

This proves, at least for isomorphisms, functoriality of the construction of OCPMs from arrow
presentations described by Theorem 2.7.

Proof. The isomorphism ϕ is the restriction to the orbits of the direct image f∗ : 2
A → 2A

′

which is the natural lift of f to the power sets. So

ϕ(Oi(a)) = {f ◦ Tn
i (a) | n ∈ N} =

{
T ′n

i (f(a)) | n ∈ N
}
= O′

i(f(a))

holds a priori for i = 0, 2 but then also for i = 1, i.e., ϕ maps Ti-orbits to T ′
i -orbits for all i.

Therefore, it preserves the dimension of cells and satisfies b ∈ Oi(a) if and only if f(b) ∈
ϕ(Oi(f(a))). If follows that Oi−1(b) ∩Oi(a) ̸= ∅ if and only if O′

i−1(f(b)) ∩O′
i(f(a)) ̸= ∅, so it

preserves the boundary and coboundary operations by (2.8), i.e., Bd(ϕ(s)) = {ϕ(t) | t ∈ Bd(s)}
for all s ∈ Σ. Finally, since f commutes with the Ti actions, it is obvious that ϕ preserves the
orientation. ■

After this preparation, we can discuss duals of arrow presentations. They are characterized
by producing dual polyhedral maps in the sense of (2.9). Let P = ⟨Arr, T0, T2⟩ be a presentation
of an OCPM Σ. A dual

∼
P of P can be obtained by following the schema which means that

the blue arrow a of Σ is interpreted as a red arrow of Σ∗ directed to point from the right face
of a to the left face of a. The T2 of the dual, denoted T̃2, is rotation around the left face of
the red arrow, i.e., around the source vertex of the blue one which is T0. The T̃0, however, is
obtained by rotating around the source vertex of the red arrow, i.e., around the right face of the
blue one which is not T2 applied to the blue arrow. In its stead T̃0 = T1T2T1 = T0T2T

−1
0 . Thus,

∼
P :=

〈
Arr, T0T2T

−1
0 , T0

〉
(4.1)

is a presentation producing the dual polyhedral map Σ∗. If we follow the other natural schema
, then we get another presentation

∽
P :=

〈
Arr, T2, T

−1
2 T0T2

〉
, (4.2)

which should produce the same (or isomorphic) dual map Σ∗. Encouraged by these examples,
we may experiment with a simpler presentation of the same sort. Let

P× := ⟨Arr, T2, T0⟩.

Lemma 4.4. The bijections Ti : Arr → Arr provide isomorphisms of arrow presentations

P× T0−→
∼
P

T1−→
∽
P

T2−→ P×,
∼
∽
P

id−→ P
id−→

∽∼
P,

∼∼
P

T1−→ P
T1−→

∽
∽
P.
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Proof. Let us prove the first
∼
T0T0 = T0T2T

−1
0 T0 = T0T2 = T0T

×
0 ,

∼
T2T0 = T0T0 = T0T

×
2 .

The remaining ones are similarly simple. ■

Although all the three duals
∼
P,

∽
P and P× are isomorphic, the first two differs from the third

in that
∼
T0

∼
T2 =

∽
T0

∽
T2 = T0T2 while T×

0 T
×
2 = T2T0.

In other words, the arrow-opposite arrow pairs, i.e., the T1-orbits, of
∼
P and

∽
P are the same as

those of P while in P× they are connected by the transformation T2T0 which is non-local in P , it
sends an arrow by distance 2 away. Of course, T2T0 is also an involution, T2T0T2T0 = T2T1T0 =
T−1
0 T0 = id, algebraically as good as T1, so why is T1 local and the other is not? We have made

a choice, not in Definition 2.1 but in the construction of Σ when we called edges the orbits
of T1 = T0T2 and not of T2T0. The form of P× shows that if we had chosen edges to be the
T2T0-orbits the interpretation of T0, T2 would have changed to T0 rotating around faces and T2
rotating around vertices. (Speaking about non-locality of a presentation Q is meaningful only
with respect to another isomorphic presentation P : Q is non-local if the isomorphism P → Q
is non-local, i.e., tears apart the arrows of an edge. Of course, both T0 and T2 are non-local
and T1 is local in this sense.)

When we draw a portion of a polyhedral map we look at it from a specific side of 3-space
determined by the orientation. If we look at it from the other side what we see is the mirror
image. In more precise terms, if P is a presentation of an OCPM Σ, then the mirror image should
be the presentation of the same underlying CPM but equipped with opposite orientation. It is
easy to see that the mirror image of P = ⟨Arr, T0, T2⟩ can be presented by

Pm :=
〈
Arr, T−1

0 , T1T
−1
2 T1

〉
=

〈
Arr, T−1

0 , T0T
−1
2 T−1

0

〉
. (4.3)

Another, simpler but non-local, presentation is PM :=
〈
Arr, T−1

0 , T−1
2

〉
with isomorphism

T0 : P
M −→ Pm.

In order to get an arrow presentation for the double D(Σ), we first have to enumerate the
arrows of the double in some way. From Definition 2.9, one infers that D(Σ)1 is 4 times bigger
than Σ1 and the same should hold for the arrows. Let e = O1(a) ∈ Σ1 be considered as a vertex
of the double. There are 4 edges joining at e, 2 ve-type edges and 2 ef-type edges. We denote
the arrow O0(a) → e by a+0 and the arrow O2(a) → e by a+2 . Their opposites are called a−0
and a−2 , respectively. The arrows of the remaining two edges joining to e can then be expressed
as (T1a)

±
0 and (T1a)

±
2 . The identities

O0(a) ∩ O1(T0a) = O0(T0a) ∩ O1(T0a) = {T0a},
O2(a) ∩ O1

(
T−1
2 a

)
= O2

(
T−1
2 a

)
∩ O1

(
T−1
2 a

)
=

{
T−1
2 a

}
show that the arrows and vertices of every face neighbourhood of the double can be labelled by

O0(a) O2(a)

O1(a)

O1(T0a)=O1(T−1
2 a)

(T0a)
+
0

(T−1
2 a)

+

2

a+0 a+2
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a+2

a+0

(T0a)
+
0

(T−1
2 a)+2

a+0

a+2

(T1a)
+
0

(T1a)
+
2

Figure 2. The vertex neighbourhood of the site ⟨O0(a),O2(a)⟩ and the face neighbourhood of the type 1

face O1(a).

Thus, the arrows of D(Σ) is the set A := {aσi | a ∈ Arr, i ∈ {0, 2}, σ ∈ {+.−}} and the arrow
presentation

D(Σ) ::D(P ) = ⟨A,T0,T2⟩

is given by the following permutations:

T0a
σ
i :=


(T0a)

+
0 if i = 0, σ = +,

(T1a)
−
2 if i = 0, σ = −,

(T2a)
+
2 if i = 2, σ = +,

a−0 if i = 2, σ = −,

T2a
σ
i :=


a−2 if i = 0, σ = +,

(T−1
0 a)+0 if i = 0, σ = −,

(T1a)
−
0 if i = 2, σ = +,

(T−1
2 a)+2 if i = 2, σ = −.

(4.4)

Defining also T1 = T0T2, we obtain

T1a
σ
i = a−σ

i , T4
2 = idA, T4

0a
−
i = a−i

for all a, i and σ. The second expresses the fact that all faces of the double are quadrangles and
the third holds (only for σ = −) because the e-type vertices of D(Σ) all have degree 4.

Roughly speaking, the T -operators of the double D(Σ) are matrix amplifications of the T -
operations of Σ,

T0 =


T0

1
T2

T1

 , T2 =


T−1
0

T1
T−1
2

1

 ,

where the order of rows and columns is that of formulas (4.4) and 1 stands for idArr. But
these are not matrices in the usual sense: The addition involved in matrix multiplications is not
defined at all. (We are working in the category of sets after all.) This is why we have left the
nonvalid entries empty rather than put a zero there.

Having been constructed arrow presentations for Σ∗ and D(Σ) of every OCPM Σ has the
secondary role of extending the Definition 2.9 by giving them orientations.

Now it is easy to obtain an arrow presentation for the dual of the double of Σ. We take
the above presentation of D(Σ) and then apply the construction

∼
P. This leads to the following

presentation for D(Σ)∗. The set of arrows is {aσi | i = 0, e, σ = ±}, the same as that of the
double.

(
We spare the work of writing ãσi to distinguish them from the arrows ofD(Σ), eventually

it is the same set.
)
These arrows are shown on Figure 2. Thus, we have the presentation

D(Σ)∗ ::D(P )∼ =
〈
A, T̃0, T̃2

〉
(4.5)
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with

T̃0 =


T1

T−1
0

1

T−1
2

 , T̃2 =


T0

1
T2

T1

 .

The set D(Σ)∗2 of faces of the dual of the double is the same set as the set Σ of all cells of the
original OCPM. Changing between these two interpretations of the same set will be a recurring
tool in this paper. Since the role of these faces depend on their dimensions in Σ and we want
to avoid saying “vertex face” or “face face” we shall use the term “type d face” for an element
c ∈ Σd ⊂ D(Σ)∗2.

Proposition 4.5. There exist natural isomorphisms of arrow presentations

δP : D(P )∼ → D(P∼)∼, aσ0 7→ aσ2 , aσ2 7→ (T1a)
σ
0 ,

µP : D(Pm)∼ → (D(P )∼)m, aσ0 7→ a−σ
0 , aσ2 7→ (T1a)

−σ
2

or in matrix form

δP =


T1

T1
1

1

 , µP =


1

1
T1

T1

 .

Proof. Collect the definitions (4.1), (4.5) and (4.3) and perform the matrix multiplications. ■

5 Curves, dual curves and ribbons

Curves on surfaces do not require orientation of the surface. Nevertheless, we assume that Σ is
an OCPM equipped with arrow presentation P = ⟨Arr(Σ), T0, T2⟩. Both curves and opposite
curves (see opcurves below) on Σ formulate the idea of what is called a walk on a directed graph.
By directed graph, we mean a quiver

A
source

target
V

consisting of two sets, two functions and no axioms. Although the CPM ⟨Σ,dim,Bd,Cb⟩ has
an underlying graph, it is undirected. It consists of the sets Σ1 and Σ0 and of the function Bd
which associates to every edge e ∈ Σ1 the 2-element subset Bd(e) ⊆ Σ0. Since this undirected
graph has no loops, there is a natural way to make it a quiver by doubling the set of edges.
Making use of the arrow presentation P , we can take the set Arr(Σ) of arrows and define the
quiver

Qv(P ) :=

(
Arr(Σ)

∂0

∂1
Σ0

)
where ∂0a := O0(a), ∂1a := O0(T1a).

This quiver is involutive in the sense of having an involution T1 such that ∂0 ◦ T1 = ∂1; this way
reminding us that it stems from an undirected graph.

The difference between curves and opcurves is merely conventional; the literature on Kitaev
models seems to use both curves [3, 15] and opcurves [1]. In this paper, most of the calculations
will be done with opcurves. The reason is that opcurves fit better with the conventions we have
chosen in Definition 2.1.
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Definition 5.1.

(a) An “opcurve on Σ”, more precisely a P -opcurve, is a sequence γ = (a1, . . . , an) of arrows
such that ∂1ai = ∂0ai+1 for 0 < i < n. If ∂0a1 = v0 and ∂1an = vn, then we say that γ is
an opcurve from v0 to vn and write γ : v0 → vn. The opcurves on Σ form a category with
composition of opcurves u

α−→ v
β−→ w being the concatenation αβ : u→ w.

(b) A “curve on Σ”, i.e., a P -curve, is a sequence γ = (a1, . . . , an) of arrows such that the
reverse sequence γrev = (an, . . . , a1) is an opcurve, that is to say, such that ∂0ai = ∂1ai+1

for 0 < i < n. This curve has source ∂0an and target ∂1a1. The curves on Σ form
a category with composition of curves u

α−→ v
β−→ w being β ◦ α = αβ : u → w. So this

category is just the opposite of the category of opcurves.

(c) If an opcurve γ = (a1, . . . , an) is open, i.e., ∂0a1 ̸= ∂1an, then it is called simple if the
sequence (∂0a1, ∂1a1, ∂1a2, . . . ∂1an) of visited vertices contains no repetitions. If γ is closed,
i.e., ∂0a1 = ∂1an, then it is called simple if (∂1a1, ∂1a2, . . . ∂1an) contains no repeated
vertices. A curve γ is called simple if the opcurve γrev is simple.

It is clear that passing to the reverse sequence provides a bijection between curves and
opcurves. Another important operation is the “inverse” curve: If γ = (a1, . . . , an) is a curve
(opcurve), then γ−1 := (T1an, . . . , T1a1) is also a curve (opcurve). But it is not the inverse
of γ until we pass to the paths of the (op)curve. Paths are equivalence classes of curves with
respect to insertion and deletion of length 2 subcurves of the form (a, T1a). Every equivalence
class contains a unique element which does not contain any (a, T1a) subcurves, i.e., which is
reduced. We shall not introduce any special notation for paths, just say “the path γ” for a
curve γ if we think of its equivalence class. This convention is used also for opcurves, so we say
“the path γ” even if γ is an opcurve. The paths of curves, as well as the paths of opcurves,
form a groupoid Path(Σ) and Path(Σ)op, respectively. Of course, this path groupoid is not the
fundamental groupoid of the surface [Σ], it is that of the 1-skeleton of Σ, so this groupoid sees
every face of Σ as a hole on [Σ].

Although the definition of (op)curves and therefore also of the path groupoid depend on the
arrow presentation, one can easily verify that any isomorphism of arrow presentations induces
an isomorphism between the corresponding categories of (op)curves as well as an isomorphism
of their path groupoids.

Using the term P -curve instead of “curve on Σ” is nevertheless advisable, especially if we want
to define dual curves. The dual (op)curves on Σ can be thought as (op)curves on the dual Σ∗. But
if we want to see them as sequences of arrows in Σ then we need a mapping Arr(Σ∗) → Arr(Σ).
Such mappings are not unique as it is witnessed by the two duals

∼
P and

∽
P of a presentation.

So, if the context requires the precision, we shall speak about
∼
P-(op)curves and

∽
P-(op)curves

instead of “dual (op)curves on Σ”.

Definition 5.2. A
∼
P-opcurve is a sequence β = (a1, . . . , an) of arrows ai ∈ Arr(Σ) such that

d0ai = d1ai+1 for 0 < i < n, where we introduced the notation

d0a := O2(a), d1a := O2(T1a).

The
∽
P-opcurves are defined as the reverses of

∼
P-opcurves.

These definitions are based on the quivers

Qv
(∼
P
)
=

(
Arr(Σ)

d1

d0
Σ0

)
, Qv

(∽
P
)
=

(
Arr(Σ)

d0

d1
Σ0

)
.

In fact, the
∼
P-opcurves coincide with the

∽
P-curves and vice versa.
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Remark 5.3. Passing from curves to opcurves, or back, can be automatized by introducing
P op := ⟨Arr(Σ), T1T0T1, T1T2T1⟩ which is a presentation isomorphic to P via the transforma-
tion T1. Since T1 is also the involution of the quiver, so

Qv(P op) =

(
Arr(Σ)

∂1

∂0
Σ0

)
,

and therefore the P op-curves are the P -opcurves. Also, we have
(∼
P
)op

=
∽
P. Although this

might suggest a redundancy of using both curves and opcurves but the concept of P -opcurve
comprises not only the use of P op-curves but also the convention of using concatenation for their
composition.

Now we turn to the description of curves on the dual of the double D(Σ)∗ of an OCPM Σ.
The dual of the double is particularly interesting for two reasons: Geometrically because it
provides the Schreier coset graph for the arrow presentation, and physically because it is the
surface complex on which holonomy of the Kitaev model can be defined.

Fixing an arrow presentation P = ⟨A, T0, T2⟩ for Σ, the vertices of D(Σ)∗ can be identified
with the set of sites, i.e., with pairs ⟨v, f⟩ ∈ Σ0×Σ2 such that v∩f ̸= ∅, cf. (2.4) and Lemma 2.4.
The set of arrows of D(Σ)∗ can be identified with the set A = {aσi | a ∈ A, i = 0, 2, σ = ±},
see Figure 2. The meaning of the arrows can be made explicit by giving the source and target
maps ∇0,∇1 : A → D(Σ)∗0,

∇0a
+
0 = ⟨∂0a, d1a⟩

∇1a
+
0 = ⟨∂0a, d0a⟩

∇0a
+
2 = ⟨∂0a, d0a⟩

∇1a
+
2 = ⟨∂1a, d0a⟩

and
∇0a

−
i = ∇1a

+
i

∇1a
−
i = ∇0a

+
i .

(5.1)

The quiver A
∇0

∇1

D(Σ)∗0 can be seen to be the quiver associated to the arrow presentation (4.5)

so we call it Qv(D(P )∼). Curves and opcurves on D(Σ)∗ will always be meant with respect to
this quiver.

Lemma 5.4. The following map embeds the involutive quiver of D(P )∼ to the cartesian product
of the involutive quivers of P and

∼
P:(

A
∇0

∇1

D(Σ)∗0
)

E−→
(
A

∂0

∂1
Σ0

)
×
(
A

d1

d0
Σ2

)
,

⟨v, f⟩ 7→ ⟨v, f⟩,
a+0 7→ ⟨∂0a, a⟩,
a−0 7→ ⟨∂0a, T1a⟩,
a+2 7→ ⟨a, d0a⟩,
a−2 7→ ⟨T1a, d0a⟩.

Proof. Recall that the cartesian product of quivers Q and Q′ has set of vertices (Q × Q′)0 =
Q0 × Q′0 and set of arrows (Q×Q′)1 =

(
Q0 ×Q′1) ⊔ (

Q1 ×Q′0) and it is endowed with the
obvious source and target maps. In case of the quivers of Σ and Σ∗, these obvious maps are
∂0 × d1 and ∂1 × d0 with the warning that here the ∂i and di are used in a generalized sense:
The ∂i is extended to the trivial edges of Σ, i.e., to the vertices, by ∂0v = ∂1v = v and the di is
extended to the trivial edges of Σ∗, i.e., to the faces, by d0f = d1f = f . Then the fact that E
is a homomorphism of involutive quivers,

(∂0 × d1) ◦ E = E ◦ ∇0, (∂1 × d0) ◦ E = E ◦ ∇1, (T1 × T̃1) ◦ E = E ◦ T̃1

can be easily verified. That E is injective is also clear. ■



Oriented Closed Polyhedral Maps and the Kitaev Model 21

Figure 3. Every curve ρ (black) on D(Σ)∗ is accompanied by a curve γ (blue) on Σ and a curve β

(red) on Σ∗ according to Lemma 5.4. They border a strip made of triangles but the strip may fail to

be embedded into the surface of Σ: The γ and β intersect locally, i.e., the strip folds, precisely if the ρ

makes a turn around a type 1 (green) face of D(Σ)∗.

In the image of E the arrows can be visualized as “isosceles triangles”. The triangle E
(
a±2

)
has base edge a with opposite vertex being the face f = d0a and the legs of the triangle being the
sites ⟨v, f⟩ where v is either ∂0a or ∂1a. The triangles E

(
a±0

)
are called dual triangles because

in them the roles of vertices and faces are interchanged. If ρ = (dj) is a curve on D(Σ)∗, then
two consecutive triangles E(dj) and E(dj+1) are pasted together at a leg so the whole picture
of the curve looks like a ribbon with the base edges of triangles forming one borderline and that
of the dual triangles (drawn as edges of Σ∗) forming the other borderline. On the two ends,
we see two unpaired legs of some triangles and the texture of the ribbon itself is a triangulated
surface, see Figure 3. The 2 borderline curves can be obtained by writing E(dj) as ⟨cj , bj⟩ and
then γ = (cj) is a P -curve and β = (bj) is a

∼
P-curve in the generalized sense: γ may contain

vertices and β may contain faces. But cj is a vertex if and only if bj is a genuine arrow and cj
is a genuine arrow if and only if bj is a face, hence the pair ⟨cj , bj⟩ is always a triangle.

This is the origin of the names such as “triangle operators” and “ribbon curves” in the
literature on the Kitaev model, although the name ribbon curve is usually reserved for a special
kind of curve on D(Σ)∗ which we will define below.

In the next lemma, we take a closer look into the structure of D(Σ)∗. We will see that we
can forget about the complicated arrow presentation (4.5) and navigate through D(Σ)∗ using
essentially only the arrow presentation of Σ.

Lemma 5.5. The map a 7→ s(a) := ⟨O0(a),O2(a)⟩ is a bijection Arr(Σ) ∼= D(Σ)∗0. Every
vertex of D(Σ)∗ has degree 4 and the four arrows pointing out from s(a) can be labelled, or
colored, by the letters

{
T0, T

−1
0 , T2, T

−1
2

}
as follows

(T0a)
+
0 : s(a) → s(T0a) labelled by T0,

a−0 : s(a) → s
(
T−1
0 a

)
labelled by T−1

0 ,

a+2 : s(a) → s(T2a) labelled by T2,(
T−1
2 a

)−
2
: s(a) → s

(
T−1
2 a

)
labelled by T−1

2 .
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The order in which they are listed corresponds to the cyclic order induced by the action of T̃0

of (4.5). Moreover, if an arrow d carries the label T ϵ
j then T̃1d has label T−ϵ

j .

Proof. O0(a)∩O2(a) = {a} is non-empty, so s(a) is a site, cf. Definition 2.5 and (2.4). If ⟨v, f⟩ is
a site, then v ∩ f ̸= ∅, so v = O0(a) and f = O2(a) for the unique element a ∈ v ∩ f . So s is
indeed a bijection.

The four arrows of source s(a) are dual to the 4 boundary arrows of the rhombus face s(a)
of the double D(Σ). (The reason for drawing D(Σ) and not D(Σ)∗ is merely typographical.)

eL eR

v

vL vR
f

fL fR

a
s(a)

s(T0a) s(T−1
0 a)

s(T−1
2 a) s(T2a) v = O0(a), f = O2(a)

eL = O1(T0a), eR = O1(a)

vL = O0

(
T−1
2 a

)
, vR = O0(T1a)

fL = O2(T0a), fR = O2(T1a).

(5.2)

The eL, v, eR, f are the 4 vertices of the rhombus by (2.5),
{
v, vL

}
= Bd

(
eL

)
,
{
v, vR

}
= Bd

(
eR

)
,{

f, fL
}
= Cb

(
eL

)
,
{
f, fR

}
= Cb

(
eR

)
and the four neighbour sites of ⟨v, f⟩ are

〈
v, fL

〉
,
〈
v, fR

〉
,〈

vR, f
〉
and

〈
vL, f

〉
. Computing the intersections of the vertex and face within these sites, we

recognize them as s(T0a), s
(
T−1
0 a

)
, s(T2a) and s

(
T−1
2 a

)
, respectively.

(
For example, v ∩ fL =

O0(a) ∩ O2(T0a) = O0(T0a) ∩ O2(T0a) = {T0a}.
)
This partially explains the labels of the four

arrows, partially because some of these 4 sites can be identical. (Indeed, D(Σ)∗ may have double
arrows but never multiple arrows of larger multiplicity.) s(T0a) = s

(
T−1
0 a

)
occurs when v has

degree 2 and s(T2a) = s
(
T−1
2 a

)
occurs when f is a 2-gon. In these degenerate cases

s(a)

v

vL vR

f

fL = fR

eL eR
or s(a)

f

fL fR

v

vL = vR

eL eR

there is a double arrow from s(a) to, let’s say, s(T2a) (the 2nd picture above) and it seems to be
indifferent which is labelled by T2 because T2 acts on a as T−1

2 . However, the letters T2 and T−1
2

are different and so are the two parallel arrows. The labelling in this case is defined by forcing
the lemma: The labels must follow the cyclic order

[
T0, T

−1
0 , T2, T

−1
2

]
when we apply T̃0. There

is only one case left. If both types of degeneracy occur for the same arrow a, then T 2
0 a = a = T 2

2 a
so by Example 2.10 the connected component of a is nothing but the minimal OCPM, Σmin. In
this case, the correctness of the labelling can be checked by inspection. ■

The above lemma has two important consequences. The first one is an interpretation of D(Σ)∗

as the coset graph of the arrow presentation of Σ. This is the next corollary. The second one is
a useful encoding of the curves on D(Σ)∗ in terms of words in the alphabet

{
T0, T

−1
0 , T2, T

−1
2

}
,

see the definition below.

Corollary 5.6. Let Σ be a connected OCPM. Every arrow presentation ⟨Arr, T0, T2⟩ of Σ de-
termines a transitive action on Arr(Σ) of the Σ-independent group T = ⟨T0, T2 | T0T2T0T2⟩ and
therefore the arrow presentation can be thought as a presentation of the left coset space T /H of
the group T with respect to some subgroup. Then the Schreier coset graph of T /H can be drawn
on the surface [Σ] as follows. Each a ∈ Arr(Σ) is drawn as a point at s(a) ∈ D(Σ)∗0. For each
a ∈ Arr(Σ), we draw two arrows: (T0a)

+
0 : s(a) → s(T0a) colored blue and a+2 : s(a) → s(T2a)
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Figure 4. The dual of the double of an OCPM Σ provides the Schreier coset graph of the arrow

presentation of Σ. The blue and red arrows show the action of T0 and T2, respectively. The green

quadrangles represent the universal relation T0T2T0T2 = id.

colored red. Then every edge of D(Σ)∗ is drawn exactly once. The blue arrows represent the flow
of the permutation T0 and the red ones represent that of T2. In this sense drawing the dual of
the double we draw the arrow presentation of Σ (Figure 4).

Definition 5.7. Using the function s : Arr(Σ) → D(Σ)∗0 defined in the above lemma a curve
ρ = (dn, . . . , d1) on D(Σ)∗ can be encoded by the pair

⟨a0, w⟩ ∈ Arr(Σ)×
{
T0, T

−1
0 , T2, T

−1
2

}∗
,

where s(a0) = ∇0d1 is the source vertex of the curve, w = Wn · · ·W1 is the code word made of
letters Wj ∈

{
T0, T

−1
0 , T2, T

−1
2

}
in such a way that for 0 < j ≤ n the dj is the unique arrow of

source s(aj−1) and label Wj , so its target can be written as s(aj) with aj =Wjaj−1.
The same pair ⟨a0, w⟩ is used to encode the opcurve ρrev = (d1, . . . , dn).

Now we are in a position to define ribbons.

Lemma 5.8. Let ρ = (d1, . . . , dn) be either a curve or an opcurve on D(Σ)∗ with encoding
⟨a0, w⟩. The following conditions are equivalent:

(i) The triangles E(dj) and E(dj+1) are non-overlapping (their interiors are disjoint) for
0 < j < n.

(ii) ρ is reduced and the 2 borderlines γ and β of the “ribbon” ρ do not intersect locally, i.e.,
O1(bj) ̸= O1(cj±1) whenever both bj and cj±1 are non-trivial arrows.

(iii) ρ is reduced and if (dj , dj+1) is a left or a right turn (not straight), then the unique face it
turns around is either a type 0 face or a type 2 face, never a type 1 face.

(iv) The word w is reduced and does not contain T0T2, T2T0 and their inverses.

(v) The word w belongs to either
{
T−1
0 , T2

}∗
or

{
T0, T

−1
2

}∗
.

Proof. Let ⟨v, f⟩ = ∇0dj+1 = ∇1dj . Then the triangles E(dj) and E(dj+1) contain ⟨v, f⟩ as
a leg. There are 4 such triangles. In the notations of (5.2), they are vfvL, fvfL, vfvR and
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fvfR. The first two and the second two overlap because their base edges intersect at their
“middle” points eL and eR, respectively. This intersection is, at the same time, an intersection
of the two borderlines γ and β of the ribbon. No other pairs of triangles are overlapping except
when the two triangles are the same, this happens precisely when dj+1 = T̃1dj .

In case of intersection at eL the (dj , dj+1) is either
((
T−1
2 a

)+
2
, (T0a)

+
0

)
or its inverse and the

corresponding code word is T0T2 or its inverse. In case of intersection at eR, the (dj , dj+1) is
either

(
a+0 , a

+
2

)
or its inverse and the corresponding code word is T2T0 or its inverse. These pairs

of arrows make turn around the type 1 face eL and eR, respectively. All other pairs of arrows
are either straight or make a turn around v or f .

If a reduced word w does not contain the alphabet changing words T0T2, T2T0 and their
inverses, thenW1 ∈

{
T−1
0 , T2

}
is equivalent to w ∈

{
T−1
0 , T2

}∗
. The same holds for the alphabet{

T0, T
−1
2

}
. ■

Definition 5.9. A ribbon (op)curve is a (op)curve on D(Σ)∗ satisfying the conditions of
Lemma 5.8. Let Ribb(Σ) and Ribb◦(Σ) be the set of ribbon curves and ribbon opcurves, re-
spectively. If the code word of a ribbon (op)curve belongs to

{
T−1
0 , T2

}∗
, then it is called

a left ribbon (op)curve. If it belongs to
{
T0, T

−1
2

}∗
, we speak about right ribbon (op)curve.

Let RibbL(Σ), RibbR(Σ), Ribb
◦
L(Σ), Ribb

◦
R(Σ) be the set of left/right ribbon curves/opcurves,

respectively.

Since every ribbon is reduced, Ribb(Σ) embeds into the path groupoid Path(Σ). But it
is not a subgroupoid and not even a subcategory as one can infer from the characterization
Lemma 5.8 (v). The RibbL(Σ) and RibbR(Σ), however, are subcategories with the inverse of
every left ribbon being a right ribbon. Moreover, Ribb(Σ) = RibbL(Σ) ∪ RibbR(Σ). Analogous
remarks can be made for the ribbon opcurves.

The above definition of ribbons seems to agree with that of [1] but it is less restrictive than
that of [15]. The latter type of ribbons will appear here as proper ribbons in Definition 6.1. The
necessity of distinguishing two kinds of ribbons has been realized already in [22], where they are
called locally clockwise and locally counterclockwise. Our terminology of left and right refers
to that whether the red dual curve on Figure 3 is on the left or on the right of the blue curve.
So ribbons may also be described as curves on Σ together with a consistent framing by a dual
curve. It is a left ribbon if and only if the framing goes, and stays, on the left-hand side.

6 Holonomy

According to [15, 16], the holonomy of a Hopf algebra gauge theory on Σ over the quasitriangular
Hopf algebra Q is a groupoid homomorphism

Hol : Path(Σ) → Hom×
K

(
Q∗,

⊗
e∈Σ1

Q∗
)
,

where the HomK(C,A) for a coalgebra C and algebra A is the convolution algebra [20] and
Hom×

K(C,A) refers to the group of convolution invertible elements of HomK(C,A). For a gauge
theory over D(H) we must choose Q = D(H). But since we need holonomy in the Kitaev model
merely for the purpose of constructing string operators, we will follow the above recipe very
loosely and use the name holonomy for any groupoid homomorphism

Hol : Path(D(Σ)∗) → Hom×
K(D(H)∗,M(Σ)).

The convolution product of two functions f, g : D(H)∗ → M is f ∗ g(Ψ) = f
(
Ψ(1)

)
g
(
Ψ(2)

)
for

Ψ ∈ D(H)∗ and the holonomy of a path (dn, . . . , d1) on D(Σ)∗ is uniquely determined by the
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holonomies of the length 1 paths by

Hol(dn,...,d1) = Hol(dn) ∗ · · · ∗Hol(d2) ∗Hol(d1) . (6.1)

In order for this formula to depend only on the path of the curve the length 1, holonomies should
satisfy that Hol(T̃1d)

be the convolution inverse of Hol(d). If the function Hol(d) : D(H)∗ → M
happens to be either an algebra homomorphism or an antialgebra homomorphism, then its
convolution inverse is simply Hol(d) ◦SD∗ .

We shall use also opholonomies

Hol◦ : Path(D(Σ)∗)op → Hom×
K(D(H)∗,M(Σ)),

which can be defined as functions on opcurves (d1, . . . , dn) by

Hol◦(d1,...,dn) = Hol◦(d1) ∗Hol
◦
(d2)

∗ · · · ∗Hol◦(dn) . (6.2)

The condition of descending to the paths of opcurves is again that Hol◦
(T̃1d)

be the convolution

inverse of Hol◦(d).
The ribbon operators of [1], as well as the symbolic arrows (3.31), suggest that opholonomy

and holonomy should be defined by

Hol◦(d)(h⊗ φ) :=


φ(1)Pa(h) if d = a+0 ,

ε(h)Qa(φ) if d = a+2 ,

φ(1)Pa(S(h)) if d = a−0 ,

ε(h)Qa(S(φ)) if d = a−2

(6.3)

for all a ∈ Arr(Σ) and

Hol(d) := SM ◦ Hol◦(d) ◦SD∗ , d ∈ Arr(D(Σ)∗), (6.4)

where SM is the involutive algebra automorphism M → M which sends Pa(h) to PT1a(h)
and Qa(φ) to QT1a(φ). By (3.1), the Hol◦(d) are antialgebra maps for d = a+0 and algebra

maps for d = a+2 . Moreover, in spite of the complicated expression (3.3) it is easy to see that
Hol◦

(T̃1d)
= Hol◦(d) ◦SD∗ . So (6.3) together with (6.2) defines indeed an opholonomy. Then (6.4)

together with (6.1) is automatically a holonomy.
The relation (6.4) between holonomy and opholonomy is rather arbitrary. We could have

defined them in such a way that Hol(d) = Hol◦(d) for all arrows d of D(Σ)∗. The choice (6.4)
perhaps allows easier comparison with the existing definitions of the literature.

Definition 6.1. Let γ = (d1, . . . , dn) be a (op)curve on D(Σ)∗ with dk = (ak)
σk
ik
. Then γ is

called proper if for all 1 ≤ k < l ≤ n the following statements hold: ak ̸= al and if ak = T1al
then ik = il. In other words, no pairs dk, dl of arrows in the (op)curve are equal or incident and
lie on the boundary of the same type 1 face e ∈ Σ1.

Proposition 6.2. The relation of proper (op)curves to ribbons is the following:

(i) Every proper curve γ = (dn, . . . , d1) on D(Σ)∗ is a ribbon curve and

Holγ = SM ◦ Hol◦γrev ◦SD∗ = SM ◦ Hol◦γrev−1 .

(ii) A ribbon opcurve ρ = (d1, . . . , dn) on D(Σ)∗ is proper if and only if it is a simple opcurve.
So proper ribbon and simple ribbon are synonymous.
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Proof. (i) Notice that an opposite pair d, T̃1d is always of the form a+i , a
−
i . Therefore, proper

(op)curves are reduced. Hence, the property of being proper for consecutive arrows dk, dk+1 is
equivalent to the property of Lemma 5.8 (iii). This proves that proper (op)curves are ribbons.
The property of being proper for any pair dk, dl implies that the P or Q operators associated
to them by the opholonomy commute:

[
Hol◦(dk)(Φ),Hol

◦
(dl)

(Ψ)
]
= 0 for every Φ,Ψ ∈ D(H)∗ and

for k ̸= l. Therefore,

Holγ(Ψ) = SM
(
Hol◦(d1)

(
SD∗

(
Ψ(n)

))
· · ·Hol◦(dn)

(
SD∗

(
Ψ(1)

)))
= SM

(
Hol◦γrev(SD∗(Ψ))

)
.

This proves the first equation. The second follows from the first by the observation that for
a proper opcurve α the Hol◦α ◦SD∗ is the convolution inverse of Hol◦α hence equal to the opholon-
omy of α−1.

(ii) Assume ρ is not simple. Then there exists a site s and a minimal closed subcurve
(di, di+1, . . . , dj−1) : s → s of ρ. Here i = 1 or j = n + 1 is allowed but not both because this
would imply that ρ is closed and simple. If i > 1, then di−1 and dj−1 are incident to s and lie on
the boundary of a type 1 face. If j ≤ n, then the same holds for the arrows di and dj . Anyway,
we get contradiction with properness of ρ.

If ρ is not proper, then for some 1 ≤ k < l ≤ n the dk = (ak)
σk
ik

and dl = (al)
σl
il

satisfy one of
the following: either ak = al or (ak = T1al and ik ̸= il). In both cases ρ is either not simple or
not a ribbon. ■

En passant, we mention a useful rewriting of the exchange relations of the P and Q operators
in terms of length 1 opholonomies:

Hol◦
(a−0 )

(Ψ)Hol◦
(a+2 )

(Φ) = Hol◦
(a+2 )

(Φ↼ R1)Hol
◦
(a−0 )

(Ψ↼ R2), (6.5)

Hol◦
((T1a)

+
2 )
(Ψ)Hol◦

(a−0 )
(Φ) = Hol◦

(a−0 )
(R2 ⇀ Φ)Hol◦

((T1a)
+
2 )
(R1 ⇀ Ψ), (6.6)

where R is the R-matrix and Φ,Ψ ∈ D(H)∗.
The minimal closed ribbon (op)curves are the face loops that encircle a face of D(Σ)∗. Since

these loops depend on a base point, i.e., a site s(a), we parametrize them with the arrow
a ∈ Arr(Σ). The opcurve versions of them are

type 0 loop around O0(a) : αa =
(
(T0a)

+
0 ,

(
T 2
0 a

)+
0
, . . . , (Tm

0 a)
+
0

)
, (6.7)

type 1 loop around O1(a) : βa =
(
a+0 , a

+
2 , (T1a)

+
0 , (T1a)

+
2

)
, (6.8)

type 2 loop around O2(a) : γa =
(
a+2 , (T2a)

+
2 , . . . ,

(
Tn−1
2 a

)+
2

)
, (6.9)

where m = |O0(a)| and n = |O2(a)|. The type 0 and type 2 loops are oriented counterclockwise
and the type 1 loop clockwise, just like in Figure 4. The αa and γa are proper ribbons but βa
is maximally improper. In order to facilitate the computation of the opholonomies of these
opcurves we rewrite the formula (6.3) as follows:

Hol◦(aσi )
= θa ◦ πi ◦ S(1−σ)/2

D∗ ,

where

π0, π2 : D(H)∗ → D(H)∗, π0(h⊗ φ) := h⊗ ε · φ(1), π2(h⊗ φ) := ε(h) · 1⊗ φ,

are algebra endomorphisms of the dual of the double and the

θa : H ⊗H∗ → M(Σ), θa(h⊗ φ) := Pa(h)Qa(φ)

are linear injections.
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Lemma 6.3. The maps θa, a ∈ Arr(Σ), satisfy the following properties:

(i) θa = Hol◦
(a+0 ,a+2 )

.

(ii) θT1a = SM ◦ θa.
(iii) θa(Φ)θb(Ψ) = θb(Ψ)θa(Φ) for all Φ,Ψ ∈ D(H)∗ if O1(a) ̸= O1(b).

(iv) The image of θa is the edge algebra Me
∼= H#H∗ on which SM acts as the L−1 ◦ R =

R−1 ◦ L of (3.12) and (3.13). The θa identifies this action of SM with the action of the
antipode of D(H)∗ via

SM ◦ θa = θa ◦ SD∗ .

(v) The θa becomes an antialgebra map

θa(Φ)θa(Ψ) = θa(Ψ •
R
Φ)

if we endow D(H)∗, as a monoid in the braided monoidal category of right D(H)-modules,
with the braided-opposite multiplication

Ψ •
R
Φ := (Φ↼ R1)(Ψ↼ R2).

Proof. (i) Applying (6.3) and using the expression (3.2) for the coproduct, it is easy to see that
the equation Hol◦

(a+0 ,a+2 )
(h⊗ φ) = Pa(h)Qa(φ) holds.

(ii) is essentially the definition of SM.
(iii) holds because M is the tensor product of the edge algebras Me for e ∈ Σ1.
(iv) can be seen by comparing formulas (3.12), (3.13) with the antipode formula (3.3).
(v) The braiding on (g ⊗ ψ)⊗ (h⊗ φ) ∈ D(H)∗ ⊗D(H)∗ acts by

[(h⊗ φ)↼ R1]⊗ [(g ⊗ ψ)↼ R2] =
〈
ε⊗ xi, h(1) ⊗ ξjφ(1)ξk

〉(
S−1(xk)h(2)xj ⊗ φ(2)

)
⊗
〈
ξi ⊗ 1, g(1) ⊗ ξlψ(1)ξm

〉(
S−1(xm)g(2)xl ⊗ ψ(2)

)
=

(
S−1(xk)hxj ⊗ φ(2)

)
⊗

〈
ξjφ(1)ξk, g(1)

〉(
g(2) ⊗ ψ

)
=

(
S−1

(
g(3)

)
hg(1) ⊗

(
φ ↼ g(2)

))
⊗
(
g(4) ⊗ ψ

)
,

therefore

(g ⊗ ψ) •
R
(h⊗ φ) = g(4)S

−1
(
g(3)

)
hg(1) ⊗

(
φ ↼ g(2)

)
ψ = h

(
φ(1) ⇀ g

)
⊗ φ(2)ψ

(even for non-involutive H-s) is precisely the multiplication of the smash product applied to
(h⊗ φ)⊗ (g ⊗ ψ) ∈ (H#H∗)⊗ (H#H∗). ■

Part (v) of the lemma immediately implies (cf. [15, Theorem 7.6]).

Corollary 6.4. The algebra Mop is isomorphic to the tensor product
⊗

e∈Σ1 D(H)∗R, where the
algebra D(H)∗R is D(H)∗ endowed with the braided opposite multiplication.

Proposition 6.5. The opholonomy of the type 0 and 2 face loops αa and γa of (6.7) and (6.9)
essentially reproduce the Gauss’ law and flux operators of (3.21) and (3.22), respectively,

Hol◦αa
(h⊗ φ) = φ(1) ·Ga(h), Hol◦γa(h⊗ φ) = ε(h) · Fa(φ).

The opholonomy of a type 1 loop is

Hol◦βa
(h⊗ φ) = 1M · ⟨R1SD(R2), h⊗ φ⟩, (6.10)

where R1SD(R2) = SD(u) with u denoting the Drinfeld element SD(R2)R1 of the quasitriangular
Hopf algebra ⟨D(H), R⟩.
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Proof. Iterating the formula (π0 ⊗ id) ◦ ∆D∗(h ⊗ φ) =
(
h(1) ⊗ ε

)
⊗

(
h(2) ⊗ φ

)
for multiple

coproducts we arrive to

Hol◦αa
(h⊗ φ) = θT0a

(
h(1) ⊗ ε

)
· · · θTm

0 a

(
h(m) ⊗ ε

)
· φ(1)

= PT0a

(
h(1)

)
· · ·PTm

0 a

(
h(m)

)
· φ(1) = Ga(h) · φ(1).

Similarly, formula (id⊗π2) ◦ ∆D∗(h⊗ φ) =
(
h⊗ φ(1)

)
⊗
(
1⊗ φ(2)

)
leads to

Hol◦γa(h⊗ φ) = ε(h) · θa
(
1⊗ φ(1)

)
· · · θTn−1

2 a

(
1⊗ φ(n)

)
= ε(h) ·Qa

(
φ(1)

)
· · ·QTn−1

2 a

(
φ(n)

)
= ε(h) · Fa(φ).

Using (i), (ii) and (iv) of Lemma 6.3, the opholonomy of βa can be written as

Hol◦βa
= Hol◦

(a+0 ,a+2 )
∗
(
SM ◦ Hol◦

(a+0 ,a+2 )

)
= θa ∗ (θa ◦ SD∗),

which, by (v) of the lemma, evaluates to

Hol◦βa
(h⊗ φ) = θa

((
(h⊗ φ)(1) ↼ R1

)(
SD∗

(
(h⊗ φ)(2)

)
↼ R2

))
= θa

(
(h⊗ φ)(2)SD∗

(
(h⊗ φ)(3)

))〈
(h⊗ φ)(1), R1

〉〈
SD∗

(
(h⊗ φ)(4)

)
, R2

〉
= θa(1D∗) · ⟨h⊗ φ,R1SD(R2)⟩.

We note that R1SD(R2) = (ε⊗ xi)(S(ξi)⊗ 1) = (ε⊗ S(xi))(ξi ⊗ 1) = SD(R1)R2 = SD(u). ■

Since the only non-commuting P and Q operators are lying at corners of type 1 loops, the
result (6.10) can be thought of as a holonomy version of the Heisenberg exchange relations (3.7).

Using Proposition 6.2 (i), the above results can be translated to holonomies of the basic loop
curves αrev−1

a , βrev−1
a and γrev−1

a as follows:

Holαrev−1
a

(h⊗ ε) = SM(Ga(h)) = PT1T0a

(
h(1)

)
PT1T 2

0 a

(
h(2)

)
· · ·PT1Tm

0 a

(
h(m)

)
,

Holβrev−1
a

(h⊗ φ) = 1M · ⟨R1SD(R2), h⊗ φ⟩,
Holγrev−1

a
(1⊗ φ) = SM(Fa(φ)) = QT1a

(
φ(1)

)
QT1T2a

(
φ(2)

)
· · ·QT1T

n−1
2 a

(
φ(n)

)
.

The curve αrev−1
a , if viewed on Σ, consists of arrows pointing toward the vertex v = O0(a) and,

as a
∼
P-curve, winds around v in clockwise direction. The curve γrev−1

a consists of arrows on the
boundary of the face f = O2(a) directed in clockwise direction. These basic loops and their
holonomies fit to the conventions used in the literature [3, 15]. Although the automorphism SM
provides a direct connection to our conventions, the simplicity of (3.21) and (3.22) can be an
excuse for our preference of opholonomies.

The type 1 loops βa and βrev−1
a belong to the following type of (op)curves:

Definition 6.6. A closed (op)curve ζ on D(Σ)∗ is called a central (op)curve if its (op)holonomy
is of the form (h⊗ φ) 7→ 1M · ⟨Z, h⊗ φ⟩ for some central element Z of D(H).

Notice that by convolution invertibility of (op)holonomies the Z in the above definition is
necessarily invertible. Due to Proposition 6.2 (i), a proper ribbon opcurve ζ is central if and
only if the proper ribbon curve ζrev is central.

Lemma 6.7. Let s ∈ D(Σ)∗ 0 be a site.

(i) The central opcurves ζ : s → s form a monoid under concatenation and their paths form
a group.
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(ii) If ζ : s → s is a central opcurve and α : s → s′ is any opcurve, then ζ ′ := α−1ζα : s′ → s′

is a central opcurve, too. Moreover, Hol◦ζ′ = Hol◦ζ .

Proof. (i) If ζj : s → s have Hol◦ζj (Ψ) = 1M · ⟨Zj ,Ψ⟩ for j = 1, 2, then Hol◦ζ1ζ2(Ψ) = 1M ·
⟨Z1Z2,Ψ⟩. If ζ is central, then so is ζ−1.

(ii) If we can prove the statement for α having length 1, then the statement will follow by
induction on the length of α. Let α = (d). Then

Hol◦ζ′(Ψ) = Hol◦(d)
(
SD∗

(
Ψ(1)

))
Hol◦ζ

(
Ψ(2)

)
Hol◦(d)

(
Ψ(3)

)
= Hol◦(d)

(
SD∗

(
Ψ(1)

))
Hol◦(d)

(
Ψ(3)

)
·
〈
Z,Ψ(2)

〉
.

Evaluating SD∗
(
Ψ(1)

)
⊗⟨Z,Ψ(2)⟩Ψ(3) on Y ⊗Y ′ ∈ D(H)⊗D(H), one obtains ⟨Ψ, SD(Y )ZY ′⟩ =

⟨Ψ, SD(Y )Y ′Z⟩, therefore

SD∗
(
Ψ(1)

)
⊗
〈
Z,Ψ(2)

〉
Ψ(3) = SD∗

(
Ψ(1)

)
⊗Ψ(2)

〈
Z,Ψ(3)

〉
and

Hol◦ζ′(Ψ) = Hol◦(d)
(
SD∗

(
Ψ(1)

))
Hol◦(d)

(
Ψ(2)

)
·
〈
Z,Ψ(3)

〉
= 1M · εD∗

(
Ψ(1)

)〈
Z,Ψ(2)

〉
= 1M · ⟨Z,Ψ⟩

= Hol◦ζ(Ψ). ■

Definition 6.8. Let γ : s → s′ be an opcurve on D(Σ)∗. A central deformation of γ is an
opcurve δ : s→ s′ such that δγ−1 is central.

7 The algebra of ribbon operators

In this section, we shall work with ribbon operators M = Hol◦ρ(Ψ) for some ribbon path ρ and
some Ψ ∈ D(H)∗. Ribbon operators can be multiplied either using the convolution product
or the multiplication of M. The relations of the former type come from the definition of
opholonomy,

Hol◦α ∗Hol◦β = Hol◦αβ, α, β ∈ Ribb◦L or α, β ∈ Ribb◦R.

So we can, for example, change the starting point of the Gauss’ law and flux operators by
conjugation in the convolution sense,

GT0a(h) = PT0a(S
(
h(1)

)
)Ga

(
h(2)

)
PT0a

(
h(3)

)
, (7.1)

FT2a(φ) = Qa(S
(
φ(1)

)
)Fa

(
φ(2)

)
Qa

(
φ(3)

)
. (7.2)

As for the ordinary multiplication of M, it is quite difficult to find computable relations between
ribbon operators. The rare cases which we are able to compute occupy the present Section.

If two ribbons are sufficiently distant, then the corresponding operators should commute.
Thinking over which edges have P orQ operators that do not commute we arrive to the following:

Definition 7.1. For an arrow d ∈ Arr(D(Σ)∗), let U(d) be the set of arrows that are incident
to d and lie on the boundary of the same type 1 face as d does. (There are 6 such arrows,
including d, forming a U-shape of 3 edges.) Two (op)curves, or just sets of arrows, γ and γ′

in D(Σ)∗ are called U-separated, written γ ↔
U
γ′ if d ̸∈ U(d′) for all d ∈ γ and d′ ∈ γ′.
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So we have

Hol◦ρ(Φ)Hol
◦
γ(Ψ) = Hol◦γ(Ψ)Hol◦ρ(Φ) ∀Φ,Ψ ∈ D(H)∗ if ρ↔

U
γ. (7.3)

At the other extreme let ρ = γ. Then the product is computable if d ̸∈ U(d′) for any pair of
different arrows d, d′ ∈ ρ. This property of being “self-U-separated” can be seen to be equivalent
to properness (Definition 6.1) of the opcurve. Thus,

Hol◦ρ(Φ)Hol
◦
ρ(Ψ) = Hol◦ρ(ΦΨ) if ρ ∈ Ribb◦L is proper (7.4)

= Hol◦ρ(ΨΦ) if ρ ∈ Ribb◦R is proper

by comparing (6.3) with (3.1) and using that the coproduct of D(H)∗ is multiplicative. For
proper ribbons, we also have the inversion formula

Hol◦ρ−1(Φ) = Hol◦ρ(SD∗(Φ)) if ρ is proper (7.5)

and the cyclic permutation formula

Hol◦Cρ(Ψ) = Hol◦ρ(Ψ) if ρ is closed, proper and Ψ ∈ CocomD(H)∗, (7.6)

where Cρ = (d2, . . . , dn, d1) whenever ρ = (d1, . . . , dn).
Now consider the length 2 opcurves that are not straight, the “elbows”. Up to taking inverses,

there are 4 such opcurves with common middle point being the site s(a):(
a+0 , a

+
2

)
,

(
(T−1

2 a)+2 , a
+
2

)
,

(
(T−1

2 a)+2 , (T0a)
+
0

)
,

(
a+0 , (T0a)

+
0

)
.

The following lemma is known in the context of Hopf algebra gauge theory [15].

Lemma 7.2. The opholonomies of an “opposite pair of elbows” commute. That is to say,[
Hol◦

(a+0 ,a+2 )
(Φ),Hol◦

((T−1
2 a)+2 ,(T0a)

+
0 )
(Ψ)

]
= 0, (7.7)[

Hol◦
((T−1

2 a)+2 ,a+2 )
(Φ),Hol◦

(a+0 ,(T0a)
+
0 )
(Ψ)

]
= 0 (7.8)

for all Φ,Ψ ∈ D(H)∗. If we replace any one or both of the elbows in (7.7) or (7.8) by their
inverses commutativity of their opholonomies remains true.

Proof. (7.7) follows from (7.3) since the two curves are U-separated. (7.8) can be shown by
checking that

Hol◦
((T−1

2 a)+2 ,a+2 )
(g ⊗ φ) = ε(g) ·QT−1

2 a

(
φ(1)

)
Qa

(
φ(2)

)
,

Hol◦
(a+0 ,(T0a)

+
0 )
(h⊗ ψ) = ψ(1) · Pa

(
h(1)

)
PT0a

(
h(2)

)
and then computing

Pa

(
h(1)

)
PT0a

(
h(2)

)
·QT−1

2 a

(
φ(1)

)
Qa

(
φ(2)

)
=

(3.18)
= Pa

(
h(1)

)
QT−1

2 a

(
φ(1)

)
PT0a

(
h(2) ↼ φ(2)

)
Qa

(
φ(3)

)
= QT−1

2 a

(
φ(1)

)
Pa

(
h(1)

)
Qa

(
φ(3)

)
PT0a

(
h(2) ↼ φ(2)

)
(3.16)
= QT−1

2 a

(
φ(1)

)
Qa

(
φ(4)

)
Pa(S

(
φ(3)

)
⇀ h(1))PT0a

(
h(2) ↼ φ(2)

)
= QT−1

2 a

(
φ(1)

)
Qa

(
φ(2)

)
· Pa

(
h(1)

)
PT0a

(
h(2)

)
.
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Since the elbows in (7.8) are proper ribbons, replacing any one of them with its inverse amounts
only to applying SD∗ on Φ or Ψ, see (7.5). Taking inverses of the elbows of (7.7) requires more
work,

Hol◦
(a+0 ,a+2 )−1 = Hol◦

((T1a)
+
0 ,(T1a)

+
2 )

∗Hol◦
β−1
a
,

Hol◦
((T−1

2 a)+2 ,(T0a)
+
0 )−1 = Hol◦

((T1T
−1
2 a)+2 ,(T1T0a)

+
0 )

∗Hol◦
β′−1

b

,

where b = T−1
2 a and β′b :=

(
b−0

)
βb
(
b+0

)
. The appearance of T1 in the first terms does not change

U-separatedness of the curves and the βa and β′b being central the second terms do not change
commutativity, either. ■

Corollary 7.3. Let λ be either a type 0 or a type 2 face loop. Let ϵ = (d, b) be an elbow opcurve
with midpoint ∇1d = ∇0b = s which intersects λ only at the site s. If s is not the base point
of λ, then Hol◦ϵ (Φ) commutes with Hol◦λ(Ψ) for every Φ,Ψ ∈ D(H)∗.

The above corollary is the first instance of a more general commutativity theorem of holono-
mies of type 0 or type 2 face loops with certain ribbon operators; expressing a sort of “gauge
invariance” of the ribbon operator. Before formulating the statement, let us recall some Hopf
algebra.

If h ∈ CocomH, then the iterated coproducts h(1) ⊗ · · · ⊗ h(n) are invariant under cyclic
permutations. In particular, the Gauss’ law operators Ga(h) are independent of the choice
of the base point, GT0a(h) = Ga(h), if h ∈ CocomH. The same holds for the flux opera-
tors Fa(φ) if φ ∈ CocomH∗. A cocommutative element φ defines a trace on H by the evaluation,
⟨φ, hg⟩ = ⟨φ, gh⟩. All traces on H are of this form. Since the Haar integral ι is cocommutative
and the map H → H∗, h 7→ ι ↼ h is an isomorphism [20], every φ ∈ CocomH∗ is of the form
φ = ι ↼ z for a unique central element z of H.

The relation of cocommutative elements ofH andH∗ with that of D(H)∗ is intricate. Suppose
we want the holonomy of the type 0 face loop αa to be independent of the base point. For which
elements Ψ ∈ D(H)∗ do we have the relation Hol◦αT0a

(Ψ) = Hol◦αa
(Ψ)? One answer is provided

by (7.6) saying that Ψ ∈ CocomD(H)∗. Another answer is obtained by Proposition 6.5 and by
equation (7.1) saying that Ψ = h⊗ε with h ∈ CocomH. Which answer implies the other? None
of them. The point is that the surjective coalgebra maps

H
id⊗ε

D(H)∗
ε⊗id

H∗

if restricted to CocomD(H)∗ become mere linear maps

CocomH
id⊗ε

CocomD(H)∗
ε⊗id

CocomH∗,

which are no longer surjective, unless CocomH, resp. CocomH∗, is commutative. This is why
condition A of the theorem below contains a list of 3 possibilities.

Theorem 7.4. Let ρ : s0 → s1 be a ribbon opcurve (Definition 5.9) and let λ be either a type 0
face loop or a type 2 face loop which is disjoint from both s0 and s1. Then

Hol◦ρ(Φ) and Hol◦λ(Ψ) commute for all Φ ∈ D(H)∗

provided one of the following conditions holds:

A. Ψ belongs to either CocomD(H)∗ or CocomH ⊗ ε or 1⊗ CocomH∗.

B. Ψ ∈ D(H)∗ is arbitrary but the base point of λ is not lying on ρ.
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λ

γ

γ′

Figure 5. To the proof of Theorem 7.4: A subcurve γ of a left ribbon which collars the face loop λ of

type 2 and its central deformation γ′.

Proof. First we assume that ρ is a left ribbon and λ is a type 2 face loop. Let wρ ∈
{
T−1
0 , T2

}∗

be the code word of ρ (Definition 5.7). Let α1, . . . , αk be the list of generalized subcurves of ρ
such that (1) all arrows and sites of αj belongs to λ and (2) αj is maximal among the subcurves
satisfying (1). Mentioning sites under (1) refers to the possibility that αj consists of a single
site. It is maximal if and only if none of its neighbour arrows in ρ belongs to λ. The arrow dinj
of ρ preceding αj and the arrow doutj succeeding it must belong to U(λ) but not to λ. These
arrows are uniquely determined by the arc αj as follows. If αj = (s) is trivial, then

(
dinj , d

out
j

)
is the unique elbow which touches λ only at the site s. If αj =

(
cj,1, . . . , cj,lj

)
is non-trivial,

then the
(
dinj , cj,1

)
and

(
cj,lj , d

out
j

)
are straight (do not turn either left or right). The existence

of such d
in/out
j in ρ for all j follows either from maximality of the arcs αj or

(
for din1 and doutk

)
from

the assumption that s0, s1 do not lie on λ. Let γj :=
(
dinj

)
αj

(
doutj

)
. Then every γj corresponds

to a subword T−1
0 T

lj
2 T

−1
0 of wρ and the whole ribbon can be written as the composite

ρ = δ0γ1δ1 · · · γkδk

of possibly empty1 curves δj U-separated from λ and of “collars” γj of λ. These collars need not
be as simple as the one of Figure 5. They can wind around λ arbitrary many times, although
always counterclockwise. For different indices, γi and γj may overlap arbitrarily or can even
coincide.

It is now clear that commutativity of the opholonomies of ρ and λ will follow from that of γ
and λ for a single collar γ =

(
din, c1, . . . , cl, d

out
)
. A central deformation γ′ of γ can be defined

in the code word representation (Lemma 5.7) by means of a homomorphism h :
{
T−1
0 , T2

}∗ →{
T0, T

−1
0 , T2, T

−1
2

}∗
of free monoids as

γ′ := ⟨a0, h(wγ)⟩, where h
(
T−1
0

)
:= T−1

0 , h(T2) := T−1
0 T−1

2 T−1
0 ,

where γ = ⟨a0, wγ⟩. This means that γ′ differs from γ by replacing each cj of color T2 by
a detour

(
bj , c

′
j , dj

)
of color h(T2) such that the difference T2h(T2)

−1 = T2T0T2T0 is a type 1
loop, a conjugate of some βa, hence a central curve. To see that γ′ is a central deformation
of γ introduce the opcurves σj :=

(
din, c1, . . . , cj

)
and the lassos ϑj := σjβjσ

−1
j with the central

curve βj =
(
T̃1cj , bj , c

′
j , dj

)−1
. Then we have equality of paths

γγ′
−1

= ϑl · · ·ϑ1

proving that γγ′−1 is a central opcurve by Lemma 6.7. Thus,

Hol◦γ = Hol◦
γγ′−1 ∗Hol◦γ′ = 1M · ⟨Z, ⟩ ∗Hol◦γ′

1δj is empty if
(
doutj , dinj+1

)
is a type 0 loop of length 2. Such double edges in D(Σ)∗ correspond to a 2-valent

vertex in Σ.
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(for some Z ∈ Center(D(H))) commutes with Hol◦λ(Ψ) if and only if Hol◦γ′ does. We write γ′ as
the composite

(d0, b1)(c
′
1)(d1, b2)(c

′
2) · · · (c′l)(dl, bl+1), where d0 = din, bl+1 = dout

of elbows
(
dj , bj+1

)
touching λ at a single site and of length 1 pieces

(
c′j
)
. The elbows commute

with Hol◦λ(Ψ) because – in case A – the assumption on Ψ ensures Hol◦λ(Ψ) is independent of the
base point of λ so that it can be shifted to become different from the contact point of the elbow
and Corollary 7.3 to apply – and in case B – the base point of λ is different from the contact
point and Corollary 7.3 directly applies. We claim that

(
c′j
)
is U-separated from λ. Assume it is

not. Then at least one endpoint of c′j lies on λ so either bj or dj connects 2 sites of λ. Let s(a1)
and s(a2) be these two sites. Since they lie on the face loop λ, a1 and a2 must belong to the same
T2-orbit on Arr(Σ). But s(a1) and s(a2) are also connected by bj or dj which have color T−1

0 ,
so a1 and a2 belong to the same T0-orbit. By Lemma 2.2 (iii), this is possible only if a1 = a2
so bj or dj is a loop which cannot exist on D(Σ)∗. This contradiction refutes the assumption
that

(
c′j
)
is not U-separated from λ. Hence, Hol◦λ(Ψ) commutes also with the Hol◦(c′j)

(Φ) for all j

and finally also with Hol◦γ′ . This finishes the proof of the theorem for left ribbons ρ and type 2
face loops λ.

If ρ is a left ribbon and λ is a type 0 face loop, then the proof goes exactly as above except
that the collars γ now, having color code T2

(
T−1
0

)l
T2, wind around λ in clockwise direction.

The deformation γ′ is given by the substitution T−1
0 7→ T2T0T2, T2 7→ T2.

If ρ is a right ribbon, then the collars go clockwise around type 2 face loops and counter-
clockwise around type 0 loops. Otherwise, the proof is the same. ■

Corollary 7.5. For every ribbon ρ : ⟨v0, f0⟩ → ⟨v1, f1⟩ and for every Φ ∈ D(H)∗, the oper-
ator M = Hol◦ρ(Φ) commutes with all the operators Av and Bf except for v ∈ {v0, v1} and
f ∈ {f0, f1}.

For a given ribbon, there are four type 0 or type 2 face loops for which the above theorem
does not apply. The next theorem is to deal with these remaining cases.

Theorem 7.6. Let ρ : s(a) → s(b) be a proper left ribbon, where s(a) and s(b) are disjoint sites.
Then

Hol◦ρ(Φ) ◁
a
X = Hol◦ρ(Φ↼ X), (7.9)

X ▷
b
Hol◦ρ(Φ) = Hol◦ρ(X ⇀ Φ) (7.10)

hold true for every X ∈ D(H) and Φ ∈ D(H)∗.

Proof. The equations to be proven are equivalent to the exchange relations

Hol◦ρ(Φ)Da(X) = Da

(
X(1)

)
Hol◦ρ

(
Φ↼ X(2)

)
, (7.11)

Db(X)Hol◦ρ(Φ) = Hol◦ρ
(
X(1) ⇀ Φ

)
Db

(
X(2)

)
. (7.12)

Every arrow of ρ is either a c−0 or a c+2 for some c ∈ Arr(Σ). The consecutive c−0 arrows form
a non-trivial arc on a type 0 face loop and the consecutive c+2 arrows do the same on a type 2
face loop. So there is a unique decomposition ρ = υ1 · · · υm into a concatenation of arcs which
are alternatingly type 0 or type 2.

(
This decomposition corresponds to the decomposition of

a word w ∈
{
T−1
0 , T2

}∗
into an alternating product of powers T−k

0 and T l
2.
)
Since ρ is proper,

two arcs can intersect only at some of their common endpoints and in this case the two arcs
are consecutive in the sequence (υ1, . . . , υm). The number of arcs m ≥ 2 because we assumed
that s(a) and s(b) are disjoint.
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The face loops αa, γa and αb, γb involved in the gauge transformations Da(X) and Db(X) fail
to commute only with a few initial and final arcs. More precisely, let υj : sj−1 → sj and assume
that υ1 is type 2. Then s1 does not lie on αa, otherwise two different sites, s0 and s1, belonged
to both a type 0 and a type 2 face loop which is impossible in view of Figure 4. So neither
endpoints of υ2 · · · υm belongs to αa. Furthermore, υ2 · · · υm never visits the site s(a) = s0
because υ1 does but ρ is proper, hence a simple curve by Proposition 6.2 (ii). It follows that

υ1 is type 2 ⇒ Ga(H) commutes with Hol◦υ2...υm(D(H)∗) (7.13)

by Theorem 7.4 (B). Now assume that υ1 is type 0. Then s1 lies on αa and s2 does not because υ2
is type 2. Therefore,

υ1 is type 0 ⇒ Ga(H) commutes with Hol◦υ3...υm(D(H)∗) (7.14)

again by Theorem 7.4 (B). Similar arguments yield

υ1 is type 0 ⇒ Fa(H
∗) commutes with Hol◦υ2...υm(D(H)∗), (7.15)

υ1 is type 2 ⇒ Fa(H
∗) commutes with Hol◦υ3...υm(D(H)∗). (7.16)

Similar conclusions can be drawn for commutativity of Fb(H
∗) and Gb(H) with Hol◦υ1...υm−1

or
Hol◦υ1...υm−2

but we shall not need them.

Concentrating on the relation (7.11) we have 6 different exchange relations to compute:

Case Ga with υ1 if υ1 is type 0. Let n = |O0(a)|. Then the arc is υ1 =
(
a−0 ,

(
T−1
0 a

)−
0
, . . . ,(

T−j+1
0 a

)−
0

)
for some 0 < j < n. Since Hol◦υ1(h⊗ φ) is proportional to φ(1), it suffices to work

with Hol◦υ1(h⊗ε) = PS
a,...,T−j+1

0 a
(h) where we use the notation Pc1,...,ci(h) := Pc1

(
h(1)

)
· · ·Pci

(
h(i)

)
and similarly for PS

c = Pc ◦ S,

PS
a,...,T−j+1

0 a
(h)Ga(g) = P

Tn−j+1
0 a,...,Tn

0 a
(S(h))P

T0a,...,T
n−j
0 a

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
g(2)

)
= P

T0a,...,T
n−j
0 a

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
S(h)g(2)

)
= Ga

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
S
(
g(2)

)
S(h)g(3)

)
= Ga

(
g(1)

)
PS
a,...,T−j+1

0 a

(
S
(
g(3)

)
hg(2)

)
.

Case Ga with υ2 if υ1 is type 0. Given υ1 as in the previous case the next arc υ2 starts at
s
(
T−j
0 a

)
therefore υ2 =

((
T−j
0 a

)+
2
,
(
T2T

−j
0 a

)+
2
, . . . ,

(
T k−1
2 T−j

0 a
)+
2

)
for some 0 < k <

∣∣O2

(
T−j
0 a

)∣∣.
Nontriviality of the commutator of Hol◦υ2(1⊗φ) = Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(φ) and Ga comes from the

first arrow of υ2 and from the (n− j)-th arrow of Ga,

Q
T−j
0 a,...,Tk−1

2 T−j
0 a

(φ)Ga(g) = Q
T−j
0 a

(
φ(1)

)
Ga(g)QT2T

−j
0 a,...,Tk−1

2 T−j
0 a

(
φ(2)

)
= P

T0a,...,T
n−j−1
0 a

(
g(1)

)
Q

T−j
0 a

(
φ(1)

)
P
Tn−j
0 a

(
g(2)

)
× P

Tn−j+1
0 a,...,Tn

0 a

(
g(3)

)
Q

T2T
−j
0 a,...,Tk−1

2 T−j
0 a

(
φ(2)

)
(2.8)
= P

T0a,...,T
n−j−1
0 a

(
g(1)

)
P
Tn−j
0 a

(φ(1) ⇀ g(2))QT−j
0 a

(
φ(2)

)
× P

Tn−j+1
0 a,...,Tn

0 a

(
g(3)

)
Q

T2T
−j
0 a,...,Tk−1

2 T−j
0 a

(
φ(3)

)
= P

T0a,...,T
n−j
0 a

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
g(3)

)
Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(
φ ↼ g(2)

)
.
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This is not yet in the desired form, there is no Ga on the left-hand side, but we wish to complete
it in the presence of the holonomy of υ1:

PS
a,...,T−j+1

0 a
(h)Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(φ)Ga(g)

= P
Tn−j+1
0 a,...,Tn

0 a
(S(h))P

T0a,...,T
n−j
0 a

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
g(3)

)
Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(
φ ↼ g(2)

)
= P

T0a,...,T
n−j
0 a

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
S(h)g(3)

)
Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(
φ ↼ g(2)

)
= Ga

(
g(1)

)
P
Tn−j+1
0 a,...,Tn

0 a

(
S
(
g(2)

)
S(h)g(4)

)
Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(
φ ↼ g(3)

)
= Ga

(
g(1)

)
PS
a,...,T−j+1

0 a

(
S
(
g(4)

)
hg(2)

)
Q

T−j
0 a,...,Tk−1

2 T−j
0 a

(
φ ↼ g(3)

)
.

Since Hol◦υ1υ2(Φ) = Hol◦υ1(h⊗ ε)Hol◦υ2(1⊗ φ), where Φ = h⊗ φ and

S
(
g(3)

)
hg(1) ⊗ φ ↼ g(2) =

〈
h(1) ⊗ ξiφ(1)ξj , ε⊗ g

〉
S(xj)h(2)xi ⊗ φ(2) = Φ↼ (ε⊗ g),

we obtain Hol◦υ1υ2(Φ)Ga(g) = Ga

(
g(1)

)
Hol◦υ1υ2

(
Φ ↼

(
ε ⊗ g(2)

))
which, together with (7.14),

gives the result

Hol◦ρ(Φ)Ga(g) = Ga

(
g(1)

)
Hol◦ρ

(
Φ↼

(
ε⊗ g(2)

))
, (7.17)

whenever υ1 is a type 0 arc.

Case Fa with υ1 if υ1 is type 0. For υ1 as above, we can write

PS
a,...,T−j+1

0 a
(h)Fa(ψ) = Pa

(
S
(
h(1)

))
Fa(ψ)PT−1

0 a

(
S
(
h(2)

))
· · ·P

T−j+1
0 a

(
S
(
h(j)

))
(3.13)
= Fa

(
ψ(2)

)
Pa

(
S
(
ψ(1)

)
⇀ S

(
h(1)

))
PT−1

0 a

(
S
(
h(2)

))
· · ·P

T−j+1
0 a

(
S
(
h(j)

))
= Fa

(
ψ(2)

)
PS
a,...,T−j+1

0 a

(
h ↼ ψ(1)

)
.

Since

Φ↼ (ψ ⊗ 1) =
〈
ψ, h(1)

〉
h(2) ⊗ φ = h ↼ ψ ⊗ φ,

Hol◦υ1(Φ↼ (ψ ⊗ 1)) = PS
a,...,T−j+1

0 a
(h ↼ ψ) · ⟨φ, 1⟩,

using also (7.15), we immediately obtain

Hol◦ρ(Φ)Fa(ψ) = Fa

(
ψ(2)

)
Hol◦ρ

(
Φ↼

(
ψ(1) ⊗ 1

))
, (7.18)

which together with (7.17) proves (7.11) at least if the first arc of ρ is type 0.

Case Ga with υ1 if υ1 is type 2. Then υ1 =
(
a+2 , . . . ,

(
T j−1
2 a

)+
2

)
for some 0 < j < n

where n = |O2(a)|. Thus,

Hol◦υ1(Φ)Ga(g) = ε(h)Q
a,...,T j−1

2 a
(φ)Ga(g)

= ε(h)Qa

(
φ(1)

)
Ga(g)QT2a

(
φ(2)

)
· · ·Q

T j−1
2 a

(
φ(j)

)
(3.7)
= ε(h)Ga

(
g(1)

)
Qa

(
φ(1) ↼ g(2)

)
QT2a

(
φ(2)

)
· · ·Q

T j−1
2 a

(
φ(j)

)
= Ga

(
g(1)

)
ε(h)Q

a,...,T j−1
2 a

(
φ ↼ g(2)

)
= Ga

(
g(1)

)
Hol◦υ1

(
Φ↼

(
ε⊗ g(2)

))
,

which, together with (7.13), is sufficient to conclude that (7.17) holds also if υ1 is a type 2 arc.
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Case Fa with υ1 if υ1 is type 2. With the same υ1 as in the previous case, we can write

Q
a,...,T j−1

2 a
(φ)Fa(ψ) = Q

a,...,T j−1
2 a

(
φψ(1)

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(2)

)
= Q

T j
2 a,...,T

n−1
2 a

(
ψ(4)

)
Q

a,...,T j−1
2 a

(
ψ(3)

)
Q

a,...,T j−1
2 a

(
S
(
ψ(2)

)
φψ(1)

)
= Fa

(
ψ(3)

)
Q

a,...,T j−1
2 a

(
S
(
ψ(2)

)
φψ(1)

)
.

Case Fa with υ2 if υ1 is type 2. With υ1 as in the previous two cases the next arc is
υ2 =

((
T j
2a

)−
0
,
(
T−1
0 T j

2a
)−
0
, . . . ,

(
T−k+1
0 T j

2a
)−
0

)
, where 0 < k <

∣∣O0

(
T j
2a

)∣∣. Non-commutativity

of Fa and Hol◦υ2 is due to the first arrow of υ2 and to the arrow
(
T j
2a

)+
2
of γa,

PS
T j
2 a,...,T

−k+1
0 T j

2 a
(h)Fa(ψ) = P

T−k+1
0 T j

2 a,...,T
j
2 a
(S(h))Q

a,...,T j−1
2 a

(
ψ(1)

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(2)

)
= Q

a,...,T j−1
2 a

(
ψ(1)

)
P
T−k+1
0 T j

2 a,...,T
−1
0 T j

2 a
(S

(
h(2)

)
)P

T j
2 a

(
S
(
h(1)

))
Q

T j
2 a

(
ψ(2)

)
×Q

T j+1
2 a,...,Tn−1

2 a

(
ψ(3)

)
(3.4)
= Q

a,...,T j−1
2 a

(
ψ(1)

)
P
T−k+1
0 T j

2 a,...,T
−1
0 T j

2 a

(
S
(
h(2)

))
×Q

T j
2 a

(
ψ(2) ↼ S

(
S
(
h(1)

)
(2)

))
P
T j
2 a

(
S
(
h(1)

)
(1)

)
Q

T j+1
2 a,...,Tn−1

2 a

(
ψ(3)

)
= Q

a,...,T j−1
2 a

(
ψ(1)

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(2) ↼ h(1)

)
P
T−k+1
0 T j

2 a,...,T
j
2 a

(
S
(
h(2)

))
.

Combining this with the result of the previous case, we have

Hol◦υ1υ2(Φ)Fa(ψ) = Hol◦υ1
(
h(1) ⊗ ξiφ(1)ξj

)
Hol◦υ2

(
S(xj)h(2)xi ⊗ φ(2)

)
Fa(ψ)

= Q
a,...,T j−1

2 a
(ξiφξj)P

S
T j
2 a,...,T

−k+1
0 T j

2 a
(S(xj)hxi)Fa(ψ)

= Q
a,...,T j−1

2 a
(ξiφξj)Qa,...,T j−1

2 a

(
ψ(1)

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(2) ↼ [S(xj)hxi](1)

)
× P

T−k+1
0 T j

2 a,...,T
j
2 a

(
S
(
[S(xj)hxi](2)

))
= Q

a,...,T j−1
2 a

(
ξiφξjψ(1)

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(3)

)
PS
T j
2 a,...,T

−k+1
0 T j

2 a

(
[S(xj)hxi]↼ ψ(2)

)
The Hopf algebraic identity

ξiφξjψ(1) ⊗ [S(xj)hxi]↼ ψ(2) = ψ(2)ξiφξj ⊗ S(xj)(h ↼ ψ(1))xi

shows that the last line above equals to

Q
a,...,T j−1

2 a

(
ψ(2)ξiφξj

)
Q

T j
2 a,...,T

n−1
2 a

(
ψ(3)

)
PS
T j
2 a,...,T

−k+1
0 T j

2 a

(
S(xj)

(
h ↼ ψ(1)

)
xi
)

= Fa

(
ψ(2)

)
Q

a,...,T j−1
2 a

(ξiφξj)P
S
T j
2 a,...,T

−k+1
0 T j

2 a

(
S(xj)

(
h ↼ ψ(1)

)
xi
)

= Fa

(
ψ(2)

)
Hol◦υ1

((
h ↼ ψ(1)

)
(1)

⊗ ξiφ(1)ξj
)
Hol◦υ2

(
S(xj)

(
h ↼ ψ(1)

)
(2)
xi ⊗ φ(2)

)
= Fa

(
ψ(2)

)
Hol◦υ1υ2

(
h ↼ ψ(1) ⊗ φ

)
= Fa

(
ψ(2)

)
Hol◦υ1υ2

(
Φ↼

(
ψ(1) ⊗ 1

))
.

Taking into account (7.16), this proves (7.18) for ρ having first arc of type 2.
The above cases together prove formula (7.11) for all proper left ribbons with disjoint source

and target.
Formula (7.12) requires to consider another 6 cases but there is a shorter and more instruc-

tive way to prove it. We can apply duality to view the holonomy of the left ribbon ρ as the
holonomy of a right ribbon in another Kitaev model based on the Hopf algebra H∗. This
duality has two ingredients: an algebra isomorphism I : M(Σ, H) → M(Σ∗, H∗) and an iso-
morphism J : Qv(D(P )∼) → Qv(D(P∽)∼) of quivers. The I is defined by I(Pa(h)) := Q∗

T1a
(h),
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I(Qa(φ)) := P ∗
a (φ) where the P ∗

a and Q∗
a are the standard generators of M(Σ∗, H∗) like the Pa

and Qa have been for M(Σ, H) in Section 3. Comparing equations (3.7) and (3.18), it is easy to
see that I is an algebra isomorphism. It maps Gauss’ law operators to flux operators and vice
versa,

I(Ga(h)) = F ∗
T−1
2 a

(h), I(Fa(φ)) = G∗
T−1
2 a

(φ), I(Da(X)) = D∗
T−1
2 a

(Υ(X)),

where

Υ: D(H) → D(H∗),

φ⊗ h 7→ h(2) ⊗ φ(2) ·
〈
h(3), φ(1)

〉〈
S
(
h(1)

)
, φ(3)

〉
is an isomorphism of algebras and antiisomorphism of coalgebras.

In order to construct J , we first define a bijection j between the OCPMs associated to the
arrow presentations P and its dual P∽ of (4.2) by

j : Σ(P) → Σ(
∽
P), O0(a) 7→

∽
O2 (T1a), O1(a) 7→

∽
O1 (a), O2(a) 7→

∽
O0 (a),

which satisfies

j ◦ ∂0 =
∽
d1, j ◦ d0 =

∽
∂0, j ◦ ∂1 =

∽
d0, j ◦ d1 =

∽
∂1 .

The definition of J is this

J : Qv(D(P)∼) → Qv
(
D
(∽
P
)∼)

, ⟨v, f⟩ 7→ ⟨j(f), j(v)⟩, a±0 7→ (T1a)
±
2 , a±2 7→ a±0 .

This can be shown to be a map of quivers by reading off the definition of ∇i from (5.1). For
example,

∽
∇0 ◦ J

(
a+0

)
=

∽
∇0 (T1a)

+
2 =

〈∽
∂0 T1a,

∽
d0 T1a

〉
=

〈∽
∂1 a,

∽
d1 a

〉
= ⟨j(d1a), j(∂0a)⟩ = J(⟨∂0a, d1a⟩) = J ◦ ∇0

(
a+0

)
.

This J is one of the maps that realizes the intuitively clear idea that the complexes D(Σ)∗

and D(Σ∗)∗ are the “same” except relabelling the arrows and repainting the blue and red faces
to red and blue, respectively.

Now J induces an isomorphism J∗ : PathD(P)∼ → PathD(
∽
P)∼ of groupoids which sends a left

ribbon ρ : s(a) → s(b) to a right ribbon J∗ρ :
∽
s
(
T−1
2 a

)
→∽
s
(
T−1
2 b

)
.
(
The appearance of T−1

2

is due to the fact that the site labelling function a 7→ s(a) satisfies J ◦ s =∽
s ◦T−1

2 . As such,
it belongs to the object map of the functor J∗.

)
If Hol◦∽ denotes the opholonomy of the dual

model, then the duality formula says that for all curves ρ of the original model

I
(
Hol◦ρ(Φ)

)
= Hol◦∽J∗ρ(Υ

∗(Φ)), (7.19)

where Υ∗ =
(
ΥT

)−1
: D(H)∗ → D(H∗)∗ is the mapping

Υ∗(h⊗ φ) = ξkφξl ⊗ S(xl)hxk,

which is an antiisomorphism of algebras and an isomorphism of coalgebras.
Applying the duality formula to (7.11), we obtain

Hol◦∽J∗ρ(Υ
∗(Φ))D∗

T−1
2 a

(Υ(X)) = D∗
T−1
2 a

(
Υ
(
X(1)

))
Hol◦∽J∗ρ

(
Υ∗(Φ(2)

))〈
Υ∗(Φ(1)

)
,Υ

(
X(2)

)〉
= D∗

T−1
2 a

(
Υ(X)(2)

)
Hol◦∽J∗ρ

(
Υ∗(Φ)(2))⟨Υ∗(Φ)(1),Υ(X)(1)

〉
= D∗

T−1
2 a

(
Υ(X)(2)

)
Hol◦∽J∗ρ

(
Υ∗(Φ)↼ Υ(X)(1)

)
.
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Therefore,

Hol◦∽γ (Ψ)D∗
a(Y ) = D∗

a

(
Y(2)

)
Hol◦∽γ

(
Ψ↼ Y(1)

)
for all proper right ribbons γ :

∽
s (a) →∽

s (b), for Y ∈ D(H∗) and for Ψ ∈ D(H∗)∗. For the left
ribbon γ−1, this implies

D∗
a(Y )Hol◦∽γ−1(Ψ) = Hol◦∽γ−1

(
Ψ(1)

)
Hol◦∽γ

(
Ψ(2)

)
D∗

a(Y )Hol◦∽γ−1

(
Ψ(3)

)
= Hol◦∽γ−1

(
Ψ(1)

)
D∗

a

(
Y(2)

)
Hol◦∽γ

(
Ψ(2) ↼ Y(1)

)
Hol◦∽γ−1

(
Ψ(3)

)
= Hol◦∽γ−1

(
Y(1) ⇀ Ψ

)
D∗

a

(
Y(2)

)
.

Since this is true for all left ribbons γ−1 with target
∽
s (a) not only on D(Σ∗)∗ and not only for H∗

but on the dual of the double of any OCPM Σ and for any involutive f.d. Hopf algebra H, we
can apply it to the original Σ and H and we get the proof of (7.12). ■

For sake of completeness, we note here the formulas that hold instead of (7.9) and (7.10) if
ρ : s(a) → s(b) is a proper right ribbon,

Hol◦ρ(Φ) ◀
a
X = Hol◦ρ(Φ↼ X), (7.20)

X ▶
b
Hol◦ρ(Φ) = Hol◦ρ(X ⇀ Φ). (7.21)

Corollary 7.7. Let s(a) and s(b) be disjoint sites and ρ : s(a) → s(b) be a proper left ribbon.
Then the space Hol◦ρ(D(H)∗) of ribbon operators over ρ equipped with the actions ▷

b
and ◁

a
is

a bimodule over D(H) such that

Hol◦ρ : D(H)∗ → Hol◦ρ(D(H)∗)

is a homomorphism of D(H)-D(H) bimodules if we consider D(H)∗ as the regular bimodule
⟨D(H)∗,⇀,↼⟩. This map is also a homomorphism of left D(H)-module algebras and of right
D(H)-module algebras.

Similar holds for proper right ribbons ρ : s(a) → s(b) but then the bimodule structure is given
by ▶

b
and ◀

a
and the algebra structure by D(H)∗ op.

Proof. That Hol◦ρ(D(H)∗) is a left and right D(H)-module and that the map is a left and right
D(H)-module map follow from Theorem 7.6. Due to disjointness of the source and target sites,
the left and right actions commute so Hol◦ρ(D(H)∗) is a bimodule. The last sentence follows
from (7.4) which shows that Hol◦ρ(D(H)∗) ⊂ M is a left and right module subalgebra. ■

Similar results can be obtained [5] in a context of non-semisimple Hopf algebras.
We close the section with two more results on closed ribbon operators. An opcurve γ : s0 → s1

is called closed if s0 = s1. If γ = (d1, . . . , dn) is closed, then every cyclic permutation Ckγ =
(dk+1, . . . , dn, d1, . . . , dk) is also closed. It follows from the code word representation of ribbons
that if the closed curve γ happens to be a ribbon then the Ckγ are also ribbons of the same
type (left/right). Similarly, the cyclic permutations of proper closed ribbons are again proper
as it is clear from Definition 6.1.

Proposition 7.8. Let δ : s(a) → s(a) and ρ : s(a) → s(a) be closed left ribbons of the following
form

(
for ↔

U
see Definition 7.1

)
:

δ =
(
a−0

)
δ′
((
T−1
2 a

)+
2

)
, where δ′ ↔

U
ρ,

ρ =
(
a+2

)
ρ′
(
(T0a)

−
0

)
, where ρ′ ↔

U
λ,
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so that the only intersection of δ and ρ is the site s(a). (This is possible if the genus of [Σ] is at
least 1.) Then

Hol◦δ(Ψ)Hol◦ρ(Φ) = Hol◦ρ(R2′ ⇀ Φ↼ R1)Hol
◦
δ(R1′ ⇀ Ψ↼ R2) (7.22)

for all Φ,Ψ ∈ D(H)∗ where R = R1 ⊗R2 ≡ R1′ ⊗R2′ is the R-matrix of D(H).

Proof. For any curve γ we abbreviate Hol◦γ by Hγ . The strategy of the proof is similar to that
of Lemma 3.1. We decompose the opholonomies into 3 terms,

Hδ(Ψ) = H(a−0 )

(
Ψ(1)

)
Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
Ψ(3)

)
,

Hρ(Φ) = H(a+2 )

(
Φ(1)

)
Hρ′

(
Φ(2)

)
H((T0a)

−
0 )

(
Φ(3)

)
with the middle terms commuting with all terms of the other line. Then we exchange Hδ and Hρ

in such a way that the order of terms of the same line remains intact in every step. Using the
identities (6.5) and (6.6), we can write

Hδ(Ψ)Hρ(Φ) = H(a−0 )

(
Ψ(1)

)
H(a+2 )

(
Φ(1)

)
Hρ′

(
Φ(2)

)
·Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
Ψ(3)

)
H((T0a)

−
0 )

(
Φ(3)

)
= H(a+2 )

(
Φ(1) ↼ R1

)
H(a−0 )

(
Ψ(1) ↼ R2

)
Hρ′

(
Φ(2)

)
Hδ′

(
Ψ(2)

)
·H((T0a)

−
0 )

(
R2′ ⇀ Φ(3)

)
H((T−1

2 a)+2 )

(
R1′ ⇀ Ψ(3)

)
= H(a+2 )

(
Φ(1) ↼ R1

)
Hρ′

(
Φ(2)

)
H((T0a)

−
0 )

(
R2′ ⇀ Φ(3)

)
·H(a−0 )

(
Ψ(1) ↼ R2

)
Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
R1′ ⇀ Ψ(3)

)
= Hρ

(
R2′ ⇀ Φ↼ R1

)
Hδ

(
R1′ ⇀ Ψ↼ R2

)
,

which completes the proof of (7.22). ■

A closed ribbon version of (7.9) and (7.10) can be obtained as follows. First, we need a
lemma.

Lemma 7.9. Let ρ : s(a) → s(a) be a non-empty closed proper left ribbon which is not a face
loop. Then there exist proper left ribbons ρ1 : s(a) → s(b) and ρ2 : s(b) → s(a) with disjoint s(a)
and s(b) such that ρ = ρ1ρ2.

Proof. Let ρ = υ1 · · · υm be the arc decomposition as in the prof of Theorem 7.6. Since ρ is
not a face loop, m ≥ 2. Let s(a0)

υ1−→ s(a1)
υ2−→ s(a2), where a0 = a. Then s(a1) is neighbour

to s(a0) and s(a2) is disjoint from s(a0). Similarly, the sites of s(am−2)
υm−1−→ s(am−1)

υm−→ s(am),
where am = a, satisfy that s(am−1) is neighbour to s(am) and s(am−2) is disjoint from s(am).
This already excludes m = 2 and m = 3. So we can take ρ1 = υ1υ2 and ρ2 = υ3 · · · υm. ■

Proposition 7.10. Let ρ : s(a) → s(a) be a non-empty closed proper left ribbon. Then

Da(X)Holρ(Φ) = Holρ
(
X(1) ⇀ Φ↼ SD

(
X(3)

))
Da

(
X(2)

)
(7.23)

holds true for every X ∈ D(H) and Φ ∈ D(H)∗.

Proof. First, we assume that ρ is not a face loop. Take a decomposition

ρ = s(a)
ρ1−→ s(b)

ρ2−→ s(a)
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provided by Lemma 7.9 with disjoint sites s(a) and s(b). Using Theorem 7.6,

Da(X)Holρ(Φ) = Da(X)Holρ1
(
Φ(1)

)
Holρ2

(
Φ(2)

)
= Holρ1

(
Φ(1) ↼ SD

(
X(2)

))
Da

(
X(1)

)
Holρ

(
Φ(2)

)
= Holρ1

(
Φ(1) ↼ SD

(
X(3)

))
Holρ

(
X(1) ⇀ Φ(2)

)
Da

(
X(2)

)
= Holρ

(
X(1) ⇀ Φ↼ SD

(
X(3)

))
Da

(
X(2)

)
the statement is proven.

If ρ is a face loop, then ρ is either γa or α−1
a . Assume ρ = γa. Then by Proposition 6.5

Holρ(h⊗ φ) = ε(h)Fa(φ) = Da(φ⊗ 1) ε(h),

so the left-hand side of (7.23) with X = ψ ⊗ g and Φ = h⊗ φ can be written as

Da(X)Holρ(Φ) = Da(X(φ⊗ 1)ε(h)

= Da

(
ψφ(2) ⊗ g(2)

)
·
〈
φ(3), g(1)

〉〈
φ(1), S

(
g(3)

)〉
ε(h).

For the right-hand side, a much longer computation is necessary,

Holρ
(
X(1) ⇀ Φ↼ SD

(
X(3)

))
Da

(
X(2)

)
= Holρ

([
S(xj)h(2)xi︸ ︷︷ ︸

hji

⊗ φ(2)

]
(1)

)〈[
S(xj)h(2)xi ⊗ φ(2)

]
(2)
, X(1)

〉
×
〈
h(1) ⊗ ξiφ(1)ξj , SD

(
X(3)

)〉
Da

(
X(2)

)
= Holρ

(
hji(1) ⊗ ξkφ(2)ξl

)〈
S(xl)hji(2)xk ⊗ φ(3), X(1)

〉
×
〈
h(1) ⊗ ξiφ(1)ξj , SD

(
X(3)

)〉
Da

(
X(2)

)
= Da

(
ξkφ(2)ξl ⊗ 1

)〈
S(xl)hjixk ⊗ φ(3), ψ(3) ⊗ g(1)

〉
×
〈
xnS

(
h(1)

)
S(xm)⊗ ξmS(ξj)S

(
φ(1)

)
S(ξi)ξn, ψ(1) ⊗ g(3)

〉
Da

(
ψ(2) ⊗ g(2)

)
=

〈
ψ(3), S(xl)S(xj)h(2)xixk

〉〈
φ(3), g(1)

〉〈
ψ(1), xnS

(
h(1)

)
S(xm)

〉
×
〈
ξmS(ξj)S

(
φ(1)

)
S(ξi)ξn, g(3)

〉
Da

(
ξkφ(2)ξlψ(2) ⊗ g(2)

)
=

〈
ψ(7), h(2)

〉〈
φ(3), g(1)

〉〈
ψ(2), S

(
h(1)

)〉
×
〈
S
(
ψ(3)

)
ψ(6)S

(
φ(1)

)
S
(
ψ(8)

)
ψ(1), g(3)

〉
Da

(
ψ(9)φ(2)S

(
ψ(5)

)
ψ(4) ⊗ g(2)

)
= ε(h)

〈
φ(3), g(1)

〉〈
S
(
φ(1)

)
, g(3)

〉
Da

(
ψφ(2) ⊗ g(2)

)
.

The case of ρ = α−1
a can be proven by a similar calculation. ■

Note that (7.23) is identical to the multiplication rule in the double of the double, D(D(H)).

8 Homotopy

In order to explain “topological invariance” of the Kitaev model, the first step is to look for
an appropriate notion of homotopy of curves. Eventually, we want to use homotopy on the
complex D(Σ)∗ but the very notion should be given for an arbitrary Σ.

Definition 8.1. Let Σ be a connected OCPM with arrow presentation ⟨Arr, T0, T2⟩.

(i) Let f be a face of Σ. An f -loop λ is a closed opcurve
(
a, T2a, T

2
2 a, . . .

)
or its inverse where

a ∈ Arr is such that O2(a) = f . The set of f -loops for all f ∈ Σ2 are called face loops.
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(ii) A lasso ϑ is a conjugate of a face loop, i.e., ϑ = σλσ−1, where λ is a face loop and σ is
arbitrary, provided ∂1σ = ∂0λ. If λ is an f -loop then ϑ is called an f -lasso.

(iii) Let α, β be parallel opcurves, i.e., ∂iα = ∂iβ, i = 0, 1. A (combinatorial) homotopy from α
to β is a sequence of lassos (ϑN , . . . , ϑ1) such that

βϑN . . . ϑ2ϑ1 = α as paths.

Two opcurves are called homotopic, denoted by α ∼ β, if they are parallel and there is
a homotopy from one of them to the other.

(iv) A contraction of a closed curve α : v → v is a homotopy from α to the trivial curve (v).
A closed curve is contractible if has a contraction.

(v) If (ϑN , . . . , ϑ1) : α → β is a homotopy with ϑi being an fi-lasso, then the support of this
homotopy is the set of faces occurring in the list (fi).

Remark 8.2. There are op-versions of the above definition of homotopy of opcurves:

� In ophomotopy of opcurves α→ β means αϑ1 · · ·ϑN = β.

� In homotopy of curves α→ β means ϑN ◦ · · · ◦ ϑ1 ◦ α = β.

� In ophomotopy of curves α→ β means ϑ1 ◦ · · · ◦ ϑN ◦ β = α.

Scholium 8.3. Let Σ be a connected OCPM. Homotopy of opcurves on Σ satisfies the following
elementary properties:

(i) If ϑ = (ϑN , . . . , ϑ1) is a homotopy α→ β then ϑ−1 =
(
ϑ−1
1 , . . . , ϑ−1

N

)
is a homotopy β → α.

(ii) If α
ϑ−→ β

ϑ′
−→ γ are homotopies, then the composition

ϑ′ ◦ ϑ :=
(
ϑ′M , . . . , ϑ

′
1, ϑN , . . . , ϑ1

)
is a homotopy α→ γ.

(iii) If two opcurves are equal as paths, then they are homotopic.

(iv) Homotopy is an equivalence relation on the set of opcurves and each path is the subset of
a unique homotopy class.

(v) A homotopy α→ β is the same as a contraction of β−1α.

(vi) If ϑ : α→ β is a homotopy, then
(
βϑNβ

−1, . . . βϑ1β
−1

)
is a homotopy β−1 → α−1.

(vii) Let

u
α−→ v

β

γ
w

δ−→ z

be opcurves and let ϑ : β → γ be a homotopy. Then
(
. . . , δ−1ϑiδ, . . .

)
is a homotopy

αβδ → αγδ.

(viii) If (ϑN , . . . , ϑ1) : α → β is a homotopy and p ∈ SN is any permutation, then there exist
closed curves πi such that ϑ′i := πiϑp(i)π

−1
i defines a homotopy (ϑ′N , . . . , ϑ

′
1) : α→ β.

The set of homotopy classes of opcurves together with concatenation is a groupoid which is
the opposite of the traditional fundamental groupoid π1(Σ). It is evident from Definition 8.1,
although its formalization could be tedious, that this groupoid is the same as the fundamental
groupoid π1([Σ]) of the geometric realization of the complex Σ.

The notion of contraction defined above does not reflect the idea that a contractible curve
bounds a disk and the support of the contraction is the disk itself. As a matter of fact, any
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κa

λa

s(a)

Figure 6. The basic curves of ribbon homotopy.

finite set of faces can be the support of a contraction. So one should study simple curves and
their simple homotopies. But before we would dig too deeply into the subject of lasso homotopy
we should remind ourselves of our main goal which is the algebra of ribbon operators on D(Σ)∗.
It turns out that the use of lassos in holonomy operators is extremely inconvenient. The las-
sos σλσ−1 are not proper ribbons and the long tails σ introduce serious non-commutativities
which practically obstructs any computation. We need some other kind of homotopy specialized
to ribbon curves on D(Σ)∗ by means of which we can deform (proper) ribbons in such a way
that the curve stays a (proper) ribbon in each step.

Let us introduce the following open “lassos” (Figure 6):

κa :=
(
(T1a)

+
2 ,

(
Tm−1
0 a

)−
0
, . . . , (T0a)

−
0 , a

+
2

)
: s(T1a) → s(T2a), (8.1)

λa :=
(
(T1a)

−
0 , (T2a)

+
2 , . . . ,

(
Tn−1
2 a

)+
2
, a−0

)
: s(T1a) → s

(
T−1
0 a

)
, (8.2)

where m = |O0(a)| and n = |O2(a)|. Note that κa, λa ∈ Ribb◦L.
Unlike the lassos the κ-s and λ-s cannot be nicely composed. So the strategy in ribbon curve

homotopy is not composing the elementary paths, it is more like the procedure of grafting trees
in which κa and λa play the role of the grafts.

Remark 8.4. Speaking about subcurves and subpaths, in general, requires some care. For
opcurves σ and ρ, the relation σ ⊂ ρ means the existence of opcurves ρ1 and ρ2 such that
ρ = ρ1σρ2 as opcurves, hence no reduction is allowed. For paths of opcurves, σ ⊂ ρ means the
existence of paths ρ1 and ρ2 such that ρ = ρ1σρ2 as paths. In case of both σ and ρ are ribbons
(of the same type), the relation σ ⊂ ρ for the ribbon opcurves is stronger than the same relation
for their paths. However, if we think more categorically and utilize the fact that Ribb◦L/R is
a category for concatenation, then we can use the notion of subribbon as a third possibility. For
left ribbons, e.g., σ ⊂ ρ is a subribbon if there exist left ribbons ρ1 and ρ2 such that ρ = ρ1σρ2
either as opcurves or as paths because concatenation of left ribbons is always reduced so these
two alternatives are equivalent. This third version of “subcurve” is which we need in the next
definition.

Definition 8.5.

(a) For left ribbon opcurves ρ, ρ′ : s0 → s1, we say that the pair (ρ, ρ′) is an elementary
contraction and that (ρ′, ρ) is an elementary relaxation in the following 4 cases:

� Vertex contraction: For some a ∈ Arr(Σ) the ρ contains a subribbon α−1
a (see (6.7))

and ρ′ is obtained from ρ by discarding this α−1
a .

� Face contraction: For some a ∈ Arr(Σ), the ρ contains a subribbon γa (see (6.9)) and
ρ′ is obtained from ρ by discarding this γa.
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� κ-contraction: For some a ∈ Arr(Σ), the ρ contains a subribbon κa ⊂ ρ and ρ′ is
obtained by replacing this subribbon by

(
(T1a)

−
0

)
.

� λ-contraction: For some a ∈ Arr(Σ), the ρ contains a subribbon λa ⊂ ρ and ρ′ is
obtained by replacing this subribbon by

(
(T1a)

+
2

)
.

For ρ, ρ′ ∈ Ribb◦L, we write ρ ≈ ρ′ and say that they are ribbon-homotopic if there is
a sequence of left ribbons (ρ0, . . . , ρk), the homotopy, such that ρ0 = ρ, ρk = ρ′ and each
move (ρi, ρi+1) is an elementary contraction or an elementary relaxation.

(b) For closed ribbons, we also define free ribbon-homotopy as a ribbon-homotopy in which
we allow also circular moves: (ρi, ρi+1) is a circular move if ρi+1 differs from ρi only in the

choice of the base point. Free ribbon-homotopy is denoted by
⋆
≈.

(c) For right ribbons, the definitions (a) and (b) can be used without change except that in
the definition of moves the curves α−1

a , γa, κa, λa have to be replaced by αa, γ
−1
a , κ−1

a , λ−1
a ,

respectively.

(d) The support of a (free) ribbon-homotopy is the set F ⊆ Σ of faces of D(Σ)∗ arising as
the union of the supports of the elementary contractions/relaxations. In case of vertex
or face contraction/relaxation, the support is just the vertex or face in question. In case
of κ-contraction/relaxation, the support has 2 elements, a vertex and an edge of Σ, the
ones being winded around by κa. For λ-contraction/relaxation, the support is a similarly
defined pair of a face and of an edge.

Notice that we have not defined homotopy between a left and a right ribbon.

In order to place ribbon-homotopy into the wider context of homotopy, we need to see abun-
dance of ribbons in some sense.

Proposition 8.6. Let Σ be a connected OCPM and let s, s′ ∈ D(Σ)∗0 be two sites.

(i) There exists a left ribbon ρ : s→ s′.

(ii) If γ : s→ s′ is an opcurve, then there exists a left ribbon ρ : s→ s′ such that γ ∼ ρ, i.e., γ
and ρ are homotopic in the sense of Definition 8.1.

(iii) If ρ1, ρ2 : s→ s′ are left ribbons such that ρ1 ≈ ρ2, then ρ1 ∼ ρ2.

Proof. (ii) Let γ be the composite s = s(a0)
c1−→ s(a1)

c2−→ · · · cn−→ s(an) = s′, vk = O0(ak),
fk = O2(ak) and let w = Wn · · ·W1 be the code word of γ. The proof follows the principle of
replacing bad letters with good words. Construct the new word

w′ := w′
n · · ·w′

1, where w′
k :=


Wk if Wk ∈

{
T−1
0 , T2

}
,

T
−|vk|+1
0 if Wk = T0,

T
|fk|−1
2 if Wk = T−1

2 ,

and define the ribbons ρk := ⟨a0, w′
k · · ·w′

1⟩. Then ϑk := ρk−1(ck)ρ
−1
k is a lasso such that

ϑ1ϑ2 · · ·ϑn = γρ−1
n . Therefore, ρ = ρn is the desired ribbon and

(
γ−1ϑ1γ, . . . , γ

−1ϑnγ
)
: γ → ρ

is the desired homotopy.

(i) Since D(Σ)∗ is connected, there exists an opcurve γ = s→ s′. Thus, (i) follows from (ii).

(iii) It suffices to show that the elementary relaxations are homotopies. For the cases
of vertex and face relaxations, this is obvious. For κa, we can easily check the equality of
paths

(
(T1a)

−
0

)
= κaϑvϑe with lassos ϑv = (a−2 )αa

(
a+2

)
and ϑe = (a−2 , a

−
0 )β

−1
a

(
a+0 , a

+
2

)
. Thus,

(ϑv, ϑe) : κa →
(
(T1a)

−
0

)
is a homotopy. Similar formulas can be found for λa. ■
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Assume that we are given a closed ribbon which is contractible, e.g., because we know that
the ribbon bounds a disk. How can we design a ribbon-homotopy which shrinks the ribbon to
zero? This is the kind of problem in which “tree curves” play a role.

Definition 8.7. Tree curves or, more descriptively, tree dressing curves are closed ribbon
opcurves occurring in two types:

A tree curve τF can be constructed from a tree F ⊂ Σ0 ∪Σ1, as a subgraph of Σ, as follows.
Considering F as a set of faces of D(Σ)∗ we take τF to be any of the negatively oriented reduced
boundary opcurves of this fattened tree F .

A dual tree curve τF can be constructed from a dual tree F ⊂ Σ2 ∪Σ1, as a subgraph of Σ∗,
as follows. Consider F as a set of faces of D(Σ)∗ and take τF to be any of the positively oriented
reduced boundary opcurves of this fattened tree F .

Predecessors of the tree curves are the “dual blocks” and “direct blocks” of Bombin and
Martin-Delgado [1]. We need also rooted versions of them which are open ribbons:

Definition 8.8. A rooted tree curve is obtained from a tree curve τF by discarding the maximal
arc running around a leaf vertex v ∈ F . This curve is denoted by τF ′ , where F ′ = F \ {v} is the
underlying rooted tree. The root of τF ′ is the arrow which would complete the discarded arc to
a full loop around v. If r is the root, (r) is called the root curve.

A rooted dual tree curve is obtained from a dual tree curve τF by discarding the maximal
arc running around a leaf face f ∈ F . This curve is denoted by τF ′ , where F ′ = F \ {f} is the
underlying rooted dual tree. The root of τF ′ is the arrow which would complete the discarded
arc to a full loop around f . If r is the root, (r) is called the root curve.

Note the deviation from the usual notion of rooted tree. Here the root vertex is not an
arbitrary vertex but a leaf. Furthermore, the root vertex does not belong to the rooted tree,
so in fact there is only a root edge which is characterized by having only one boundary vertex
(a “half edge”).

The inverses τ−1
F

(
τ−1
F ′

)
of the above (rooted) tree curves are needed in ribbon-homotopy of

right ribbons, so they should also be called (rooted) tree curves.

Lemma 8.9. The following facts are either obvious or easy to prove:

(i) For every (rooted) (dual) tree F , the τF is a proper left ribbon and τ−1
F is a proper right

ribbon.

(ii) If F is a singleton tree in Σ (in Σ∗), then the (dual) tree curve τF is α−1
a (γa) for some

a ∈ Arr(Σ).

(iii) If the rooted tree F ′ in Σ (in Σ∗) consists of 2 elements, then the rooted (dual) tree curve τF ′

is a κa (λa) for some a ∈ Arr(Σ).

(iv) Every (dual) tree curve can be obtained from an α−1
a (γa) by successive grafting of κa-s

(λa-s) by their roots to some arrows of color T−1
0 (T2). The same can be said about the

rooted (dual) tree curves if we start with a κ (λ).

(v) Every κa, λa is ribbon-homotopic to its root curve.

(vi) Every tree curve and dual tree curve is ribbon-homotopic to some trivial ribbon.

(vii) Every rooted tree curve and rooted dual tree curve is ribbon-homotopic to its root curve.

Under (iv) the “grafting” means a κ- or λ-relaxation under the condition that the result
remains a proper opcurve. We do not have to use unproper relaxations to get tree curves
although a general ribbon-homotopy would allow them.
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Figure 7. A plan for contracting a left ribbon. (See the proof of Theorem 8.10.)

Theorem 8.10. For a connected OCPM Σ, let ρ : s → s be a closed proper left ribbon. We
divide the faces of D(Σ)∗ into connected components by saying that two faces p and q of D(Σ)∗

are connected if there is a dual curve δ : p → q on D(Σ)∗ such that neither the arrows of δ nor
their opposites are members of ρ. Assume that

� ρ cuts the set of faces into 2 connected components, L consisting of the faces lying on the
left and R consisting of the faces lying on the right of ρ;

� as subcomplexes of Σ either L or R has Euler characteristic 1.

Then there is a ribbon-homotopy from ρ to the trivial ribbon (s) such that the support of the
homotopy is L, resp. R, and in each step of the homotopy the curve is proper.

Proof. Looking at the two connected components L and R as sets of cells of Σ, we have
L ∩ R = ∅ and L ∪ R = Σ. But there is a substantial difference between these subcomplexes.
L is upper semiclosed, i.e., together with any cell c it contains also Cb(c), while R is lower
semiclosed2, i.e., together with any cell c it contains also Bd(c). This is visible on Figure 7 by
the appearance of alternating red and green dots on the left-hand side of ρ and of the blue and
green dots on the right-hand side. These sequences of faces and edges on the left and vertices and
edges on the right are the boundary dual curve of L and the boundary curve of R, respectively.
They coincide with the two borderlines E∗(ρ) = ⟨c, b⟩ of ρ, see in and below Lemma 5.4. Since
ρ is a ribbon, these borderlines never cross by Lemma 5.8.

Let Ld = Σd∩L for d = 0, 1, 2 and assume that it is L which has Euler characteristic χ(L) = 1.
Choose a maximal dual tree F ⊂ L2 ∪ L1 in the connected complex L. Let τF be its dual tree
curve the base point of which is that of ρ. Since F contains all faces of L but none of its vertices
and F has χ(F ) = 1, the complement G := L \ F has Euler characteristic

χ(G) =
∣∣G0

∣∣− ∣∣G1
∣∣ = ∣∣L0

∣∣− (∣∣L1
∣∣− (∣∣L2

∣∣− 1
))

=
∣∣L0

∣∣− ∣∣L1
∣∣+ ∣∣L2

∣∣− 1 =χ(L)− 1 = 0.

As a subgraph of the planar L the G cannot contain circles because they would separate some
faces from the maximal dual tree F . Therefore, G is a disjoint union of trees G = G1 ∪ · · · ∪Gk

each of which has to be rooted in order to satisfy χ(Gi) = 0. The root edge of Gi, in the

2A subset of a connected CPM Σ which is both lower and upper semiclosed is either empty or the whole Σ.
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Figure 8. The plan of a proper ribbon-homotopy from the blue to the red left ribbon. (See the proof

of Theorem 8.13.)

language of D(Σ)∗, is a type 1 face ei having one arrow ri ∈ ρ of color T−1
0 on its boundary.

This is the root of Gi. Starting with the root ri, we can perform a sequence of κ-relaxations
along the tree Gi. Doing this for all Gi, we arrive to that ρ is a ribbon-homotopic to τF . Since τF
can be contracted by λ-contractions to the trivial curve, we are done. During each steps of the
homotopy we had only proper ribbons and used only grafts κa, λb which belonged entirely to L.
Furthermore, the supports of the used grafts form a partition of L into vertex-edge pairs and
face-edge pairs, so the support of the homotopy is precisely L. (In this case, we call L the
contraction disk of ρ.)

If it is R which has χ(R) = 1, then the proof goes by constructing a maximal tree F ⊂ R0∪R1

and the forest of rooted dual trees G = R \ F . Then the homotopy first λ-relaxes ρ inside R
along the forest and then κ-contracts the resulting tree curve τF . ■

The special ribbon-homotopies we found in the above theorem turn out to be the only ribbon-
homotopies applicable in the Kitaev model. So we give them a name.

Definition 8.11. A (free) ribbon-homotopy (ρ0, ρ1, . . . , ρn) is called a proper (free) ribbon-
homotopy if each ρi is proper (Definition 6.1). A proper ribbon which has a proper ribbon-
homotopy to a trivial curve is called properly contractible.

Example 8.12. The figure 8 opcurve 8a := α−1
a γa is a left ribbon which is not proper. It has

a ribbon-homotopy to (s(a)) but no proper ribbon-homotopy at all. The same can be said about
the double loop γaγa.

Theorem 8.13. Let ρ1, ρ2 : s(a) → s(b) be parallel non-trivial proper left ribbons such that the
closed opcurve ρ1ρ

−1
2 is the positively oriented boundary curve of a disk B ⊂ D(Σ)∗2. Then there

is a proper ribbon-homotopy ρ1 → ρ2 of support B.

Proof. By assumption, B lies on the left of ρ1 and the right of ρ2. The B is now neither
upper nor lower semiclosed and, strangely enough, has Euler characteristic 0 in Σ. This is
an artifact of the different behaviour at the two borderline segments ρ1 and ρ2: B looks like
upper semiclosed along the ρ1 and lower semiclosed along ρ2. So we can start growing rooted
trees (with roots on ρ1 necessarily) until we get a maximal forest F ⊂ B of rooted trees (see
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Figure 9. For a free proper ribbon-homotopy from the blue ribbon to the red ribbon first choose

a maximal forest of rooted trees on the annulus. These are the bluish faces. Then perform κ-relaxations

on the blue ribbon along the bluish faces. What we get is a Hamilton cycle; a closed proper ribbon (not

shown) visiting every site of the annulus exactly once. Then we make a circular move along the Hamilton

cycle in order to transplant the base point from the blue ribbon to the red ribbon. Finally, we perform

λ-contractions along the reddish faces.

Figure 8). The complement F ∗ = B \ F is then a maximal forest of rooted dual trees (with
roots on ρ2 necessarily). The homotopy then starts with κ-relaxations of ρ1 along the trees
of F . The result is a proper left ribbon γ : s(a) → s(b) which consists of the (broken) borderline
between F and F ∗ completed by those arrows of ρ1 and ρ2 which are not roots of some tree.
Finally, a sequence of λ-contractions applied to γ along F ∗ results in the ribbon ρ2. ■

The intermediate curve γ in the proof of the above theorem has the remarkable property of
passing through every site of the disk B exactly once. So it is a Hamiltonian opcurve on the
graph ↓B \ B obtained by taking the lower semiclosed closure of B in the complex D(Σ)∗ and
then discarding all its faces. The existence of such Hamiltonian curve is crucial in the following
free ribbon-homotopy.

Theorem 8.14. Let A be a finite connected set of faces of D(Σ)∗ with Euler characteristic 0
in Σ such that the positively oriented boundary of A in D(Σ)∗ consists of two components,
a closed proper left ribbon ρ1 and a closed proper right ribbon ρ−1

2 . Then there is a proper free
ribbon-homotopy ρ1 → ρ2 supported on the annulus A.

Proof. The proof is very similar to the proof of Theorem 8.13 therefore we content ourselves
with referring to Figure 9. ■

The annulus of Figure 9 is obtained by taking the relative complement of a disk within a larger
disk. But this need not be so. The proof of Theorem 8.14 nowhere uses that the “hole” is a disk.
So it applies to any annulus strip winding around a torus or on some handle of a higher genus
surface.
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9 Ground states

So far the Kitaev model was treated on a pure algebraic level. Now we turn it into a model in
quantum field theory. So we assume that the ground field K = C, the field of complex numbers,
and the finite-dimensional Hopf algebra H is a C∗-Hopf algebra. This means, on the one hand,
that H is endowed with an antilinear involution, called the star operation,3 satisfying

(gh)† = h†g†, h(1)
† ⊗ h(2)

† =
(
h†
)
(1)

⊗
(
h†
)
(2)
, g, h ∈ H.

Consequently,

1† = 1, ε
(
h†
)
= ε(h), S(h)† = S−1

(
h†
)
, i† = i.

On the other hand, one requires that H has a faithful star-representation on a Hilbert space, i.e.,
such that h† is represented by the adjoint of the operator representing h. From now onH denotes
a finite-dimensional C∗-Hopf algebra. Finite-dimensional C∗-Hopf algebras are semisimple and
have S2 = id. So every Hopf algebraic relations used before remain valid. In particular, H∗ has
a Haar integral ι and the formula

(g, h) :=
〈
ι, g†h

〉
is a scalar product making H a Hilbert space and the left regular representation a faithful star
representation, (k, hg) =

(
h†k, g

)
.

The dual Hopf algebra H∗ is then also a C∗-Hopf algebra. The star operation of H∗ is
given by〈

φ†, h
〉
:=

〈
φ, S(h)†

〉
, φ ∈ H∗, h ∈ H.

It follows that the double D(H) and its dual D(H)∗ are both C∗-Hopf algebras with respective
star operations

(ψ ⊗ g)† = ψ†
(2) ⊗ g†(2) ·

〈
ψ(3), S

(
g(1)

)〉 〈
ψ(1), g(3)

〉
, (h⊗ φ)† = h† ⊗ φ†.

Assume Σ is a finite connected OCPM. Since M(Σ) is a full matrix algebra, it has, up to
isomorphisms, only one irreducible representation. The standard choice for the Hilbert space of
this representation is H (Σ) := H⊗Σ1

which is the tensor product of copies He of the Hilbert
space H for each edge e ∈ Σ1. The action of M on H is defined by means of an orientation of
the edges, i.e., by a section e 7→ ae of the function O1 : Arr(Σ) → Σ1. Namely, Pa(h) and Qa(φ)
act as the identity on each tensor factor He, e ̸= O1(a), and for e = O1(a) the Pa(h) is left
multiplication by h and Qa(φ) is φ ⇀ on He if a = ae and Pa(h) is right multiplication
by S(h) and Qa(φ) = ↼ S(φ) on He if a = T1ae; cf. (3.10) and (3.11). In this way the
abstract operators Pa(h), Qa

(
φ
)
become concrete operators on the Hilbert space H such that

Pa(h)
† = Pa

(
h†
)
and Qa(φ)

† = Qa

(
φ†), where (·)† on the right-hand side is the abstract star

operation while on the left-hand side it is the adjoint of an operator on H .
The adjoints of one-step holonomies (6.3) satisfy Hol◦(d)(Ψ)† = Hol◦(d)

(
Ψ†). Therefore, if γ is

an arbitrary opcurve, then

Hol◦γ(Ψ)† = Hol◦γ−1

(
SD∗(Ψ)†

)
, Φ ∈ D(H)∗. (9.1)

But if the curve is a proper ribbon, then we also have

Hol◦ρ(Ψ)† = Hol◦ρ
(
Ψ†), Ψ ∈ D(H)∗, if ρ is proper. (9.2)

3Having already many stars in this paper we shall denote the star operation, as well as the adjoints of bounded
linear operators on a Hilbert space, by (·)†.
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In particular, the Gauss’ law and flux operators satisfy Ga(h)
† = Ga

(
h†
)
and Fa(φ)

† = Fa

(
φ†).

So Av and Bf are self adjoint idempotents, i.e., projectors, and the Hamiltonian (3.32) is self
adjoint, too.

The ground states of the Hamiltonian are represented by vectors Ω in H such that

AvΩ = Ω and BfΩ = Ω ∀v ∈ Σ0, f ∈ Σ2.

Following [12], we denote by P the subspace in H of such vacuum vectors Ω and call it the
protected space. Explicit wave functions of vacuum vectors have been calculated in [3] using
a tensor network formalism. IfH is a group algebra of a finite group G, then a basis of P consists
of gauge equivalence classes of G-valued flat gauge fields on Σ [5]. So the dimension of P depends
only on the genus of Σ through the fundamental group π1(Σ). A far reaching generalization of
the “protected object” P appeared recently in [10] in which the Kitaev quantum double model
is studied over Hopf monoids in monoidal categories.

In terms of expectation values ω(M) = (Ω, MΩ), the ground states can be abstractly char-
acterized by the equations

ω(MAv) = ω(M) = ω(MBf ), M ∈ M, v ∈ Σ0, f ∈ Σ2

for the normalized (ω(1) = 1) positive linear functional ω : M → C. Knowing ω, which we do
not, is complete information about the representation on H by the Gelfand–Neumark–Segal
construction. So the representation of M on H may be called the vacuum representation.

The above properties of the vacua Ω ∈ P imply

Hol◦αa
(Φ)Ω = φ(1)Ga(h)Ga(i)Ω = φ(1)ε(h)Ω = Ω · εD∗(Φ), (9.3)

Hol◦γa(Φ)Ω = ε(h)Fa(φ)Fa(ι)Ω = ε(h)φ(1)Ω = Ω · εD∗(Φ), (9.4)

hence also the formula expressing gauge invariance of the vacua

Da(X)Ω = Ω · εD(X), a ∈ Arr(Σ), X ∈ D(H), Ω ∈ P.

Proposition 9.1. Let a ∈ Arr(Σ), v = O0(a), f = O2(a) and let Ω ∈ H be any vector. Then
for all Φ ∈ D(H)∗

Hol◦
α±1
a
(Φ)Ω = Ω · εD∗(Φ) whenever AvΩ = Ω, (9.5)

Hol◦
γ±1
a
(Φ)Ω = Ω · εD∗(Φ) whenever BfΩ = Ω, (9.6)

Hol◦κa
(Φ)Ω = Hol◦

((T1a)
−
0 )

Ω whenever AvΩ = Ω, (9.7)

Hol◦λa
(Φ)Ω = Hol◦

((T1a)
+
2 )

Ω whenever BfΩ = Ω, (9.8)

Hol◦
κ−1
a
(Φ)Ω = Hol◦

((T1a)
+
0 )

Ω whenever AvΩ = Ω, (9.9)

Hol◦
λ−1
a
(Φ)Ω = Hol◦

((T1a)
−
2 )

Ω whenever BfΩ = Ω, (9.10)

where κa, λa are the left ribbons defined in (8.1) and (8.2).

Proof. Formulas (9.5) and (9.6) can be proven as in (9.3) and (9.4). The proof of (9.7) goes as
follows. κa contains α−1

a except one arrow,
(
Tm
0 a

)−
0
= a−0 . So we write its opholonomy as

Hol◦κa
(Φ) = Hol◦

((T1a)
+
2 ,a+0 )

(
Φ(1)

)
Hol◦

α−1
a

(
Φ(2)

)
Hol◦

(a+2 )

(
Φ(3)

)
.

We leave the first term for a while and concentrate on the action of the rest on the vacuum:

Hol◦
α−1
a

(
Φ(1)

)
Hol◦

(a+2 )

(
Φ(2)

)
Ω = Ga(S

(
h(1)

)
)
〈
ξiφ(1)ξj , 1

〉
ε
(
S(xj)h(2)xi

)
Qa

(
φ(2)

)
Ω

= Ga(S(h))Qa(φ)Ω
(3.23)
= Qa

(
φ ↼ h(1)

)
Ga

(
S
(
h(2)

))
Ω

= Qa(φ ↼ h)Ω,
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where, as usual, Φ = h ⊗ φ stands for an arbitrary element of D(H)∗. In order to express this
result in terms of Φ, we remark that

u = ξi ⊗ S(xi) and u−1 = ξi ⊗ xi.

Therefore,

u−1 ⇀ Φ =
(
h(1) ⊗ ξjφ(1)ξk

)
·
〈
S(xk)h(2)xj ⊗ φ(2), ξi ⊗ xi

〉
=

(
h(1) ⊗ ξjφ(1)ξk

)
·
〈
φ(2), S(xk)h(2)xj

〉
= h(1) ⊗ φ(4)φ(1)S

(
φ(2)

)
·
〈
φ(3), h(2)

〉
= h(1) ⊗ φ ↼ h(2)

and φ ↼ h = (ε⊗ id)
(
u−1 ⇀ Φ

)
, so we have

Qa(φ ↼ h) = Hol◦
(a+2 )

(
u−1 ⇀ Φ

)
.

In this way, we have proven that

Hol◦κa
(Φ)Ω = Hol◦

((T1a)
+
2 ,a+0 )

(
Φ(1)

)
Hol◦

(a+2 )

(
u−1 ⇀ Φ(2)

)
Ω =

= Hol◦
((T1a)

+
2 ,a+0 ,a+2 ,(T1a)

+
0 )

(
Φ(1)

)
Hol◦

((T1a)
−
0 )

(
u−1 ⇀ Φ(2)

)
Ω.

Now the opcurve in the first term is a conjugate of the central curve βa which, by (6.10) and
Lemma 6.7, we know to have opholonomy equal to 1M · ⟨ , SD(u)⟩. Thus,

Hol◦κa
(Φ)Ω = Hol◦

((T1a)
−
0 )

(
SD(u)u

−1 ⇀ Φ
)
Ω.

For C∗-Hopf algebras, SD(u) = u, therefore (9.7) is proven.
The proof of (9.8) goes as follows. We insert

(
a−2 , a

+
2

)
into λa in order to complete the

incomplete face loop,

Hol◦λa
(Φ) = Hol◦

((T1a)
−
0 ,a−2 )

(
Φ(1)

)
Hol◦γa

(
Φ(2)

)
Hol◦

(a−0 )

(
Φ(3)

)
.

Next we compute the action of the last two terms on the vacuum by using the (inverse of the)
exchange relation (3.29),

Hol◦γa
(
Φ(1)

)
Hol◦

(a−0 )

(
Φ(2)

)
Ω = ε

(
h(1)

)
Fa

(
ξiφ(1)ξj

)
Pa

(
S
(
S(xj)h(2)xi

))
φ(2)(1)

= Pa

(
(ξiφξj)(1) ⇀ S(xi)S(h)xj

)
Fa

(
(ξiφξj)(2)

)
Ω

= Pa(ξiφξj ⇀ S(xi)S(h)xj)Ω.

Next we simplify the last expression by proving the identity

ξiφξj ⇀ S(xi)S(h)xj =
〈
Φ(1), ε⊗ xi

〉〈
Φ(2), ξj ⊗ 1

〉
· (ξi ⇀ S(xj))

= ⟨Φ, (ε⊗ xi)(ξjξk ⊗ 1)⟩S(xk)⟨ξi, S(xj)⟩
= ⟨Φ, (ε⊗ S(xj)(ξj ⊗ 1)︸ ︷︷ ︸

SD(R1)R2=SD(u)

(ξk ⊗ 1)⟩S(xk)

= S((id⊗ε)(Φ↼ SD(u))),

which implies

Pa(ξiφξj ⇀ S(xi)S(h)xj) = Hol◦
(a−0 )

(Φ↼ SD(u)).
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Putting together and using that SD(u) is central, we obtain

Hol◦λa
(Φ)Ω = Hol◦

(T1a)
−
0 ,a−2 )

(
Φ(1)

)
Hol◦

(a−0 )

(
Φ(2) ↼ SD(u)

)
Ω

= Hol◦
(T1a)

−
0 ,a−2 ,a−0 )

(
Φ(1)

)〈
Φ(2), SD(u)

〉
= Hol◦

(T1a)
−
0 ,a−2 ,a−0 ,(T1a)

−
2 )

(
Φ(1)

)
Hol◦

((T1a)
+
2 )

(
SD(u)⇀ Φ(2)

)
.

Now the opcurve in the first term is a conjugate of β−1
a therefore it is central and its opholonomy

is 1M ·
〈
, SD(u)

−1
〉
by Lemma 6.7. This immediately implies (9.8).

Since κa, λa are proper ribbons, (9.9) and (9.10) for all Φ are equivalent to (9.7) and (9.8),
respectively, by (7.5). ■

As a generalization of the protected space, let us introduce the spaces P(F ) ⊆ H of partial
vacua as follows. Consider F ⊆ Σ as a set of faces of D(Σ)∗ and let F d := F ∩ Σd. Then define

P(F ) :=
{
Ω ∈ H | AvΩ = Ω, BfΩ = Ω, for v ∈ F 0, f ∈ F 2

}
.

So in particular P(Σ) = P and P(∅) = H .

Theorem 9.2 (topological invariance). For a connected OCPM Σ, let ρ1, ρ2 be proper ribbons
on D(Σ)∗ of the same left/right type and let F ⊂ D(Σ)∗2. Then

(i) if there is a proper ribbon-homotopy ρ1 → ρ2 of support F , then

Hol◦ρ1(Φ)Ω = Hol◦ρ2(Φ)Ω for all Φ ∈ D(H)∗, Ω ∈ P(F );

(ii) if ρ1, ρ2 are closed and there is a proper free ribbon-homotopy ρ1 → ρ2 of support F then

Hol◦ρ1(Ψ)Ω = Hol◦ρ2(Ψ)Ω for all Ψ ∈ CocomD(H)∗, Ω ∈ P(F ).

Proof. (i) It suffices to consider elementary ribbon-homotopies (ρ1, ρ2) in which a subribbon
σ1 ⊂ γσ1δ = ρ1 is replaced by the subribbon σ2 ⊂ γσ2δ = ρ2. (So σ1 7→ σ2 is either a vertex or
face or κ- or λ-contraction/relaxation.) Then the argument is this

Hol◦ρ1(Φ)Ω = Hol◦γ
(
Φ(1)

)
Hol◦σ1

(
Φ(2)

)
Hol◦δ

(
Φ(3)

)
Ω = [ρ1 is proper]

= Hol◦γ
(
Φ(1)

)
Hol◦δ

(
Φ(3)

)
Hol◦σ1

(
Φ(2)

)
Ω = [Proposition 9.1]

= Hol◦γ
(
Φ(1)

)
Hol◦δ

(
Φ(3)

)
Hol◦σ2

(
Φ(2)

)
Ω = [ρ2 is proper]

= Hol◦γ
(
Φ(1)

)
Hol◦σ2

(
Φ(2)

)
Hol◦δ

(
Φ(3)

)
Ω = Hol◦ρ2(Φ)Ω.

(ii) follows from (i) if we add the observation that for cocommutative Ψ we can cyclically
permute proper ribbons already at the level of operators: Hol◦ρ1(Ψ) = Hol◦ρ2(Ψ) whenever (ρ1, ρ2)
is a circular move, see (7.6). ■

Corollary 9.3. Let γ be a closed proper ribbon, ρ : ⟨v0, f0⟩ → ⟨v1, f1⟩ any proper ribbon and let
Ψ ∈ CocomD(H)∗ and Φ ∈ D(H)∗.

(i) If Ω ∈ P ,then Hol◦γ(Ψ)Ω also belongs to P and depends only on the proper free ribbon-
homotopy class of γ.

(ii) If γ is properly contractible (Theorem 8.10) and Ω ∈ P, then Hol◦γ(Ψ)Ω = Ω · εD∗(Ψ).

(iii) If Ω ∈ P, then Hol◦ρ(Φ)Ω belongs to P(Σ\{v0, v1, f0, f1}) and depends only on the proper
ribbon-homotopy class of ρ.



52 K. Szlachányi

Proof. This is a direct consequence of Corollary 7.5 and Theorem 9.2 with the additional
remark that in (iii) the support of any proper ribbon-homotopy ρ→ ρ′ is automatically disjoint
from {v0, v1, f0, f1}. ■

The natural question that emerges is whether the proper ribbon-homotopy classes are the
same as the ribbon-homotopy classes or the homotopy classes. If Σ is finite and has genus g > 0,
then the answer is no. While the latter two are infinite groupoids there are only finitely many
proper ribbons on a finite Σ. In addition, proper ribbons cannot be composed so the proper
ribbon-homotopy classes need not even form a groupoid. On the infinite plane, however, one
expects that every ribbon-homotopy class contains a proper ribbon so all the three should reduce
to the pair groupoid on the set of sites.

10 Excited states

As explained in [12], the holonomy of an open ribbon ρ : s0 → s1 can be thought to create some
charge at s1 and the anticharge at s0. These charges can then be measured by contractible
closed ribbon operators winding around si. We can now make this precise in the Hopf algebraic
Kitaev model.

Theorem 10.1. Let Σ be a connected OCPM. On D(Σ)∗ let ρ : s0 → s1 be a proper left ribbon
and γ : s→ s a closed proper left ribbon.

(i) We assume that γ is properly contractible in the sense of Theorem 8.10 so divides D(Σ)∗2

into two connected components L and R among which now L is the disk.

(ii) L contains both faces of the site s1 = ⟨v1, f1⟩.

(iii) R contains both faces of the site s0 = ⟨v0, f0⟩.

Then for all partial vacuum vectors Ω ∈ P(L)

Hol◦γ(Ψ)Hol◦ρ(Φ)Ω = Hol◦ρ(
↔
Ψ⇀ Φ)Ω (10.1)

for all Φ ∈ D(H)∗ and Ψ ∈ CocomD(H)∗ where the linear isomorphism D(H)∗ → D(H),

Ψ = k ⊗ ψ 7→
↔
Ψ := ψ ⊗ k maps CocomD(H)∗ onto CenterD(H).

Proof. L is upper semiclosed and contains v1 and f1. The smallest upper semiclosed sub-
complex of Σ which contains v1 and f1 is nothing but ↑ v1 consisting4 of v1 and of its vertex
neighbourhood Nb(v1) (Definition 2.3). So ↑ v1 ⊆ L and its boundary left ribbon δ is proper.
The set A of cells between δ and γ is an annulus as in Theorem 8.14 so there is a proper free
ribbon-homotopy γ → δ of support A. Since L ⊇ A, Ω ∈ P(L) ⊆ P(A) and by Corollary 7.5
also Hol◦ρ(Φ)Ω ∈ P(A). Using topological invariance in the sense of Theorem 9.2 (ii), we have

Hol◦γ(Ψ)Hol◦ρ(Φ)Ω = Hol◦δ(Ψ)Hol◦ρ(Φ)Ω.

Now using topological invariance, this time in the sense of Theorem 9.2 (i), of Hol◦ρ(Φ)Ω, we can
choose ρ to be as simple inside δ as possible. By proper ribbon-homotopy supported in L, we

4An example of a ↑v is the hole in the annulus of Figure 9.
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can deform ρ in such a way that only the last arrow of the new ρ lies

f1

v1

δ

γ

ρ

s0

s1

s

L R

inside δ and the last two arrows of this ρ form a straight curve intersecting δ only at a single
site. So we can assume that ρ and δ have the following form:

ρ = ρ′
(
(T0a)

−
0 , a

+
2

)
, δ =

(
a−0

)
δ′
((
T−1
2 a

)+
2

)
,

where a is chosen such that s(a) is the intersection point of ρ and δ, hence s1 = s(T2a). Notice
that we have chosen the base point of δ to be the intersection point. The ρ′ and δ′ are proper
ribbons with holonomies that commute with that of all other pieces of opcurves. Now we can
compute the exchange relation of Hδ(Ψ) = Hol◦δ(Ψ) and Hρ(Φ) = Hol◦ρ(Φ) as follows:

Hδ(Ψ)Hρ(Φ) = H(a−0 )

(
Ψ(1)

)
Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
Ψ(3)

)
×Hρ′

(
Φ(1)

)
H((T0a)

−
0 )

(
Φ(2)

)
H(a+2 )

(
Φ(3)

)
(6.6)
= Hρ′

(
Φ(1)

)
H(a−0 )

(
Ψ(1)

)
Hδ′

(
Ψ(2)

)
×H((T0a)

−
0 )

(
R2 ⇀ Φ(2)

)
H((T−1

2 a)+2 )

(
R1 ⇀ Ψ(3)

)
H(a+2 )

(
Φ(3)

)
= Hρ′

(
Φ(1)

)
H((T0a)

−
0 )

(
R2 ⇀ Φ(2)

)
H(a−0 )

(
Ψ(1)

)
H(a+2 )

(
Φ(3)

)
×Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
R1 ⇀ Ψ(3)

)
(6.5)
= Hρ′

(
Φ(1)

)
H((T0a)

−
0 )

(
R2 ⇀ Φ(2)

)
H(a+2 )

(
Φ(3) ↼ R1′

)
H(a−0 )

(
Ψ(1) ↼ R2′

)
×Hδ′

(
Ψ(2)

)
H((T−1

2 a)+2 )

(
R1 ⇀ Ψ(3)

)
= Hρ′

(
Φ(1)

)
H((T0a)

−
0 )

(
Φ(2)

)
·
〈
Φ(3), R2R1′

〉
·H(a+2 )

(
Φ(4)

)
·Hδ(R1 ⇀ Ψ↼ R2′).

The result is reminiscent of (7.22) but now, since the endpoints of ρ and δ are different, a term〈
Φ(3), R2R1′

〉
is wedged into the holonomy of ρ which forbids to write the result as Hρ of

something times Hδ of something. Fortunately, letting this operator acting on Ω will eliminate
the problem. Applying Theorem 9.2 (ii) to the properly contractible δ within the disk L and
using that Ω ∈ P(L), we get

R2R1′ ⊗Hol◦δ(R1 ⇀ Ψ↼ R2′)Ω = R2R1′ ⊗ Ω · εD∗(R1 ⇀ Ψ↼ R2′)

= R2R1′ ⊗ Ω ·
〈
Ψ, R2′R1

〉
.

Substituting the definition of the R-matrix, we see that R2R1′ ⊗ R2′R1 = (ξi ⊗ xj)⊗ (ξj ⊗ xi),
therefore

R2R1′⟨Ψ, R2′R1⟩ =
↔
Ψ.

Thus, the wedge term is simply
〈
Φ(3),

↔
Ψ
〉
. If we knew that

↔
Ψ is a central element of D(H), then

the wedge term would be shiftable along ρ until the endpoint and this would prove (10.1). So it
remains to show that

↔
Ψ ∈ CenterD(H) if and only if Ψ ∈ CocomD(H)∗.
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Let us introduce the projections P and its transpose PT by

P : D(H) → D(H), P(X) := iD(1)XSD
(
iD(2)

)
,

PT : D(H)∗ → D(H)∗, PT(Φ) := iD(1) ⇀ Φ↼ SD
(
iD(2)

)
,

where iD := ι ⊗ i is the Haar integral of D(H). P projects onto Center(D(H)) and PT onto
CocomD(H)∗. Using the identity R∆D(X) = ∆op(X)R of R-matrices, we obtain

P(R2R1′)⊗R2′R1 = iD(1)R2R1′SD
(
iD(2)

)
⊗R2′R1

= iD(1)R2R1′SD
(
iD(4)

)
⊗R2′SD

(
iD(3)

)
iD(2)R1

= R2iD(2)R1′SD
(
iD(4)

)
⊗R2′SD

(
iD(3)

)
R1iD(1)

= R2iD(2)SD
(
iD(3)

)
R1′ ⊗ SD

(
iD(4)

)
R2′R1iD(1)

= R2R1′ ⊗P(R2′R1).

Therefore,

↔
Ψ ∈ CenterD(H) ⇔ P(

↔
Ψ) =

↔
Ψ

⇔ P(R2R1′)⟨Ψ, R2′R1⟩ = R2R1′⟨Ψ, R2′R1⟩
⇔ R2R1′⟨PT (Ψ), R2′R1⟩ = R2R1′⟨Ψ, R2′R1⟩
⇔ PT(Ψ) = Ψ.

So
↔
Ψ is central if and only if Ψ is tracial and the theorem is proven. ■

Let Dr be fixed irreducible unitary representations of D(H) for each isomorphism class r of
irreps. Then the set of matrix elements

{
Di,j

r

}
is a basis of D(H)∗. For a proper left ribbon

ρ : s(a) → s(b) between disjoint sites, the (7.9) and (7.10) imply that the vectors

Λi,j
r := Hol◦ρ

(
Di,j

r

)
Ω ∈ H

are irreducible D(H)-multiplets in the sense of the equations

Dc(X)Λi,k
r = Λi,k

r · εD(X) if c ̸= a, b,

Db(X)Λi,k
r = Λi,j

r ·Dj,k
r (X),

Da(X)Λi,k
r = Di,j

r (SD(X)) · Λj,k
r

provided Ω ∈ P. Notice that εD = D0 if r = 0 designates the trivial representation and DT
r ◦ SD

is, up to unitary equivalence, some Dr̄ if r 7→ r̄ designates charge conjugation.
Let γ be a closed proper ribbon winding around s(b) but not s(a) as in Theorem 10.1. Let Ψr

be the unique cocommutative element for which
↔
Ψr is the minimal central idempotent er = ei,ir ,

where
{
ei,jr

}
is the dual basis of

{
Di,j

r

}
. Then

Hol◦γ(Ψq)Λ
i,j
r = Hol◦ρ

(
eq ⇀ Di,j

r

)
Ω = Λi,j

q · δq,r.

In this sense, the closed ribbon operators Hol◦γ(Ψ) are able to detect the charge r inside the
contraction disk of γ. This happens in spite of the fact that for whatever closed γ for which the
ribbon-homotopy class of ρ contains a ρ′ disjoint from γ the Hol◦γ(Ψ) detects only the trivial
charge on Λi,j

r . One says that the charge of Λi,j
r can be localized in semi-infinite strings but not

in a finite region. This kind of charges are characteristic of massive gauge theories [2]. This is the
first evidence of that the Kitaev model is like a gauge theory. The more precise analysis should
chart the superselection sectors similarly to the Doplicher–Haag–Roberts theory [6, 7, 8, 9] but
for string localized charges. In the abelian Kitaev model on a square lattice such a program can
be carried out [4, 19] but for arbitrary f.d. C∗-Hopf algebra H and for arbitrary infinite (planar)
OCPM Σ it is not yet in sight.
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