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Abstract. In this paper, we consider the following curvature equation

∆u+ eu = 4π

(
(θ0 − 1)δ0 + (θ1 − 1)δ1 +

n+m∑
j=1

(
θ′j − 1

)
δtj

)
in R2,

u(x) = −2(1 + θ∞) ln |x|+O(1) as |x| → ∞,

where θ0, θ1, θ∞, and θ′j are positive non-integers for 1 ≤ j ≤ n, while θ′j ∈ N≥2 are
integers for n + 1 ≤ j ≤ n + m. Geometrically, a solution u gives rise to a conical metric
ds2 = 1

2e
u|dx|2 of curvature 1 on the sphere, with conical singularities at 0, 1, ∞, and tj ,

1 ≤ j ≤ n + m, with angles 2πθ0, 2πθ1, 2πθ∞, and 2πθ′j at 0, 1, ∞, and tj , respectively.

The metric ds2 or the solution u is called co-axial, which was introduced by Mondello and
Panov, if there is a developing map h(x) of u such that the projective monodromy group is
contained in the unit circle. The sufficient and necessary conditions in terms of angles for the
existence of such metrics were obtained by Mondello–Panov (2016) and Eremenko (2020).
In this paper, we fix the angles and study the locations of the singularities t1, . . . , tn+m. Let
A ⊂ Cn+m be the set of those (t1, . . . , tn+m)’s such that a co-axial metric exists, among
other things we prove that (i) If m = 1, i.e., there is only one integer θ′n+1 among θ′j , then A
is a finite set. Moreover, for the case n = 0, we obtain a sharp bound of the cardinality
of the set A. We apply a result due to Eremenko, Gabrielov, and Tarasov (2016) and the
monodromy of hypergeometric equations to obtain such a bound. (ii) If m ≥ 2, then A is
an algebraic set of dimension ≤ m− 1.
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1 Introduction

Let
(
S2, g0

)
be the 2-dimensional sphere with the standard smooth metric g0. In this paper, we

consider the following classical problem in conformal geometry: Given t1, . . . , tN ∈ S2 and a set
of positive real numbers θt1 , . . . , θtN , is there a metric of constant curvature 1 conformal to g0
such that the metric is smooth on S2 \ {t1, . . . , tN} and has conical singularities at tj with the
angle 2πθtj? This problem has been widely studied in the literature, and in particular, it was
solved in [8, 9, 10] in the cases where there are at most 2 non-integer angles among {θt1 , . . . , θtN }
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We simply say that the angle is non-integer if θj /∈ Z

)
. In this paper, we consider the case that

there are at least 3 non-integer angles among {θt1 , . . . , θtN }. Without loss of generality, we may
assume that three singularities with non-integer angles are 0, 1, and ∞. Then it is well known
that this problem is equivalent to solving the following curvature equation

∆u+ eu = 4π

(
α0δ0 + α1δ1 +

n+m∑
j=1

αtjδtj

)
in R2 ∼= C,

u(x) = −2(2 + α∞) ln |x|+O(1) as |x| → ∞, (1.1)

where δp is the Dirac measure at p, n ≥ 0, m ≥ 1, α0, α1, α∞, αtj ∈ R>−1\Z for all 1 ≤ j ≤ n and
αtj ∈ N for all n+1 ≤ j ≤ m. Geometrically, a solution u(x) of (1.1) leads to a conformal metric
ds2 = 1

2e
u|dx|2 of curvature 1 on S2 with angles 2πθp at conical singularities p ∈ {0, 1,∞, tj},

where the angles are given by

θp = αp + 1, p ∈ {0, 1,∞, t1, . . . , tn+m},

so

θp ∈ N≥2, p ∈ {tn+1, . . . , tn+m}, θp ∈ R>0 \ Z, p ∈ {0, 1,∞, t1, . . . , tn}.

It is known that if (1.1) has a solution u(x), then there is a developing map h(x) such that h(x)
is a multi-valued meromorphic function on C satisfying

u(x) = ln
8|h′(x)|2

(1 + |h(x)|2)2
, x ∈ Ċ := C \ {0, 1, t1, . . . , tm+n}.

This is known as the Liouville formula and this h(x) is multi-valued and has its projective
monodromy group contained in PSU(2). More precisely, given any ℓ ∈ π1

(
Ċ, q0

)
where q0 ∈ Ċ

is base point, the analytic continuation of h(x), denoted by ℓ∗h(x), is also a developing map

of u(x) and so ℓ∗h(x) = ah(x)+b
ch(x)+d for some projective monodromy matrix

(
a b
c d

)
∈ PSU(2).

The curvature equation (1.1) has been extensively studied in the past several decades. For the
recent development of this subject and its application, we refer [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16,
17, 18] to the interested reader. So far, the existence of solutions for (1.1) with general singular
sources is challenging and seems to be out of reach. Mondello and Panov [17] studied a reduced
problem: To describe possible angles (i.e., to describe the data {θ0, θ1, θ∞, θt1 , . . . , θtn+m}) such
that (1.1) has solutions for some singular set {t1, . . . , tn+m}. They introduced the measure
d1
(
Zn+m+3
o ,θ − 1

)
= d1

(
Zn+m+3
o ,α

)
on

θ = (θ0, θ1, θ∞, θt1 , . . . , θtn+m),

i.e.,

θ − 1 = α = (α0, α1, α∞, αt1 , . . . , αtn+m),

where Zn+m+3
o is the subset of Zn+m+3 consisting of vectors with odd sums of coordinates,

and d1 is the ℓ1-distance. Then they proved the following interesting result.

Theorem 1.1 ([17]). Suppose that the angles θ0, θ1, θ∞ and θti, 1 ≤ i ≤ n+m, are fixed. Then
the following hold.

1. If (1.1) has a solution u(x) for some singular set {t1, . . . , tn+m}, then

d1
(
Zn+m+3
o ,θ − 1

)
≥ 1.
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Furthermore, if

d1
(
Zn+m+3
o ,θ − 1

)
= 1, (1.2)

then there is a developing map h(x) such that the projective monodromy group of h(x) is
contained in the unit circle, i.e., any projective monodromy matrix of h(x) is diagonal.

2. Conversely, if d1
(
Zn+m+3
o ,θ − 1

)
> 1, then there exists some singular set {t1, . . . , tn+m}

such that (1.1) has solutions.

Definition 1.2. In [17], the corresponding metric 1
2e

u(x)|dx|2 (if exists) is called co-axial if there
is a developing map h(x) such that the projective monodromy group of h(x) is contained in the
unit circle. In this paper, we also call this solution u(x) co-axial for convenience.

For the case (1.2), Theorem 1.1 shows that solutions must be co-axial if exist. However,
the existence of co-axial metrics does not necessarily imply (1.2). Thus, there arises naturally
the following question: Are there sufficient conditions on angles that guarantee the existence
of a singular set {t1, . . . , tn+m} such that (1.1) has a co-axial solution? This question was
completely solved by Eremenko [9].

Theorem 1.3 ([9]). If (1.1) has a co-axial solution u(x) for some singular set {t1, . . . , tn+m},
then there are ϵp ∈ {±1} for p ∈ {0, 1,∞, t1, . . . , tn} such that

k′ :=
∑

p∈{0,1,∞,t1,...,tn}

ϵpθp ∈ Z≥0, (1.3)

k′′ :=
n+m∑
j=n+1

θtj − (n+m+ 3)− k′ + 2 ∈ 2Z≥0. (1.4)

Moreover, if there is η ∈ R>0 such that c = ηb = η(b1, . . . , bq) with bj ∈ N, gcd(b1, . . . , bq) = 1,
where

c := (θ0, θ1, θ∞, θt1 , . . . , θtn , 1, . . . , 1︸ ︷︷ ︸
k′+k′′

),

then we also have

2 max
n+1≤j≤n+m

θtj ≤
q∑

j=1

bj . (1.5)

Conversely, if there is no such η such that c = ηb, then (1.3) and (1.4) are also sufficient; if
there is such η such that c = ηb, then (1.3)–(1.5) are also sufficient.

As we have remarked earlier, the existence of co-axial solutions does not necessarily im-
ply (1.2). Let us recall Eremenko’s example [9]: (θ0, θ1, θ∞, θt1 , θt2) = (β, β, 2β, 2β, 3) for some
β ∈ R>0 \N, for which it follows from Theorem 1.3 that co-axial solutions exist but it does not
satisfy (1.2).

Here we have an interesting observation about Mondello–Panov’s condition (1.2) and Ere-
menko’s condition (1.5).

Theorem 1.4. Suppose that (1.2) holds. Then (1.3) and (1.4) imply (1.5) automatically,
namely (1.1) has (co-axial) solutions for some singular set {t1, . . . , tn+m} if and only if (1.3)
and (1.4) hold for some ϵp ∈ {±1}.
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Theorem 1.4 will be proved in Section 4. Define

△n+m :=
{
(t1, . . . , tn+m) ∈ Cn+m | tj = 0, 1 or tj = tk for some j ̸= k

}
.

Throughout the paper, we let θ0, θ1, θ∞, and θ′j , j = 1, . . . , n +m, be fixed real numbers such
that θ0, θ1, θ∞, and θ′j , j = 1, . . . , n, are non-integers and θ′j , j = n+ 1, . . . , n+m, are integers
greater than 1. Let

A = Aθ :=
{
(t1, . . . , tn+m) ∈ Cn+m \ △n+m | (1.1) with θtj = θ′j ,

j = 1, . . . , n+m, has co-axial solutions
}
. (1.6)

An (n + m)-tuple (t1, . . . , tn+m) in A will be called admissible for (1.1). By Theorem 1.3, we
know that A ̸= ∅ if and only if (1.3)–(1.5) hold. In this case, a natural question that interest
us is:

What are the geometric and algebaric properties of the set A, such as its dimension
and so on?

This paper aims to study this problem. Note that (1.4) implies m ≥ 1, this is the reason why
we assume m ≥ 1 in this paper.

Let us consider the special case m = 1 first. Denote

Qθ := Q
(
θ0, θ1, θ∞, θ′1, . . . , θ

′
n

)
⫋ R.

Theorem 1.5. Let m = 1 and (1.3)–(1.5) hold with θtj = θ′j, i.e., A ̸= ∅. Then A is a finite

set with #A ≤ 2n+2 ×
(
θ′n+1 − 1

)
!. Furthermore, for each t = (t1, . . . , tn+1) ∈ A, all tj’s are

algebraic over Qθ and the field

Qθ(A) := Qθ

({
tj | (t1, . . . , tn+1) ∈ A

})
is a Galois extension of Qθ and

[Qθ(A) : Qθ] ≤ M < ∞,

where M is a constant depending on n and θ′n+1.

In the special case when there are only three non-integer angles, i.e., when n = 0, we can get
a much sharper bound for the cardinality of A. In the following, we will write t1 and θ′1 simply
by t and θ.

Theorem 1.6. Assume that n = 0 and m = 1. Assume that ϵ0, ϵ1 ∈ {±1} are signs such that
k := θ∞ + ϵ0θ0 + ϵ1θ1 ∈ Z and θ ≡ k mod 2. Then the cardinality of the set A is{

0, if θ ≤ |k|,(
θ2 − k2

)
/4, if θ > |k|,

counted with multiplicities (see Section 5 for an explanation of multiplicities). Moreover, if
t ∈ A, then the degree of t over Qθ is at most

(
θ2 − k2

)
/4.

We remark that the condition θ ≡ k mod 2 is necessary for A ̸= ∅, by (1.4). Interestingly,
a key ingredient in the proof of the theorem is the monodromy of the classical hypergeometric
equations.
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Remark 1.7. Theorem 1.6 yields a sharp non-existence result for (1.1) when n = 0 and m = 1.
That is, when θ ≡ k mod 2, if t ∈ C is transcendental over Qθ or is algebraic of degree greater
than

(
θ2 − k2

)
/4 over Qθ, then (1.1) has no solutions (not just co-axial solutions). Indeed,

suppose (1.1) has a solution u(z), since θ ≡ k mod 2 easily yields d1
(
Z4
o,θ − 1

)
= 1, it follows

from Theorem 1.1 that u(z) is co-axial, i.e., t ∈ A, a contradiction with Theorem 1.6. It would
be an interesting problem to obtain a similar result for the case n > 0.

Let θ = 2 in Theorem 1.6. Then the set A is non-empty if and only if k = 0, and in this case,
we will prove in Example 5.7 that A = {−ϵ0θ0/θ∞}, so we obtain the following corollary.

Corollary 1.8 (see Example 5.7). Consider the curvature equation

∆u+ eu = 4π((θ0 − 1)δ0 + (θ1 − 1)δ1 + δt) in R2 ∼= C,
u(x) = −2(1 + θ∞) ln |x|+O(1) as |x| → ∞, (1.7)

with θ0, θ1, θ∞ ∈ R>0 \ N. Then (1.7) has co-axial solutions for some t ∈ C \ {0, 1} if and only
if there are ϵ0, ϵ1 ∈ {±1} such that θ∞ + ϵ0θ0 + ϵ1θ1 = 0. In this case,

1) if t ̸= −ϵ0θ0/θ∞, then (1.7) has no solutions;

2) if t = −ϵ0θ0/θ∞, then (1.7) has co-axial solutions.

Let θ = 3 in Theorem 1.6. Then the set A is non-empty only when |k| = 1. In this case,
to simplify notations, we will write ϵ0θ0 and ϵ1θ1 simply by θ0 and θ1. Then we will prove in

Example 5.8 that A =
{

θ0θ∞±
√
−kθ0θ1θ∞

(θ0+θ1)θ∞

}
, so the following result holds.

Corollary 1.9 (see Example 5.8). Consider the curvature equation

∆u+ eu = 4π((θ0 − 1)δ0 + (θ1 − 1)δ1 + 2δt) in R2 ∼= C,
u(x) = −2(1 + θ∞) ln |x|+O(1) as |x| → ∞, (1.8)

with θ0, θ1, θ∞ ∈ R>0 \ N. Then (1.8) has co-axial solutions for some t ∈ C \ {0, 1} if and only
if there are ϵ0, ϵ1 ∈ {±1} such that k := θ∞ + ϵ0θ0 + ϵ1θ1 = ±1. In this case (we write ϵ0θ0
and ϵ1θ1 simply by θ0 and θ1 for convenience),

1) if t /∈
{

θ0θ∞±
√
−kθ0θ1θ∞

(θ0+θ1)θ∞

}
, then (1.8) has no solutions;

2) if t ∈
{

θ0θ∞±
√
−kθ0θ1θ∞

(θ0+θ1)θ∞

}
, then (1.8) has co-axial solutions.

For general cases m ≥ 2, we can not expect that A is a finite set. Let Q denote the algebraic
closure of Q.

Theorem 1.10. Let m ≥ 2 and (1.3)–(1.5) hold, i.e., A ̸= ∅. Then A is an algebraic set of
dimension ≤ m− 1. Furthermore, if we further assume

θ0, θ1, θ∞, θ′1, . . . , θ
′
n ∈ Q>0 \ Z, (1.9)

then for any t = (t1, . . . , tn+m) ∈ A, the transcendence degree of Q(t) over Q is ≤ m− 1.

One of the main ideas in our proofs of all the main results is the integrability of the curvature
equation. This integrability property allows us to connect the partial differential equation with
a second-order Fuchsian ordinary differential equation. In Section 2, we will derive those ODE’s.
Applying integrability in terms of the developing maps, we will prove an equivalent condition for
the existence of co-axial solutions. Based on this equivalent condition, we will prove Theorems 1.5
and 1.10 in Section 3. In Section 4, we give a proof of Theorem 1.4. In the final section, we
present a proof of Theorem 1.6 using hypergeometric equations.
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2 The integrability of curvature equations and complex ODEs

In this section, we briefly review how to connect the integrability of the curvature equation (1.1)
with a class of second order ODEs in complex variables; see, e.g., [2, 9]. Given a solution u(x)
of (1.1), we define

Q(x) := −1

2

(
uxx(x)−

1

2
ux(x)

2

)
, x ∈ C.

Then it is easy to see Qx̄(x) ≡ 0, so Q(x) is a meromorphic function in C with poles belonging
to

I := {0, 1, t1, . . . , tn+m}.

More precisely, at each p ∈ I, since ∆(ln |x − p|) = 2πδp, by (1.1) and a standard elliptic
regularity argument (cf. [1]), we obtain that u(x)− 2αp ln |x− p| is bounded near p, i.e.,

u(x) = 2αp ln |x− p|+O(1) for x near p.

Consequently,

Q(x) =
αp(αp + 2)

4
(x− p)−2 +O

(
(x− p)−1

)
for x near p,

and

Q(x) =
α∞(α∞ + 2)

4
x−2 +O

(
x−3

)
for x → ∞.

Thus,

Q(x) =
∑
p∈I

[
βp

(x− p)2
+

dp
(x− p)

]
, (2.1)

where

βp :=
αp(αp + 2)

4
, p ∈ {0, 1, t1, . . . , tn+m,∞}, (2.2)

and dp’s are some constants satisfying∑
p∈I

dp = 0,
∑
p∈I

(βp + pdp) = β∞. (2.3)

Thus, d0 and d1 can be uniquely determined by

d := (dt1 , . . . , dtn+m), t := (t1, . . . , tn+m)

as

d1 = β∞ −
∑

p∈I\{0,1}

(βp + pdp), d0 =
∑

p∈I\{0,1}

(βp + (p− 1)dp)− β∞,

while d could be considered as n+m unknown coefficients.
On the other hand, as mentioned in the introduction, the Liouville theorem (see, e.g., [2])

says that for a solution u(x) of (1.1), there is a developing map h(x) such that

u(x) = ln
8|h′(x)|2

(1 + |h(x)|2)2
, x ∈ Ċ := C \ I. (2.4)
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The developing map h(x) is multi-valued in C and due to (2.4), the projective monodromy group
of h(x) is contained in PSU(2). More precisely, given any ℓ ∈ π1

(
Ċ, q0

)
where q0 ∈ Ċ is a base

point, the analytic continuation of h(x), denoted by ℓ∗h(x), is also a developing map of u(x)

and so ℓ∗h(x) = ah(x)+b
ch(x)+d for some projective monodromy matrix

(
a b
c d

)
∈ PSU(2).

To connect Q(x) and h(x), we note that (2.4) implies

{h(x), x} :=

(
h′′(x)

h′(x)

)′
− 1

2

(
h′′(x)

h′(x)

)2

= uxx(x)−
1

2
ux(x)

2 = −2Q(x), (2.5)

where {h(x), x} is the Schwarz derivative. We refer the reader to [2] for details of computation.
Consider the following second order linear ODE with the complex variable x:

y′′(x) = Q(x)y(x), x ∈ C. (2.6)

Then a classical result (see [19]) says that for any basis (ŷ1, ŷ2) of (2.6), the Schwarz derivative
{ŷ2/ŷ1, x} always satisfies

{ŷ2/ŷ1, x} = −2Q(x).

From this and (2.5), we conclude that if (2.6) is derived from a solution of (1.1), then there is
a basis (y1, y2) of (2.6) such that

h(x) = y2(x)/y1(x). (2.7)

Furthermore, the projective monodromy group of (2.6) with respect to y1 and y2 is the same as
that of h(x), i.e., is contained in PSU(2).

Conversely, given Q(x) via (2.1)–(2.3), if the corresponding ODE (2.6) has a basis (y1, y2)
such that the projective monodromy group of the ratio h(x) = y2(x)/y1(x) is contained in

PSU(2), then u(x) := ln 8|h′(x)|2
(1+|h(x)|2)2 is a solution of (1.1).

For the reader’s convenience, we now briefly recall some basic notions of ODEs like (2.6). We
refer the reader to [14, 19] for a comprehensive introduction. Generally, (2.6) is called Fuchsian
because the pole order of Q(x) is at most 2 at any singularities. Note that the Riemann scheme
(see [14, p. 11] for the definition of the Riemann scheme) of (2.6) is given by 0 1 t1 · · · tn+m ∞

−α0
2 −α1

2 −αt1
2 · · · −αtn+m

2 −(α∞
2 + 1)

α0
2 + 1 α1

2 + 1
αt1
2 + 1 · · · αtn+m

2 + 1 α∞
2

 . (2.8)

Observe that the exponent difference at tj is an integer for n + 1 ≤ j ≤ n + m. Since Q(x)
comes from a solution u(x) of (1.1), it is well known that (2.6) is apparent at tj

(
i.e., no

logarithmic singularity near tj
)
and so the local monodromy matrix of (2.6) at tj is (−1)αtj I2

for all n+1 ≤ j ≤ n+m. In this paper, we will also consider a Fuchsian differential equation (2.6)
which may not come from a solution of (1.1). In this case, unless otherwise specified, we always
assume that (2.6) with the Riemann scheme (2.8) is apparent at tj for all n+ 1 ≤ j ≤ n+m.

It is well known that the necessary and sufficient condition of (2.6) being apparent at tj for
all n+ 1 ≤ j ≤ n+m can be derived from the Frobenius method.

Theorem 2.1. There are polynomials

P̂j(d, t) ∈ Qθ(t)[d] = d
θtj
tj

+ l.o.t. in d ∈ Qθ(t)[d]

of total degree θtj in d, j = n + 1, . . . , n +m, such that (2.6) is apparent at tj for all n + 1 ≤
j ≤ n+m if and only if d and t satisfy P̂j(d, t) = 0 for all j = n+ 1, . . . , n+m.
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Furthermore, P̂j(d, t) can be written as

P̂j(d, t) =
Pj(d, t)∏

p∈I\{tj}(p− tj)Nj
(2.9)

for some Nj ∈ Z≥0 and Pj(d, t) ∈ Qθ[d, t] such that Pj(d, t) and
∏

p∈I\{tj}(p − tj)
Nj are

coprime. Thus, (2.6) is apparent at tj for all n+ 1 ≤ j ≤ n+m if and only if Pj(d, t) = 0 for
all j = n+ 1, . . . , n+m.

Proof. Let us take tn+m for example and in the following proof, we write tn+m = t for con-
venience. By the Frobenius method, (2.6) is apparent at the singularity t if and only if it has
a solution of the form

y(x) =
∞∑
j=0

cju
j−αt/2, u = x− t, c0 = 1.

Observe that

Q(x) =
∑
p∈I

[
βp

(x− p)2
+

dp
(x− p)

]
=

βt
u2

+
dt
u

+
∑

p∈I\{t}

[
βp

(u+ t− p)2
+

dp
u+ t− p

]

=
βt
u2

+
dt
u

+

∞∑
j=0

(−1)j
∑

p∈I\{t}

βp(j + 1) + dp(t− p)

(t− p)j+2
uj =

∞∑
j=0

ηju
j−2,

where

η0 = βt, η1 = dt, ηj = (−1)j
∑

p∈I\{t}

βp(j − 1) + dp(t− p)

(t− p)j
, j ≥ 2,

i.e.,
∏

p∈I\{t}(t− p)jηj ∈ Qθ[d, t].

Consequently, y′′(x) = Q(x)y(x) if and only if

j(j − θt)cj =

j−1∑
k=0

ηj−kck, ∀j ≥ 0, (2.10)

where (j − αt/2)(j − αt/2 − 1) − η0 = j(j − αt − 1) = j(j − θt) is used. Clearly, (2.10) holds
automatically for j = 0, and (2.10) with j = 1 leads to c1 = dt

1−θt
. By an induction argument,

for any 2 ≤ j ≤ θt − 1, cj can be uniquely solved by (2.10) as

cj = rj
[
djt + l.o.t. in d

]
∈ Qθ(t)[d]

with total degree j in d, where rj ∈ Qθ \ {0}. Furthermore,∏
p∈I\{t}

(t− p)jcj ∈ Qθ[d, t].

Consequently, (2.10) with j = θt leads to the existence of rθt ∈ Qθ \ {0} and a polynomial

P̂ (d, t) = dθtt + l.o.t. in d ∈ Qθ(t)[d]

with total degree θt in d such that

θt−1∑
k=0

ηj−kck = rθtP̂ (d, t).
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Then it is standard by the Frobenius theory that (2.6) is apparent at the singularity t if and
only if P̂ (d, t) = 0. Furthermore, the above argument also implies the existence of an integer
0 ≤ N ≤ θt such that

P (d, t) := P̂ (d, t)
∏

p∈I\{t}

(t− p)N ∈ Qθ[d, t]

and P (d, t),
∏

p∈I\{t}(t− p)N are coprime. ■

The case n = 0 is special and we plan to study the solvability of (1.1) for this case in another
paper. In this case, the ODE (2.6) can be transformed into a Heun equation and this Heun
equation has been well studied in [8, 12]. In Section 5, we will use some results from [8] and
hypergeometric equations to prove Theorem 1.6.

3 Proofs of Theorems 1.5 and 1.10

This section is devoted to the proofs of Theorems 1.5 and 1.10. In the following we use notations

I := {0, 1, t1, . . . , tn+m}, I1 := {0, 1, t1, . . . , tn}.

3.1 General setting

As mentioned in the introduction, following [17], we call the metric 1
2e

u(x)|dx|2 and also the
solution u(x) of (1.1) to be co-axial if there is a developing map h(x) of u(x) such that the
projective monodromy group of h(x) is contained in the unit circle, that is, for any γ ∈ π1

(
Ċ, q0

)
,

the analytic continuation of h(x) along γ, denoted by γ∗h(x), satisfies γ∗h(x) = λ(γ)h(x) for
some λ(γ) ∈ C satisfying |λ(γ)| = 1. Clearly, this is equivalent to that the monodromy group of
the associated ODE (2.6) with Q(x) = −1

2

(
uxx(x)− 1

2ux(x)
2
)
is commutative. In Section 2, we

have discussed the equivalence between the existence of a solution u(x) of (1.1) and a Fuchsian
ODE (2.6) with Q(x) given by (2.1) satisfying Pj(d, t) = 0 for all n + 1 ≤ j ≤ n + m (see
Theorem 2.1) such that the monodromy group is conjugate to a subgroup of SU(2). This
equivalence can be further strengthened as follows when the solution u(x) is co-axial.

In fact, given such an ODE (2.6), take the basis of local solutions near ∞ as follows

y+(x) = x−
α∞
2

∞∑
j=0

c+,jx
−j , c+,0 = 1,

y−(x) = x
α∞
2

+1
∞∑
j=0

c−,jx
−j , c−,0 = 1. (3.1)

Suppose that (2.6) comes from a co-axial metric. By (2.7), we have h(x) = y2(x)/y1(x) for
some solutions yi(x) of (2.6). Consider a large circle |x| = R and let h

(
e2πix

)
be the analytic

continuation of h(x) along the circle. Then by the co-axial condition, one has

h
(
e2πix

)
= λh(x)

for some λ ̸= 0. On the other hand, there is a matrix M∞ =
(
a b
c d

)
∈ SL(2,C) such that(

y1
(
e2πix

)
y2
(
e2πix

)) = M∞

(
y1(x)
y2(x)

)
.

These two identities together imply that b = c = 0. Thus, after multiplying by some nonzero
constants, we may assume that

h(x) := y+(x)/y−(x), (3.2)
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which satisfies

h(x) = x−1−α∞
(
1 +O

(
x−1

))
= x−θ∞

(
1 +O

(
x−1

))
as x → ∞. (3.3)

Then under the basis (y+(x), y−(x)), we have M∞ =
(

e−πiα∞ 0
0 eπiα∞

)
with e−πiα∞ ̸= eπiα∞ . Here

for any p ∈ I ∪{∞}, we use Mp ∈ SL(2,C) to denote the monodromy matrix of ODE (2.6) with
respect to a simple loop in π1

(
Ċ, q0

)
that encircles p once. Now suppose that the monodromy

group of (2.6) is commutative (this holds if (2.6) comes from a co-axial solution u(x)), then it
follows that all the monodromy matrices under the basis (y+(x), y−(x)) are diagonal, i.e., Mp =(

e±πiαp 0
0 e∓πiαp

)
for p ∈ I1 = {0, 1, t1, . . . , tn}. This implies that after analytic continuation,

y±(x) = (x− p)ρ
±
p
(
c±p +O(|x− p|)

)
near p ∈ I1,

where {ρ+p , ρ−p } =
{
−αp

2 ,
αp

2 + 1
}
are the local exponents of (2.6) at p and c±p ̸= 0. Thus there

exists ϵp ∈ {±1} for p ∈ I1 such that

h(x) = (x− p)ϵpθp(cp +O(x− p)) as x → p ∈ I1, cp ̸= 0.

From here and (3.3), we see that h(x) can be written as

h(x) = ĥ(x)
∏
p∈I1

(x− p)ϵpθp , (3.4)

where ĥ(x) is meromorphic in C and satisfies ĥ(x) = x−θ∞−ϵ0θ0−ϵ1θ1−
∑n

j=1 ϵtj θtj
(
1 +O

(
x−1

))
as

x → ∞, so

ĥ(x) is a rational function. (3.5)

Conversely, given an ODE (2.6) with (2.8) which might not come from a solution of (1.1),
we consider h(x) = y+(x)/y−(x) as in (3.1) and (3.2). If there are ϵp ∈ {±1} for p ∈ I1 such

that h(x) has the expression (3.4) with ĥ(x) being a rational function, then for any γ ∈ π1
(
Ċ, q0

)
,

γ∗h(x) = λ(γ)h(x) with |λ(γ)| = 1 (i.e., the projective monodromy group of h(x) is a subgroup
of the unit circle, or equivalently the monodromy matrices of (2.6) are all diagonal under the
basis (y+(x), y−(x))). Thus

u(x) := ln
8|h′(x)|2

(1 + |h(x)|2)2

is well defined in C. Then a direct computation shows that u(x) is a co-axial solution of (1.1)
with h(x) being a developing map. Therefore, the above argument proves the following result.

Lemma 3.1. The equation (1.1) has co-axial solutions if and only if there is an ODE (2.6)
with the Riemann scheme (2.8) such that h(x) = y+(x)/y−(x) has the expression (3.4) for some
ϵp ∈ {±1} for p ∈ I1 and some rational function ĥ(x).

Remark that h(x) or equivalently ĥ(x) might have zeros or poles at tn+j for some j ≥ 1.
More precisely, the Riemann scheme (2.8) indicates that the exponent difference is αtj +1 = θtj
at tj , so near tj with n+ 1 ≤ j ≤ n+m, we have

h(x) =
y+(x)

y−(x)
=
(
x− tj

)β(
ctj +O

(
x− tj

))
for some β ∈

{
0,±θtj

}
, ctj ̸= 0,
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and so does ĥ(x). From here and (3.5), there is I1 ⊂ J1 ⊂ I and ϵp ∈ {±1} for p ∈ J1 \ I1 such
that

h(x) =
∏
p∈J1

(x− p)ϵpθp

∏m1
j=1

(
x− aj

)∏m2
j=1

(
x− bj

) , (3.6)

where aj ’s and bk’s satisfy

aj , bk ∈ C \ I, {a1, . . . , am1} ∩ {b1, . . . , bm2} = ∅.

In other words,

J1 \ I1 = {tn+j | h(tn+j) ∈ {0,∞}, 1 ≤ j ≤ m}.

Then by h(x) = y+(x)/y−(x), we see that each aj (resp. bj) is a zero of y+(x) (resp. y−(x)) and
must be simple, namely each aj is a simple zero of h(x) and each bj is a simple pole of h(x), so
aj ̸= ak and bj ̸= bk for any j ̸= k. Therefore,

Any two elements of the collection [p ∈ I; aj , 1 ≤ j ≤ m1; bk, 1 ≤ k ≤ m2] are
distinct.

Clearly, (3.3) implies∑
p∈J1

ϵpθp +m1 −m2 = −θ∞. (3.7)

By (3.6), we have

h′(x) = h(x)

[ ∑
p∈J1

ϵpθp
x− p

+

m1∑
j=1

1

x− aj
−

m2∑
j=1

1

x− bj

]

=
h(x)G(x)∏

p∈J1
(x− p)

∏m1
j=1

(
x− aj

)∏m2
j=1

(
x− bj

)
=
∏
p∈J1

(x− p)ϵpθp−1 G(x)∏m2
j=1

(
x− bj

)2 , (3.8)

where G(x) is a polynomial defined by

G(x) :=

m1∏
j=1

(
x− aj

) m2∏
j=1

(
x− bj

) ∑
p∈J1

ϵpθp
∏

q∈J1\{p}

(x− q)

+
∏
p∈J1

(x− p)

m2∏
j=1

(
x− bj

) m1∑
k=1

m1∏
j=1,̸=k

(
x− aj

)
−
∏
p∈J1

(x− p)

m1∏
j=1

(
x− aj

) m2∑
k=1

m2∏
j=1,̸=k

(
x− bj

)
=

(∑
p∈J1

ϵpθp +m1 −m2

)
xm1+m2+|J1|−1 + l.o.t. = −θ∞xL + l.o.t., (3.9)

where |J1| := #J1 ≥ n+ 2 and

L := m1 +m2 + |J1| − 1.

Note that the last identity is due to (3.7).
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Lemma 3.2. Suppose h(x) given by (3.6) is a developing map of a co-axial solution u(x)
of (1.1), and let G(x) be defined by (3.9). Then

L = m1 +m2 + |J1| − 1 =
∑

p∈I\J1

αp, (3.10)

G(x) = −θ∞
∏

p∈I\J1

(x− p)αp . (3.11)

Proof. Since h(x) is a developing map of u(x), it follows from (2.5) that

−2Q(x) =

(
h′′(x)

h′(x)

)′
− 1

2

(
h′′(x)

h′(x)

)2

. (3.12)

Let G(p) = 0, first we claim that p ∈ I \ J1. Suppose not. Then

p /∈ {0, 1, t1, . . . , tn+m, a1, . . . , am1 , b1, . . . , bm}.

Denote by γ ≥ 1 to be the zero order of G(x) at p, then h′(x) = c(x − p)γ(1 + O(x − p)) with
c ̸= 0 and so a direct computation via (3.12) implies

−2Q(x) =
−γ(γ + 2)

2(x− p)2
+O

(
(x− p)−1

)
, (3.13)

a contradiction with the fact that Q(x) is holomorphic in C \ {0, 1, t1, . . . , tn+m}. This proves
p ∈ I \ J1.

Now for each p ∈ I\J1, we claim that p is a zero of G(x) with order αp. Suppose h
′(x) = c(x−

p)γ(1+O(x−p)) with c ̸= 0 and γ ∈ Z≥0. Again a direct computation via (3.12) implies (3.13),
so γ(γ + 2)/4 = βp = αp(αp + 2)/4, namely γ = αp. This proves (3.10) and (3.11). ■

Corollary 3.3. Suppose that h(x) given by (3.6) is a developing map of a co-axial solution u(x)
of (1.1). Then m1,m2 ∈ Z≥0 are determined by

2m1 =
∑

p∈I\J1

θp −
∑
p∈J

ϵpθp − (n+m+ 1), (3.14)

2m2 =
∑

p∈I\J1

θp +
∑
p∈J

ϵpθp − (n+m+ 1), (3.15)

where J := J1 ∪ {∞} and ϵ∞ = 1. In particular, I \ J1 ̸= ∅.

Proof. Note that (3.7) and (3.10) can be written as

m1 −m2 = −
∑
p∈J1

ϵpθp − θ∞ = −
∑
p∈J

ϵpθp,

m1 +m2 =
∑

p∈I\J1

αp − |J1|+ 1 =
∑

p∈I\J1

θtp − |I \ J1| − |J1|+ 1

=
∑

p∈I\J1

θtp − (n+m+ 1),

so (3.14) and (3.15) hold, which also imply I \ J1 ̸= ∅. ■
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We now do some preparatory work for the proofs of Theorems 1.5 and 1.10. Denote t =
(t1, . . . , tn+m), a = (a1, . . . , am1) and b = (b1, . . . , bm2). Recall that I1 ⊂ J1 ⫋ I, we denote
t1 = (tj)tj∈J1 and t2 = (tj)tj∈I\J1

for convenience. For example, if

J1 = {0, 1, t1, . . . , tn, tn+1 . . . , tn+i} for some 0 ≤ i ≤ m− 1,

then t1 = (t1, . . . , tn+i) and t2 = (tn+i+1, . . . , tn+m). Recall

Qθ := Q(θ0, θ1, θ∞, θ′1, . . . , θ
′
n) ⫋ R.

Then it follows from (3.9) that

G(x) = −θ∞

(
xL +

L∑
j=1

Rj(a, b, t1)x
L−j

)
, (3.16)

where Rj(a, b, t1) ∈ Qθ[a, b, t1] is of total degree j for any j ≤ L − 1, while RL(a, b, t1) ∈
Qθ[a, b, t1] is of total degree L − 1 due to the non-homogenous term x − 1 in the expression
of G(x).

On the other hand,

∏
p∈I\J1

(x− p)αp =
∏

tj∈I\J1

(
x− tj

)αtj = xL +
L∑

j=1

Cj(t2)x
L−j , (3.17)

where we use (3.10) and Cj(t2) ∈ Q[t2] are symmetric polynomials of t2 of degree j. Compar-
ing (3.16) and (3.17), we conclude that (3.11) holds if and only if (a, b, t) is a common zero of
the polynomials

Bj(a, b, t) := Rj(a, b, t1)− Cj(t2), 1 ≤ j ≤ L. (3.18)

Remark that Bj(a, b, t) is of total degree j.

Definition 3.4. We say that a common zero (a, b, t) ∈ Cm1+m2+n+m of the polynomials Bj ’s
in (3.18) is admissible if any two elements of (a, b, t1, . . . , tn+m) do not equal and none of them
equals to 0, 1.

Then the above argument shows that once (2.6) comes from a co-axial solution u(x) of (1.1),
then there exist I1 ⊂ J1 ⫋ I and ϵp ∈ {±1} for p ∈ J1 such that m1, m2 defined by (3.14)
and (3.15) are non-negative integers, (3.10) holds and the corresponding polynomials Bj ’s
in (3.18) has an admissible zero (a, b, t). The following result shows that the converse statement
also holds.

Lemma 3.5. Suppose there exist I1 ⊂ J1 ⫋ I and ϵp ∈ {±1} for p ∈ J1 such that m1, m2

defined by (3.14) and (3.15) are non-negative integers, i.e., (3.10) holds and the corresponding
polynomials Bj’s in (3.18) are well defined. If Bj’s have an admissible zero (a, b, t), then (1.1)
has a co-axial solution u(x) with its developing map given by (3.6).

Proof. Under the above assumptions, we consider the function h(x) given by (3.6). Then h′(x)
is given by (3.8) withG(x) given by (3.9). Since (a, b, t) is an admissible zero of polynomials Bj ’s,
we see that G(x) satisfies (3.11). Inserting (3.11) into (3.8), we obtain

h′(x) = −θ∞

∏
p∈J1

(x− p)ϵpθp−1
∏

p∈I\J1
(x− p)αp∏m2

j=1

(
x− bj

)2 . (3.19)
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Furthermore, (3.14) and (3.15) imply (3.7), so

h(x) = x−θ∞
(
1 +O

(
x−1

))
as x → ∞. (3.20)

It follows that

h′(x) = −θ∞x−θ∞−1
(
1 +O

(
x−1

))
as x → ∞. (3.21)

Define Q(x) via this h(x) by (3.12), i.e., Q(x) = −1
2{h(x), x}. Then by (3.19)–(3.21), a direct

computation shows that

Q(x) =
θ2p − 1

4(x− p)2
+

dp
x− p

+O(1) near p ∈ I = {0, 1, t1, . . . , tm+n}, (3.22)

Q(x) =
θ2∞ − 1

4x2
+O

(
x−3

)
near x = ∞, (3.23)

Q(x) =
dbj

x− bj
+O(1) near x = bj , (3.24)

for some dp ∈ C, and Q(x) is holomorphic at elsewhere. We need to prove dbj = 0.

Consider the corresponding ODE (2.6) with this Q(x). Again by Q(x) = −1
2{h(x), x},

a classical result says that there is a basis (y1(x), y2(x)) of solutions of (2.6) such that h(x) =
y1(x)/y2(x). From here and the expression (3.6) of h(x), we conclude that any solution of (2.6)
has no logarithmic singularities at any singularities. On the other hand, by (3.24) we know that
the local exponents of (2.6) at bj are 0, 1, so there is a local solution of the following form

ỹ(x) = 1 + c1
(
x− bj

)
+ c2

(
x− bj

)2
+ · · · near bj .

Inserting this and (3.24) into ỹ′′(x) = Q(x)ỹ(x) we immediately obtain dbj = 0, i.e., Q(x) is
holomorphic at any bj . Thus it follows from (3.22) and (3.23) that the Riemann scheme of (2.6)
is (2.8), and (2.6) is apparent at tj for any n+ 1 ≤ j ≤ n+m.

Let (y+(x), y−(x)) be the basis of local solutions of (2.6) given by (3.1). Then (y1(x), y2(x)) =

(y+(x), y−(x))
(
a b
c d

)
for some ad − bc ̸= 0, so h(x) = ay+(x)+cy−(x)

by+(x)+dy−(x) . Since under the basis

(y+(x), y−(x)), we have M∞ =
(

e−πiα∞ 0
0 eπiα∞

)
, so we see from (3.20) that

e−2πiα∞ ay+(x) + cy−(x)

by+(x) + dy−(x)
= e−2πiθ∞h(x) =

ae−2πiα∞y+(x) + cy−(x)

be−2πiα∞y+(x) + dy−(x)
.

From here and e−2πiα∞ ̸= 1, we easily obtain b = c = 0 and so h(x) = ay+(x)/dy−(x) =
y+(x)/y−(x), where a/d = 1 follows from (3.20) and (3.1). Then by Lemma 3.1, we conclude
that (1.1) has a co-axial solution u(x) with h(x) being its developing map. ■

Therefore, the problem turns to study the admissible zeros of the polynomials Bj ’s. The
number of the polynomials is L = m1 + m2 + |J1| − 1 with |J1| ≤ |I| − 1 = n + m + 1, and
the number of variables is m1 + m2 + n + m ≥ L. Thus there are two different cases: (i)
m1 +m2 + n+m = L and (ii) m1 +m2 + n+m > L. For the case (i), we may expect that the
number of common zeros of the polynomials Bj ’s is finite, but we can not expect the validity of
this assertion for the case (ii).

Therefore, let us study the case m1 +m2 + n +m = L first. In this case, |J1| = |I| − 1 =
n+m+ 1, so I \ J1 consists of a single point belonging to {tn+j | 1 ≤ j ≤ m}. Without loss of
generality, we may assume

J1 = {0, 1, t1, . . . , tn+m−1}, I \ J1 = {tn+m}. (3.25)
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Then t1 = (t1, . . . , tn+m−1), (3.17) becomes

∏
p∈I\J1

(x− p)αp = (x− tn+m)αtn+m = xL +

L∑
j=1

(−1)j
(
L
j

)
tjn+mxL−j ,

with

L = m1 +m2 + n+m = αtn+m (3.26)

and so the polynomials Bj ’s become

Bj(a, b, t) := Rj(a, b, t1)−
L∑

j=1

(−1)j
(
L
j

)
tjn+m, 1 ≤ j ≤ L. (3.27)

Define

A = A(ϵp) :=

{
t ∈ Cn+m

∣∣∣ there is a, b such that (a, b, t) is
an admissible zero of the polynomials Bj ’s in (3.27)

}
.

Then Lemma 3.5 shows A ⊂ A, where A is defined by (1.6). The first main result is as follows.

Theorem 3.6. Suppose that for J1 given by (3.25), there exist ϵp ∈ {±1} for p ∈ J1 such
that m1, m2 defined by (3.14) and (3.15) are non-negative integers, i.e., (3.26) holds and the
corresponding polynomials Bj’s in (3.27) are well defined. Suppose that A ̸= ∅. Then A is

a finite set with #A ≤ (θtn+m−1)!

m1!m2!
.

Furthermore, for each t = (t1, . . . , tn+m) ∈ A, all tj’s are algebraic over Qθ, and the field

Qθ(A) := Qθ({tj | (t1, . . . , tn+m) ∈ A})

is a Galois extension of Qθ and

[Qθ(A) : Qθ] ≤ M < ∞,

where M is a constant depending on the integer angles θtj ’s.

Proof. Given any t0 = (t0,1, . . . , t0,n+m) ∈ A. Then the polynomials Bj ’s in (3.27) have an
admissible zero (a, b, t) such that t = t0. We claim that

The polynomial system Bj(a, b, t) = 0 with 1 ≤ j ≤ L
has at most L! = (θtn+m − 1)! solutions.

(3.28)

Once this claim is proved, we can conclude that A is a finite set with #A ≤ (θtn+m−1)!

m1!m2!
due

to the fact that Bj is invariant under any permutation of a1, . . . , am1 and any permutation of
b1, . . . , bm2 for all j.

To prove the claim (3.28), we consider the homogenization of this polynomial system

B̃j(a, b, t, ε) := εjBj(a/ε, b/ε, t/ε) = 0, j = 1, . . . , L. (3.29)

We show that the solution of (3.29) with ε = 0 must be 0, i.e., (a, b, t) = 0.
First of all, since 0, 1 ∈ J1, we see from (3.9) and (3.27) that

BL(a, b, t) =
ϵ0θ0
θ∞

n+m−1∏
j=1

tj

m1∏
j=1

aj

m2∏
j=1

bj − (−1)LtLn+m,



16 Z. Chen, C.-S. Lin and Y. Yang

and so

B̃L(a, b, t, ε) =
ϵ0θ0
θ∞

ε
n+m−1∏
j=1

tj

m1∏
j=1

aj

m2∏
j=1

bj − (−1)LtLn+m.

Thus B̃L(a, b, t, 0) = 0 implies tn+m = 0.
To prove that (a, b, t1, . . . , tn+m−1) = 0, we define

h̃(x) = xϵ0θ0+ϵ1θ1

n+m−1∏
j=1

(
x− tj

)ϵtj θtj ∏m1
j=1

(
x− aj

)∏m2
j=1

(
x− bj

) ,
i.e., replace the non-homogenous factor x− 1 of h(x) in (3.6) with x. Then

h̃′(x) = xϵ0θ0+ϵ1θ1−2
n+m−1∏
j=1

(
x− tj

)ϵtj θtj−1 G̃(x)∏m2
j=1

(
x− bj

)2 ,
where the expression of G̃(x) is obtained from that of G(x) in (3.9) by replacing the term x− 1
with x. In other words,

G̃(x) = −θ∞

(
xL +

L∑
j=1

R̃j(a, b, t1)x
L−j

)
,

where R̃j(a, b, t1) is the homogeneous part of degree j of Rj(a, b, t), and so

B̃j(a, b, t1, tn+m, 0) = R̃j(a, b, t1)− (−1)j
(
L
j

)
tjn+m, 1 ≤ j ≤ L.

Thus B̃j(a, b, t1, 0, 0) = 0 for any j yields R̃j(a, b, t1) = 0 for any j and so

G̃(x) = −θ∞xL = −θ∞xm1+m2+n+m.

Suppose the number of those aj ’s being 0 is n1, the number of those bj ’s being 0 is n2 and denote

I2 = {j ∈ {1, . . . , n+m− 1} | tj = 0}.

Then

h̃(x) = x
ϵ0θ0+ϵ1θ1+

∑
j∈I2

ϵtj θtj+n1−n2(c+ o(x))

and so

h̃′(x) = x
ϵ0θ0+ϵ1θ1+

∑
j∈I2

ϵtj θtj+n1−n2−1
(c′ + o(x))

for some c, c′ ̸= 0. Therefore,

ϵ0θ0 + ϵ1θ1 +
∑
j∈I2

ϵtjθtj + n1 − n2 − 1

= ϵ0θ0 + ϵ1θ1 − 2 +
∑
j∈I2

(ϵtjθtj − 1) +m1 +m2 + n+m− 2n2,

namely n1 + n2 +#I2 = m1 +m2 + n+m− 1. Since nj ≤ mj and #I2 ≤ n+m− 1, we obtain
n1 = m1, n2 = m2 and #I2 = n+m− 1, i.e., (a, b, t1) = 0.
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Therefore, the homogenized system (3.29) has no solutions at infinity. Then by the Bezout
theorem, the polynomial system Bj(a, b, t) = 0 with 1 ≤ j ≤ L has exactly L! solutions by
counting multiplicity. This proves the claim (3.28). Furthermore, it follows from Lemma 3.7
below that for any solution (a, b, t), every element of (a, b, t) is algebraic over Qθ, i.e., every
element belongs to Qθ, where Qθ denotes the algebraic closure of Qθ.

Let (a, b, t) be an admissible zero of the polynomials Bj ’s. Let σ : Qθ → Qθ be any automor-
phism of Qθ such that σ(x) = x for any x ∈ Qθ. Then it follows from Bj(a, b, t) ∈ Qθ[a, b, t]
that

(σ(a1), . . . , σ(am1), σ(b1), . . . , σ(bm2), σ(t1), . . . , σ(tn+m))

is also an admissible zero of the polynomials Bj ’s, namely (σ(t1), . . . , σ(tn+m)) ∈ A as long
as (t1, . . . , tn+m) ∈ A. This proves that Qθ(A) is a Galois extension of Qθ, and [Qθ(A) : Qθ]
is bounded by a constant depending on the integer angles θtj ’s, because the degree of the
minimal polynomial of each tj is bounded by (θtn+m − 1)! and #A ≤ (θtn+m − 1)!. The proof is
complete. ■

Lemma 3.7. Given complex numbers y1, . . . , yk, let K be the algebraic closure of the field
Q(y1, . . . , yk). Let Hj(x1, . . . , xℓ) ∈ K[x1, . . . , xℓ] for j = 1, . . . , ℓ. Suppose that the polynomial
system

Hj(x1, . . . , xℓ) = 0, 1 ≤ j ≤ ℓ, (3.30)

has only finitely many solutions. Then the coordinates of any solution (t1, . . . , tℓ) of (3.30) are
algebraic over Q(y1, . . . , yℓ).

Proof. Let I be the ideal of K[x1, . . . , xℓ] generated by the polynomials Hj . For i = 1, . . . , ℓ,
consider the elimination ideal Ii = I ∩ K[xi]. Under the assumption that (3.30) has finitely
many solutions, Ii is generated by some polynomial fi(xi) ∈ K[xi] whose roots are precisely
those ti such that (t1, . . . , tℓ) is a solution of (3.30) for some (t1, . . . , ti−1, ti+1, . . . , tℓ), by the
closure theorem in the elimination theory (see [7, Theorem 3, Section 3.3]). Since all roots of fi
are in K, this shows that the coordinates of any solution (t1, . . . , tℓ) of (3.30) are algebraic over
Q(y1, . . . , yℓ). ■

3.2 The case m = 1

This section is devoted to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let m = 1 and (1.3)–(1.5) with θtj = θ′j hold, i.e., the set A in (1.6) is
non-empty. Given any t0 = (t0,1, . . . , t0,n+1) ∈ A. Then there exist I1 ⊂ J1 ⫋ I and ϵp ∈ {±1}
for p ∈ J1 such that m1, m2 defined by (3.14) and (3.15) are non-negative integers, (3.26) holds
and the corresponding polynomials Bj ’s in (3.18) has an admissible zero (a, b, t) with t = t0.
Since m = 1 implies I1 ∪ {tn+m} = I, we always have

J1 = I1 = {0, 1, t1, . . . , tn} and I \ I1 = {tn+1},

i.e., it satisfies (3.25) and so the polynomials Bj ’s become (3.27). Then by Theorem 3.6, we

have t0 ∈ A(ϵp) and #A(ϵp) ≤
(θtn+1−1)!

m1!m2!
=

(θ′n+1−1)!

m1!m2!
.

Remark that in general, the set

Λ :=

{
(ϵp)p∈I1

∣∣∣ ϵp ∈ {±1}, m1, m2 defined by (3.14) and (3.15) are
non-negative integers and so (3.26) holds

}
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might contain multiple elements. Of course #Λ ≤ 2n+2. Since the above argument implies

A =
⋃

(ϵp)∈Λ

A(ϵp),

we conclude that A is a finite set with #A ≤ 2n+2
(
θ′n+1 − 1

)
! and Qθ(A) is a finite Galois

extension of Qθ with [Qθ(A) : Qθ] ≤ M ′, where M ′ is a constant depending on n and the integer
angle θ′n+1. The proof is complete. ■

3.3 The general case m ≥ 2

Since n + 2 ≤ |J1| ≤ n + m + 1, we have m1 + m2 + n + m ≥ L = m1 + m2 + |J1| − 1, and
in particular, the case m1 +m2 + n +m > L appears generally, so we can not expect that the
corresponding polynomial system

Bj(a, b, t) = Rj(a, b, t1)− Cj(t2) = 0, 1 ≤ j ≤ L (3.31)

has only finitely many solutions. This is the difference from the m = 1 case. Our key observation
is following.

Lemma 3.8. The solution set W of the polynomial system (3.31) in Cm1+m2+n+m is an affine
algebraic set of dimension n+m+ 1− |J1| ≤ m− 1.

Consequently, the dimension of the set of admissible zeros of the polynomials Bj’s is ≤ m−1.

Proof. Note that

W =
{
(a, b, t1, t2) ∈ Cm1+m2+n+m | Bj(a, b, t1, t2) = 0, ∀j

}
,

and

W̃ := W \
{
(a, b, t1, t2) ∈ Cm1+m2+n+m | tj = 0 for some tj in t2

}
is an open subset of W . Fix any (n+m+ 2− |J1|)-tupe

t2,0 = (tj,0) ∈
{
t2 ∈ {1} × Cn+m+1−|J1| | tj ̸= 0 for any tj in t2

}
,

(i.e., the first component of t2,0 is 1.) we claim that

there are L! points (by counting multiplicities) in W satisfying t2 = tt2,0
for some t ∈ C. (3.32)

Once this claim is proved, then the dimension of W is n+m+ 1− |J1| ≤ m− 1.
To prove this claim, we insert t2 = tt2,0 into (3.17), we obtain

∏
tj∈I\J1

(
x− tj,0t

)αtj = xL +
L∑

j=1

Cj(t2,0)t
jxL−j .

Then the polynomial system (3.31) becomes

B̂j(a, b, t1, t) := Rj(a, b, t1)− Cj(t2,0)t
j = 0, j = 1, . . . , L. (3.33)

The advantage of this new polynomial system (3.33) is that the numbers of unknowns and

equations are the same. Note that CL(t2,0) = (−1)L
∏

t
αtj

j,0 ̸= 0. Then the same proof as (3.29)
shows that the homogenized system of (3.33) has no solutions at infinity, so it follows from
the Bezout theorem that the polynomial system (3.33) has exactly L! solutions by counting
multiplicity. This proves the claim (3.32). ■
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Proof of Theorem 1.10. Due to the finite choices of J1 and (ϵp)p∈J1 , the assertion that the
dimension of A is ≤ m− 1 follows from Lemma 3.8.

Now we further assume (1.9). Then

Qθ = Q
(
θ0, θ1, θ∞, θ′1, . . . , θ

′
n

)
⫋ Q.

Given any t0 =
(
t̃1, . . . , t̃n+m

)
∈ A, i.e., (1.1) has a co-axial solution for some t0 =

(
t̃1, . . . , t̃n+m

)
satisfying t̃j ̸= 0, 1 for any j and t̃j ̸= t̃k for any j ̸= k. Without loss of generality, we may
assume the corresponding

J1 = {0, 1, t1, . . . , tn+i}, |J1| = n+ i+ 2,

I \ J1 = {tn+i+1, . . . , tn+m},

for some 0 ≤ i ≤ m− 1. Denote

t1,0 =
(
t̃1, . . . , t̃n+i

)
, t2,0 =

(
1, t̃n+i+2

t̃n+i+1
, . . . , t̃n+m

t̃n+i+1

)
.

Then there is (a0, b0) such that (a, b, t1, t) =
(
a0, b0, t1,0, t̃n+i+1

)
∈ Cm1+m2+|J1|−1 is a solution

of (3.33). Since Qθ ⊂ Q implies

B̂j(a, b, t2, t) ∈ Q
[
t̃n+i+2

t̃n+i+1
, . . . , t̃n+m

t̃n+i+1

]
[a, b, t2, t],

it follows from Lemma 3.7 that
(
t1,0, t̃n+i+1

)
is algebraic over Q

[
t̃n+i+2

t̃n+i+1
, . . . , t̃n+m

t̃n+i+1

]
, namely, the

transcendence degree of Q
(
t̃1, . . . , t̃n+m

)
over Q is ≤ m− 1. The proof is complete. ■

4 Eremenko’s theorem

Eremenko’s Theorem 1.3 is a deep result, and in this section, we would like to make some
discussions about it and prove Theorem 1.4. By using the notions in Section 3, we suppose that
there exist I1 ⊂ J1 ⫋ I and ϵp ∈ {±1} for p ∈ J := J1 ∪ {∞} such that

k′ :=
∑
p∈J

ϵpθp ∈ Z≥0, (4.1)

k′′ :=
∑

p∈I\J1

θp − k′ − (n+m+ 1) ∈ 2Z≥0. (4.2)

Set

c := (θ0, θ1, θ∞, θt1 , . . . , θp︸ ︷︷ ︸
p runs over J

, 1, . . . , 1︸ ︷︷ ︸
k′+k′′

).

Suppose that

Either c is incommensurable or there is η ̸= 0 such that c = ηb = η(b1, . . . , bq)
with bj ∈ N, gcd(b1, . . . , bq) = 1 and

2 max
j∈I\J1

θj ≤
q∑

j=1

bj .
(4.3)

Then the proof of Theorem 1.3 in [9] actually yields the following result, a more precise form of
Theorem 1.3.
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Theorem 4.1 ([9]). Equation (1.1) admits a co-axial solution for some singular set {t1, . . . ,
tn+m} with the developing map

h(x) =
∏
p∈J1

(x− p)ϵpθp

∏m1
j=1

(
x− aj

)∏m2
j=1

(
x− bj

)
if and only if (4.1)–(4.3) hold.

It is not difficult to see that the conditions (1.3)–(1.5) in Theorem 1.3 imply (4.1)–(4.3) in
Theorem 4.1. Theorem 4.1 shows that under the conditions (4.1)–(4.3), the polynomials Bj ’s
in (3.18) always have an admissible zero. This is really a remarkable result.

Example 4.2. Consider the case {θ0, θ1, θ∞, θt} =
{
1
2 ,

1
3 ,

1
6 , θt

}
with θt ∈ N≥2. If θt is small,

then it is easy to calculate those t’s such that (1.1) has co-axial solutions. For example, if θt = 2,
then t = 2

3 ; if θt = 3, then t = 2±2i
3 . When θt ≥ 4, the polynomial system Bj = 0 becomes very

complicated. In Section 5, we will give more examples.

Example 4.3. Consider the case {θ0, θ1, θ∞, θt1 , θt2} =
{
1
2 ,

1
6 ,

1
6 ,

1
6 , θt2

}
with θt2 ∈ N≥2. If

θt2 = 3, then t2 =
1±i

√
3

2 .

Now we turn back to the condition (1.5) in Theorem 1.3 if the vector c is commensurable.
Under the conditions (1.3)–(1.4), it is not difficult to see that (1.5) holds automatically provided
k′+k′′ ≥ 1 and θtj > 1 for all j. A more interesting thing is the assertion of Theorem 1.4, which
says that (1.5) holds provided that Mondello–Panov’s condition (1.2) holds.

Proof of Theorem 1.4. Here we prove a more general result than Theorem 1.4. To simplify
the notations, we reformulate this problem. Given n ≥ 1 positive non-integer numbers θ1, . . . , θn
and m− n ≥ 0 positive integer numbers θn+1, . . . , θm ∈ N≥2. Suppose

d1
(
Zm
o ,θ − 1

)
= 1, (4.4)

and there are ϵj ∈ {±1} for 1 ≤ j ≤ n such that

k′ :=

n∑
j=1

ϵjθj ∈ Z≥0, (4.5)

k′′ :=

m∑
j=n+1

θj −m− k′ + 2 ∈ 2Z≥0. (4.6)

Let

c := (θ1, . . . , θn, 1, . . . , 1︸ ︷︷ ︸
k′+k′′

),

and suppose c is commensurable, i.e., there is η ∈ R>0 such that c = ηb = η(b1, . . . , bq) with
bj ∈ N and gcd(b1, . . . , bq) = 1. We want to prove that

2 max
n+1≤j≤m

θj ≤
q∑

j=1

bj =
n∑

j=1

bj +
(
k′ + k′′

)
η−1. (4.7)

Then Theorem 1.4 is equivalent to (4.7) with the case n ≥ 3.
Clearly, (4.4) implies n ≥ 2 and (4.5) and (4.6) imply m − n ≥ 1. By renaming θj ’s if

necessary, we may always assume

0 < θ1 ≤ θ2 ≤ · · · ≤ θn, 2 ≤ θn+1 ≤ θn+2 ≤ · · · ≤ θm.
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By (4.6), we have

k′′ + k′ =
m∑

j=n+1

θj −m+ 2 ≥ θm + 2(m− n− 1)−m+ 2,

i.e.,

max
n+1≤j≤m

θj = θm ≤ k′ + k′′ −m+ 2n ≤ k′ + k′′ + n− 1,

so to prove (4.7), it suffices to prove

2n− 2 ≤
n∑

j=1

bj +
(
η−1 − 2

)(
k′ + k′′

)
. (4.8)

On the other hand, since c = ηb = η(b1, . . . , bq) with bj ∈ N, we have η ̸= 1, which implies
η−1 ∈ N≥2 if k′ + k′′ ≥ 1. Thus we always have

(
η−1 − 2

)(
k′ + k′′

)
≥ 0 and

n∑
j=1

bj ≥ n.

This implies that (4.8) holds if n = 2. Thus it remains to consider the case n ≥ 3. We consider
two cases separately.

Case 1. k′ + k′′ ≥ 1. This is a simple case. Then N := η−1 ∈ N≥2 and for 1 ≤ j ≤ n,
θj = bj/N /∈ Z. Consequently, dist(θj ,Z) := mink∈Z |θj − k| ≥ 1/N for all 1 ≤ j ≤ n, so

1 = d1
(
Zm
o ,θ − 1

)
≥

n∑
j=1

dist(θj ,Z) ≥ n/N,

i.e., N ≥ n. Thus

n∑
j=1

bj +
(
η−1 − 2

)(
k′ + k′′

)
=

n∑
j=1

bj + (N − 2)
(
k′ + k′′

)
≥ n+ n− 2.

This proves (4.8).
Case 2. k′ + k′′ = 0. This case is not trivial. Note that (4.8) is equivalent to

2n− 2 ≤
n∑

j=1

bj = η−1
n∑

j=1

θj . (4.9)

Note that 1 ≤ b1 ≤ b2 ≤ · · · ≤ bn. If b3 ≥ 2 then we have

n∑
j=1

bj ≥ 1 + 1 + 2(n− 2) = 2n− 2,

i.e., (4.9) holds. So we only need to consider the remaining case that b1 = b2 = b3 = 1, i.e.,
η = θ1 = θ2 = θ3. Let ℓ ≥ 3 such that

b1 = · · · = bℓ = 1, bℓ+1 ≥ 2. (4.10)

Now we claim that bn ≥ ℓ. Once this claim is proved, then

n∑
j=1

bj ≥ ℓ+ 2(n− ℓ− 1) + ℓ = 2n− 2,

i.e., (4.9) holds and the proof is complete.
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Assume by contradiction that bn ≤ ℓ− 1. Since k′ = k′′ = 0, we have

m∑
j=n+1

θj = m− 2,

and there is J1 ⊂ {1, . . . , n} such that
∑

j∈J1 θj =
∑

j∈J2 θj , where J2 = {1, . . . , n} \ J1. This
implies

∑
j∈J1 bj =

∑
j∈J2 bj , so

n∑
j=1

bj is even. (4.11)

On the other hand, by (4.4) there is (k1, . . . , km) ∈ Zm such that
∑m

j=1 kj is odd and

m∑
j=1

∣∣θj − 1− kj
∣∣ = 1.

Since θj ∈ Z for j ≥ n+1, we have kj = θj−1 for j ≥ n+1 and so
∑m

j=n+1 kj =
∑m

j=n+1(θj−1) =

m− 2− (m− n) = n− 2. Denote k̃j = kj + 1, then we obtain

n∑
j=1

∣∣θj − k̃j
∣∣ = 1 and

n∑
j=1

k̃j =

m∑
j=1

kj + 2 is odd.

Note that θj = bjη = bjθ1. Let θ1 = a+ r with a ∈ Z and r ∈ (0, 1).
Case 2.1. 0 < r ≤ 1/2. Then

1 =
n∑

j=1

∣∣θj − k̃j
∣∣ ≥ ℓ∑

j=1

∣∣θ1 − k̃j
∣∣ ≥ ℓr,

so r ≤ 1/ℓ ≤ 1/3. Consequently, for any 1 ≤ j ≤ n, bj ≤ bn ≤ ℓ−1 implies θj = bjθ1 = bja+ bjr
with bjr ∈ (0, 1). From here and 1 =

∑n
j=1

∣∣θj − k̃j
∣∣, we claim that∣∣θj − k̃j

∣∣ = bjr and so k̃j = bja, ∀j. (4.12)

Indeed, we have
∣∣θj − k̃j

∣∣ ∈ {bjr, 1 − bjr} for all j. Recalling (4.10), if there is 1 ≤ j0 ≤ ℓ such
that

∣∣θj0 − k̃j0
∣∣ = 1− r, then

1 ≥
ℓ∑

j=1

∣∣θ1 − k̃j
∣∣ ≥ (ℓ− 1)r + 1− r > 1,

a contradiction. Thus
∣∣θj − k̃j

∣∣ = bjr = r for all j ≤ ℓ. Consequently, if
∣∣θj0 − k̃j0

∣∣ = 1− bj0r for
some ℓ+ 1 ≤ j0 ≤ n, then it follows from bj0 ≤ ℓ− 1 that

1 =

n∑
j=1

∣∣θj − k̃j
∣∣ ≥ ℓr + 1− bj0r > 1,

a contradiction. This proves the claim (4.12) and so a
∑n

j=1 bj =
∑n

j=1 k̃j is odd, a contradiction
with (4.11).

Case 2.2. 1/2 < r < 1. Then θ1 = a+ 1− (1− r) and

1 =

n∑
j=1

∣∣θj − k̃j
∣∣ ≥ ℓ∑

j=1

∣∣θ1 − k̃j
∣∣ ≥ ℓ(1− r),
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so 1 − r ≤ 1/ℓ ≤ 1/3. Consequently, for any 1 ≤ j ≤ n, bj ≤ bn ≤ ℓ − 1 implies θj = bjθ1 =
bj(a+ 1)− bj(1− r) with bj(1− r) ∈ (0, 1). Then as in Case 2-1, we can prove that∣∣θj − k̃j

∣∣ = bj(1− r) and so k̃j = bj(a+ 1), ∀j,

which implies so (a+ 1)
∑n

j=1 bj =
∑n

j=1 k̃j is odd, again a contradiction with (4.11).
The proof is complete. ■

As mentioned in the introduction, the converse statement of Theorem 1.4 can not hold in
general, i.e., (1.3)–(1.5) can not imply Mondello–Panov’s condition (1.2). For example, let
{θ0, θ1, θ∞, θt1 , θt2} =

{
1
2 ,

1
2 ,

1
2 ,

3
2 , θt2

}
with θt3 ∈ 2N + 1. Then it does not satisfy (1.2) but

satisfy (1.3)–(1.5), so co-axial solutions exist for some singular set {t1, t2}. But this is not the
case for n = 0 (i.e., exactly three non-integer angles).

5 Proof of Theorem 1.6

The goal of this section is to prove Theorem 1.6. Write t1 and θt1 simply by t and θ. The
function Q(x) in the differential equation (2.6) associated to the curvature equation (1.1) in the
case under consideration is

Q(x) =
β0
x2

+
d0
x

+
β1

(x− 1)2
+

d1
x− 1

+
βt

(x− t)2
+

dt
x− t

, (5.1)

where βp = αp(αp + 2)/4 =
(
θ2p − 1

)
/4 and d’s satisfy (2.3), i.e.,

d0 + d1 + dt = 0, β0 + β1 + βt + d1 + tdt = β∞. (5.2)

Before we proceed further, we note that the set {αp/2+1,−αp/2} is invariant under the substi-
tution αp 7→ −2−αp = −θp−1. For simplicity of discussion later on, we assume that α0 and α1

satisfy

α0 = ϵ0θ0 − 1, α1 = ϵ1θ1 − 1, (5.3)

where ϵ0, ϵ1 are given in the assumption of Theorem 1.6. Thus, α0+α1+α∞ = ϵ0θ0+ϵ1θ1+θ∞−3
is an integer.

In view of (5.2), we regard d0 and d1 as functions of d := dt and let Qd,t(x) denote the
rational function Q(t) in (5.1). By Theorem 2.1, there exists a polynomial P(d, t) ∈ Qθ[d, t] of
degree θ in d such that the differential equation

y′′(x) = Qd,t(x)y(x) (5.4)

is apparent at t if and only if P(d, t) = 0, where Qθ = Q(θ0, θ1, θ∞). The degree of P(d, t)
in d is θ, but its total degree is in general strictly larger than θ (see (2.9)). In our proof of
Theorem 1.6, we shall introduce another pair (λ, t) of unknowns in place of (d, t).

Let

λ := td0 + t
α0α1

2
+

α0αt

2
= t(t− 1)dt + t(β0 + β1 + βt − β∞) + t

α0α1

2
+

α0αt

2
, (5.5)

where the second equality follows from (5.2). Indeed, the parameter λ is used as the accessary
parameter of a certain Heun equation considered in [11], where for the simplicity of computation,
the apparent singularity was put at x = 0 instead of x = t in this paper, and the condition for ap-
parentness at x = 0 was shown to be equivalent to the vanishing of the characteristic polynomial
of a finite Jacobi matrix (see [11, Proposition 2.4 and equation (2.8)]). For the convenience of
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the reader, we recall the equivalence, stated in our setting, as follows (see also [6, Lemma B.8]):
(5.4) is apparent at t if and only if λ is an eigenvalue of the θ × θ matrix

M = M(t) :=



B1 A1

D2 B2 A2

D3 B3 A3

. . .
. . .

. . .

Dθ−1 Bθ−1 Aθ−1

Dθ Bθ


(5.6)

(undisplayed entries are all 0), where

Aj = Aj(t) := t(t− 1)j(j − θ),

Bj = Bj(t) := (2t− 1)(j − 1)(j − 2)− (j − 1)[(t− 1)α0 + tα1 + (2t− 1)αt] + tα′α′′,

Dj = Dj(t) := (j − 2)(j − 3)− (j − 2)(α0 + α1 + αt) + α′α′′,

with

α′ := −α0 + α1 + αt + α∞
2

− 1, α′′ :=
α∞ − α0 − α1 − αt

2
.

That is, (5.4) is apparent at t if and only if λ is an eigenvalue of M(t), i.e., a zero of the
polynomial

P (λ, t) := det(λIθ −M(t)).

The polynomial P (λ, t) has the following properties.

Lemma 5.1.

(i) The total degree and the degree in λ of P (λ, t) are both θ.

(ii) The roots of P (λ, 0) are (j − 1)(α0 + αt − j + 2), j = 1, . . . , θ.

(iii) Let P∞(λ) := limt→∞ P (λt, t)/tθ. Then the roots of P∞(λ) are

λ̂j := (j − 1)(α∞ + αt − j + 2)− β∞ − βt + β0 + β1

+
α0α1

2
− αtα∞

2
, j = 1, . . . , θ. (5.7)

Proof. Statement (i) follows easily from the observations that degtAj(t) = 2, degtBj(t) = 1,
and Dj(t) are constant polynomials.

The second property follows immediately from the fact that Aj(0) = 0 and hence the roots
of P (λ, 0) are simply Bj(0). The third property is proved in [6, Theorem B.3]. Since the
conclusions are stated in different ways, here we provide a sketch of proof.

Let u = 1/x. We check directly that y(x) is a solution of (5.4) if and only if ỹ(u) := uy(1/u)
satisfies

d2

du2
ỹ(u) = Q̃(u)ỹ(u), (5.8)

where Q̃(u) = u−4Q(1/u). Clearly, this is a Fuchsian differential equation with Riemann scheme 0 1 1/t ∞
−α∞/2 −α1/2 −αt/2 −(α0/2 + 1)
α∞/2 + 1 α1/2 + 1 αt/2 + 1 α0/2

 .
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Thus,

Q̃(u) =
β∞
u2

+
d̃0
u

+
β1

(u− 1)2
+

d̃1
u− 1

+
βt

(u− 1/t)2
+

d̃1/t

u− 1/t

for some complex numbers d̃0, d̃1, and d̃1/t satisfying

d̃0 + d̃1 + d̃1/t = 0, d̃1 +
d̃1/t

t
+ β∞ + β1 + βt = β0.

In fact, computing the partial fraction decomposition of Q̃(u), we find that

d̃0 = 2β1 + 2tβt + d1 + t2dt, d̃1 = −2β1 − d1, d̃1/t = −2tβt − t2dt.

We now apply parts (i) and (ii) to (5.8). Let

λ̃ =
d̃0
t
+

α∞α1

2t
+

α∞αt

2
.

By parts (i) and (ii), there is a polynomial P̃
(
λ̃, 1/t

)
such that (5.8) is apparent at 1/t if and

only if P̃
(
λ̃, 1/t

)
= 0 and the roots of P̃

(
λ̃, 0
)
are

(j − 1)(α∞ + αt − j + 2), j = 1, . . . , θ.

On the other hand, we see from (5.2) and (5.5) that

d̃0 = t(t− 1)dt + 2tβt + β∞ + β1 − β0 − βt

= λ+ t(β∞ + βt − β0 − β1)− t
α0α1

2
− α0αt

2
+ β∞ + β1 − β0 − βt,

so λ̃ and λ are related by

λ̃ =
λ

t
+ β∞ + βt − β0 − β1 −

α0α1

2
+

α∞αt

2

+
1

t
(β∞ + β1 − β0 − βt) +

1

2t
(α1α∞ − α0αt).

Letting t → ∞, we conclude that the roots of P∞(λ) are given by (5.7). ■

Corollary 5.2. Let λ and λ̂j be given by (5.5) and (5.7), respectively. Let y+(x;λ, t) and
y−(x;λ, t) be solutions of (5.4) of the form

y+(x;λ, t) = xα0/2+1
∞∑
j=0

c+,j(λ, t)x
j , c+,0(λ, t) = 1,

y−(x;λ, t) = x−α0/2
∞∑
j=0

c−,j(λ, t)x
j , c−,0(λ, t) = 1.

Then as t → ∞ with λ/t → λ̂j, y±(x;λ, t) converge to solutions of the Fuchsian differential
equation with Riemann scheme 0 1 ∞

−α0/2 −α1/2 −(α̂∞/2 + 1)
α0/2 + 1 α1/2 + 1 α̂∞/2

 , (5.9)

where α̂∞ = α∞ + αt − 2j + 2.
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Proof. Let d̂0, d̂1, d̂t be the limits of d0, d1, and dt as t → ∞ and λ/t → λ̂j . From (5.5), we
know that

d̂0 = (j − 1)(α∞ + αt − j + 2)− β∞ − βt + β0 + β1 −
αtα∞
2

and (t−1)dt converge to finite numbers as t → ∞ and λ/t → λ̂j . The latter implies that d̂t = 0.
Thus, we have

Q̂j(x) := lim
t→∞, λ/t→λ̂j

Qd,t(x) =
β0
x2

+
d̂0
x

+
β1

(x− 1)2
+

d̂1
x− 1

.

From the relation d0 + d1 + dt = 0, we see that d̂1 = −d̂0 and

d̂1 + β0 + β1 = −(j − 1)(α∞ + αt − j + 2) + β∞ + βt +
αtα∞
2

=
1

4
(α∞ + αt − 2j + 2)(α∞ + αt − 2j + 4).

It follows that

y′′(x) = Q̂j(x)y(x)

is a Fuchsian differential equation with Riemann scheme given by (5.9). The convergence
of Qd,t(x) to Q̂j(x) is clearly uniform on any compact subset of C \ {0, 1}. Therefore, y±(x;λ, t)
converge to solutions of y′′(x) = Q̂j(x)y(x). This completes the proof. ■

Now for p ∈ {0, 1,∞, t}, let Mp(λ, t) be the monodromy matrices of (5.4) around x = p with
respect to the basis (y+(x;λ, t), y−(x;λ, t))

t. Recalling that the Riemann scheme of (5.4) is 0 1 t ∞
−α0/2 −α1/2 −αt/2 −(α∞/2 + 1)
α0/2 + 1 α1/2 + 1 αt/2 + 1 α∞/2

 ,

we know that

M0(λ, t) =

(
eπiα0 0
0 e−πiα0

)
, Mt(λ, t) = (−1)θ−1I2.

Also, the monodromy matrices satisfy M0M1MtM∞ = I2.

Lemma 5.3. We have

M1(λ, t) =

(
eπiα1 b(λ, t)
c(λ, t) e−πiα1

)
for some complex numbers b(λ, t) and c(λ, t) satisfying b(λ, t)c(λ, t) = 0.

Proof. Write M1(λ, t) =
(
a b
c d

)
. Note that the eigenvalues of M1 are eπiα1 and e−πiα1 and those

of M∞ are eπiα∞ and e−πiα∞ . Together with the relation M0M1MtM∞ = I2, these informations
yield

a+ d = eπiα1 + e−πiα1 ,

aeπiα0 + de−πiα0 = (−1)θ−1
(
eπiα∞ + e−πiα∞

)
.

Eliminating d, we get(
eπiα0 − e−πiα0

)
a = (−1)θ−1

(
eπiα∞ + e−πiα∞

)
−
(
eπi(α1−α0)+eπi(−α1−α0)

)
.
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Now we have α0 + α1 + α∞ = ϵ0θ0 + ϵ1θ1 + θ∞ − 3 = k − 3. Thus, the condition θ ≡ k mod 2
implies that

eπi(−α1−α0) = eπi(3−k+α∞) = (−1)θ−1eπiα∞

and hence (−1)θ−1e−πiα∞ = eπi(α0+α1). From these, we see that a = eπiα1 . It follows that
d = e−πiα1 and bc = 0. This proves the lemma. ■

Let P (λ, t) = P1(λ, t) · · ·Pm(λ, t) be the factorization of P (λ, t) into a product of irreducible
polynomials over C. It is easy to see that for each j, we have either b(λ, t) ≡ 0 or c(λ, t) ≡ 0 on
Aj :=

{
(λ, t) ∈ C2 : Pj(λ, t) = 0

}
. Thus, if we set

Pb(λ, t) :=
∏

b(λ,t)≡0 on Aj

Pj(λ, t), Pc(λ, t) :=
∏

c(λ,t)≡0 on Aj

Pj(λ, t),

then the cardinality of the set A is equal to the number of intersections of the two curves
Pb(λ, t) = 0 and Pc(λ, t) = 0 in the affine plane C2, with the multiplicity of a point in A defined
to be that of the corresponding intersection point of Pb and Pc. Furthermore, by part (iii) of
Lemma 5.1, the two curves Pb(λ, t) = 0 and Pc(λ, t) = 0 do not intersect at infinity. There-
fore, by Bezout’s theorem, the number of intersections of the two curves in the affine plane is
(degPb)(degPc). Hence, to prove Theorem 1.6, we only need to determine the degrees of Pb

and Pc.

Proposition 5.4. Let k := θ∞ + ϵ0θ0 + ϵ1θ1 be given as in the statement of Theorem 1.6.
If θ ≤ |k|, then{

degPb = 0 and degPc = θ, if k > 0,

degPb = θ and degPc = 0, if k < 0.

If θ > |k|, then degPb = (θ − k)/2 and degPc = (θ + k)/2.

To prove Proposition 5.4, we recall that, by Lemma 5.1 (i), the total degree and the degree
in λ of P (λ, t) are equal. It is easy to see that every factor of P (λ, t) has the same prop-
erty. It follows that the degree of Pb(λ, t) is equal to the degree of the polynomial Pb,∞(λ) :=

limt→∞ Pb(λt, t)/t
degPb , which in turn is equal to the number of λ̂j that are roots of Pb,∞(λ),

where λ̂j are given by (5.7). In other words, to determine the degree of Pb(λ, t), we shall count

how many λ̂j such that limt→∞,λ/t→λ̂j
c(λ, t) ̸= 0 there are.

Lemma 5.5. Let λ̂j be given by (5.7) and

b̂ = lim
t→∞,λ/t→λ̂j

b(r, t), ĉ = lim
t→∞,λ/t→λ̂j

c(r, t).

Then {
b̂ = 0, ĉ ̸= 0, if j > (k + θ)/2,

b̂ ̸= 0, ĉ = 0, if j ≤ (k + θ)/2.

Proof. By Corollary 5.2, y±(x;λ, t) converge to solutions ŷ±(x) of the Fuchsian differential
equation with Riemann scheme (5.9), where ŷ±(x) are local solutions near 0 of the form ŷ+(x) =
xα0/2+1(1 + O(x)) and ŷ−(x) = x−α0/2(1 + O(x)). Then w0,±(x) := xα0/2(x − 1)α1/2ŷ±(x) are
solutions of the hypergeometric differential equation with Riemann scheme 0 1 ∞

0 0 α
1− γ γ − α− β β

 ,
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where

γ = −α0, α = −
(
α0 + α1 + α̂∞

2
+ 1

)
, β =

α̂∞ − α0 − α1

2
.

Let w1,±(x) be the local solutions near x = 1 of the same hypergeometric differential equation of
the form w1,+(x) = (x− 1)γ−α−β(1+O(x− 1)) and w1,−(x) = 1+O(x− 1). By [14, Chapter 2,
Theorem 4.7.1], the connection matrix P such that (w0,+(x), w0,−(x))

t = P (w1,+(x), w1,−(x))
t

is

P =


Γ(2− γ)Γ(γ − α− β)

Γ(1 + α− γ)Γ(1 + β − γ)

Γ(2− γ)Γ(γ − α− β)

Γ(1− α)Γ(1− β)

Γ(γ)Γ(γ − α− β)

Γ(α)Γ(β)

Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

 .

Then the monodromy matrix of the hypergeometric differential equation around x = 1 with
respect to the basis (w0,+(x), w0,−(x))

t is

P

(
e2πi(γ−α−β) 0

0 1

)
P−1.

Now according to our choice of α0 and α1 in (5.3), we have

α = −
(
α0 + α1 + α̂∞

2
+ 1

)
= −(ϵ0θ0 − 1) + (ϵ1θ1 − 1) + (θ∞ − 1 + θ − 1− 2j + 2)

2
− 1

= j − k + θ

2
,

which is an integer by the assumption θ ≡ k mod 2. Thus, P is upper-triangular when j ≤
(k + θ)/2 and is lower-triangular when j > (k + θ)/2. This implies that b̂ ̸= 0 and ĉ = 0 if
j ≤ (k + θ)/2, and b̂ = 0 and ĉ ̸= 0 if j > (k + θ)/2. ■

Proof of Proposition 5.4 and Theorem 1.6. Since j = 1, 2, . . . , θ, Proposition 5.4 follows
from Lemma 5.5. Consequently, Theorem 1.6 holds. ■

Remark 5.6. The entry Dj in (5.6) can be expressed as

Dj =
1

4
(2j − k − θ − 2)(2j − k − θ + 2θ∞ − 2).

Thus, one has Dj = 0 when j = (k + θ)/2 + 1. It follows that when |k| < θ, the matrix M
in (5.6) is of the form

M =

(
M1 ∗
0 M2

)
,

where M1 = M1(t) and M2 = M2(t) are square matrices of size (θ + k)/2 and (θ − k)/2,
respectively. Hence P (λ, t) := det(λI − M) = det(λI − M1) det(λI − M2). One would expect
that Pc(λ, t) = det(λI −M1) and Pb(λ, t) = det(λI −M2). Indeed, one can prove that this is
the case by considering the roots of Pb(λ, 0) and Pc(λ, 0). We will not give the details here.

For small θ, it is possible to completely write down the set A. We give some examples below.
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Example 5.7. Assume that θ = 2. Then Theorem 1.6 implies that the set A is non-empty only
when k = 0. In this case, we compute that

P (λ, t) = λ(λ− θ∞t− ϵ0θ0).

The intersection of the two lines λ = 0 and λ − θ∞t − ϵ0θ0 = 0 is (λ, t) = (0,−ϵ0θ0/θ∞).
Therefore, the set A consists of a single point −ϵ0θ0/θ∞.

Note that in [6, Example 5.5], we have shown that for the case θ0 = 1/3, θ1 = 1/6, and
θ∞ = 1/2 with ϵ0 = ϵ1 = −1, the set A is {2/3}. This agrees with the general result above.

Example 5.8. Assume that θ = 3. Then Theorem 1.6 implies that the set A is non-empty
only when |k| = 1. In this case, to simplify notations, we will write ϵ0θ0 and ϵ1θ1 simply by θ0
and θ1. We compute that when k = 1,

P (λ, t) = (λ+ (θ0 + θ1)t− 2θ0)

×
(
λ2 − ((θ0 + θ1 − 2)t+ θ0 + 1)λ+ (θ0 − 1)(θ0 + θ1)t

)
,

and when k = −1,

P (λ, t) = λ
(
λ2 + ((3θ0 + 3θ1 + 2)t− 3θ0 − 1)λ

+ 2(θ0 + θ1)(θ0 + θ1 + 1)t2 − 4θ0(θ0 + θ1 + 1)t+ θ0(θ0 + 1)
)
.

We find that the set A consists of

θ0θ∞ ±
√
−kθ0θ1θ∞

(θ0 + θ1)θ∞
.

Note that the case θ0 = 1/3, θ1 = 1/6, and θ∞ = 1/2 was considered in [6, Example 5.6], where
we found that the set A is {2(1± i)/3}, as the result above says.

Example 5.9. Let θ = 4. Again, we write ϵ0θ0 and ϵ1θ1 simply by θ0 and θ1, respectively.
When k = 2, we find that the set A consists of the three roots of

θ∞(θ∞ − 1)(θ∞ − 2)t3 + 3θ0θ∞(θ∞ − 1)t2 + 3θ∞θ0(θ0 − 1)t+ θ0(θ0 − 1)(θ0 − 2).

When k = −2, they are the roots of

θ∞(θ∞ + 1)(θ∞ + 2)t3 + 3θ0θ∞(θ∞ + 1)t2 + 3θ∞θ0(θ0 + 1)t+ θ0(θ0 + 1)(θ0 + 2).

When k = 0, they are the roots of

θ2∞
(
θ2∞ − 1

)
t4 + 4θ0θ∞

(
θ2∞ − 1

)
t3 + 6θ0θ∞(θ0θ∞ + 1)t2 + 4θ∞θ0

(
θ20 − 1

)
t+ θ20

(
θ20 − 1

)
.

(The polynomials P (λ, t) themselves are too complicated to be displayed here.)
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