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Abstract. We describe a Laurent phenomenon for the Cayley plane, which is the homo-
geneous variety associated to the cominuscule representation of E6. The corresponding
Laurent phenomenon algebra has finite type and appears in a natural sequence of LPAs
indexed by the En Dynkin diagrams for n ≤ 6. We conjecture the existence of a further
finite type LPA, associated to the Freudenthal variety of type E7.
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1 Introduction

1.1 Background

In this paper we consider the (complex) Cayley plane, which is the cominuscule homogeneous
space

OP2 = E6/P6.

The Cayley plane is a 16-dimensional algebraic variety, with a projective ‘octonic spinor embed-
ding’ OP2 ⊂ P26 of codimension 10. We let A6 := C

[
OP2

]
denote the homogeneous coordinate

ring of the Cayley plane with respect to this embedding.

Despite the name, the Cayley plane was first discovered by Ruth Moufang in 1933 [9]. It was
named after Cayley since it can be realised as the projective plane over the octonions.

Laurent phenomenon algebras. Laurent phenomenon algebras (LPAs) were introduced
by Lam and Pylyavskyy [8] as a generalisation of cluster algebras. As the name suggests, they
possess the same Laurent phenomenon property of a cluster algebra but with the flexibility
of having much more general exchange polynomials (rather than the more restrictive binomial
exchange relations of a cluster algebra).

Cluster algebra structures on homogeneous spaces. A cluster structure (or more
generally, a LPA structure) on the coordinate ring of an algebraic variety V need not be uniquely
determined, since it depends on a choice of anticanonical divisor D ⊂ V, on which a set of frozen
coefficients vanish. The simplest examples of cluster structures are finite type cluster structures,
in which the cluster algebra has only finitely many seeds, although these are rather uncommon
since cluster algebras are typically not of finite type.

The existence of cluster algebra structures on the coordinate rings of homogeneous spaces
have been an active area of study for some time, beginning with the case Grassmannians [10] and
followed by the case of partial flag varieties by Geiß, Leclerc and Schröer [5]. Their construction
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provides cluster algebra structures for both the Cayley plane and the Freudenthal variety, albeit
not ones of finite type.

Given the non-uniqueness of LPA structures in general, it is quite possible (as we show for the
Cayley plane in this paper) that a homogeneous variety may admit a finite type LPA structure,
even when it only has cluster algebra structures that are not of finite type.

Mirror symmetry for cluster varieties. Cluster varieties have played an important
role in the study of mirror symmetry, since they have a well-known mirror construction (the
duality between so-called A- and X -cluster varieties). In particular, homogeneous spaces have
become a fruitful set of examples for studying various aspects of mirror symmetry, due to the
existence of the aforementioned cluster structures. In particular, Spacek and Wang [12] recently
studied mirrors for both the Cayley plane and the Freudenthal variety using the cluster algebra
structures of [5].

Mirror symmetry for LPAs. An LPA is the coordinate ring of a maximal log Calabi–Yau
variety and, as such, it is still expected to have a mirror (cf. [4, Conjecture 2.5]), although an
explicit construction for the mirror of an LPA is not yet known. A general approach towards
constructing a mirror follows the Gross–Siebert program, which involves building a scattering
diagram and then counting broken lines in this scattering diagram to compute coefficients in the
equations that define the mirror algebra. In general there may be infinitely many broken lines
contributing to these counts, and the mirror can only be defined formally due to convergence
issues. However, LPAs of finite type are of particular interest because the corresponding scat-
tering diagram will have only finitely many walls and chambers, and hence only finitely many
broken lines contributing to the coefficients of a given equation.

1.2 Summary of the paper

Main result. Our main result, Theorem 5.4, is the description of a LPA structure of finite type
on the ring A6. This finite type LPA is of rank 5, and it has 264 seeds and 32 cluster variables.

The key to constructing this LPA structure lies in deriving an initial seed (see Proposition 5.3)
which is compatible with the symmetry of the action of a Coxeter rotation on A6. Once we
have discovered this seed, the proof of Theorem 5.4 follows by plugging our seed into the Sage
package LPASeed (written by the first author [2]) and verifying the result.

From the output of our code we also verify that our finite type LPA has a positivity phe-
nomenon in Corollary 5.5.

Contents. The material in this paper is divided into the following sections.

§2 A recap of Lam and Pylyavskyy’s Laurent phenomenon algebras.

§3 The description of a sequence of homogeneous varieties Vn that we consider in this paper,
corresponding to a sequence of type En Dynkin diagrams.

§4 A recap of the finite type LPA structure on the homogeneous coordinate ring of Vn for
two simpler cases in our sequence. Namely,

E4 case: V4 = Gr(2, 5) has a finite type cluster algebra structure of type A2, and

E5 case: V5 = OGr(5, 10) has a finite type LPA structure (considered in [4]).

§5 Our main E6 case. By generalising the examples of Section 5, we construct a finite type
LPA structure on the homogeneous coordinate ring of the Cayley plane V6 = OP2.

§6 A conjecture and some limited progress on the E7 case.

§A Examples of the Sage code.
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2 Laurent phenomenon algebras

2.1 The initial seed

In the most general setting we consider a coefficient ring A, which we take to be an integral
domain, and F a degree n transcendental field extension of Frac(A).

Definition 2.1. A seed (of rank n) consists of a pair (x,F ), where

(1) x = {x1, . . . , xn}, the cluster, is a transcendence basis for F . The variables x1, . . . , xn are
called cluster variables, and

(2) F = {F1, . . . , Fn} ⊂ A[x1, . . . , xn] is a collection of n polynomials, called exchange polyno-
mials, with the following properties:

(LP1) The exchange polynomial Fi is considered to correspond to the cluster variable xi,
and Fi ∈ A[x1, . . . , x̂i, . . . , xn] does not depend on xi, and

(LP2) each Fi is irreducible and not divisible by any of the cluster variables xj .

Definition 2.2. Given a seed S = (x,F ), the exchange Laurent polynomial associated to Fi

is the Laurent polynomial F̂i defined according to the following rule: we set F̂i = MFi where
M = xa11 · · · x̂i · · ·xann for some a1, . . . , ai−1, ai+1, . . . , an ∈ Z≤0, and the power aj of xj in the
denominator of F̂i is −m, where m is the maximal power such that Fi|xj←Fj/xj

is divisible
by Fm

j .

The exchange Laurent polynomials are uniquely determined from the exchange polynomials,
and vice versa. Indeed, to obtain the exchange Laurent monomials, one sets the power of xj in
the Laurent monomial denominator M equal to the largest power of Fj that divides Fi upon
the substitution xj ← Fj/xj . To get the exchange polynomials back, one multiplies F̂i by the
unique monomial M (up to a unit) such that MF̂i is an irreducible polynomial. One important
difference to the classical cluster algebra setup is that we use the exchange Laurent polynomials
to determine new cluster variables, as opposed to just the exchange polynomials.

2.2 Mutation procedure

To mutate a seed S at an index i, one proceeds with the following (non-deterministic, cf. Re-
mark 2.4) process:

(1) The cluster variables of the mutated seed µi(S) = (µi(x), µi(F )) are the same, except we
replace xi according to the exchange relation prescribed by its exchange Laurent poly-
nomial. That is, µi(x) = {x1, . . . , x′i, . . . , xn}, where xix

′
i = F̂i. Note that we use the

exchange Laurent polynomial in this relation.

(2) The exchange polynomials µi(F ) = {F ′1, . . . , F ′n} are updated as follows.

The exchange polynomial F ′i corresponding to x′i remains the same, that is F ′i := Fi.

The exchange polynomials F ′j for j ̸= i are defined through the following procedure. If Fj

does not depend on xi, then we set F ′j to be any polynomial satisfying F ′j = ujFj , where uj
is a unit in A. If Fj does depend on xi, then we perform the following:

� Substitution step. We set

(F ′j)
∗ = Fj |xi←(F̂i|xj←0)/x′i

.

The substitution is well defined since, by [8, Lemma 2.7], we see that xi cannot appear
in the denominator of F̂j .
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� Cancellation step. We divide out by any common factors that (F ′j)
∗ shares with

F̂i|xj←0. This then defines F ′j up to a monomial multiplier.

� Normalisation step. We multiply through by a monomial in x1, . . . , x
′
i, . . . , xn to

make F ′j satisfy (LP1) and (LP2) as an exchange polynomial in Si. Such a monomial
will be uniquely defined only up to a unit. Thus F ′j is only defined up to a unit
multiplier uj .

Example 2.3. Consider the initial seed with exchange variables {x1, x2} and corresponding
exchange polynomials {F1, F2} = {1 + x2, 1 + x1}. One checks that the exchange Laurent
polynomials have trivial denominators, so that {F1, F2} =

{
F̂1, F̂2

}
. Mutating at x1 replaces x1

with

x3 :=
1 + x2
x1

and leaves x2 invariant. The exchange polynomial at x2 is changed by this mutation. The
substitution step yields

(F ′2)
∗ = 1 +

1

x3
.

There are no common factors to cancel out. Finally, multiplying by x3 gives an exchange
polynomial that satisfies (LP1) and (LP2), so we have F ′2 = 1 + x3. The mutation is therefore

({x1, x2}, {1 + x2, 1 + x1}) 7→
({

x3 =
1 + x2
x1

, x2

}
, {1 + x2, 1 + x3}

)
.

Remark 2.4. The reason that the process is non-deterministic, is the choice of unit multipliers ui
for the mutated exchange polynomials F ′i . If ui is the unit multiplier for Fi chosen in the
mutation µi : S → µi(S), we assume that u−1i is chosen for the mutation µi : µi(S)→ µi(µi(S)).
Thus mutations are involutive, meaning that for any index i, the seed µi(µi(S)) is equal to S.

In practice we assume that all unit multipliers are equal to 1, and identify two seeds whenever
they are equivalent, as we now define.

Definition 2.5. Two seeds S = (x,F ) and S′ = (x′,F ′) of rank n are said to be equivalent if
for each 1 ≤ i ≤ n, there exists units µi, τi ∈ F such that xi = µix

′
i and Fi = τiF

′
i .

2.3 Obtaining the LPA

In the literature, an LPA is defined as a pair
(
A, {Si}i∈I

)
, where A is a subring of the ambient

field F , and {Si}i∈I is a distinguished collection of seeds with cluster variables in F . The cluster
variables generate A over A, and any two seeds in the collection are mutation-equivalent. For
our purposes, it is convenient to present the following definition:

Definition 2.6. Given a seed S = (x,F ), we define the LPA A(S) generated by S to be the
A-algebra given by

A =
⋂
Si

A
[
x±1i1 , . . . , x±1in

]
,

where the index Si runs over all seeds obtainable through mutation of S, and {xi1, . . . , xin} is
the cluster for Si.

One can view this definition as the analogue of the upper cluster algebra. However, all of
the examples we will consider have finitely many cluster variables, and in this case there is no
difference between these two definitions for the LPA: both are equal to the ring generated by all
of the cluster variables.
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Example 2.7. Continuing with the mutated seed obtained in Example 2.3, one can compute
the mutation at x2 as

({x3, x2}, {1 + x2, 1 + x3}) 7→ ({x3, x4}, {1 + x4, 1 + x3}),

where

x4 =
1 + x3
x2

=
1 + 1+x2

x1

x2
=

1 + x1 + x2
x1x2

.

Similarly, one obtains by mutation at x3 the seed with cluster variables {x5, x4} with

x5 =
1 + x4
x3

=
x1(1 + x2)(1 + x1)

(1 + x2)x1x2
=

1 + x1
x2

and one can compute that, continuing in this sequence, x6 = x1, and mutating at x5 returns the
initial seed. Thus the corresponding LPA A is generated by five cluster variables

x1, x2, x3 =
1 + x2
x1

, x4 =
1 + x1 + x2

x1x2
, x5 =

1 + x1
x2

,

and is isomorphic to the ring

A ∼= C[x1, x2, x3, x4, x5]/I,

where I = (x5x2 = 1 + x1, x1x3 = 1 + x2, . . . , x4x1 = 1 + x5) is the ideal of relations holding
between x1, . . . , x5.

Geometrical interpretation. From a more geometrical point of view we consider a LPA A
as the ring of regular functions on an affine algebraic variety U = SpecA. Each seed S corre-
sponds to the inclusion of a torus chart

S = (x,F ), TS := SpecA
[
x±11 , . . . , x±1n

]
↪→ U,

by the Laurent phenomenon A ⊆ A
[
x±11 , . . . , x±1n

]
. Each mutation then corresponds to a bira-

tional map, e.g.,

µ1 : TS 99K Tµ1S , µ∗1(x
′
1, x2, . . . , xn) =

(
x−11 F̂1, x2, . . . , xn

)
,

and these torus charts are glued together by identifying points according to these mutations.
The LPA (as we have defined it) is then the ring of regular functions on the union of all these seed
tori, and U = SpecA is the ‘affinisation’ of

⋃
S TS . This geometrical point of view is described

in the context of cluster algebras in [6, Section 3], and more generally in [4, Section 2.2] (see [4,
Remark 2.7] in particular).

2.4 Finite type LPAs

As with the traditional case of cluster algebras, a typical LPA will have infinitely many seeds.

Definition 2.8. If it is only possible to obtain finitely many seeds via mutations of S, then we
say that A(S) is finite type, or even that the seed S is finite type.

One can check that this definition of finite type matches the definition given in the literature
(as the finiteness of seeds in the normalisation of

(
A, {Si}i∈I

)
).

Cluster algebras of finite type have a particularly neat classification, and are in one-to-one
correspondence with Dynkin diagrams of finite type. Lam and Pylyavskyy [8, Theorem 6.6]
classify finite type LPAs of rank 2 and their classification is essentially equivalent to that of
cluster algebras of rank 2. However there is no such classification in general, starting with case
of LPAs of rank 3. Indeed there are many more finite type LPAs than there are cluster algebras,
with Lam and Pylyavskyy showing that the number of finite type LPAs grows exponentially
with respect to the rank.
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Definition 2.9. Two seeds S, S′ are said to be similar if there exists a seed S′′ equivalent to S′,
such that S′′ can be obtained from S by renaming the cluster variables and substituting this
renaming into the exchange polynomials. If an LPA has finitely many similarity classes of seeds,
we say it is of finite mutation type.

Finite type implies finite mutation type, but not conversely, as shown by Lam and Pylyavskyy
in their two-layer brick wall example [8, Section 7.2]. One should contrast this situation to the
cluster algebra setting in which exceptional quivers arise of infinite type, but finite mutation
type.

Borrowing terminology from cluster algebras, we may construct the exchange graph of a given
seed S. The vertices of this graph are given by all seeds obtainable by mutation of S, and any
two vertices are connected by an edge if one may be obtained from the other (up to similarity)
by a single mutation.

2.5 Description of Sage code

The first author has implemented the algorithms for computing mutations in Sage. Examples
of using the Sage code are available in Appendix A, and a Sage cell for interactive use of the
code in a web browser is also available [2].

Remarks on the code. As in Remark 2.4, when we compute a mutation, in the normal-
isation step, we choose to keep the coefficient of the multiplying monomial equal to 1. Since
mutations are defined up to units, this does not change the resulting structure of the exchange
graph, neither does it affect the LPA that the cluster variables generate. It does however mean
that our statement of the cluster variables is only well-defined up to a unit multiplier.

In our computations and the Sage code, we identify two seeds S, S′ when they are equivalent.

3 A type E sequence

The main result of this paper concerns the existence of a finite type LPA, which we view as
the n = 6 case in a sequence indexed by type En Dynkin diagrams.

We consider the Dynkin diagram En for 3 ≤ n ≤ 8 (where E3 = A1A2, E4 = A4 and
E5 = D5) with the nodes labelled according to the convention adopted by Bourbaki:

E3

•
1

•
3

•2 E4

•
1

•
3

•
4

•2 En

•
1

•
3

•
4

•
5

· · · •
n

•2

We can associate a number of mathematical objects to this sequence:

(1) a smooth del Pezzo surface dPn of degree 9 − n [3, Section 8], obtained by blowing up n
general points in P2,

(2) the homogeneous space Vn := En/Pn, where Pn is the parabolic subgroup associated to
the nth node of the Dynkin diagram,

(3) the n-dimensional semiregular Gosset polytope Ξn with Coxeter symbol (n− 4)21 [1, Sec-
tion 11.8].

3.1 Numerical invariants

We collect some numerical invariants associated to this sequence in Table 1.
According to the three different points of view, for 3 ≤ n ≤ 7 these numbers can be interpreted

in the following ways.
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n Vn dimVn Coxeter number h γn,1 γn,2 γn,3 γn,2 + γn,3

3 P2 × P1 3 3 6 3 2 5

4 Gr(2, 5) 6 5 10 5 5 10

5 OGr(5, 10) 10 8 16 10 16 26

6 OP2 16 12 27 27 72 99

7 Freudenthal variety 27 18 56 126 576 702

Table 1. Numerical invariants associated to the En root systems for 3 ≤ n ≤ 7.

(1) The del Pezzo surface dPn contains γn,1 lines, γn,2 conic classes ξ
(
which correspond to

conic fibrations ξ : dPn → P1
)
, and γn,3 cubic classes η

(
which correspond to contrac-

tions η : dPn → P2
)
.

(2) The homogeneous space Vn ⊂ Pγn,1−1 has an embedding into a projective space of dimen-
sion γn,1−1 and is cut out by γn,2 quadratic equations. It is a Fano variety of the specified
dimension and Fano index h (or in other words, −KVn = OVn(h) for the given embedding).

(3) The effective cone Eff(dPn) is the cone over Ξn ⊂ NS(dPn) ∼= Rn+1, where the polytope Ξn

is obtained as the convex hull of the classes of the lines in NS(dPn). It has γn,1 vertices
and γn,2 + γn,3 facets, of which γn,2 facets are (n − 1)-dimensional orthoplexes and γn,3
facets are (n− 1)-dimensional simplexes.

3.2 Coxeter projection of Ξn

In Figure 1, we draw the projection of the polytope Ξn onto the Coxeter plane for the cases
n = 4, 5, 6, 7. The action of the Coxeter rotation of order h is plainly visible. In these four cases,
the vertices of the polytopes are split into orbits of the following sizes:

(10) = 2× (5), (16) = 2× (8), (27) = 2× (12) + (3), (56) = 3× (18) + (2).

Figure 1. Coxeter projections of the polytopes Ξn for n = 4, 5, 6, 7.

3.3 A family of log Calabi–Yau varieties

Following interpretations (2) and (3) from Section 3.1, the γn,1 coordinates on the homogeneous
space Vn ⊂ Pγn,1−1 can be placed in one-to-one correspondence with vertices of Ξn. Given
that the Fano index of Vn is equal to the Coxeter number h, we can make a natural choice of
anticanonical boundary divisor Dn ⊂ Vn by taking Dn = V(a1) +V(a2) + · · ·+V(ah) ∈ |−KVn |,
where a1, . . . , ah are the coordinates on Vn corresponding to the ‘outside ring’ of the Coxeter
projection (see Figure 1).
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Definition 3.1. We let An := C[Vn] be the homogeneous coordinate ring of Vn, with respect
to the given embedding, and consider the affine cone CVn = SpecAn. We consider the fibration
induced by the projection

π : CVn → Ah
a1,...,ah

and let Un := π−1(α1, . . . , αh) denote a general fibre.

This log Calabi–Yau variety Un is simply the affine variety obtained by substituting the
value α1, . . . , αh ∈ C for each coordinate a1, . . . , ah in An respectively. This projection π spreads
out the components of CDn over the coordinate hyperplanes of Ah, giving a degenerating family
of log Calabi–Yau varieties.

Remark 3.2. In the language of cluster algebras, the coordinates a1, . . . , ah are frozen variables
and we will interpret the remaining coordinates as cluster variables in a LPA. Moreover, a LPA
structure for An over the base ring A = C[a1, . . . , ah] must have rank r = dimVn + 1− h, since
the cluster of each seed will correspond to the inclusion of a torus chart

SpecA
[
x±11 , . . . , x±1r

]
= Ah

a1,...,ah
×
(
C×

)r
x1,...,xr

↪→ CVn

that birationally cover CVn.

Remark 3.3. We do not extend our discussion to include the E8 case, since the numerology
of Table 1 breaks down for the homogeneous space V8 = E8/P8. In particular, the Fano index
of V8 is 29 (as computed in [11]), rather than the Coxeter number h = 30, and thus we do not
obtain an anticanonical divisor D8 ⊂ V8 in the same way.

4 The Laurent phenomenon for V4 and V5

We briefly summarise the finite type LPA structure on the homogeneous coordinate rings
A4 = C[V4] and A5 = C[V5], corresponding to the E4 and E5 cases of our sequence.

4.1 The E4 case

The LPA in this case is given by the famous example of the A2 cluster algebra.
It is convenient to name the frozen variables a1, . . . , a5 and the non-frozen variables x1, . . . , x5

according to the labelling of Ξ4 shown in Figure 2. Then the Grassmannian V4 = Gr(2, 5) ⊂ P9

is cut out by five quadratic Plücker equations corresponding to the five octahedral faces of Ξ4.
Structure of the equations. The five quadratic equations have a common structure in that

they are comprised of three monomials, each one of which is a product of two opposite vertices
in the corresponding octahedron. A coherent choice of signs for these equations is determined
by the following positivity rule

xixi+2 = positive sum of the other monomials, (4.1)

where xixi+2 is the monomial corresponding to the pair of ‘internal’ vertices of the projected
octahedron, and the right hand side comprises of the monomials corresponding to all pairs of
‘external’ vertices.

Initial seed. We let A = C[a1, . . . , a5] be the ring generated by the frozen variables and, by
Remark 3.2, a LPA structure on A4 will have rank 2.

As is well-known, each of the following Plücker coordinates

x3 =
a2x2 + a4a5

x1
, x4 =

a5a1x1 + a2a3x2 + a3a4a5
x1x2

, x5 =
a1x1 + a3a4

x2
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a4

a1

a3

a5

a2

x5
x2

x4

x1
x3

•

•

•

•

x5x2 = a1x1 + a3a4

x1x3 = a2x2 + a4a5

x2x4 = a3x3 + a5a1

x3x5 = a4x4 + a1a2

x4x1 = a5x5 + a2a3

Figure 2. The equations of V4.

can be expressed as Laurent polynomials in A
[
x±11 , x±12

]
. Moreover, an initial seed for the

corresponding LPA structure on A4 is given by

S =

{
x1, a2x2 + a4a5,

x2, a1x1 + a3a4.

Mutating S at x1 gives an almost identical seed (up to reordering) where the only difference is
that all the indices of all the variables xi and ai have been shifted by i 7→ i+ 1 mod 5.

Exchange graph. The exchange graph of A4 is a pentagon, with vertices labelled by
the five possible clusters {xi, xi+1} for all i ∈ Z/5Z and edges by the five possible muta-
tions {xi−1, xi} → {xi, xi+1}.

Positivity. The ring A4 also has a curious property known as the positivity phenomenon:
every coefficient in the Laurent expansion of every cluster variable is positive, as well as every
coefficient in the exchange polynomials of every seed.

4.2 The E5 case

This is the LPA studied in [4]. In this case we label the variables a1, . . . , a8 and x1, . . . , x8
with i ∈ Z/8Z, as in Figure 3. The orthogonal Grassmannian V5 = OGr(5, 10) ⊂ P15 is cut out
by ten quadratic equations which correspond to the ten octahedral faces of Ξ5. However this
time the equations of V5 split into one orbit (a) of size eight and one orbit (b) of size two.

Structure of the equations. We can make a coherent choice of minus signs in the equations
by asking that the eight (a) equations obey the analogous positivity rule to equation (4.1). Doing
that uniquely determines the signs in the remaining two (b) equations.

Initial seed. By Remark 3.2, a LPA structure on A5 will have rank 3. Beginning with
{x1, x2, x3} as a candidate for an initial cluster, we can check that each of the other xi can be
written as a Laurent polynomial in x1, x2, x3. Thus we might hope that this initial cluster can
be used to get an LPA structure on V5 which is analogous to the LPA structure on V4.

To promote this cluster into a seed, we have to specify what the exchange polynomial Fi

corresponding to xi should be for i = 1, 2, 3. The two equations x1x4 = · · · and x3x8 = · · · give
easy and obvious candidates for the exchange polynomials F1 and F3:

F1 = a5x2 + a8x3 + a2a3, F3 = a4x1 + a7x2 + a1a2.

However, it is not immediately clear how to write down the exchange polynomial F2.



10 O. Daisey and T. Ducat

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•
•

a2

a5

a8

a3

a6

a1

a4

a7

x6

x1
x4

x7

x2

x5
x8

x3

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•
•

a2a6

a8

a4

x6x2

x4

x8

(a) x1x4 = a5x2 + a8x3 + a2a3 (b) x2x6 − a2a6 = x4x8 − a4a8

Figure 3. The equations of V5.

Since we would like mutation in the LPA to be compatible with the Coxeter symmetry
(as it was in the previous case), we can easily work out what F2 should be by considering
the mutation µ1 : {x1, x2, x3} 7→ {x2, x3, x4}, writing down the exchange polynomial µ1F2 =
a6x3 + a1x4 + a3a4 that we expect to see for x2 with respect to this seed, and then mutating
back to get F2 = µ−11 (µ1F2).

As seen in [4], this gives an initial seed

S =


x1, a5x2 + a8x3 + a2a3,

x2, a6x1x3 + a3a4x1 + a8a1x3 + a1a2a3,

x3, a4x1 + a7x2 + a1a2,

and, incredibly, the mutation of this LPA seed is compatible with the Dih8-symmetry, in the
sense that mutating S at x1 returns an identical seed (up to reordering) with all indices shifted
by i 7→ i+ 1 mod 8.

Moreover, mutating x2 gives a quantity q1 = x−12 F2 which can be expressed as a quadratic
q1 = x1x5 − a1a5 = x3x7 − a3a7 in the other variables. If we also let q2 = x2x6 − a2a6 =
x4x8 − a4a8, then we get a finite type LPA structure with sixteen clusters:

{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, . . . , {x7, x8, x1},
{x1, x3, q1}, {x2, x4, q2}, {x3, x5, q1}, . . . , {x8, x2, q2}.

Exchange graph. The exchange graph is the 1-skeleton of a 3-dimensional polytope with
sixteen vertices, eight pentagonal faces (corresponding to x1, . . . , x8) and two square faces (cor-
responding to q1, q2). The exchange graph, shown in Figure 4, can be produced using the Sage
code found in Appendix A.

Positivity. As with the previous case, A5 also has the positivity phenomenon. By an explicit
calculation one can check that every Laurent expansion of a cluster variable, as well as every
exchange polynomial in every seed, has positive coefficients.1

1The reader may be a little bit disturbed by the fact that the two equations of type (b) appear to have negative
coefficients. However, after introducing the two new cluster variables q1, q2, they can be rewritten as exchange
relations with positive coefficients, e.g., x1x5 − a1a5 = x3x7 − a3a7 =⇒ x1x5 = q1 + a1a5.
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f =


16
24
10
1



Figure 4. The exchange graph for the LPA in the V5 case with f-vector f .

5 The Laurent phenomenon for V6

To describe the projective embedding of the Cayley plane, we must first understand the equa-
tions of the projective embedding V6 ⊂ P26. We do this by thinking of the 27-dimensional
representation of E6 in terms of the 27 lines on a cubic surface.

5.1 The equations of the Cayley plane

We fix a birational model π : dP6 → P2 for the smooth cubic surface dP6 ⊂ P3 obtained as the
blowup of six points p1, . . . , p6 ∈ P2, and we name the 27 lines in dP6 according to the following
conventions:

(1) let ei be the line corresponding to the exceptional divisor over pi,

(2) let ℓij be the line corresponding to the line through pi, pj and

(3) let ci be the line corresponding to the conic through the five points other than pi.

The polytope Ξ6. As mentioned in Section 3.1, the polytope Ξ6 ⊂ NS(dP6) has 27 vertices,
corresponding to the 27 lines of dP6, and 99 = 27 + 72 facets which are one of two types:

(1) There are 27 5-dimensional orthoplex facets, corresponding to the 27 extremal rays .ξ ∈
Nef(dP6) that define conic fibrations πξ : dP6 → P1. Each face has ten vertices ℓ1, . . . , ℓ5,
ℓ′1, . . . , ℓ

′
5 appearing in five ‘opposite’ pairs ℓi, ℓ

′
i such that ξ ∼ ℓi + ℓ′i for i = 1, . . . , 5.

(2) There are 72 5-dimensional simplex facets, corresponding to the 72 extremal rays η ∈
Nef(dP6) that define contractions πη : dP6 → P2. Each face has six vertices ℓ1, . . . , ℓ6; the
six lines that are contracted by πη.

Action of a Coxeter rotation. The 72 roots of the E6 root system in NS(dP6) are given
by all possible differences ℓi − ℓj , where ℓi, ℓj are a pair of non-intersecting lines in dP6. Each
root ri specifies a reflection

ρi(rj) = rj + (ri · rj)ri,

and a Coxeter rotation is an element σ = ρ1ρ2ρ3ρ4ρ5ρ6 of order 12, obtained as a product of the
reflections over a set of simple roots. For example, if σ is the Coxeter rotation obtained from
the following choice of simple roots
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•
r1 = e1 − e2

•
r3 = e2 − e3

•
r4 = e3 − e4

•
r5 = e4 − e5

•
r6 = e5 − e6

•r2 = ℓ12 − e3

then the action of σ on the set of the 27 lines has (ordered) orbits of length 12, 12, 3, as shown
in the rows of Table 2. The 27 lines correspond to 27 spinor coordinates of V6 ⊂ P26, and we
name these coordinates ai, xj , zk for i, j ∈ Z/12Z and k ∈ Z/3Z according to which of these
three orbits they belong to, as in Table 2. We have labelled the Coxeter projection of Ξ6 with

i 1 2 3 4 5 6 7 8 9 10 11 12

ai e3 ℓ34 ℓ56 e6 c2 e4 c6 ℓ16 ℓ23 c3 e5 c1

xi ℓ26 ℓ24 ℓ46 e1 ℓ45 e2 ℓ35 ℓ15 ℓ13 c4 ℓ12 c5

zi ℓ14 ℓ36 ℓ25

Table 2. The frozen variables ai and cluster variables xi, zi for A6.

these coordinate names, as shown in Figure 5 (i) (where the orbit {z1, z2, z3} of size three has
been squished together in the centre).

The equations of the Cayley plane. The 27 octahedral faces of Ξ6 also split up into two
orbits of size 12 and one orbit of size three under the action of the rotation σ. These three types
of octahedral face are shown in Figure 5 (ii), and a representative equation from each of these
three Dih12-orbits is given by

x1x6 = a6x3 + a1z2 + a8x4 + a3a11, (a)

x1x5 = x3z3 − a3x2 − a10x4 + a1a12, (b)

z1z2 = x3x9 + x6x12 + a2a8 + a5a11. (c)

The choice of ± sign in front of each monomial in each of these equations is uniquely deter-
mined by specifying that all of the equations in orbit (a) obey the analogous positivity rule
to equation (4.1). Indeed, Macaulay2 agrees that these equations define an irreducible Goren-
stein variety V6 ⊂ P26 which has codimension 10 and a Gorenstein resolution with Betti num-
bers (1, 27, 78, 351, 650, 702, 650, 351, 78, 27, 1).

5.2 Finding an initial seed

We now describe how we found an initial seed for an LPA structure on A6. We do this in three
steps:

(1) First find a candidate for an initial cluster (e.g., an appropriately sized subset of the
spinor coordinates for which all other spinor coordinates can be expressed as Laurent
polynomials).

(2) Work out corresponding exchange polynomials for this cluster.

(3) Check that the corresponding LPA is of finite type and contains all (non-frozen) spinor
coordinates on V6 as cluster variables.

Rank of the LPA. We first note that we expect such a LPA structure to have rank 5, by
Remark 3.2.

Finding an initial cluster. We describe three attempts we made in order to find an initial
cluster.
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Figure 5. (i) A labelling of the vertices of Ξ6, and (ii) the three types of octahedral face.

Attempt 1. As with the previous cases described in Section 4, our first thought was to
take {x1, x2, x3, x4, x5} as an initial cluster. Unfortunately however, we have the equation

x1x5 = x3z3 − a3x2 − a10x4 + a1a12

that looks like it could make x5 redundant as a cluster variable. It also doesn’t help account for
the variable z3 appearing in the corresponding exchange polynomial.

Attempt 2. Next we replaced x5 with z3, hoping that {x1, x2, x3, x4, z3} would work as an
initial cluster. Using computer algebra to eliminate variables from the ring A6 we discover that
all of the other xi and zi variables can be written as rational functions in this cluster, but not,
unfortunately, as Laurent polynomials.

Attempt 3. Finally, although the rational functions obtained in attempt 2 were not Laurent
polynomials, a closer inspection reveals that they are ‘almost’ Laurent polynomials. Indeed, the
denominators are always monomials in the five terms

x1, x2, x3, x4, x3z3 − a3x2 − a10x4.

Therefore we introduce y3 := x3z3 − a3x2 − a10x4 as a new cluster variable.

Definition 5.1. We let yi be defined by the expression

yi := xizi − aixi−1 − ai+7xi+1, i ∈ Z/12Z.

We conclude that we have the following result.

Lemma 5.2. We can expand all of the spinors variables xi, zi as Laurent polynomials in
{x1, x2, x3, x4, y3}, and thus we can use this as a candidate for an initial cluster. Moreover,
the new variables y1, . . . , y12 are also all Laurent polynomials in our chosen initial cluster, and
they are all distinct. By symmetry we find that both

{xi−1, xi, xi+1, xi+2, yi} and {xi−1, xi, xi+1, xi+2, yi+1}

are clusters for any value of i.

Finding the exchange polynomials. From equation (b) above we immediately have the
relation x1x5 = y3+a1a12. Moreover, by manipulations with the equations of types (a), (b), (c),
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we can write the product y2y3 as a positive sum of monomials in terms of the frozen coefficients
and x1, x2, x3, x4. Indeed we get

y2y3 = (x2z2 − a2x1 − a9x3)(x3z3 − a3x2 − a10x4)

= x1x4(a5x2 + a7x3 + a2a10) + a12x3(a4x1 + a1a9) + a12x2(a6x3 + a8x4 + a3a11).

Thus we can use these as exchange relations in the following sequence of mutations, together
with the expected Dih12 symmetry, to work out what all of the other exchange polynomials
should be

x1 x2 x3 x4

y2

x1 x2 x3 x4

y3

x2 x3 x4 x5

y3

x2 x3 x4 x5

y4
· · · · · · .

Doing this, we arrive at the following candidate for our the initial seed.

Proposition 5.3. The following seed S is an initial seed for a LPA structure on A6 = C[V6],
which is compatible with the Dih12-symmetry:

S =



x1, y3 + a12a1,

x2, a2x1(y3 + a10x4) + a9x3(y3 + a1a12) + x1x3(a7x4 + a4a12),

x3, y3 + a3x2 + a10x4,

x4, a11(y3 + a3x2) + x3(a4x1 + a6x2 + a1a9),

y3, x1x4(a5x2 + a7x3 + a2a10) + a12x3(a4x1 + a1a9)

+a12x2(a6x3 + a8x4 + a3a11).

5.3 Summary of the LPA structure

Number of seeds and the exchange graph Once we are given the right initial seed it is
easy to plug into our code and verify that it generates a LPA of finite type.

Theorem 5.4. The LPA structure on A6, generated by the initial seed of Proposition 5.3, has
finite type. In particular it has 264 seeds and 32 cluster variables.

The cluster variables consist of the 15 spinor coordinates x1, . . . , x12, z1, z2, z3 on V6, plus 17
additional cluster variables y1, . . . , y12, t1, t2, t3, u1, u2 where

(1) y1, . . . , y12 are quadratics in the spinor variables introduced above,

(2) t1, t2, t3 are quartics in the spinor variables determined by the Dih12-conjugates of the
equation

x1x4x7x10 = t1 + a3a6a9a12,

(3) u1, u2 are cubics in the spinor variables determined by the Dih12-conjugates of the equa-
tion2

x1x5x9 = u1 + a4a5x1 + a8a9x5 + a12a1x9 + a1a5a9 + a4a8a12.

Up to the Dih12-symmetry there are 15 different orbits of seeds; seven orbits have length 24, which
we label A,. . .,G, and eight orbits have length 12, which we name H,. . .,O. They are related by
mutation according to Table 3, and the Dih12-quotient of the exchange graph is presented in
Figure 6.
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A

x1 x2 x3 x4 y2

y4 z2 y12 x12 y3

D B C A A

B

x1 x2 x4 y3 z3

x5 x7 x11 y12 x3

B E F F A

C

x1 x2 x4 y12 y2

u2 x10 x12 x3 z3

H G D A F

D

x1 x2 x3 y1 y3

x5 u1 x11 x4 x12

C I C A A

E

x1 x4 x7 y3 z3

x5 y9 x2 t1 y5

F K B J G

F

x1 x2 x4 y12 z3

y6 x10 x11 y3 y2

L E B B C

G

x1 x4 x7 y3 y5

x5 u1 x3 z2 z3

C N C E E

H

x1 x3 y3 y5 u1

x5 x7 y11 y1 x4

I N M I C

I

x1 x3 y1 y3 u1

x5 x11 y5 y11 x2

H H H H D

J

x1 x4 x7 z2 t1

x10 x10 x10 z3 y5

J J J J E

K

x1 x7 y5 y11 z2

x9 x3 x10 x4 u2

L L E E O

L

x1 x3 y5 y11 z2

x9 x7 x12 x4 u1

K K F F M

M

x1 x3 y5 y11 u1

x9 x7 y1 y3 z2

O O H H L

N

x1 x7 y3 y5 u1

x5 x3 y11 y9 x4

H H O O G

O

x1 x7 y5 y11 u1

x9 x3 y9 y3 z2

M M N N K

Table 3. Representatives for each of the 15 orbits of seeds A,. . .,O. The top row of each entry contains the

five cluster variables in the seed. The second row records which cluster variable is obtained by mutating

the seed at the variable directly above it, leading to a seed in the orbit given by the label on the third

row.

We can also check various things about the structure of the exchange graph, such as the fact
that every x (resp. y, z, t, u) variable belongs to 60 (resp. 32, 40, 8, 36) seeds.

Positivity. By inspecting the output of our computation, which consists of all of the seeds
for A6 (including the Laurent expansion of all of the cluster variables), we have the following
result.

Corollary 5.5. The positivity phenomenon holds for A6. In other words, all of the coefficients
in the Laurent expansions of the cluster variables and all the coefficients in exchange polynomials
of each seed are positive.

This is somewhat unexpected, since enforcing the positivity rule in equation (4.1) on the
equations of type (a) necessarily creates minus signs in some of the other spinor equations
defining the Cayley plane, e.g.,

x1x5 = x3z3 − a3x2 − a10x4 + a1a12.

However, in order to get a Laurent phenomenon we needed to introduce the new cluster vari-
able y3 = x3z3 − a3x2 − a10x4 and this allows us to rewrite this equation with positive coefficients
as x1x5 = y3 + a1a12.

Remark 5.6. Positivity was proved for cluster algebras by Gross, Hacking, Keel and Kontse-
vich [7] by associating a consistent scattering diagram to a cluster algebra. The proof follows
by interpreting the coefficients in the Laurent expansion of each cluster monomial as a count of
broken lines in the scattering diagram. The consistent scattering diagram for the LPA structure
on A5 was constructed in [4], and it should be possible to construct one for A6 in a similar
manner.

2It is clear from the equation that u1 is invariant under the shift i 7→ i + 4 for i ∈ Z/12Z, but in fact, as
a consequence of the other relations, it turns out that it is invariant under i 7→ i+ 2 too.
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A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Figure 6. The Dih12-quotient of the exchange graph of A6. Beginning with the initial seed S of

Proposition 5.3, which is in the orbit A, the remaining orbits are named alphabetically, according to the

order in which they were found during a breadth-first search of the exchange graph.

A final remark. We recall that the definition of mutation in an LPA uses the exchange
Laurent polynomials F̂i, rather than the exchange polynomials Fi. We always have Fi = F̂i in
the case of cluster algebras, and it is tempting to think we might be able to dispense with the F̂i

in the general case of an LPA. However, it is crucial to work with the F̂i in order for the LPA
structure on A6 to have finite type. Moreover, this LPA provides an example for which every
seed has at least one direction i in which Fi ̸= F̂i.

6 The Freudenthal variety

We conjecture the existence of a similar LPA structure on the homogeneous coordinate ring of
the Freudenthal variety V7.

Conjecture 6.1. There is a finite type LPA structure of rank 10 on A7 = C[V7], which has the
positivity phenomenon.

The LPA should have rank 10 by Remark 3.2. We get as far as writing down the equations
for V7 (as we did for V6 in Section 5.1).

6.1 The equations of the Freudenthal variety

The Freudenthal variety has an embedding V7⊂P55 where the 56 variables a1, . . . , a18, x1, . . . , x18,
y1, . . . , y18, z1, z2 can be put into one-to-one correspondence with the 56 lines on a del Pezzo
surface of degree 2. The Coxeter rotation has order 18 and the action on the variables is on the
labels.

There are seven orbits of equations:

x1x2 = a3x17 + a2y0 + a1y3 + a0x4 + a17a4, (a)

y14y1 = x15y4 − a0x10 − a15x5 + x0y11 + x13x2, (b)

y2y1 = a2y12 + y5x0 + y16x3 + a1y9 + a5a16, (c)

x4y1 = x2y5 + a5x17 + a4y16 − a2y8 − a1x7, (d)

x2x6 = x4y4 ∓ a4z2 − a5y0 − a3y8 + a1a7, (e)

y1y3 = x17x5 ± x2z1 + a0x7 + a4x15 − a2y11, (f)

y4y16 = ±y1z2 − y8x0 − y12x2 − a1x10 + a5a15, (g)

corresponding to the diagrams
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and some additional quadratic equations

z1z2 = y3y12 + y7y16 + y8y17 + x1x10 + x3x12 + x5x14 + a0a9 + a2a11 − a3a12

+ a4a13 + a6a15

that are implied by the others. Here the choice of ± sign in the equations is due to the fact
that the zi variables do not appear in the equations of type (a), and thus the positivity rule of
equation (4.1) does not determine the signs in front of the monomials containing exactly one zi.

From our observations on the previous cases, it seems like it will be constructive to introduce
new cluster variables which will allow us to rearrange the equations so that they satisfy the
positivity phenomenon, such as

t? := y14y1 − x0y11 − x13x2 = x15y4 − a0x10 − a15x5,

u? := x4y1 − a5x17 − a4y16 = x2y5 − a2y8 − a1x7,

and so on.

However, at this point we get stuck. Trying to follow our previous approach of identifying
an initial cluster, by using computer algebra to eliminate variables in a ring of codimension 28,
proves to be a step too far.

A Sage code

The sequence of LPAs associated to the spaces in this paper can be computed using the Sage
package LPASeed [2]. To define the initial seed for the E4 case, one declares the variable names
and corresponding polynomials as follows:
sage: var(’x1 , x2’)
(x1, x2)
sage: var(’a2 , a4 , a5 , a1 , a3’)
(a2, a4, a5, a1, a3)
sage: S = LPASeed ({x1: a2*x2 + a4*a5 , x2: a1*x1 + a3*a4},
....: coefficients =[a2, a4, a5, a1, a3])

Then one can analyse the structure of the mutations using the built-in methods. For instance,
to get the number of seeds in the exchange graph:
sage: len(S.mutation_class ())
5

A list of all the cluster variables:
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sage: S.variable_class ()
[(x1*a5*a1 + x2*a2*a3 + a4*a5*a3)/(x1*x2),
(x1*a1 + a4*a3)/x2 ,
(x2*a2 + a4*a5)/x1 ,
x2 ,
x1]

We can work out larger examples rather quickly and even plot their exchange graphs. The
LPA for the orthogonal OGr(5, 10) case corresponding to E5 can be fully understood in a few
lines:
sage: var(’x1 , x2 , x3’)
(x1, x2, x3)
sage: var(’a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8’)
(a1, a2, a3, a4, a5, a6, a7, a8)
sage: F1 = a5*x2 + a8*x3 + a2*a3
sage: F2 = a6*x1*x3 + a3*a4*x1 + a8*a1*x3 + a1*a2*a3
sage: F3 = a4*x1 + a7*x2 + a1*a2
sage: S = LPASeed ({x1: F1 , x2: F2 , x3: F3},
....: coefficients =[a1,a2,a3,a4,a5,a6,a7,a8])
sage: len(S.mutation_class ())
16
sage: len(S.variable_class ())
10
sage: show(S.exchange_graph ())

The final command shows the exchange graph featured in Figure 4 to the user.
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