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Abstract. A compactly supported distribution is called invertible in the sense of Ehren-
preis–Hörmander if the convolution with it induces a surjection from C∞(Rn) to itself. We
give sufficient conditions for radial functions to be invertible. Our analysis is based on
the asymptotic expansions of finite Hankel transforms. The dominant term may be the
contribution from the origin or from the boundary of the support of the function. For the
proof, we propose a new method to calculate the asymptotic expansions of finite Hankel
transforms of functions with singularities at a point other than the origin.
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1 Introduction

It is known that

P (D) : C∞(Rn) → C∞(Rn) and P (D) : D′(Rn) → D′(Rn)

are both surjective, where P (D) ̸= 0 is an arbitrary linear partial differential operator with con-
stant coefficients [6, 7, 14]. Since these mappings coincide with the convolution operator P (D)δ∗
on respective spaces, a natural question is to characterize compactly supported distributions
that induce surjective convolution operators. Such a distribution is called invertible. Notice
that δ(x− a) induces translation and hence is invertible. It was found that a compactly sup-
ported distribution is invertible if and only if its Fourier transform, an entire function, is slowly
decreasing in a certain sense. This condition was found by Ehrenpreis [8] and was further studied
by Hörmander [11]. A self-contained account can be found in [12]. Invertible distributions and
slowly decreasing entire functions became and still are fundamental concepts in the research of
convolution equations. Perturbation of invertible distributions are studied in [15], and a recent
paper [5] investigates invertible distributions in an abstract setting. Convolution equations on
symmetric spaces are discussed from the viewpoint of invertibility in [4].

Slow decrease is a technical estimate from below and is not easy to grasp. The present
authors expect that the notions of slow decrease and of invertibility will become less mysterious
if many examples or sufficient conditions are found. The delta function δS(0,r) supported on
a sphere is invertible [13]. Its normal derivatives are invertible as well [16]. In [13, 16], the
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asymptotic behavior of Bessel functions were used. As is well known [18], the Fourier transform
of a radial function can be written in terms of an integral involving a Bessel function. The
Fourier transforms of δS(0,r) and its normal derivatives are limit cases.

In the present article, we prove the invertibility of some radial functions by using two methods
of calculating asymptotic expansions of finite Hankel transforms

∫ 1
0 φ(s)Jν(rs)ds. One is a result

in Wong [20], in which singularities at s = 0 determine the asymptotic behaviors. The other
method, devised by the present authors, is useful to deal with singularities at s = 1. As far
as they know, this is the first result about the asymptotic behaviors of Hankel transforms of
functions singular at a point other than s = 0.

Notice that various additive formulas for supports and singular supports of convolutions and
spaces of entire functions with a certain type of slow decrease are investigated in [3] and applied
to study the surjectivity of convolution operators. Several examples are discussed in it and the
characteristic function of an ellipsoid is studied by using a Bessel function. The tools developed
in the present paper could be useful in that line of research.

2 Invertibility and slow decrease

In this article, we follow the convention

f̂(ξ) =
〈
f(x), e−iξ·x〉 =

∫
Rn

e−iξ·xf(x)dx, ξ ∈ Rn

for the definition of the Fourier transform of a compactly supported distribution f ∈ E ′(Rn).
When f(x) ∈ L1(Rn) is a radial function, its Fourier transform can be written in terms of an
integral involving a Bessel function.

Theorem 2.1 ([18, p. 155]). Let f0(s), s > 0, be a function of a single variable. The Fourier
transform of f(x) = f0(|x|), x ∈ Rn, is written in terms of a Hankel transform. More precisely,

f̂(ξ) =
(2π)n/2

rn/2−1

∫ ∞

0
sn/2f0(s)Jn/2−1(rs)ds, r = |ξ|, ξ ∈ Rn.

Here Jn/2−1(z) denotes the Bessel function of the first kind of order n/2− 1.

Remark 2.2. Notice that z−(n/2−1)Jn/2−1(sz) is an even entire function in a single variable z
for each s > 0. If the support of f0(s) is bounded, then the Fourier transform of f(x) = f0(|x|)
is an even entire function which is expressed by

f̂(ζ) = (2π)n/2
∫ ∞

0
sn/2f0(s)

(√
ζ2
)−(n/2−1)

Jn/2−1

(
s
√
ζ2
)
ds,

where ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑n

j=1 ζ
2
j .

We employ the notions of invertibility and slow decrease originated by Ehrenpreis [8] and
refined by Hörmander [11].

Theorem 2.3 ([8, Theorem 2.2, Proposition 2.7], [11, Definition 3.1, Corollary 3.1], [12, Theo-
rems 16.3.9 and 16.3.10]). For u ∈ E ′(Rn), the following statements are equivalent.

(i) There is a constant A > 0 such that we have

sup
{
|û(ζ)|; ζ ∈ Cn, |ζ − ξ| < A log(2 + |ξ|)

}
> (A+ |ξ|)−A

for any ξ ∈ Rn.
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(ii) There is a constant A > 0 such that we have

sup
{
|û(η)|; η ∈ Rn, |η − ξ| < A log(2 + |ξ|)

}
> (A+ |ξ|)−A (2.1)

for any ξ ∈ Rn.

(iii) If w ∈ E ′(Rn) and ŵ/û is a holomorphic function, then ŵ/û is the Fourier transform of
a distribution in E ′(Rn).

(iv) If v ∈ E ′(Rn) satisfies u ∗ v ∈ C∞(Rn), then v ∈ C∞(Rn).

(v) The mapping u∗ : C∞(Rn) → C∞(Rn) is surjective.

(vi) The mapping u∗ : D′(Rn) → D′(Rn) is surjective.

Remark 2.4. In the present paper, we only deal with surjectivity on Rn. If one wants to study
surjectivity on subsets of Rn, one needs the notions of µ-convexity for supports or singular
supports [12].

Definition 2.5 ([12, Definition 16.3.12]). An element u(x) of E ′(Rn) is called invertible and its
Fourier transform û(ζ) is called slowly decreasing if the equivalent conditions in Theorem 2.3
are fulfilled. See Definition 2.8 below.

Remark 2.6. A finitely supported non-zero distribution is invertible [11, Theorem 4.4]. The
most important example is P (D)δ(x), where P (D) ̸= 0 is a linear partial differential oper-
ator with constant coefficients. It give rise to P (D)δ(x)∗, which is nothing but P (D). So
P (D) : D′(Rn) → D′(Rn) and P (D) : C∞(Rn) → C∞(Rn) are surjective.

Other classes of invertible distributions are discussed in [1]. Let u be a compactly supported
measure with an atom, v ∈ E ′(Rn) have singular support disjoint from that of u and P (D) be
a non-zero linear partial differential operator with constant coefficients. Then P (D)u + v is
invertible.

Another useful fact in [1] is the following. Let u ∈ E ′(Rn), f ∈ C∞(Rn). If f is real analytic in
a neighborhood of singsuppu and fu is invertible, then u is invertible. In [13, 16], the spherical
mean value operator and its variants are discussed from the view point of invertibility.

Proposition 2.7.

(i) If u, v ∈ E ′(Rn) are invertible, then so is u ∗ v.

(ii) Let α ∈ R \ {0}. If u(x) ∈ E ′(Rn) is invertible, so is u(αx).

(iii) Let a ∈ Rn. If u(x) ∈ E ′(Rn) is invertible, so is u(x− a).

(iv) If u(x) ∈ E ′(Rn) is invertible, then so is
∑J

j=1 Pj(D)u(x− aj), where Pj(D) is a non-zero
linear partial differential operator with constant coefficients and aj ∈ Rn.

(v) Let u ∈ E ′(Rn) and v ∈ C∞
0 (Rn). Then, u+ v is invertible if and only if u is.

(vi) If u(x) ∈ E ′(Rm) and v(x′) ∈ E ′(Rn) are invertible, then so is (u⊗ v)(x, x′) = u(x)v(x′) ∈
E ′(Rm+n).1

Proof. The proofs of (i)–(iv) are easy. Theorem 2.3 (ii) and the Paley–Wiener–Schwartz theo-
rem imply (v). Finally, (vi) follows from Theorem 2.3 (ii). Indeed, if u and v satisfy (2.1) with
a common constant A, then u⊗ v satisfies (2.1) with 2A instead of A. ■

1This can be proved in an alternative manner using general facts about the tensor product of nuclear Fréchet
spaces.
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Definition 2.8. In the present paper, we extend the terminology of Definition 2.5 slightly: an
entire function p(ζ), not necessarily the Fourier transform of a compactly supported distribution,
is called slowly decreasing if there is a constant A > 0 such that we have

sup
{
|p(η)|; η ∈ Rn, |η − ξ| < A log(2 + |ξ|)

}
> (A+ |ξ|)−A (2.2)

for any ξ ∈ Rn.

Proposition 2.9. Let p(ζ) be an entire function. There are constants A,B > 0 such that

sup
{
|p(η)|; η ∈ Rn, |η − ξ| < A log(2 + |ξ|)

}
> (A+ |ξ|)−A (2.3)

for any ξ ∈ Rn satisfying |ξ| ≥ B, if and only if p(ζ) is slowly decreasing in the sense of
Definition 2.8.

Proof. The “if” part is trivial. We prove the “only if” part. If |ξ0| = B, we set

S(ξ0) =
{
η ∈ Rn; |η − ξ0| < A log(2 +B)

}
.

By (2.3),

sup
{
|p(η)|; η ∈ S(ξ0)

}
> (A+B)−A. (2.4)

On the other hand, we set S = {η ∈ Rn; |η| < B+A log(2+B)} ⊃ S(ξ0). Here we may assume A
is so large that A log(2 +B) > B. Then⋃

|ξ0|=B

S(ξ0) = S. (2.5)

By (2.4) and (2.5), we have

sup{|p(η)|; η ∈ S} > (A+B)−A. (2.6)

Assume |ξ| ≤ B and set

Sξ =

{
η ∈ Rn; |η − ξ| ≤ 2B +A log(2 +B)

log 2
log(2 + |ξ|)

}
.

Since

S ⊂
{
η ∈ Rn; |η − ξ| < 2B +A log(2 +B)

}
⊂ Sξ,

(2.6) implies sup{|p(η); η ∈ Sξ} > (A+B)−A > (A+B + |ξ|)−(A+B). We set

Ã = max

{
2B +A log(2 +B)

log 2
, A+B

}
,

then (2.2) holds if we replace A with Ã. ■

Proposition 2.10. Let p(z) be an even entire function of a single variable. If p(z) is slowly
decreasing, then p

(√
ζ2
)
is a slowly decreasing function in ζ ∈ Cn.
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Proof. Notice that p
(√

ζ2
)
is well-defined since p(z) is even. There are constants A,B > 0

such that we have

sup
{
|p(y)|; y ∈ R, |y − x| < A log(2 + x)

}
> (A+ x)−A (2.7)

for any x ∈ R satisfying x ≥ B. For any ξ ∈ Rn, set x = |ξ|. The radial function p(|η|), η ∈ Rn,
satisfies the condition in Proposition 2.9, since the combination of{

p(|η|); η ∈ Rn, |η − ξ| < A log(2 + |ξ|)
}
=

{
p(|η|); η ∈ Rn, ||η| − |ξ|| < A log(2 + |ξ|)

}
= {p(y); y ∈ R, |y − x| < A log(2 + x)}

and (2.7) implies

sup
{
p(|η|); η ∈ Rn, |η − ξ| < A log(2 + |ξ|)

}
> (A+ x)−A = (A+ |ξ|)−A

if x = |ξ| ≥ B. ■

Proposition 2.11. Let p(z) be an even entire function of a single variable. Set q(x) = xαp(x)
for x > 0, α ≥ 0. Assume there is a sufficiently small constant C > 0 and sufficiently large
constants A,B > 0 such that we have

sup{|q(y)|; y > 0, |y − x| < B} > Cx−A (2.8)

for any x ≥ B. Then p
(√

ζ2
)
is a slowly decreasing entire function in ζ = (ζ1, . . . , ζn) ∈ Cn,

where ζ2 =
∑n

j=1 ζ
2
j .

Proof. The assertion is trivial when α = 0 (see Proposition 2.10). We have only to prove the
case α > 0. By choosing a larger B if necessary, we may assume that

2−αC > B−α. (2.9)

If y > 0, |y − x| < B, we have yα < (x+B)α < (2x)α and

|p(y)| = |y−αq(y)| > (2x)−α|q(y)|. (2.10)

By (2.8), (2.9) and (2.10), we have

sup{|p(y)|; y > 0, |y − x| < B} > (2x)−αCx−A > B−αx−(A+α)

> x−(A+2α) > (A+ 2α+ x)−(A+2α).

On the other hand, B < A log(2+x) holds if B/ log 2 ≤ A. We see that p(z) is slowly decreasing
since (2.7) is valid if we adopt max{A+2α,B/ log 2} as a new value of A. Apply Proposition 2.10
to complete the proof. ■

3 Wong’s result

We review the main result of [20]. We incorporate the minor correction given in [22]. Our
notation is different from that in [20]. In particular, we employ sµ+k (k = 0, 1, 2, . . . ) instead
of ts+λ−1 (s = 0, 1, 2, . . . ). Let φ(s) be a function in s > 0 and suppose that

∫∞
0 φ(s)Jν(rs)ds

converges uniformly for all large values of r. We assume φ(s) has the following three properties.

(Φ1) φ
(m)(s) is continuous in s > 0, where m is a nonnegative integer.

(Φ2) φ
(j)(s) ∼

∑∞
k=0 ck

dj

dsj
sµ+k (s → +0; j = 0, 1, 2, . . . ,m), where c0 ̸= 0, Re(µ + ν) > −1,

m ≥ Reµ+ 1.
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(Φ3)
∫∞
1 s−1/2φ(s)eirsds,

∫∞
1 s−1/2sj−m−1/2φ(j)(s)eirsds (1 ≤ j ≤ m) converges uniformly for

all large values of r.

Theorem 3.1 ([20, equations (3.6) and (4.2)], [22, p. 409]). Assume that (Φ1)–(Φ3) hold, and
let n be a positive integer satisfying m− Reµ− 1 < n < m− Reµ+ 1

2 . Then

∫ ∞

0
φ(s)Jν(rs)ds =

n−1∑
k=0

ck
Γ
(
1
2(µ+ k + ν + 1)

)
Γ
(
−1

2(µ+ k − ν − 1)
) 2µ+k

rµ+k+1
+ o

(
r−m

)
, r → ∞. (3.1)

Remark 3.2. It is natural to assume c0 ̸= 0 as in (Φ2) and we adopt it as a convention.
See (4.3). If one wants to study the case φ(s) ∼ 0, one has only to consider the difference of two
functions with the same nontrivial expansion.

4 Asymptotic expansion and invertibility

First, we utilize Wong’s results reviewed in the previous section to consider the contribution
of the singularities at s = 0 to Hankel transforms. We consider an infinitely differentiable
function φ(s) and multiply it by a cut-off function. Therefore, m in (Φ2) can be arbitrary and
the conditions of uniform convergence are satisfied. The k-th coefficient in the right-hand side
in (3.1) vanishes if and only if ck = 0 or 1

2(µ + k − ν − 1) is a nonnegative integer. Notice
that 1

2(µ+ k + ν + 1) cannot be a pole of the Gamma function since Re(µ+ k+ ν+1) > k ≥ 0.
This observation motivates us to introduce the set K in the proposition below.

Proposition 4.1. Let µ, ν ∈ C and φ(s) be an infinitely differentiable function in (0, 1). We
make the following assumptions:

Re(µ+ ν) > −1, (4.1)

φ(j)(s) ∼
∞∑
k=0

ck
dj

dsj
sµ+k, s→ +0; j = 0, 1, 2, . . . , (4.2)

c0 ̸= 0. (4.3)

Moreover, let χ0(s) be an infinitely differentiable function such that χ0(s) = 1 in 0 < s ≤ ε
and χ0(s) = 0 in 1− ε ≤ s < 1, where 0 < ε < 1/3. We define the set K = K(µ, ν, {ck}k) by

K = K(µ, ν, {ck}k) =
{
k ∈ N0; ck ̸= 0,

1

2
(µ+ k − ν − 1) ̸∈ N0

}
, (4.4)

where N0 is the set of nonnegative integers. Then, we have the following.

If K ̸= ∅,∫ 1

0
χ0(s)φ(s)Jν(rs)ds = ck0

Γ
(
1
2(µ+ k0 + ν + 1)

)
2µ+k0

Γ
(
1
2(−µ− k0 + ν + 1)

)
rµ+k0+1

+ o
(
r−Re(µ+k0+1)

)
as r → ∞, where k0 = minK.

If K = ∅,∫ 1

0
χ0(s)φ(s)Jν(rs)ds = o

(
r−A

)
(4.5)

as r → ∞, where A is an arbitrarily large real number.
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Proposition 4.2. Assume Re(ν) > −1. If φ(s) is an infinitely differentiable function in (0,∞),
its support is bounded and φ(s) = sν+1

(
1− s2

)α
, α ∈ C near s = 0, then∫ ∞

0
φ(s)Jν(rs)ds = o

(
r−A

)
,

where A is an arbitrarily large real number.

Proof. The set K is empty in this case, since we have µ = ν + 1 and k is even if ck ̸= 0. ■

Next we consider the contribution of the singularities at s = 1 to finite Hankel transforms.

Proposition 4.3. Let N be a nonnegative integer and Λ be a complex number with ReΛ ≥ N .
Assume that ψ(t) is an infinitely differentiable function in 0 < t < 1 such that ψ(t) = 0
in 0 < t < ε and that ψ(k)(t) is integrable for 0 ≤ k ≤ N . Set ϕ(t) = (1− t)Λψ(t). Then ϕ

(
s2
)

is an infinitely differentiable function in 0 < s < 1 and if ν ≥ −N , we have∫ 1

0
sν+1ϕ

(
s2
)
Jν(rs)ds = o

(
r−(N+1/2)

)
, as r → ∞.

Proof. We have

ϕ(k)(t) =

k∑
j=0

(
k

j

)
Λ(Λ− 1) · · · (Λ− j + 1)(−1)j(1− t)Λ−jψ(k−j)(t).

Assume N ≥ 1. We have ϕ(k)(1) = 0 if k ≤ N − 1. Set

Ik =

∫ 1

0
sν+k+1ϕ(k)

(
s2
)
Jν+k(rs)ds, k = 0, 1, 2, . . . , N.

The recurrence relation
(
zν+1Jν+1(z)

)′
= zν+1Jν(z) (see, for example, [17, formula (10.6.6)])

yields

d

ds

{
sν+1Jν+1(rs)

}
= rsν+1Jν(rs).

Combining this formula and integration by parts, we get

Ik =
1

r

∫ 1

0
ϕ(k)

(
s2
)
· rsν+k+1Jν+k(rs)ds

=
1

r

∫ 1

0
ϕ(k)

(
s2
) d

ds

{
sν+k+1Jν+k+1(rs)

}
ds = −2

r
Ik+1 (4.6)

if k ≤ N − 1. We obtain

I0 =

(
−2

r

)N

IN (4.7)

for N ≥ 1. Notice that (4.7) holds for N = 0 as well.

On the other hand, it is well known that

Jα(z) =
21/2

π1/2
z−1/2 cos

(
z − απ

2
− π

4

)
+O

(
z−3/2

)
(4.8)
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as R ∋ z → ∞ (see, for example, [17, formula (10.17.3)]). By (4.8) and the boundedness of
Jν+N (z) as z → +0, there exists a bounded function R(z) (0 < z <∞) such that

Jν+N (z) =
21/2

π1/2
z−1/2 cos

(
z − (ν +N)π

2
− π

4

)
+ z−3/2R(z).

We have

IN =
21/2

π1/2
r−1/2

∫ 1

0
ϕ(N)

(
s2
)
sν+N+1/2 cos

(
rs− (ν +N)π

2
− π

4

)
ds

+ r−3/2

∫ 1

0
ϕ(N)

(
s2
)
sν+N−1/2R(rs)ds.

The first term in the right hand side is of order o
(
r−1/2

)
as r → ∞ by the Riemann–Lebesgue

lemma. The second term is of order O
(
r−3/2

)
by the boundedness of R. We have shown

IN = o
(
r−1/2

)
and the combination of it and (4.7) gives I0 = o

(
r−(N+1/2)

)
. ■

Proposition 4.4. Let N be a nonnegative integer and ν, λ0, . . . , λm, Λ, a0, . . . , am be complex
numbers. Assume Re ν > −1, −1 < Reλ0 < Reλ1 < · · · < Reλm < ReΛ, N ≤ ReΛ,
Reλ0 ≤ N − 1. Assume that the function ϕ(t) in 0 < t < 1 satisfies

ϕ(t) =
m∑
k=0

ak(1− t)λk + (1− t)Λψ(t), 1− 2ε < t < 1,

where a0 ̸= 0 and ψ(t) is an infinitely differentiable function in 0 < t < 1 such that ψ(k)(t) is
integrable in 1− 2ε < t < 1 for 0 ≤ k ≤ N .

Let χ1(t) be an infinitely differentiable function such that χ1(t) = 0 in 0 < t ≤ 1 − 2ε
and χ1(t) = 1 in 1− ε ≤ t < 1. Set2

ϕ̃(t) =
m∑
k=0

ak(1− t)λk + χ1(t)(1− t)Λψ(t), 0 < t < 1.

Then as r → ∞,∫ 1

0
sν+1ϕ̃

(
s2
)
Jν(rs)ds = a0

2λ0+1/2

π1/2
Γ(λ0 + 1)r−(λ0+3/2) cos

(
r − π

2
(ν + λ0 + 1)− π

4

)
+ o

(
r−Re(λ0+3/2)

)
.

Proof. By [9, formula (26(33)a)] or [10, formula (6.567.1)], we have∫ 1

0
sν+1

(
1− s2

)α
Jν(rs)ds = 2αΓ(α+ 1)r−(α+1)Jν+α+1(r), (4.9)

if r > 0, Re ν > −1, Reα > −1.3 We employ this formula and Proposition 4.3 to obtain∫ 1

0
sν+1ϕ̃

(
s2
)
Jν(rs)ds =

m∑
k=0

ak2
λkΓ(λk + 1)r−(λk+1)Jν+λk+1(r) + o

(
r−(N+1/2)

)
.

We finish the proof by using (4.8). ■

2Notice that the cutoff is incomplete in the sense that χ1(t) does not appear in the summation term.
3If we set s = sin θ, we get Sonine’s first finite integral. Two methods of its evaluation are given in [19,

formula (12.11) (1)]). There is another proof of (4.9). When α is a nonnegative integer, we can prove it follow-
ing (4.6) in the proof of Proposition 4.3. To generalize it to Reα > −1, we divide the equality by Γ(α + 1) and
apply the Carlson’s theorem [2, p. 110]. Boundedness is guaranteed by Poisson’s integral representation of Bessel
functions [17, formula (10.9.4)].
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Now we give our main results.

Theorem 4.5. Let n ≥ 2 be an integer. Let φ(s) be an infinitely differentiable function in the
open interval (0, 1) and ϕ(t) (0 < t < 1) be the function such that

φ(s) = sn/2ϕ
(
s2
)
, 0 < s < 1.

Set ν = n/2− 1. If µ satisfies (4.1), φ(s) satisfies (4.2), (4.3) and ϕ(t) satisfies the conditions
of Proposition 4.4, then

f(x) = |x|−n/2φ(|x|)χ[0,1](|x|) = ϕ
(
|x|2

)
χ[0,1](|x|), x ∈ Rn (4.10)

is an invertible distribution. Here χ[0,1](·) is the indicator function of the interval [0, 1].

Proof. Set ν = ν(n) = n/2− 1 and

φ̃(s) = χ0(s)

{
φ(s)− sn/2

m∑
k=0

ak
(
1− s2

)λk

}
.

Notice that

φ̃(j)(s) ∼
∞∑
k=0

ck
dj

dsj
sµ+k +

∞∑
ℓ=0

Aℓ
dj

dsj
sn/2+2ℓ, s→ +0

for some Aℓ. The second sum, which corresponds to sn/2
∑m

k=0 ak
(
1−s2

)λk , does not contribute
to the finite Hankel transform because of Proposition 4.2.

Let Kn = K(µ, ν(n), {ck}k) be the set defined by (4.4) with ν = ν(n). If Kn ̸= ∅, we have

H0 :=

∫ 1

0
φ̃(s)Jν(n)(rs)ds = ck0

Γ
(
1
2(µ+ k0 + ν(n) + 1)

)
2µ+k0

Γ
(
1
2(−µ− k0 + ν(n) + 1)

)
rµ+k0+1

+ o
(
r−Re(µ+k0+1)

)
,

and if Kn = ∅, H0 decreases rapidly of arbitrary order by (4.5). On the other hand, for ϕ̃
defined in Proposition 4.4, we have

H1 :=

∫ 1

0
sν(n)+1ϕ̃

(
s2
)
Jν(n)(rs)ds

= a0
2λ0+1/2

π1/2
Γ(λ0 + 1)r−(λ0+3/2) cos

(
r − π

2
(ν(n) + λ0 + 1)− π

4

)
+ o

(
r−Re(λ0+3/2)

)
.

We can prove that H0 +H1 satisfies (2.8) in the following way.

If Kn = ∅, H1 is dominant. We assume Kn ̸= ∅ from now on. If Reµ+k0+1 < Reλ0 + 3/2,
then H0 is dominant. If Reµ+ k0 + 1 > Reλ0 + 3/2, then H1 is dominant. If Reµ+ k0 + 1 =
Reλ0 + 3/2, we can pick up those r’s for which the cosine factor vanishes and the contribution
of H1 becomes irrelevant. In any case, H0 + H1 satisfies (2.8). By Theorem 2.1 and Proposi-
tion 2.11, |x|−n/2φ̃(|x|) + ϕ̃

(
|x|2

)
is invertible.

Notice that φ(s)− φ̃(s)− sn/2ϕ̃
(
s2
)
vanishes near s = 0, 1 and

f(x)− |x|−n/2φ̃(|x|)− ϕ̃
(
|x|2

)
∈ C∞

0 (Rn).

By Proposition 2.7 (v), f(x) is invertible. ■
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Example 4.6. If λ > −n/2, ρ > 0, then f(x) = |x|λ−n/2
(
1− |x|2

)ρ−1
χ[0,1](|x|) is an invertible

distribution. This corresponds to the case of φ(s) = sλ
(
1−s2

)ρ−1
and ϕ(t) = tλ/2−n/4(1− t)ρ−1.

The finite Hankel transform
∫ 1
0 s

λ
(
1 − s2

)ρ−1
Jν(rs)ds can be written in terms of the gen-

eralized hypergeometric function 2F3 by [10, formula (6.569)] and it is good enough to prove
invertibility. The advantage of our method is that it is stable under small perturbations and
works even if no closed form expression is available.

Remark 4.7. In (4.2), j can be arbitrarily large. This assumption can be relaxed in some cases.
We give such an example. Assume

φ(s) ∼ 0 =

∞∑
k=0

0 · sµ+k

as s → +0, where −n/2 < Reµ ≤ −1. We do not assume that term by term differentiation
is possible:4 m in (Φ1) is 0. Moreover, we have removed the assumption c0 ̸= 0 and do not
need the set Kn. We keep all the other assumptions of Theorem 4.5 unchanged. By (3.1) and
Remark 3.2, we have H0 = o(1). If Reλ0 ≤ −3/2, H1 is dominant and f(x) defined by (4.10) is
invertible.

Theorem 4.8. Let n ≥ 2 be an integer and N be a nonnegative integer. Let φ(s) be an
infinitely differentiable function in the open interval (0, 1) and ϕ(t) (0 < t < 1) be the function
such that φ(s) = sn/2ϕ

(
s2
)
. Set ν = n/2 − 1. Suppose that µ satisfies (4.1) and that φ(s)

satisfies (4.2), (4.3). Moreover, suppose ReΛ ≥ N and

ϕ(t) = (1− t)Λψ(t), 1− 2ε < t < 1,

where ψ(t) is an infinitely differentiable function in 0 < t < 1 such that ψ(k)(t) is integrable
in 1− 2ε < t < 1 for 0 ≤ k ≤ N .

If Kn = K(µ, n/2− 1, {ck}k) ̸= ∅ and Re(µ+ k0 + 1/2) ≤ N , then

f(x) = |x|−n/2φ(|x|)χ[0,1](|x|) = ϕ
(
|x|2

)
χ[0,1](|x|), x ∈ Rn

is an invertible distribution.

Proof. We have

H0 = ck0
Γ
(
1
2(µ+ k0 + ν(n) + 1)

)
2µ+k0

Γ
(
1
2(−µ− k0 + ν(n) + 1)

)
rµ+k0+1

+ o
(
r−Re(µ+k0+1)

)
, H1 = o

(
r−(N+1/2)

)
by Propositions 4.1 and 4.3. Since Re(µ + k0 + 1) ≤ N + 1/2, H0 is dominant and H1 is
negligible. ■

Theorem 4.9. Let n ≥ 2 be an integer. Let φ(s) be an infinitely differentiable function in s > 0
such that φ(s) = 0 in s ≥ 1. Set ν = n/2 − 1. Suppose that µ satisfies (4.1) and that φ(s)
satisfies (4.2), (4.3). Then

f(x) = |x|−n/2φ(|x|)χ[0,1](|x|), x ∈ Rn

is an invertible distribution if and only if Kn = K(µ, n/2− 1, {ck}k) is non-empty.

Proof. The quantity Λ in Theorem 4.8 can be an arbitrarily large integer and we have H1 =
o
(
r−A

)
, where A is arbitrarily large. By Proposition 4.1, the invertibility of f(x) is equivalent

to the non-emptiness of Kn. ■
4For example, φ(s) = e−1/s sin e1/s.



Asymptotic Expansions of Finite Hankel Transforms 11

Remark 4.10. We can find a lot of invertible distributions by combining Theorems 4.5, 4.8
and 4.9 with Remark 2.6 and Proposition 2.7.

Remark 4.11. We can formulate an invertibility theorem by using [21] instead of [20]. In [21],
the function φ(s) is allowed to have an asymptotic expansion involving powers of logarithms.
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