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1 Introduction

This paper is concerned with the following classification problems:

� the complex manifolds admitting holomorphic Cartan geometries,

� the geometries they admit,

� the subvarieties of such a manifold which can be developed to the model of such a geometry,

� the symmetries of those geometries.

While none of these problems can be currently solved in complete generality, we solve various of
them under additional hypotheses, for example requiring the complex manifold to be a smooth
projective variety, or requiring the geometry to be parabolic or flat or both. Recall that a holo-
morphic locally homogeneous (X,G)-structure is precisely a flat holomorphic (X,G)-Cartan
geometry. Making use of terms defined below, we will prove:

Theorem 1.1. Suppose that

(1) (X,G) is a complex algebraic homogeneous space,

(2) M is a connected smooth projective variety,

(3) M has a flat holomorphic (X,G)-Cartan geometry.

Then, after perhaps replacing M by a finite unramified covering of it, M belongs to a tower of
holomorphic fibrations

M −→ M ′ −→ M ′′ −→ M ′′′ −→ S,

where

mailto:indranil.biswas@snu.edu.in
https://snu.edu.in/faculty/indranil-biswas/
mailto:b.mckay@ucc.ie
https://ben-mckay.github.io/benmckay.github.io/
https://doi.org/10.3842/SIGMA.2024.030


2 I. Biswas and B. McKay

� M ′, M ′′, M ′′′, S have no rational curves,

� M −→ M ′ is a holomorphic fiber bundle mapping with flag variety fibers,

� the Cartan geometry on M is lifted from M ′,

� the maps M ′ −→ M ′′ −→ M ′′′ −→ S are holomorphic fibrations of abelian varieties,

� the composition M ′ −→ M ′′ −→ M ′′′ is a trivial fibration M ′ = M ′′′×A for some abelian
variety A,

� a finite map from a connected compact complex analytic variety to M develops to a map
to the model X, after perhaps replacing by a finite unramified covering, just when it lies
in a finite unramified covering of a fiber of M −→ M ′′,

� every fiber of M −→ M ′′ develops to a map to the model X, after perhaps replacing by
a finite unramified covering,

� the fibers of M ′ −→ M ′′ are bounded in dimension by the dimension of the fibers of the
ant fibration X −→ X defined below,

� M ′ −→ S has a holomorphic section,

� S has ample canonical bundle.

In this theorem, we allow a single point to be considered a zero-dimensional flag variety,
and also to be considered a zero-dimensional abelian variety, and also to be considered a zero-
dimensional smooth projective variety with ample canonical bundle.

Example 1.2. A flag variety is a rational homogeneous projective variety [1]. As we will see,
holomorphic (X,G)-structures modelled on flag varieties (also known as parabolic geometries)
have ant fibration X −→ X = X which coincides with the identity map. Take any smooth
projective variety M with a holomorphic (X,G)-geometry. Possibly replacing M by a finite
unramified covering space, we have M ′ = M ′′, i.e., each abelian variety fiber is a single point.
Hence the fibers of the map M −→ M ′ are precisely the subvarieties which, after finite un-
ramified covering, develop to the model. These are flag varieties, more precisely they are the
fibers X0 of a G-equivariant map X0 −→ X −→ X ′ of flag varieties. So if M is not a fiber
bundle with fibers X0, then only points of M develop to the model. If M is such a fiber bundle,
then its fibers all develop to the model, precisely as fibers of X0 −→ X −→ X ′. This completes
the classification of developing subvarieties of flat holomorphic parabolic geometries. In partic-
ular, if X is a minimal flag variety, i.e., X = G/P for P ⊆ G a maximal parabolic subgroup,
then only points can develop from any holomorphic (X,G)-geometry on any smooth projective
variety, except if M = X, which can only bear the standard flat model geometry, and develops
to itself by any element of G. From this point of view, Theorem 1.1 is a no go theorem: there
are no additional important examples where we can apply developing maps, after our previous
work [7] developing rational curves.

Example 1.3. There is a unique family of smooth projective varieties, the Jahnke–Radloff
manifolds, which admit holomorphic projective connections and which are not ball quotients,
tori or projective spaces [30]. By our results, since the model (X,G) = (Pn,PSLn+1) has trivial
ant fibration (mentioned in Theorem 1.1), no positive-dimensional subvariety of these mysterious
Jahnke–Radloff varieties develops to the model. We do not see how to prove this directly from
the direct construction of Jahnke and Radloff [30]. We do not even see how to prove this directly
for ball quotients from their explicit construction.

Example 1.4. The group G := PSL2 has its usual action on CP1, which induces an ac-
tion on Sym2

(
CP1

)
(i.e., the space of quadrics ax2 + bxy + cy2 = 0 on the projective line).

Let X := P2 −Q be the complement of the smooth quadric Q =
(
b2 = 4ac

)
, hence X is the
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set of quadrics on the projective line, i.e., the set of unordered pairs of points of the projective
line. The anticanonical bundle of P2 is positive, so the anticanonical fibration has only points
as fibers, therefore the same is true of X ⊆ P2, and consequently the ant fibration of X also has
only points as fibers. Nothing is known about (X,G)-structures on complex surfaces. Suppose
that M is a smooth projective surface with an (X,G)-structure. Consider our tower

M −→ M ′ −→ M ′′ −→ M ′′′ −→ S.

The first arrow M −→ M ′ has flag variety as fibers, and they develop to the model. In the
model, X has no rational curves, since every rational curve in P2 intersects the smooth quadric
curve Q. Flag varieties of positive dimension are covered by rational curves. Hence the flag
variety fibers of M −→ M ′ have dimension zero, i.e., M ′ = M . Thus M −→ M ′′ is an
abelian fibration, and its fibers develop to X. By the same argument, the fibers are points, and
hence M = M ′ = M ′′. Therefore, we have M = M ′ = M ′′′ × A. If M is an elliptic fibration, it
has no singular fibers, and hence it is a product of a curve with an elliptic curve. This means
that M is an abelian surface or a surface with ample canonical bundle or a product of an elliptic
curve with some curve of genus ≥ 1.

We can see more about this example from a different angle: since X ⊆ P2, every (X,G)-
structure imposes a holomorphic flat projective connection. Thus M bears a flat holomorphic
projective connection, which implies that it is the projective plane, a ball quotient, or a torus
with translation invariant flat holomorphic affine connection [36, Main theorem]. Its developing
map to P2 intersects Q unless M is a ball quotient. Each ball quotient has a unique holomorphic
projective connection, which is flat [46], and hence it is an (X,G)-structure for this (X,G) since
it develops to the ball in the projective plane.

Our research programme aims to classify holomorphic Cartan geometries on smooth pro-
jective varieties, as a natural class of Cartan geometries not approachable by symmetry group
methods, but perhaps approachable using recent advances in algebraic geometry. Our goal in
this paper is to prove Theorem 1.1, which clearly provides strong constraints on the possible
subvarieties in a flat holomorphic Cartan geometry which can develop to the model. Roughly,
it is a no go theorem: as we will see, it prevents the application of developing maps in any of
the important types of Cartan geometries. We expect that these results continue to hold for
holomorphic Cartan geometries which are not flat, as holomorphy is very similar to flatness [2].
We also expect that these results continue to hold on compact Kähler manifolds, and more
generally on Fujiki manifolds (i.e., compact complex manifolds dominated by compact Kähler
manifolds), since the known examples are similar to the smooth projective examples.

It seems likely that most readers of this paper are differential geometers, interested in Car-
tan geometries, and not algebraic geometers, so we provide complete definitions and detailed
references for standard results in complex algebraic geometry, with apologies to the algebraic
geometers.

2 The main ideas and techniques of the paper

Throughout the paper, we imagine we are faced with a compact complex manifold M and
a complex homogeneous space X = G/H, the model, and that M bears a flat holomorphic
Cartan geometry modelled on X. We want to identify the possible choices of subvarieties Z ⊆ M
which develop to X by some developing map associated to the geometry; see Section 4.4 for
a precise definition. We approach the problem from two directions simultaneously: saying what
we can about Z in terms of M , independent of choice of X, but also in terms of X, independent
of choice of M .
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Any flat holomorphic principal bundle over a connected compact complex manifold M arises
from a representation of its fundamental group. Under some technical hypotheses, it is roughly
true that this representation of the fundamental group factors through π1(M) −→ π1(S) for
some holomorphic map M −→ S, the Shafarevich fibration, with complex torus fibers, to some
compact complex manifold S, such that the map contracts just those subvarieties of M on whose
fundamental group the representation is trivial, and hence M −→ S is essentially uniquely
determined [37, 63]. (Actually, the map is not quite defined, so there are some technical details.)
Moreover S has negative Ricci curvature in some Kähler metric, i.e., ample canonical bundle.
The Shafarevich fibration we use is a special case of the collection of Shafarevich fibrations shρ
of an algebraic variety [63, p. 6], each associated to a representation ρ of its fundamental group.
These shρ all factor the universal Shafarevich fibration sh [63, Definition 1], which does not
depend on a representation.

Suppose that a subvariety Z ⊆ M develops to X, so it is identified with a subvariety Z ⊆ X.
The holonomy of the Cartan connection must be trivial on Z to avoid a multivalued developing
map. Therefore, Z sits in a fiber of the Shafarevich fibration. But conversely, since the holonomy
is essentially trivial on the fibers of the Shafarevich fibration, and the Cartan geometry is flat,
the fibers themselves develop. (This is not quite true: due to technical problems, the holonomy
might only be solvable on the fibers, and hence the fibers might not develop.)

If a particular compact complex manifold M were given explicitly, and we could somehow
compute the Shafarevich fibration, we would thus expect to know which subvarieties develop
from M , independent of X. But there are few examples of complex manifolds M with holo-
morphic principal bundle and holomorphic flat connection for which the Shafarevich fibration
is known. Again our aim is to say what we can about Z in terms of M , independent of choice
of X, but also in terms of X, independent of choice of M . Therefore, we want to have more
information, that does not require knowing so much about both M and X simultaneously, i.e.,
without knowing the Shafarevich fibration.

When we develop subvarieties, ambient tangent bundles are identified:

TM |Z ∼= TX|Z

by the developing map. But X has tangent bundle spanned by global holomorphic sections,
since it is homogeneous. In particular, X has semipositive anticanonical bundle, i.e., lots of
wedge products of holomorphic vector fields.

On the other hand, we saw that M is essentially a bundle of tori over a manifold S with
negative Ricci curvature, hence M has tangent bundle something like a sum of a trivial bundle
with some negative curvature directions. In particular, the canonical bundle ofM is semipositive.
Therefore, along Z, the ambient canonical bundle is semipositive, from M , and seminegative,
from X, hence trivial. We can thus employ the huge theory of Calabi–Yau manifolds, i.e.,
smooth projective varieties with trivial canonical bundle.

This helps to identify the possible choices of Z in terms of M , independent of model X, but
also in terms of X, independent of choice of M . We will see that this triviality forces Z to be
a torus and to lie in a leaf of a certain foliation on M , the ant foliation, and also to lie in a fiber
of an associated fibration of X, the ant fibration; see Section 8.3. As we will see, for most of the
homogeneous models X of interest in geometry, the ant fibration has only single points as fibers,
and hence Z is a point. Since we can compute the ant fibration of X without knowing M , this
gives explicit examples of models X for which nothing can develop from any M without rational
curves. Nonetheless, we provide examples in which the ant fibration has arbitrarily large fibers,
so our main theorem (see Theorem 1.1) is difficult to state.

Our first attempt to produce such an invariant fibration, with the required relationship to
the ambient canonical bundle, gives us a previously known fibration called the anticanonical
fibration; see Section 8. We refine this fibration to a previously undiscovered invariant fibration of
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complex homogeneous manifolds, the ant fibration, which we demonstrate is, in some examples,
strictly finer, even though it has essentially all the same theorems as the anticanonical fibration;
see Section 8.3. We believe the ant fibration is of independent interest.

Computing the dimension of fibers of the ant fibration of a homogeneous model X gives an
upper bound on the dimension of varieties Z which can develop from any Cartan geometry with
that model X, independent of choice of M .

The ant fibration of the model induces, via the Cartan geometry, a foliation of any complex
manifold M with any holomorphic Cartan geometry, the ant foliation. If M has no rational
curves, then we saw M = M0 × A. Every leaf of the ant foliation lies inside a fiber pt× A; see
Corollary 9.2. Noting that A is the identity component of the biholomorphism group ofM , we see
that fewer symmetries of the complex manifold M imply smaller dimensions of subvarieties Z
which develop to the model X, independent of choice of X. In particular, “most” compact
complex manifolds M with no rational curves will only allow individual points Z to develop to
the model of any holomorphic Cartan geometry on M .

3 Summary of the paper

In Section 4, we explain briefly the concept of Cartan geometry. This paper concerns only flat
Cartan geometries, but various of its lemmata are independently useful and so are stated in
the generality of holomorphic Cartan geometries. We are hopeful that the results generalize to
arbitrary holomorphic Cartan geometries. Flatness might seem an extreme hypothesis, but at
the moment all smooth projective varieties which are known to admit a holomorphic Cartan
geometry are known to admit a flat one, and many of our results only require that there be
a holomorphic Cartan geometry and also some holomorphic flat connection on the tractor bundle.

In Section 4.4, we define the notion, in any Cartan geometry, of development of subman-
ifolds on which curvature vanishes. This first appeared in our previous work, but is a minor
generalization of various well known definitions, as we explain.

Section 5 summarizes, with complete references to standard textbooks, all of the theorems
from algebraic geometry which we need, except for the theory of the Shafarevich fibration, which
we will review in Section 15.

Section 6 summarizes our previous theorem which, roughly, says that we can assume that M
contains no rational curves. In other words, we can reduce the study of holomorphic Cartan
geometries on compact complex manifolds M to the study of such geometries on those compact
complex manifolds M which contain no rational curves. (In the statement of Theorem 1.1, we
unpack all of our results to see what they imply even in the presence of rational curves, but the
reader should feel free to suppose that there are no rational curves henceforth.)

Purely for the reader’s curiosity, in Section 7, we give a survey of the main theorems known
about Cartan geometries on smooth projective varieties, explaining how various fundamental
geometric conditions on a smooth projective variety constrain their Cartan geometries.

Section 8 provides detailed definitions, proofs and examples of some invariant fibrations of
complex homogeneous manifolds. The reader recalls that a Cartan geometry is “infinitesimally
modelled” on a homogeneous space. So these fibrations determine holomorphic foliations on
complex manifolds with holomorphic Cartan geometries. We finish this section by describing
the geometry of these foliations.

In Section 9, we will see that, roughly speaking, the biholomorphisms of any compact complex
manifold M without rational curves arise from splitting M into a product M = M0 × A of
a complex torus A, on which translations are biholomorphisms, and a complex manifold M0

with finite automorphism group; see Lemma 9.1.
Section 10 produces a class of homogeneous models, larger than merely complex algebraic

homogeneous models, to which are results will still apply. Our results use a great deal of algebraic
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geometry, so they do not apply to arbitrary homogeneous models X = G/H, but they hold for
complex algebraic homogeneous models.

Section 11 defines various notions of stability of holomorphic principal bundles. We use sta-
bility in Section 12 to relate existence of a holomorphic connection on a bundle over a torus
and existence of a reduction of the Levi quotient bundle with a flat holomorphic connection.
We use this in Section 13 to show that a holomorphic Cartan geometry on a torus fibration has
Levi quotient pulled back from the base, and is flat on the fibers. This seems to be of indepen-
dent interest; it is not used further, but gives hope that some picture like that of a Shafarevich
fibration might occur more generally. It is also of interest because the known examples of holo-
morphic Cartan geometries without rational curves, other than the locally Hermitian symmetric
varieties, are torus fibrations.

In Section 14, we show that any rational map of a flat Cartan geometry whose typical fiber
has solvable holonomy has trivial pullback canonical bundle on its typical fiber. We use this
in Section 15 to show that the Shafarevich fibration is actually defined at every point of M ,
and maps to a smooth base with ample canonical bundle. This is the most technically involved
section of the paper. The subsequent sections easily put together a picture of the varieties which
develop to the model.

Section 15 will review the well known theory of Shafarevich fibrations from algebraic ge-
ometry [37, 63]. This theory takes as input the group structure of the fundamental group of
a complex manifold and gives as output a holomorphic fibration.

4 Review of the theory of Cartan geometries

4.1 Definition

In this section, we provide a complete definition of Cartan geometry and of parabolic geometry.
For introductions to Cartan geometries, see [12, Chapter 1], [47, 57]. Suppose that G is a com-
plex Lie group acting holomorphically and transitively on a complex manifold X; the pair (X,G)
is called a complex homogeneous space. Let H ⊂ G be the stabilizer of a point x0 ∈ X. A holo-
morphic (X,G)-geometry, also known as a holomorphic Cartan geometry modelled on (X,G),
on a manifold M is a choice of holomorphic principal G-bundle EG −→ M with a holomor-
phic connection ω and holomorphic H-subbundle E ⊂ EG so that the tangent spaces of E are
complementary to the horizontal spaces of the connection ω [57]. The Cartan connection is the
restriction to E of the connection 1-form ω on EG. A Cartan geometry is effective if the action
of G on X is so.

The principalH-bundle G −→ X defined by g 7−→ gx0 is a Cartan geometry, called themodel
geometry, with the left invariant Maurer–Cartan 1-form g−1dg on G as Cartan connection.

If X ′ ⊂ X is a connected component and G′ ⊂ G is the subgroup preserving X ′, then any
(X,G)-geometry is precisely an (X ′, G′)-geometry, so we can assume, without loss of generality,
that the modelX of any Cartan geometry is connected. A flag variety is a complex homogeneous
space (X,G) for which X is a connected and simply connected projective variety and G is
a complex semisimple Lie group; they are precisely the rational homogeneous projective varieties.
A parabolic geometry is a Cartan geometry whose model is a flag variety [12].

4.2 Dropping

In this section, we will see that each Cartan geometry gives rise, by a trivial construction, to
another one, on a higher-dimensional manifold, which we call the lift [47, Section 9]. If a Cartan
geometry arises from the lift of another, we say it drops to that other Cartan geometry.
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Suppose that H ⊂ H ′ ⊂ G are closed complex subgroups of a complex Lie group G, with
associated homogeneous spaces X := G/H and X ′ := G/H ′, and that (E,ω) −→ M ′ is an
(X ′, G)-geometry. If we define M := E/H, then E −→ M is an (X,G)-geometry with the
same Cartan connection ω; we call it the lift of (E,ω) −→ M ′ [12, Section 1.5.13]. (The lift
is traditionally called the correspondence space of (E,ω) −→ M ′ [12, Section 1.5.13], but this
is an awkward fit to our applications of the idea, as we will see). Note that M −→ M ′ is
a holomorphic fiber bundle with fiber H ′/H, the same fiber as the G-equivariant holomorphic
map X −→ X ′. Conversely, a given (X,G)-geometry drops to a given (X ′, G)-geometry if it is
isomorphic to the (X,G)-lift of that (X ′, G)-geometry. (The notion of dropping is fundamental
to all of our work in this paper, more so than lifting. It would be awkward to use the expression
is isomorphic to the correspondence space of instead of drops to. Therefore, we adopt the
terminology of lifting and dropping henceforth.)

Example 4.1. If X is a connected homogeneous G-space and ∗ is a point with trivial G-action,
then an (X,G)-geometry on a connected manifold drops to a (∗, G)-geometry just when the
geometry is isomorphic to its model.

More generally, if a geometry on some complex manifold M drops to some complex mani-
fold M ′, then we can recover the complex manifold M and the original geometry on M directly
from the geometry on M ′; see [7] for details and [43] for examples. A minimal geometry is
a holomorphic Cartan geometry which does not drop to a holomorphic Cartan geometry on any
lower-dimensional manifold.

4.3 From modules to vector bundles

Any Cartan geometry is modelled on a homogeneous space. In this section, we explain that
various vector bundles naturally arise in any Cartan geometry, and that these vector bundles
are modelled on homogeneous vector bundles [47, Section 10] on the homogeneous space. Take
a Cartan geometry E −→ M modelled on a complex homogeneous space (X,G) withX = G/H.
The principal H-bundle E −→ M and the Cartan connection determine the Cartan geometry,
as EG := E ×HG and the Cartan connection extends uniquely to EG to become a holomor-
phic connection 1-form. To any holomorphic H-module V we associate the holomorphic vec-
tor bundle V := E ×H V −→ M whose global sections are the holomorphic H-equivariant
maps E −→ V . We use the same symbol V for the associated vector bundle on the model X
as well.

Example 4.2. If V := g/h equipped with the adjoint action of H, then V = g/h = TM [47,
Proposition 1], [56, Theorem 3.15].

4.4 Development

Suppose that M is a complex manifold with a holomorphic Cartan geometry. In this section,
we consider all holomorphic maps to M , from any complex manifold, on which the pullback
curvature of the Cartan geometry vanishes. We call these maps pancakes. Such a map, in
some sense, locally resembles a map to the model of the Cartan geometry, its development. All
material in this section is explained in more detail and with complete proofs in [47, Section 7].

Take a complex homogeneous space (X,G) with marked point x0 ∈ X. Take a holomor-
phic (X,G)-Cartan geometry H −→ E −→ M with Cartan connection ω. A pancake of the
Cartan geometry is a holomorphic map f : Z −→ M from a connected complex space so that
the holomorphic connection ω on EG := E×HG pulls back to a flat connection on f∗EG −→ Z.
Pick a point z0 ∈ Z.
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Example 4.3. Every holomorphic map Z −→ X of any complex manifold Z to a homogeneous
space (X,G) is a pancake for the model Cartan geometry on X. So maps Z −→ M which are
not pancakes, roughly speaking, “look different” locally than maps Z −→ X, hence the pancake
condition.

There is a unique unramified Galois covering

pZ :
(
Ẑ, ẑ0

)
−→ (Z, z0)

so that the flat connection has trivial holonomy precisely on covering spaces of Ẑ. Each choice
of point e0 ∈ (f ◦ pZ)∗Eẑ0 = Ez0 gives an H-equivariant morphism f̂ : (f ◦ pZ)∗E −→ G of
complex spaces, uniquely determined by f̂(e0) = 1 and f̂∗g−1dg = ω [7, Section 2.3]. In fact e0
produces an isomorphism of (f ◦ pZ)∗EG −→ Ẑ × G of principal G-bundles, and f̂ is the
composition of maps

(f ◦ pZ)∗E ↪→ (f ◦ pZ)∗EG = Ẑ ×G −→ G.

By H-equivariance, f̂ descends to a morphism

f̂ :
(
Ẑ, ẑ0

)
−→ (X,x0) = (G/H, eH) (4.1)

of complex spaces; it is known as the developing map.
Let

π := Gal(pZ) = π1(Z)/π1
(
Ẑ
)

be the Galois group. The flat connection has holonomy morphism h : π −→ G uniquely deter-
mined by f̂ ◦γ = h(γ)f̂ for every γ ∈ π, where f̂ is the map in (4.1). We have an exact sequence
of group morphisms

1 π1
(
Ẑ, ẑ0

)
π1(Z, z0) G.h

The developing pair f̂ , h is associated to the pancake f : Z −→ M . The pancake develops to
the model if Z = Ẑ, i.e., if π = 1.

The group π acts on f̂∗G on the left by the holonomy morphism, where G is considered as
a principal H-bundle on X using the quotient map G −→ G/H, and f̂ is the map in (4.1);
quotienting: f∗E ∼=

(
f̂∗E

)
/π, and g−1dg descends to define a connection on f∗EG, which

actually coincides with f∗ω. The developing pair(
f̂ , h

)
, f̂ :

(
Ẑ, ẑ0

)
−→ (X,x0), h : π −→ G

together with choice of points Z ∋ z0 7−→ m0 ∈ M and the Cartan connection on M determines
uniquely the original map Z −→ M .

The developing pair of a pancake is uniquely determined by choice of point e0 ∈(f ◦ pZ)∗Eẑ0 =
Em0 . If we replace e0 by another point e0h0 for some h0 ∈ H, then

(
f̂ , h

)
gets replaced

by
(
h−1
0 f̂ , h−1

0 hh0
)
. If we replace z0 by another point of Z, similarly

(
f̂ , h

)
gets replaced

by
(
g−1f̂ , g−1hg

)
for some g ∈ G. Every pancake has a unique developing pair, up to this

right G-action [7, Section 2.3].
The following pullback bundles have canonical isomorphisms of bundles on Ẑ [7, Section 2.3]:

f∗E ∼=
(
f̂∗G

)
/π as holomorphic principal H-bundles,

f∗TM ∼=
(
f̂∗TX

)
/π as holomorphic vector bundles,

f∗ (E ×H g
) ∼= f̂∗ (G×H g

)
/π as holomorphic vector bundles with connection.
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If Z develops to the model, these obviously become isomorphisms of bundles on Z:

f∗E ∼= f̂∗G as holomorphic principal H-bundles,

f∗TM ∼= f̂∗TX as holomorphic vector bundles,

f∗ (E ×H g
) ∼= f̂∗ (G×H g

)
as holomorphic vector bundles with connection.

We will make crucial use of these isomorphisms below.

A submanifold Z ⊆ M develops to the model if Z is a pancake and the inclusion map Z −→ M
develops to the model.

For more on the story of development of curves to the model from flat Cartan geometries,
see [18, p. 3]. For development to the model of curves in non-flat Cartan geometries, see [12,
p. 108, 1.5.17], [13, p. 54, 41X], [16], [56, p. 368]. For developments of higher-dimensional
submanifolds, still only to the model, but only in flat Cartan geometries (which suffices for our
applications in this paper), see [36, Section 4]. The concept of development of curves was first
used to develop curves in one geometry to curves in another, with neither being assumed to be
a homogeneous model [54], but this was only carried out in Riemannian geometry to compare
any two Riemannian geometries on surfaces. For development of curves between arbitrary
Cartan geometries with the same model, the only reference is [47, Section 17]. For development
of higher-dimensional submanifolds, in Cartan geometries which might not be flat, still only
developing to the model, the only references are [7, Section 2.3], [47, p. 43], the second of which
gives complete proofs of the results we use here.

5 Review of algebraic geometry

In this section, we recall some theorems of complex algebraic geometry. We were not able to
find all of this information in a single source, so we need to give a summary of the results that
we will use.

5.1 Line bundles

Suppose that M is a compact irreducible reduced complex space. The Iitaka dimension of
a holomorphic line bundle L on M is the maximal dimension of the images of the rational maps

M PH0(M,kL)∗

taking a point m ∈ M to the hyperplane in H0(M,kL) consisting of sections vanishing at m,
for k = 1, 2, . . . ; see [60, p. 50], [40, Definition 2.1.3]. If 0 = H0(M,kL) for all k > 0, the Iitaka
dimension is defined to be −∞ [60, p. 50], [40, Definition 2.1.3]. The line bundle L −→ M
is big if the Iitaka dimension of L is the dimension of M [40, Definition 2.2.1]. A nef line
bundle L −→ M is big just when c1(L)

n > 0, where n := dimCM ; see [40, Theorem 2.2.16].
The numerical dimension of L −→ M is the largest integer k for which 0 ̸= c1(L)

k ∈ H2k(M,R),
so a nef line bundle is big precisely when its numerical dimension equals the dimension of the
complex manifold M [40, Remark 2.3.17]. The Kodaira dimension κM of M is the Iitaka
dimension of the canonical bundle of M see [60, p. 65]. The Kodaira dimension is at most
the numerical dimension; a holomorphic line bundle is abundant if its Kodaira and numerical
dimensions are equal [40, Remark 2.3.17]. The space M is of general type if its canonical bundle
is big [40, Example 2.2.2]. Any compact complex manifold with c1 < 0 has general type, as does
any modification of it.
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5.2 The Iitaka fibration

An Iitaka fibration of M is a dominant rational map M IiM , whose generic fiber is smooth
and irreducible, so that subvarieties of M on which KM has zero Iitaka dimension lie in the
fibers and, on the very general fiber, KM has zero Iitaka dimension [40, Theorem 2.1.33]. Any
projective variety of nonnegative Kodaira dimension has a unique Iitaka fibration up to birational
isomorphism [28, Theorem 10.3] or [60, Theorem 5.10], and its fibers are connected [40, p. 124].
If some power of the canonical bundle is spanned by global sections, then there is a unique
holomorphic Iitaka fibration, and its codomain is the image of the pKM -maps

M −→ PH0(M,pKM )∗

for all but finitely many integers p > 0 [40, p. 133].

5.3 Moishezon manifolds

In this section we explain that our theorems actually hold for a larger class of complex manifolds.
All varieties in this paper are assumed complex. A Moishezon manifold is a connected compact
complex manifold bimeromorphic to a smooth projective variety [60, p. 26]. If a Moishezon
manifold M admits a holomorphic Cartan geometry then M is a smooth projective variety; [7,
Corollary 2]. If the holomorphic Cartan geometry on M drops to a complex manifold M ′ then
M ′ is also a smooth complex projective variety; [7, Corollary 2]. Hence the classification of
holomorphic Cartan geometries on Moishezon manifolds follows immediately from the classifi-
cation on smooth projective varieties, which itself follows immediately from the classification
of minimal geometries on smooth projective varieties. Consequently, Theorem 1.1 holds true
with smooth projective variety replaced by Moishezon manifold. On the other hand, there are
compact Kähler manifolds which are not projective and which admit holomorphic flat Cartan
geometries. For example, complex tori admit flat holomorphic projective connections.

Throughout this paper, we try to prove results in the greater generality of compact Kähler
manifolds, but we are not always able to, since many of our results use theorems of algebraic
geometry which are not understood for compact Kähler manifolds. We expect the results of this
paper hold with little modification for compact Kähler manifolds.

5.4 Stein manifolds

A Stein manifold is a complex manifold for which all cohomology in all positive degrees of
all coherent sheaves vanishes [21, p. 100]. A complex manifold is Stein just when it admits
a holomorphic proper embedding into complex Euclidean space [25, Theorem 5.3.9]. We will
need to make use the existence of such an embedding for some complex Lie groups below, so we
will need to know which complex Lie groups are Stein.

5.5 Rational curves

A rational curve in a complex manifold M is a nonconstant holomorphic map P1 −→ M from
the Riemann sphere. A complex manifold is uniruled if a rational curve passes through its
generic point [38, p. 181]. A line bundle L −→ M on a projective variety is nef if

∫
C c1(L) ≥ 0

for all complete complex algebraic curves C in M [40, Definition 1.4.1]. A projective variety is
minimal if it has nef canonical bundle [14, p. 2]. By Mori’s cone theorem [14, 49], every smooth
projective variety with no rational curves is minimal. The abundance conjecture claims that,
on any minimal projective variety, some power of the canonical bundle is spanned by its global
sections [58].
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5.6 Rational connectivity

A rational curve in a complex manifold is tame if it lies in a compact irreducible component
of the Douady space of deformations [15]. In any compact complex manifold dominated by
a compact Kähler manifold, every rational curve is tame [17, 61]; in particular, every rational
curve in any smooth projective variety is tame. A compact complex manifold is tamely rationally
connected if two general points of it lie on a connected finite union of tame rational curves [38].

Example 5.1. Any connected compact complex manifold with c1 > 0 is tamely rationally
connected [10].

A rational curve f : P1 −→ M in a complex manifold M is ample if f∗TM is a sum of line
bundles of positive degree. A smooth projective variety is tamely rationally connected just when
it contains an ample rational curve [38, Definition 1.1, Theorems 1.9, 3.7 and 3.10]. A complex
manifold is tame if its every rational curve lies in a compact irreducible component of its Douady
deformation space [7, p. 2].

Every smooth projective variety is tame, as its Douady space is its Hilbert variety [15].

5.7 Affine groups

In this section, we invent a new class of complex Lie groups which behave enough like linear
algebraic groups that our theorems will easily extend to them. A complex Lie group G is affine
if some finite index subgroup of G has a morphism of complex Lie groups to a complex linear
algebraic group, which is an isomorphism on Lie algebras.

Example 5.2. Any complex linear algebraic group is affine, and hence any complex semisimple
Lie group is affine.

Example 5.3. Every covering group of any complex linear algebraic group is affine. For ex-
ample, if a complex linear algebraic group is connected, it admits a universal covering group.
Often even a disconnected complex linear algebraic group has a universal covering group [23,
Theorem 18.2.1, Example 18.2.2].

Example 5.4. Products of affine are affine.

Example 5.5. Any complex Lie group which admits a holomorphic representation, injective on
its Lie algebra, as unipotent complex linear transformations, is affine [48, Corollary 14.38].

Example 5.6. Any complex Lie group with finite fundamental group and finitely many com-
ponents is affine [23, Corollary 16.3.9].

Suppose that G is affine, say with finite index subgroup G0 ⊂ G having morphism G0 −→ G0

to a complex linear algebraic group, inducing an isomorphism on Lie algebras. If G −→ P −→
M is a holomorphic principal G-bundle, then on the finite unramified covering space M̂ := P/G0,
we have a holomorphic principal G0-bundle G0 −→ P −→ M̂ , and an associated principal G0-
bundle P := P ×G0G0. Every holomorphic connection on P −→ M pulls back to a holomorphic
connection on P −→ M̂ , and conversely by averaging over the deck transformations, every
holomorphic connection on P −→ M̂ induces a holomorphic connection on P −→ M . We
can replace G0 by a finite index subgroup, hence assume that G0 is connected. So, up to finite
covering, the existence of a holomorphic connection, or of a holomorphic flat connection, is the
same for the original bundle as for the associated bundle with connected complex linear algebraic
structure group.
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6 Rational curves and Cartan geometries

We recall one of our earlier results, which is essential for the results below:

Theorem 6.1 ([7, Theorem 2]). On a smooth projective variety M bearing a holomorphic Cartan
geometry, the following are equivalent:

(1) Some holomorphic Cartan geometry on M is minimal.

(2) Every holomorphic Cartan geometry on M is minimal.

(3) M contains no rational curves.

(4) M is not uniruled.

(5) M is not the total space of a holomorphic fiber bundle, with positive-dimensional flag
manifold fibers, over a minimal smooth projective variety.

(6) M is minimal, i.e., has nef canonical bundle.

Therefore, the classification of holomorphic Cartan geometries on smooth projective varieties
follows from the classification of minimal geometries on minimal smooth projective varieties
containing no rational curves.

7 Review of Cartan geometries on projective varieties

We set the stage by summarizing some theorems about Cartan geometries on smooth projective
varieties.

7.1 Positive Ricci

In this section, we summarize the state of the art about holomorphic Cartan geometries on
compact complex manifolds with positive Ricci curvature.

Theorem 7.1 ([7, Corollary 3]). Any tamely rationally connected compact complex manifold M
admits a holomorphic Cartan geometry, say with model (X,G), if and only if M is biholomorphic
to X, in which case the geometry is isomorphic to the model geometry and (X,G) is a flag variety.

7.2 Ricci flat

In this section, we summarize the state of the art about holomorphic Cartan geometries on
compact complex manifolds with zero Ricci curvature.

Theorem 7.2 ([6]). A compact connected Kähler manifold M with c1(M) = 0 admits a holo-
morphic Cartan geometry if and only if it has an unramified covering by a complex torus.

Theorem 7.3 ([4]). If the group G of a complex homogeneous space (X,G) is affine, then every
holomorphic (X,G)-geometry on any complex torus is translation invariant.

7.3 Semipositive Ricci

In this section, we summarize the state of the art about holomorphic Cartan geometries on
compact complex manifolds with semipositive Ricci curvature.

Theorem 7.4 ([46, Theorem 2]). Suppose that M is a connected compact Kähler manifold
with c1 ≥ 0. After perhaps replacing M by a finite unramified covering space, every holomorphic
Cartan geometry on M is the lift of a Cartan geometry on a complex torus, and in particular M
is a holomorphic fiber bundle, with flag variety fibers, over a complex torus.



Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties 13

8 The anticanonical splitting

8.1 The anticanonical fiber bundle

In this section, we define the anticanonical fibration of a complex homogeneous space X, which is
a fibration invariant under automorphisms; the anticanonical fibration was previously considered
by [26], but the results below are new. We prove that every subvariety of a complex homogeneous
space on which the ambient canonical bundle is trivial lies in a fiber of the anticanonical fibration.
We will subsequently apply this to subvarieties which are developed to X from some Cartan
geometry.

For any normal complex space X and holomorphic line bundle L −→ X, let

V := H0(X,L) ,

which might be an infinite-dimensional complex vector space. Let X ′ ⊂ X be the points of X
where every holomorphic section of L vanishes. If dimCV > 0, define the L-map

X \X ′ −→ PV ∗, x 7−→ {s ∈ V | s(x) = 0}.

If X ′ ⊂ X contains no component of X, denote the image of the L-map by LX and the L-
map by L: X LX. For any two points x0, x1 ∈ X \ X ′ in the same fiber, we can pick
a vector v0 ∈ Lx0 , and a global section s with s(x0) = v0, and hence define v1 := s(x1), a natural
linear isomorphism Lx0

∼= Lx1 , i.e., L is trivial along the fibers of L: X LX. For every complex
homogeneous space (X,G) and G-invariant line bundle L −→ X, the map L: X LX is G-
equivariant. The map is everywhere defined, by G-equivariance, as long as L −→ X has at least
one holomorphic section not everywhere vanishing. The fibers of X −→ LX are the equivalence
classes: x ∼ x′ just when every holomorphic section of L which vanishes at x also vanishes at x′

and vice versa. The sections vanishing at x have common vanishing locus a subvariety Zx, and
each fiber F = Xx0 is

F =
⋂
x∈F

Zx,

a closed subvariety acted on by the normalizer of H ⊂ G. The fiber F is a closed complex
analytic subvariety, so the stabilizer of F is a closed complex subgroup LH ⊂ G, and therefore

LX = G/LH

is a complex homogeneous space and X −→ LX is the L-fiber bundle. The line bundle L is
pulled back by L: X LX from a line bundle on LX. In particular, we will consider L = −KX ,
i.e., X −→ −KX, the anticanonical fiber bundle. Note that X has global nonzero sections of its
anticanonical bundle, as we can wedge together vector fields from the G-action. In particular,
the anticanonical fiber bundle is a well defined regular morphism.

Example 8.1. Some easy examples, which essentially exhaust the complex homogeneous spaces
in low dimension [44]:

(1) Any flag variety X = G/P has positive anticanonical bundle, so −KX = X.

(2) If X = P1 × C × C where C = C/Λ is an elliptic curve, then −KX = P1 × C giving the
fiber bundle C −→ X −→ −KX.

(3) If (X,G) is a homogeneous Hopf manifold of dimension n then −KX = X/C× = Pn−1. To
be precise,

X = (Cn − {0})/(z ∼ λz)
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for some λ ∈ C× with |λ| ≠ 1 (which can be chosen arbitrarily to construct a homogeneous
Hopf manifold), and H0(X,−KX) consists of the tensors

p(z)∂1 ∧ · · · ∧ ∂n

for any polynomial p(z) homogeneous of degree n. Such a tensor, by homogeneity, vanishes
on a set of complex lines through the origin in Cn. Hence the anticanonical fibers are the
quotients of these complex lines, i.e., the fibers of the Hopf fibration X −→ −KX = Pn−1,
and are elliptic curves C×/⟨λ⟩.

(4) The total space X = O[n] of the line bundle O[n] −→ P1 for n ≥ 1 has −KX = X.

(5) There is one nontrivial holomorphic fiber bundle C× −→ X −→ C×, and it admits
infinitely many holomorphic faithful group actions of connected complex Lie groups [44].
Its anticanonical fibration is C× −→ X −→ C× = −KX.

Lemma 8.2. For any complex homogeneous space (X,G), any vector field on X arising from
an element of the Lie algebra of G vanishes at a point x ∈ X just when it vanishes at all points
of the anticanonical fiber through x.

Proof. Denote by g the Lie algebra of G. Pick a vector field v ∈ g and points x, y ∈ X so
that v(x) = 0 and v(y) ̸= 0. Let v1 := v. Since G acts transitively on X, we can find vector
fields v2, v3, . . . , vn so that v1, v2, . . . , vn are linearly independent at y. By slight perturbation,
we can arrange that v2, v3, . . . , vn are linearly independent at x. Then v1∧ · · · ∧ vn vanishes at x
but not y. So x and y lie in different fibers of the anticanonical fibration. ■

Consequently, if we take a point x ∈ X then its anticanonical fiber F has vector fields

g −→ g/gx ⊂ H0(F, TX) , v 7−→ v|F

giving a canonical trivialization of TX|F along each anticanonical fiber F . A vector field
from g vanishes at x0 just when it belongs to h and just when it vanishes on the anticanonical
fiber F = −KHx0. So h is precisely the subalgebra of g acting trivially on −KHx0 = −KH/H.
Denote by −Kh the Lie algebra of −KH; so h ⊂ −Kh is an ideal.

The elements of −KH leaving every point of F fixed form a normal subgroup of −KH, con-
taining H0 and having Lie algebra h. So this normal subgroup has identity component H0, and
hence H0 ⊆ −KH is a normal subgroup. Thus

H/H0 ⊂ −KH/H0

is a discrete group, giving the fiber F = −KHx0 the form

F =
(−KH/H0

)
/
(
H/H0

)
of a quotient space of −KH/H0 by the action of a discrete group H/H0. In particular, the vector
fields −Kh are a canonical G-invariant trivialization of the tangent bundle of each anticanonical
fiber.

If f : X −→ C is a holomorphic function with f(x0) ̸= 0 and s is a section of the anticanonical
bundle not vanishing at some point x0 ∈ X, then fs is another such section, so f ̸= 0 on the
fiber of x0.

Lemma 8.3. Take a complex homogeneous space X = G/H. The identity component
(−KH

)0 ⊂
−KH lies in the identity component N0 of the normalizer N := NGH

0 of the identity component
H0 ⊂ H.
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Proof. Pick a point x ∈ X and vector fields v1, v2, . . . , vn ∈ g, linearly independent at the
generic point but with v1(x) = 0 while v2, v3, . . . , vn are linearly independent at x. Let

s := v1 ∧ v2 ∧ · · · ∧ vn.

For any element g ∈ −KH, since s(x) = 0, we must have s(gx) = 0. So for any element w ∈ −Kh,
Lws vanishes at x:

Lws = (Lwv1) ∧ v2 ∧ · · · ∧ vn − v1 ∧ (Lwv2) ∧ v2 ∧ · · · ∧ vn + · · · ,

so that at x:

0 = (Lws) (x) = (Lwv1) (x) ∧ v2(x) ∧ · · · ∧ vn(x).

Since v2, . . . , vn can be generically chosen, Lwv1 vanishes at x. Hence Lwh ⊂ h, i.e., w is in the
Lie algebra of Ngh. So

−Kh ⊂ Ngh. ■

Corollary 8.4. Take a complex homogeneous space X = G/H. In the holomorphic H-mod-
ule g/h, the subspace −Kh/h is acted on trivially by H0, so the action of H on −Kh/h descends
to an action of the group of components H/H0 on −Kh/h.

Proof. Every element of −Kh lies in the normalizer Ngh, so for any v ∈ h and w ∈ −Kh,
[v, w] ∈ h. Hence h acts trivially on −Kh/h in the adjoint representation on g/h. ■

Lemma 8.5. Take a complex homogeneous space X = G/H. Then every holomorphic map
f : Z −→ X from a connected normal compact complex space for which f∗KX is trivial lies in
a fiber of the anticanonical fibration X −→ −KX.

Proof. Any section of −KX vanishing at one point of f(Z) pulls back to the zero section
of f∗(−KX). ■

Lemma 8.6. Every complex Lie group with countably many components whose identity compo-
nent is simply connected is a Stein manifold.

Proof. Clearly it is sufficient to check the identity component. By Levi decomposition (see [23,
Theorem 16.3.7]), the radical is simply connected. The center belongs to the radical, and the
radical contains no complex torus, so the center is reductive, and we apply [42, Theorem 1]. ■

8.2 Developing and anticanonical fibrations

Lemma 8.7. Take a complex homogeneous space X = G/H. Take a finite holomorphic map
f : Z −→ X from a connected projective variety for which KZ and f∗KX are trivial. Then f(Z)
lies in a fiber of the anticanonical fibration X −→ −KX. If Z is smooth then it is an abelian
variety, and the map f is an immersion, equivariant for a morphism of complex Lie groups from
a complex abelian Lie group acting transitively on the abelian variety Z, and the image of f is
an abelian subvariety of X.

Proof. By Lemma 8.5, f maps to a fiber. As above, the subgroup preserving the fiber acts
transitively, with discrete stabilizer, so we can replace X by that fiber, and then without loss
of generality X = G/Γ for some connected complex Lie group G and discrete subgroup Γ ⊂ G.
After perhaps replacing by a finite unramified covering, any smooth projective variety Z with
trivial canonical bundle splits into a product Z = A × B where A is an abelian variety and B
is a simply connected Calabi–Yau manifold [8]. So the map Z −→ X lifts on each subvari-
ety {a0}×B, for any a0 ∈ A, to a map B −→ G̃ to the universal covering group of the identity
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component of G. But that universal covering group is a Stein manifold by Lemma 8.6, so embeds
holomorphically in Euclidean space.

Since B is a compact complex manifold, every holomorphic map of B to Euclidean space is
constant, by the maximum principle. So the map B −→ G̃ is constant. Hence B is a point,
so Z = A is an abelian variety. Trivialize the tangent bundle of A with a basis of holomorphic
vector fields va, and trivialize the tangent bundle of X = G/Γ with a basis of holomorphic vector
fields wi from the Lie algebra g of G. The map f : A −→ X then gives relations f∗va = ciawi.
These cia : A −→ C are holomorphic functions, so constants. In particular f : A −→ X is
a holomorphic immersion. With a change of basis, we arrange that va = wa. ■

In the proof above, if (X,G) is an algebraic homogeneous space, it is not clear to the authors
whether G̃ is an affine Lie group.

8.3 The ant fibration

In this section, we define a new refinement of the anticanonical fibration, which we believe
has independent interest. Take the anticanonical fibration of the anticanonical fibration, i.e.,
fiberwise we look at two points of a fiber as equivalent if they have the same sections of the
canonical bundle of that fiber vanishing at both. Since the tangent bundle of each fiber is trivial,
this is the same as saying that two points in the same fiber are equivalent if every holomorphic
function on the fiber which vanishes at one vanishes at both. This equivalence relation gets
iterated, and once we finish, we have a homogeneous holomorphic fiber bundle with perhaps
finer fibers, which we call the ant fibration. On each fiber of the ant fibration, all holomorphic
functions are constant, and there is a unique holomorphic section of the anticanonical bundle,
up to constant scaling. Locally constant functions on any fiber are holomorphic, so the fibers of
the ant fibration are connected. Throughout our work below, the reader could make use of the
anticanonical fibration instead of the ant fibration, with the advantage of being more familiar to
experts in homogeneous complex manifolds, but the disadvantage of providing possibly looser
restrictions on developing maps.

Example 8.8. There is one nontrivial holomorphic fiber bundle C× −→ X −→ C×, and it
admits infinitely many holomorphic faithful group actions of connected complex Lie groups [44].
Its anticanonical fibration is C× −→ X −→ C×, as the holomorphic sections of the canonical
bundle are pulled back from the base of the fibration, which is easy to check from the explicit
description of X in [44]. But the ant fibration is trivial X −→ X, since the anticanonical
fiber C× has its points separated by holomorphic functions.

Lemma 8.9. The universal covering space of each ant fiber is a connected and simply connected
complex Lie group and hence a Stein manifold.

Proof. Write the ant fibration as X −→ X = G/H and a fiber as (X0, G0) where X0 := H/H.
By Lemma 8.2, adjoint H-action preserves h, so H0 ⊆ H is a normal subgroup. Hence X0 is
a quotient of a complex Lie group by a discrete subgroup:

X0 = H/H =
(
H/H0

)
/
(
H/H0

)
.

So the universal covering space of each fiber X0 is a complex Lie group, and simply connected,
so is a Stein manifold by Lemma 8.6. ■

Note that

H0(X0,O) = C, H0(X0, T ) = g0 = h/h, H0(X0,−K) = C.
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Lemma 8.10. Take a complex homogeneous space X = G/H. Take a finite holomorphic
map f : Z −→ X from a connected projective variety for which KZ and f∗KX are trivial.
Then f(Z) lies in a fiber of the ant fibration. Suppose that Z is smooth. The variety Z is
an abelian variety. The map f is an immersion, equivariant for a morphism of complex Lie
groups from a complex abelian Lie group acting transitively on the abelian variety Z. The image
of f is an abelian subvariety of X.

Proof. By Lemma 8.7, f maps to a fiber of the anticanonical fibration, so we can replace X
by that fiber, and G by the automorphism group of that fiber, and repeat. All holomorphic
functions on X pull back to constants on Z, so f maps to a fiber of the ant fibration. ■

8.4 The ant foliation

Since a Cartan geometry looks infinitesimally like its model, it bears a foliation which looks
infinitesimally like the ant fibration. In this section and the following sections we prove that the
ant foliation splits the tangent bundle.

Take a holomorphic Cartan geometry E −→ M with model (X,G) on a complex manifoldM .
Every holomorphic G-invariant vector subbundle V ⊂ TX has an associated holomorphic vector
subbundle V ⊂ TM by letting V ⊂ Tx0X be the subspace of V at one point x0 ∈ X, say with
stabilizer H ⊂ G and then

V := E ×H V ⊂ E ×H (g/h) .

If F is a G-invariant foliation of X, then its tangent bundle V := TF becomes a subbun-
dle V ⊂ TM , but might not be tangent to a foliation of M . The ant distribution of TM is the
subbundle associated to the tangent bundle of the ant foliation of X.

Lemma 8.11. The ant distribution of any holomorphic Cartan geometry bears a flat holomor-
phic connection.

Proof. Because H0 acts trivially on −Kh/h, the associated vector bundle is holomorphically
trivial on E/H0, a covering space. Apply induction, taking anticanonical fibration of the anti-
canonical fibration. ■

Lemma 8.12. Take a smooth projective variety M with a minimal geometry. The ant dis-
tribution of the geometry is the tangent bundle of a foliation, the ant foliation of the Cartan
geometry, and admits a smooth holomorphic complementary foliation splitting TM .

Proof. Since the ant distribution has a holomorphic connection, its Chern classes vanish.
Since M is not uniruled, every holomorphic distribution with trivial first Chern class is a smooth
holomorphic foliation and admits a smooth holomorphic complementary foliation splitting TM
[41, Theorem 5.2]. ■

9 Splitting

Lemma 9.1. Take a smooth projective variety M with a minimal geometry E −→ M mod-
elled on a complex homogeneous space (X,G), X = G/H. Let V ⊂ g/h be the set of all
vectors invariant under the H-action and let V := E ×H V ⊂ E ×H (g/h) = TM . Then M
splits M = M0 ×A where A is an abelian variety and M0 has no nonzero holomorphic vector
fields: 0 = H0(M0, TM0). The distribution V ⊂ TM is the tangent bundle of a foliation on M .
Every leaf of that foliation lies inside an abelian variety {m0} ×A ⊂ M .



18 I. Biswas and B. McKay

Proof. The distribution is V = E×HV ∼= (E/H)×V trivial. So each element v ∈ V determines
a nowhere vanishing holomorphic tangent vector field on M . Since M is minimal, i.e., contains
no rational curves, M is not uniruled (i.e., does not have a rational curve through the generic
point). A theorem of Liebmann [52, Theorem 1.1] says that any smooth projective variety M
which is not uniruled splits as a product M0 ×A where A is an abelian variety, so that M0 has
zero as its only holomorphic vector field.

Since A is a complex torus, we can write A = W/Λ where W is complex Euclidean space
and Λ ⊆ W is a lattice. Note that TA is trivial: TA = A × W . Every tangent vector to A
extends uniquely to a nowhere vanishing holomorphic tangent vector field, a constant map to W .

Since TM = TM0 × TA, every holomorphic vector field v on M splits into a sum v = (u,w)
of a holomorphic vector field u tangent to M0 × {∗} and one w tangent to {∗} ×A. The map

p ∈ M 7→ w(p) ∈ W

maps a compact complex manifold holomorphically to Euclidean space, so is constant by the
maximum principle. Hence v = u+ w has w constant.

For each fixed a0 ∈ A, the map

p ∈ M0 7→ u(m0, a0) ∈ TpM0,

is a holomorphic vector field, so vanishes. Hence the holomorphic vector fields onM are precisely
the constant vector fields (0, w) for a constant w ∈ W . Since our distribution is spanned by
global holomorphic tangent vector fields, these are of this form (0, w), hence tangent to the
tori {∗} ×A. ■

Corollary 9.2. Take a smooth projective variety M with a minimal geometry E −→ M mod-
elled on a complex homogeneous space (X,G), X = G/H. Take the ant fibration X −→
X ′ = G/H ′. Suppose that H has finitely many components. Then, after perhaps replac-
ing M by a finite unramified covering space, M splits M = M0 × A where A is an abelian
variety and M0 is a smooth complex projective variety with no nonzero holomorphic vector
fields: 0 = H0(M0, TM0). Every leaf of the ant foliation on M lies inside an abelian vari-
ety {m0} ×A ⊂ M .

Proof. Replace M by E/H0, H by H0, with the same total space E and the same Cartan
connection, so that we can assume that H is connected. So H acts trivially on h′/h. ■

10 Infinitesimally algebraic models

In this section, we define a class of complex homogeneous space which resemble complex linear
algebraic homogeneous spaces. We need a strong enough resemblance so that our theorems
about Cartan geometries easily generalize to these models, even though the proofs use algebraic
geometry methods.

Take a complex Lie group G and some finite-dimensional holomorphic G-modules Vi. A re-
ductive (semisimple) Levi quotient of G over {Vi} is a quotient of complex Lie groups

1 −→ Gu −→ G −→ Gr −→ 1,

and a complex Lie group morphismGu −→ Gu to a unipotent (solvable) complex linear algebraic
group, injective on Lie algebras, so that Gr is a reductive (semisimple) complex linear algebraic
group and so that the action of Gu on each Vi factors through a polynomial action of Gu.
It follows that Gu preserves a filtration of G-modules on each Vi by Lie’s theorem (see [55,
Theorem 3]), and acts trivially on the quotients Vi+1/Vi [9, Section 4.8].
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Example 10.1. The group G := PSL2,C×PSL2,Q has no reductive or semisimple Levi quotient
in the usual sense of those terms (as defined in Vinberg [51, p. 20], for instance), nor does any
finite index subgroup [29, Theorem 6.14], but G has a unique semisimple Levi quotient (also
a unique reductive Levi quotient) over g:

1 −→ PSL2,Q −→ G −→ PSL2,C −→ 1.

A complex homogeneous space X = G/H is infinitesimally algebraic if, after perhaps replac-
ing G and H by finite index subgroups, H has a reductive Levi quotient over g, for which the
action of Hr on g/h is faithful, and G has a semisimple Levi quotient over g.

Example 10.2. Let G be the set of all complex 3× 3 matrices of the formea 0 b
0 1 a
0 0 1


and let H ⊂ G be the subgroup of matrices of the form a ∈ πiZ, b ∈ Z, i.e.,(−1)k 0 ℓ

0 1 πik
0 0 1


for k, ℓ ∈ Z. The quotient X := G/H is the nontrivial holomorphic C×-fiber bundle C× −→
X −→ C× [44, Section 11]. We want to see that (X,G) is infinitesimally algebraic, but not
algebraic. The adjoint action of an element

g =

ea 0 b
0 1 a
0 0 1


on

A =

α 0 β
0 0 α
0 0 0

 ∈ g

is

Adg A =

α 0 eaβ − bα
0 0 α
0 0 0

 ,

so that in terms of vectors denoted(
α
β

)
,

the adjoint representation factors through the solvable linear algebraic group of matrices(
1 0
−b c

)
with c ̸= 0, by

g 7−→
(

1 0
−b ea

)
.
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The semisimple quotient of G is thus Gss = 1. We let Hr = {±1}, and map

H −→ Hr,

(−1)k 0 ℓ
0 1 πik
0 0 1

 7−→ (−1)k.

The kernel Hu is the set of matrices of the form1 0 ℓ
0 1 2πik
0 0 1


for k ∈ Z. Hence the representation of Hu on AdG factors through

Hu −→ Hu :=

{(
1 0
−b 1

)}
.

The reader can check that the center of G is the infinite discrete group1 0 0
0 1 2πik
0 0 1

 ,

so G is not isomorphic as a complex Lie group to any complex linear algebraic group. Similarly,
H is discrete and infinite, so not a linear algebraic group. As G is connected, G is the only finite
index subgroup of G.

Lemma 10.3. Suppose that (X,G) is an effective connected complex homogeneous space X =
G/H. Suppose that G has finitely many components and H is isomorphic as a complex Lie
group to a complex linear algebraic group. Then (X,G) is infinitesimally algebraic.

Proof. We can assume that G is connected, because G has finitely many components. We
invoke the usual semisimple Levi quotient [51, p. 20].

Every complex linear algebraic group has an algebraic Levi decomposition H = Hr⋉Hu into
a maximal reductive and its unipotent radical [24, Theorem 4.3], and so has a reductive quotient
(over all H-modules simultaneously). Take an H-invariant filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = g/h

so that Hu acts trivially on the associated graded. Each Fi is H-invariant, so Hr-invariant, so Fi

has a Hr-invariant splitting Fi = Fi−1⊕F⊥
i−1. We claim that Hr acts faithfully on the associated

graded. Suppose that some element g ∈ Hr acts trivially on the associated graded. Note that g
acts trivially on F1, since F1 is a subspace of the associated graded. Suppose by induction that g
acts trivially on Fi−1. If v ∈ Fi, split as v = u+ u⊥ ∈ Fi−1 ⊕ F⊥

i−1. So

gv − v = g
(
u+ u⊥

)
− u− u⊥ = gu⊥ − u⊥.

But gv − v ∈ Fi−1 so gu⊥ − u⊥ ∈ Fi−1. But u⊥ ∈ F⊥
i−1 which is Hr-invariant, so gu⊥ − u⊥ ∈

Fi−1∩F⊥
i−1 = 0. So gv = v. Every reductive complex linear subgroup of H acts faithfully on g/h

[45, Lemma 6.1], so g = I. ■
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11 Review of stable vector bundles

In this section, we recall notions of stability for holomorphic sheaves and for holomorphic prin-
cipal bundles. All of this material is discussed in detail, for algebraic varieties, in the standard
textbook [27, Chapter 1], and for compact Kähler manifolds in the standard textbook [35, Chap-
ter V, Section 7]. For an elegant introduction to the concepts, see [3, Chapter 7]. We will need
a notion of stability to relate the Cartan connection of a Cartan geometry to the existence of
a holomorphic connection on related principal bundles. It will be these related principal bundles
to which we can apply the Shafarevich fibration.

On any compact complex manifold M with Kähler form ω, each torsion free coherent sheaf V
has degree [35, p. 168]

deg V :=

∫
M

c1(V ) ∧ ω−1+dimCM ,

and slope deg V
rankV . A torsion free coherent sheaf is

� stable if every torsion free coherent subsheaf of lower rank has lower slope,

� semistable if no torsion free coherent subsheaf of lower rank has greater slope,

� polystable if semistable and a direct sum of stable sheaves (equivalently, a direct sum of
stable sheaves of same slope),

� pseudostable if it admits a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

of holomorphic vector subbundles, so that all of V1/V0, V2/V1, . . . are polystable of equal
slope [35, p. 168].

Suppose that G is a complex Lie group with a semisimple Levi quotient, i.e., some finite index
subgroup G0 ⊂ G has a morphism of complex Lie groups 1 −→ Gu −→ G0 −→ Gss −→ 1
to a complex semisimple Lie group. We can arrange that Gss is connected, by replacing G0

with a smaller but still finite index subgroup of G. Take a holomorphic principal right G-bundle
G −→ P −→ M on a compact Kähler manifold M . Let M0 := P/G0 and let Pss := P ×G0Gss.
The bundle G −→ P −→ M is pseudostable if the associated holomorphic vector bundle
Pss ×Gssgss −→ M0 is pseudostable.

12 Bundles on tori

In this section, we consider how to relate holomorphic connections on different principal bun-
dles. We need this because the standard theory of the Shafarevich fibration (see the standard
reference [63]) is not developed for general principal bundles, but only those with particular
structure groups.

Lemma 12.1 ([5, Theorem 4.1]). Take a holomorphic principal bundle G −→ P −→ T on
a complex torus T , with structure group G. Suppose that some finite index subgroup G0 ⊂ G
has semisimple Levi quotient 1 −→ Gs −→ G0 −→ Gss −→ 1. The following are equivalent:

(1) the bundle admits a holomorphic connection,

(2) the bundle is pseudostable with vanishing first and second Chern classes,

(3) after perhaps lifting to a finite unramified covering torus, the associated bundle Gss admits
a holomorphic reduction of structure group to the Borel subgroup of Gss, so that the line
bundle associated to any character of the Borel subgroup has vanishing first Chern class,
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(4) � the bundle is pseudostable,

� the bundle admits a unique holomorphic flat connection,

� every holomorphic section of any associated vector bundle is parallel for that holo-
morphic flat connection,

� every holomorphic connection on the bundle is parallel in that holomorphic flat con-
nection.

13 Cartan connections on torus fibrations

In this section, we extend our theory of principal bundles on tori to principal bundles on torus
fibrations as they occur in Cartan geometries.

Proposition 13.1. Take a holomorphic torus fibration M −→ S over a complex manifold S.
Take a holomorphic Cartan geometry H −→ E −→ M with infinitesimally algebraic model
(X,G). Then the quotient bundle Hr −→ E/Hu −→ M is the pullback of a holomorphic
principal bundle Hr −→ Er −→ S. On each fiber of M −→ S, the bundle E pulls back to have
a holomorphic flat connection with holonomy in Hu, and this connection varies holomorphically
with the fiber.

Proof. Take an H-invariant filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = g/h so that Hu acts
trivially on the associated graded W = gr∗ F . Then Z := GL(W ) /H = GL(W ) /Hr is a quasi-
projective homogeneous variety [59, Theorem 12.2.1], and indeed affine; see Mumford et al. [50,
Theorem 1.1] and Procesi [53, Theorem 2].

Denote the fibration s : M −→ S. For each s0 ∈ S, let Ms0 := s−1{s0}. For each
point s0 ∈ S, let Vs0 be the vector space of translations of the fiber Ms0 , and let Λs0 ⊂ Vs0 be
the discrete subgroup of translations acting trivially on Ms0 , making a vector bundle V −→ S
and a covering space Λ −→ S with Λ ⊂ V , so that M = V/Λ.

Since the problem is local on S, we can assume that there is a holomorphic section m : S −→
M of the bundle s : M −→ S. We can assume that S is an open subset of Cn with local
holomorphic coordinates zi, and take local sections e1, e2, . . . , ep of Λ −→ S so that they form
a basis of local sections of V . Write any element of the total space of V as w = wAeA. On
the total space of V , we have local holomorphic coordinates zi, wA. Since M = V/Λ is covered
by V , these are also local holomorphic coordinates on M . Pull back the 1-forms dzi, dwA to E,
where they are a basis of the semibasic 1-forms. The 1-form ω+h ∈ Ω1

E⊗H(g/h) is semibasic, so
ω+ h = fidz

i + fAdw
A for unique holomorphic functions fi, fA : E −→ g/h. Since ω is a linear

isomorphism on each tangent space of E, ω+h is an isomorphism of the pullback tangent bundle
to g/h, i.e., if we identify the 1-forms dzi, dwA with g/h by any fixed linear isomorphism, then

f := (fi fA) : E −→ GL(g/h)

is an H-equivariant holomorphic map r∗hf = Ad−1
h ◦f , h ∈ H. Hence the quotient object

f : M = E/H −→ Z = GL(W ) /Hr

is a holomorphic map to an affine variety. So f is constant on each torus fiber, i.e., drops to
a map f : S −→ Z giving maps

E GL(W )

S Z

f

f

to identify Er = E/Hu = s∗GL(W ), i.e., Er is pulled back over S.



Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties 23

By taking a local reduction of structure group of Er −→ S (over an open subset of S, which
we can assume is S) we can reduce the structure group of E −→ M over that open subset of S
to a holomorphic principal Hu-bundle Hu −→ Eu −→ M . By definition of an infinitesimally
algebraic homogeneous space, Hu has a complex Lie group morphism Hu −→ Hu to a unipotent
complex linear algebraic group, injective on Lie algebras. ReplacingM by a finite unramified cov-
ering space, we can assume that Hu is connected. Let Eu := Eu ×HuHu. The Atiyah classes of
the bundles Eu and Eu are identified, as the Lie algebras of the groups are identified. On a com-
plex torus, any holomorphic principal bundle with connected unipotent complex linear algebraic
structure group has a unique holomorphic flat connection by Lemma 12.1. Such a connection is
associated to a representation of the fundamental group, and so varies holomorphically. ■

In cohomology, if we let V p,q
s0 = Hp,q(Ms0), i.e., V

1,0 is the complex dual of V , then Λ∗ ⊂
V 1,0 ⊕ V 0,1 is a holomorphic variation of Hodge structure [62, p. 249].

If we have a holomorphic section m : S −→ M , we get

0 V m∗TM TS 0.

This sequence splits by taking the map Ts0S −→ Tm(s0)M defined by v 7−→ m′(s0)v, so

m∗TM = TS ⊕ V.

Hence on Atiyah classes a(m∗TM) = a(TS) + a(V ).

14 Large fundamental groups

In this section, we begin the study of fundamental groups of varieties that develop to the model
of a Cartan geometry. We build up this theory until we find that if the fibers of a fibration in
a Cartan geometry have solvable holonomy for the Cartan connection, then they are tori.

A connected complex projective variety M has large fundamental group if every connected
positive-dimensional closed complex subvariety Z ⊂ M with normalization Z0 −→ Z has infinite
fundamental group image π1(Z0) −→ π1(M) [37].

Lemma 14.1. Suppose that M is a smooth projective variety admitting a minimal geometry
modelled on a complex homogeneous space (X,G). Suppose that Z M is a meromorphic
map from a reduced connected compact complex space, and that this map develops into X. Then
the map extends to a holomorphic map Z −→ M lying in a leaf of the ant foliation on M and
the developing map takes Z to a fiber of the ant fibration. Suppose that Z −→ M is a finite
map. Then Z has large fundamental group.

Proof. Pullback the bundles E|Z = G|Z , and so identify the tangent bundles TX|Z = TM |Z .
Since the model X is homogeneous, its tangent bundle is spanned by global sections, and so
its anticanonical bundle as well, and so nef. The canonical bundle of M is nef. Therefore, the
canonical bundle of KM restricts to a nef line bundle on Z with nef dual bundle the restriction
of −KX . Hence KM restricts to a trivial bundle on Z as does KX . Wedging sections, TX|Z
is spanned by global sections, but global sections of TX|Z = TM |Z can not vanish anywhere,
so TX|Z = TM |Z is a trivial bundle. If a section of TX vanishes at some point of X, then by
homogeneity some such section vanishes at any point of X, in particular at some point of Z.
Any section of TX which vanishes at some point of Z vanishes at all points of Z, since −KX

is trivial on Z. Write the map Z −→ M as f , and its development Z −→ X as f̂ . So at
every point of f̂(Z), precisely the same vector fields on X vanish and precisely the same sections
of −KX . In other words, Z −→ X lies in an anticanonical fiber. All holomorphic functions on
that fiber pull back to constants on Z, so Z −→ X lies in an ant fiber. So Z −→ M lies in an
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ant leaf. Each ant fiber (X0, G0) is a connected complex homogeneous space, and its universal
covering space is a Stein complex Lie group by Lemma 8.9. So Z −→ X lifts to a holomorphic
map to that Stein complex Lie group from some covering space of Z.

Suppose that g : Y −→ Z is a holomorphic map from a connected compact normal complex
space. Under the group morphism π1(Y ) −→ π1(Z), suppose further that the preimage of π1(Ẑ)
is a finite index subgroup of π1(Y ). After replacing Y by a finite unramified covering space, we
can assume that this image is trivial. The map Y −→ Z −→ X0 lifts to Y −→ X̂0, which is
a Stein manifold. Hence Y −→ X̂0 is constant and so Y −→ X0 and Y −→ M are constant
so Y is a point. In particular, if π1(Y ) −→ π1(Z) is finite, Y is a point. ■

Example 14.2. A non-uniruled smooth projective variety with a holomorphic parabolic geom-
etry has trivial ant foliation, since its model is a flag variety, hence has trivial ant fibration.
Therefore, a meromorphic map from a reduced connected compact complex space Z develops to
a minimal geometry if and only if that map is constant. So it develops to an arbitrary holomor-
phic parabolic geometry, on a connected manifold, just when it lies in a fiber of the fibration to
the associated minimal geometry. Roughly speaking, once we drop out the rational curves, we
can not develop anything.

Lemma 14.3. Suppose that M is a smooth projective variety bearing a minimal geometry mod-
elled on a complex homogeneous space (X,G). Suppose that Z M is a meromorphic map
from a positive-dimensional reduced connected compact complex space. Then this meromorphic
map extends uniquely to a holomorphic map. Suppose that Z −→ M is a finite map. Take the
normalization Z0 −→ Z −→ M . Either

(1) the image of π1(Z0) −→ π1(M) is infinite or

(2) Z has large fundamental group.

Proof. Meromorphic maps to M from reduced compact complex spaces extend to holomorphic
maps [7, Lemma 26]. Replace Z by its normalization.

Suppose that the image of π1(Z) −→ π1(M) is finite. After replacing M by a finite covering
space, we can arrange that the image of π1(Z) −→ π1(M) is trivial.

Suppose that Z −→ M is finite. By Remmert’s proper mapping theorem [20, p. 213], the
image of Z −→ M is a projective subvariety; pick a proper curve inside the image of Z −→ M .
Replace Z by the preimage of that curve inside Z. The curvature of the Cartan geometry
E −→ M vanishes on Z because the curvature is a holomorphic 2-form, so vanishes on curves.
Since π1(Z) −→ π1(M) has trivial image, the connection has no holonomy. The Cartan connec-
tion integrates to a developing map to the model Z −→ X. By Lemma 14.1, the curve Z has
large fundamental group. Now if Z is not a curve, and contains a subvariety whose normalization
has finite fundamental group image in Z, pick a curve in that subvariety. ■

Corollary 14.4. Suppose that M is a smooth projective variety bearing a minimal geometry.
Take a smooth projective variety Z with trivial canonical bundle. If there is a finite meromorphic
map Z M then Z has a finite unramified covering by an abelian variety.

Proof. Meromorphic maps to M from reduced compact complex spaces extend to holomorphic
maps [7, Lemma 26]. After perhaps replacing by a finite unramified covering, any smooth
projective variety Z with trivial canonical bundle splits into a product Z = A×B where A is an
abelian variety and B is a simply connected Calabi–Yau manifold [8]. Replace Z by {a0} × B
for any a0 ∈ A to arrange that Z is simply connected, contradicting Lemma 14.3 unless B is
a point. ■
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Lemma 14.5. Suppose that M is a connected compact Kähler manifold bearing a minimal
geometry with solvable holonomy and either M has nef canonical bundle or M is Moishezon.
Then M is a complex torus, after perhaps replacing M by a finite unramified covering.

Proof. By Lie’s theorem (see [55, Theorem 3]), every associated vector bundle of the bundle
EG −→ M has a filtration into a flag of holomorphic vector bundles, with quotient line bun-
dles. Those line bundles admit holomorphic connections, so are nef. In particular, the adjoint
bundle EG ×G g has such a filtration. Therefore, the adjoint bundle is an extension of nef line
bundles, and so is a nef vector bundle. Since TM is a quotient bundle of the adjoint bundle:

EG ×G g = E ×H g −→ E ×H (g/h) = TM,

−KM is nef. But KM is nef (by Theorem 6.1 if M is Moishezon), so KM = 0, after perhaps
replacing by a finite unramified covering, hence a complex torus after perhaps another finite
unramified covering [6]. ■

Take a complex homogeneous space (X,G) and a point x0 ∈ X. Take the ant fibration
X = G/H −→ X = G/H, with fiber (X0, G0) where

X0 = H/H = G0/Γ

with G0 = H/K and Γ = H/K where

K =
⋂
g∈H

gHg−1

contains H0. Denote the universal covering group as G̃0 −→ G0 and let Γ̃ ⊂ G̃0 be the preimage
of Γ ⊂ G0.

Take a complex Lie algebra morphism f̃ : Cn −→ g0 from the abelian Lie algebra Cn and
exponentiate into a complex Lie group morphism f̃ : Cn −→ G0. Suppose that Λ ⊂ Cn is
a lattice and that f̃Λ ⊂ Γ̃. Let T := Cn/Λ. Quotient to a map f : T −→ X0. Take an
element g ∈ G0. The map gf : T −→ X is a hoop.

Lemma 14.6. Every holomorphic map from a connected compact Kähler manifold with trivial
canonical bundle to a complex homogeneous space which pulls back the canonical bundle to be
trivial is a hoop.

Proof. Take a connected compact Kähler manifold Z with trivial canonical bundle and a holo-
morphic map f : Z −→ X so that f∗KX = 0. Clearly f(Z) lies in an anticanonical fiber of X,
so without loss of generality we can replace X by that fiber, and so assume that X = G/Γ
where Γ ⊂ G is a discrete subgroup. Since Z is compact, every holomorphic function on X
pulls back to a constant on Z, so Z lies in an ant fiber of X. Again, without loss of general-
ity, replace X by that fiber. After perhaps replacing Z by a finite unramified covering space,
split Z = T × B where T is a complex torus and B is a simply connected compact Kähler
manifold with trivial canonical bundle. For each t0 ∈ T the map f lifts to take {t0} ×B to X̃0,
a simply connected complex Lie group, so B is a point. The map f : T −→ X pulls back the
right invariant Maurer–Cartan form dgg−1 to be f∗dgg−1 = cdz, a constant multiple of the
translation invariant coframing. The holomorphic vector fields on T , all of which are constant,
map by f ′ to holomorphic sections of the pullback tangent bundle (also constant), representing
tangent vector fields, taking brackets (all zero) to brackets, so f is a morphism of Lie algebras
from an abelian Lie algebra. Therefore, the lift f̃ : Cn −→ G which satisfies f̃(0) = 1 (after
suitable translation) is a complex Lie group morphism. ■
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Corollary 14.7. Suppose that M is a non-uniruled smooth projective variety bearing a holo-
morphic Cartan geometry. Take a finite map Z −→ M which develops to X, from a smooth
projective variety Z with trivial canonical bundle. Then, up to replacing Z by a finite unramified
covering map, Z is an abelian variety, and the developing map is a hoop.

Example 14.8. If M = Cn/Λ0 is a complex torus and X = Cn/Λ1 is another complex torus
and G = X, then M has the obvious flat (X,G)-geometry, unique up to linear transformation,
with identity map as developing map. If, after such a linear transformation, we can find a linear
subspace V ⊂ Cn containing a lattice Λ ⊂ Λ0 ∩ Λ1, then V/Λ develops to the model by the
identity map.

Lemma 14.9. Take a non-uniruled smooth projective variety M with a holomorphic Cartan
geometry E −→ M with model (X,G). Take a rational dominant map M S. Suppose that
on the general fiber of that map, the pullback bundle of EG admits a holomorphic connection,
perhaps not equal to the Cartan connection, with holonomy acting on g as a solvable group of
linear transformations. Then the general fiber admits a finite unramified covering by an abelian
variety. Moreover, KM is trivial on the general fiber. If the connection is flat, then the holonomy
on each fiber is abelian.

Proof. Take a general fiber Ms of M S and let EGs := EG|Ms . By Lie’s theorem [55,
Theorem 3], the adjoint vector bundle adEGs := EGs ×G g of the bundle EGs −→ Ms has
a filtration into a flag of holomorphic vector bundles, with quotients being line bundles. The
holomorphic connection induces a holomorphic connection on each quotient line bundle, so each
quotient line bundle is nef. Therefore, the adjoint bundle is an extension of nef line bundles, and
so is a nef vector bundle. Since the tangent bundle TM |Ms is a quotient bundle of the adjoint
bundle:

EG ×Gg = E ×H g −→ E ×H (g/h) = TM,

−KM is nef along Ms. But KM is nef on M , since M is not uniruled, so also nef on Ms and so
KM = 0 on Ms.

The general fiber Ms is smooth. By adjunction, the anticanonical bundle −KMs = −KM |Ms

is nef. But KMs is also nef as every subvariety of M is minimal by Theorem 6.1. Hence the
general fiber Ms has trivial canonical bundle. By Corollary 14.4, Ms admits a finite unramified
covering by an abelian variety, i.e., the general fiber of M S admits a finite unramified
covering by an abelian variety. Since the fundamental group of any abelian variety is abelian,
its image under the holonomy morphism is also abelian. ■

15 Review of the Shafarevich fibration

In this section, we review the definition and basic properties of the Shafarevich fibration (a well
known construction in algebraic geometry).

Take any compact Kähler manifold M equipped with a morphism ρ : π1(M) −→ G of
groups where G is a complex semisimple Lie group. A Shafarevich map for ρ is a meromor-
phic map øρ : M øρM to a normal complex space, surjective and with connected fibers, so
that a connected closed subvariety Z ⊂ M through a very general point is mapped to a point
by the Shafarevich map just when the normalization of Z has fundamental group with finite
image inside G. Every group morphism ρ : π1(M) −→ G with Zariski dense image in a com-
plex semisimple Lie group G has a Shafarevich map [11, Definition 2.13], [63, p. 105] with the
additional property that, after replacing M by a finite covering space, the target øρM is bimero-
morphic to the total space of a smooth fibration of complex tori over an algebraic variety of
general type [11, Theorem 4].
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Suppose that Σ ⊂ π1(M) is the kernel of a representation of π1(M). Also after replacing M
by a finite covering space, there is a map, also called a Shafarevich map, øΣ : M øΣM which
contracts to a point precisely those subvarieties Z ⊂ M passing through a very general point
whose fundamental group has a finite index subgroup lying inside the given subgroup Σ ⊂ π1(M)
[32, Theorem 1.3], [31]; for compact Kähler manifolds the existence of this Shafarevich map
follows from [11, Theorem 4] and [31]. A representation ρ : π1(M) −→ G of the fundamental
group of a compact Kähler manifold is big if the associated Shafarevich map is a birational map.

Take a complex Lie group G, with identity component G0, whose component group G/G0

admits a faithful finite-dimensional representation. Then G admits a faithful finite-dimensional
holomorphic representation just whenG0 is the semidirect product of a simply connected solvable
Lie group and a connected reductive complex Lie group [23, Theorem 16.3.7].

Take a compact irreducible reduced complex space M containing no rational curves. Suppose
that X is a compact irreducible reduced complex space. Then every meromorphic map X M
extends to a unique holomorphic map X −→ M , by Hironaka’s Chow lemma [19, Corollary 2.9].

The Iitaka conjecture, also called the Cmn conjecture, for a dominant rational morphism
X Y of projective varieties with connected fibers, claims that κX ≥ κY +κXy for the general
fiber Xy. The Iitaka conjecture is verified for surjective morphisms for which all sufficiently
high powers of the canonical bundle of the general fiber are spanned by global sections [33,
Corollary 1.2].

16 Applying the Shafarevich fibration

In this section, the most difficult and important section, we prove that, in any Cartan geometry,
the Shafarevich fibration is globally defined, not just a meromorphic map.

Example 16.1. If a Cartan geometry H −→ E −→ M has induced bundle G −→ EG −→ M
which is pseudostable for some Higgs field, then G −→ EG −→ M admits a flat holomorphic
connection [5, Theorem 1.1]. The flat connection might not equal the Cartan connection.

Theorem 16.2. On a connected smooth projective variety M , take a holomorphic Cartan
geometry H −→ E −→ M modelled on an infinitesimally algebraic complex homogeneous
space (X,G). Suppose that the induced G-bundle G −→ EG −→ M also admits a flat holo-
morphic connection. Then M belongs to a tower of holomorphic fibrations M −→ M ′ −→ S
where M ′ has no rational curves. The Cartan geometry is lifted from M ′. The map M ′ −→ S
is a holomorphic fibration of abelian varieties. On every fiber, the Cartan connection is a holo-
morphic connection on the pullback G-bundle with solvable holonomy. The base S has ample
canonical bundle.

Proof. Replace M by M ′ without loss of generality, so assume that M contains no rational
curves. Replace M by a finite unramified covering space, so that we can replace G by a finite
index subgroup, and therefore assume that G has a semisimple Levi quotient over g

1 −→ Gs −→ G −→ Gss −→ 1.

The flat holomorphic connection induces a flat holomorphic connection on the quotient Gss −→
EGss := E/Gs −→ M . Let L ⊂ Gss be the complex algebraic Zariski closure of the holon-
omy group of that connection. This connection induces a flat holomorphic connection on
a principal subbundle L −→ EL −→ M , EL ⊂ EGss . It therefore also induces a flat
holomorphic connection on the quotient bundle Lss −→ ELss = EL/

√
L −→ M , where

1 −→
√
L −→ L −→ Lss −→ 1 is the semisimple Levi quotient [24, Theorem 4.3]. Denote

by ρ : π1(M) −→ Lss the induced representation.
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After perhaps replacing M by a finite unramified covering space, the representation ρ : π1(M)
−→ Lss lifts from a big representation π1(S) −→ Lss, where S := øρM and S is a projec-
tive variety of general type [63, Theorem 5 (and remarks following)]. The Shafarevich fibra-
tion M S is defined and proper on a Zariski dense open subset of M [37, Theorem 4.1]. The
general fiber has finite unramified covering on which the holonomy of ELss −→ M is trivial,
i.e., the holonomy of EL −→ M lies in

√
L, i.e., the holonomy of the EG-connection lies in

the preimage of
√
L in G, i.e., an extension of

√
L by Gs. By Lemma 14.9, the general fiber

admits a finite unramified covering by an abelian variety, with abelian holonomy image and KM

is trivial on the general fiber.

The general fiber of M S has a finite unramified covering by an abelian variety, so the
Iitaka conjecture is verified for M S: κM ≥ κS = dimS. Since κM ≥ dimS ≥ 0, we know
that M has an Iitaka fibration. The general fiber Ms of M S admits a finite unramified
covering by an abelian variety and KM is trivial on Ms, so Ms lies in a fiber of the Iitaka
fibration, giving a rational map S IiM making a commutative diagram

M M

S IiM.

The rational map S IiM is dominant, as the top row of the commutative diagram is dom-
inant. By dominance, dimS ≥ dim IiM = κM ≥ κS = dimS. Consequently S IiM is
a birational map identifying M S with the Iitaka fibration [28, Theorem 10.6], i.e., the
Shafarevich fibration is a model of the Iitaka fibration.

Since the generic fiber of the Iitaka fibration has canonical bundle spanned by global sections,
so does the total space [39, Theorem 4.4], i.e., the canonical bundle of M is spanned by global
sections. Hence the Iitaka fibration is holomorphic, i.e., we can arrange that M −→ S is
holomorphic.

The canonical bundle of M restricts to a nef line bundle on every fiber of M −→ S, since M
has canonical bundle spanned by global sections. Some power of the canonical bundle KM is
pulled back to M from M −→ S [40, Theorem 2.1.26]. Hence that power is trivial on the fibers,
and so −KM is also nef on every fiber of M −→ S. Therefore, all fibers of M −→ S have the
same dimension [34, Theorem 2].

Take any resolution of singularities S0 −→ S and pullback M to get a dominant mor-
phism M0 −→ S0 birational to M −→ S with smooth M0 and S0. After replacing M with
a finite unramified covering space, there is some resolution of singularities S0 −→ S over
which M −→ S is birational to a holomorphic fibration (indeed, a smooth morphism, which
is also a C∞ fiber bundle [37, Definition 5.7]) with fibers abelian varieties, with smooth total
space, over a smooth variety of general type, equipped with a holomorphic section [37, Theo-
rem 6.3]:

Ṁ M0 M

Ṡ S0 S.

Rational maps to M extend to holomorphic maps, since M contains no rational curves. Extend
the rational map Ṁ M to a holomorphic map Ṁ −→ M . Up to birational isomorphism,
there is a section Ṡ −→ Ṁ [37, Theorem 6.3], and so a rational section S M . Extend
the rational section to a holomorphic map S −→ M , and hence a holomorphic section. This
section maps curves in S to isomorphic curves in M ; but M contains no rational curves, and
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so S contains no rational curves. Hence meromorphic maps to S extend to be holomorphic.
Holomorphically extend Ṡ S and M S:

Ṁ M

Ṡ S.

By Zariski’s main theorem (see [22, Corollary 11.4]), the map Ṁ −→ M has connected
fibers, as does Ṡ −→ S. Hence Ṁ −→ Ṡ is also an Iitaka fibration. Each fiber of Ṁ −→ Ṡ is
an abelian variety mapping holomorphically to a fiber of M −→ S.

On the generic fiber Ṁṡ, this map Ṁṡ −→ Ms is birational with exceptional locus covered
in rational curves. But neither fiber contains rational curves. Therefore, the generic fiber Ṁṡ

of Ṁ −→ Ṡ is mapped isomorphically to a fiber of M −→ S.

Suitable powers of the canonical bundles of Ṁ and M are spanned by global sections, pulled
back from sections of line bundles on Ṡ and S respectively. All sections on M and on Ṁ are
pulled back from S and Ṡ respectively. So the vanishing locus of any such section is a union of
fibers.

The holomorphic map Ṁ −→ M is an isomorphism except on the ramification divisor, an
effective divisor given by the vanishing of the determinant of the derivative of Ṁ −→ M .
Applying the derivative of Ṁ −→ M to sections of the canonical bundle on M , we get sections
of the canonical bundle on Ṁ , with divisor the sum of the pullback canonical divisor and the
ramification divisor. But the sections vanish on unions of fibers. Hence the ramification divisor
of Ṁ −→ M is the preimage of some effective divisor on Ṡ.

Away from the image in S of the support of that divisor in Ṡ, our section of M −→ S strikes
a smooth fiber in a single smooth point, since Ṁ −→ M is biholomorphic on those fibers. All
fibers have intersection number 1 with the section, and so all fibers are smooth near the image
of the section, and the image of the section is smooth. The variety S is smooth, since the image
of the section is isomorphic to S.

Since the fibers of M −→ S are all of the same dimension, at any point of any fiber at which
the reduction of the fiber is smooth, we can pick a transverse complex submanifold, a local
holomorphic section of M −→ S. All nearby fibers have intersection number 1 with the local
section, and so with our fiber: the generic point of every fiber of M −→ S is reduced.

If some fiber Ms of M −→ S is reducible, its preimage in Ṁ is reducible. As the fibers
of Ṁ −→ M are connected, the preimage in Ṁ of Ms is a connected reducible subvariety. Since
the fibers of Ṁ −→ Ṡ are irreducible, the preimage of Ms in Ṁ is a union of fibers over
a connected reducible subvariety of Ṡ. This subvariety of Ṡ maps to a point in S. Because
the subvariety is connected, all of the fibers over the subvariety map to the same component
of Ms. But Ṁ −→ M is surjective, since it is holomorphic and birational. Therefore, all fibers
of M −→ S are irreducible.

The fibers Ṁṡ of Ṁ −→ Ṡ all have the same images in homology inside M , all nonzero as
they are algebraic cycles. So the derivative of the holomorphic map Ṁṡ −→ M drops rank on
a ramification divisor. All holomorphic sections of a suitable positive power of the canonical
bundle of M are pulled back from sections of a suitable line bundle on S. Find a section of that
suitable line bundle, nonzero at s, and pullback to get a section of KM nowhere zero near Ms.
Take a local holomorphic section of the canonical bundle of S defined and nonzero at s, and
divide the two sections to get a holomorphic section of the relative canonical bundle of M −→ S
defined near Ms. Plugging the derivative of Ṁṡ −→ M into this section gives a section of the
canonical bundle of the abelian variety Ṁṡ, not vanishing somewhere and therefore not vanishing
anywhere as the canonical bundle of an abelian variety is trivial. Therefore, Ṁṡ −→ M is
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a local biholomorphism on every fiber, taking each fiber Ṁṡ to a fiber Ms. The map Ṁ −→ M
is birational, so the map Ṁṡ −→ Ms on each fiber is a biholomorphism to its image.

Take a local holomorphic section of M −→ S transverse to the image of a fiber Ṁṡ. The
section strikes the generic nearby fiber of M −→ S in a single smooth point, since Ṁ −→ M
is biholomorphic on generic fibers. Generic fibers have intersection number 1 with the section,
and so all fibers have intersection 1 with the section, so are smooth and reduced near the image
of the section. Hence all fibers of M −→ S are everywhere smooth and reduced and irreducible,
and so the maps Ṁṡ −→ Ms are all isomorphisms.

Since S has big canonical bundle, its Iitaka fibration S −→ IiS is birational, with excep-
tional fibers covered by rational curves [34]. But S contains no rational curves, so there are no
exceptional fibers. Since rational maps to S extend to become holomorphic, the Iitaka fibra-
tion S −→ IiS has a holomorphic inverse. The exceptional locus of the canonical morphism is
then also covered by rational curves, so is empty, so S has ample canonical bundle. ■

17 Finite holonomy

Example 17.1. Suppose that (X ′, G) is a complex homogeneous space and that X ′ is a complex
torus X ′ = Cn/Λ. Take a finite index subgroup Λ0 ⊂ Λ. Let M ′ := Cn/Λ0 −→ X ′ = Cn/Λ
be the obvious projection, and pullback the geometry to M ′, i.e., let E −→ M ′ be the pullback
H-bundle

E G

M ′ X ′.

The map M ′ −→ X ′ is the developing map of a flat holomorphic Cartan geometry modelled
on (X ′, G): the pullback of the model geometry. The holonomy morphism has finite image in G.
Suppose that X −→ X ′ is a G-equivariant holomorphic map of complex homogeneous G-spaces,
a complex homogeneous bundle over the complex torus, say X = G/H and X ′ = G/H ′, and
suppose that H/H ′ is a flag variety. Then the quotient M := E/H is the lift of E −→ M ′ to
a flat holomorphic (X,G)-geometry.

Theorem 17.2. Take a smooth projective variety M and a flat holomorphic Cartan geometry
on M modelled on a complex homogeneous space (X,G). If the holonomy morphism of the
geometry has finite image then, after perhaps replacing M by a finite unramified covering space,
the geometry is constructed as in the above Example 17.1.

Proof. We can drop to assume that M is not uniruled. We can assume that the model X is
connected. Since the Cartan connection is flat, we can take a developing map and associated
holonomy morphism. Lift to a finite unramified covering space to arrange trivial holonomy, so the
geometry is the pullback via a developing map f̂ : M −→ X. Pulling back, TM ∼= f̂∗TX. Since
the model X is homogeneous, TX is spanned by global sections and so the anticanonical bun-
dle−KX ofX is spanned by global sections. The canonical bundle ofM is nef. ButKM = f̂∗KX .
Therefore, the canonical bundle of M is trivial. So the developing map has image inside an an-
ticanonical fiber. Since the developing map is a local biholomorphism, the anticanonical fibers
are open sets in X. By compactness of M , the developing map is a finite unramified covering
map to a component of X. By Lemma 14.6, the developing map is a hoop. So X is an abelian
variety X = Cn/Λ. The group G can be any complex Lie group acting on X, while the effec-
tivization is a finite extension of X by some linear transformations of Cn preserving Λ. The
developing map is an isogeny of abelian varieties M −→ X. ■
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18 Which subvarieties develop to the model

We sum up our results into a theorem from which we easily obtain Theorem 1.1.

Theorem 18.1. Take a non-uniruled smooth projective variety M and a flat holomorphic Car-
tan geometry on M modelled on a complex homogeneous space (X,G), where G is a complex
linear algebraic group. After perhaps replacing M by a finite unramified covering space, M is
a holomorphic fibration M −→ M̀ −→ M ′ of abelian varieties over a smooth complex pro-
jective variety M̀ , refining the fibration of Theorem 16.2, so that a finite map Z −→ M from
a connected projective variety develops to the model (after perhaps replacing Z by a finite un-
ramified covering) just when the image of Z −→ M lies in a fiber of M −→ M̀ . Every fiber
of M −→ M̀ has a finite unramified covering space which develops to a hoop in the model. The
map M −→ M̀ has a holomorphic section.

Proof. If the holonomy is finite, apply Theorem 17.2. Suppose that the holonomy is infinite.
Let Σ ⊂ π1(M) be the kernel of the holonomy morphism π1(M) −→ G. Any subvariety Z ⊂ M
whose fundamental group lies in Σ has a developing map Ẑ −→ X from its normalization. The
developing map identifies the ambient tangent bundles TX|

Ẑ
= TM |

Ẑ
. Since M contains no

rational curves, its canonical bundle is nef, while the tangent bundle of X is spanned by global
sections, so both canonical bundles restrict to be trivial along Ẑ. By Lemma 14.1, Z −→ M
lies in a leaf of the ant foliation, while Ẑ −→ X lies in a fiber of the ant fibration. Moreover,
Z has large fundamental group.

Every smooth fiber Ms of øΣ : M S := øΣM has a finite unramified covering which
develops to the model, by definition of øΣ. By Lemma 14.9, Ms has a finite covering by an
abelian variety. By Corollary 14.7, some finite covering of Ms maps to X by a hoop. Ev-
ery fiber Ms develops to X, so if Z lies inside a smooth fiber Ms, then Z develops to X.
Let M −→ M̀ be øΣ : M −→ øΣM . The map øΣ : M −→ øΣM comes with a rational sec-
tion, say s : M̀ M [37, Theorem 6.3]. Meromorphic maps to M extend to a holomorphic
maps, since M contains no rational curves. ■

Conjecture 18.2. Theorem 1.1 remains true with the words changed as

smooth projective variety −→ Fujiki manifold,

abelian variety −→ complex torus,

abelian varieties −→ complex tori.
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[54] Rinow W., Über Zusammenhänge zwischen der Differentialgeometrie im Großen und im Kleinen, Math. Z.
35 (1932), 512–528.

[55] Serre J.-P., Complex semisimple Lie algebras, Springer Monogr. Math., Springer, Berlin, 2001.

[56] Sharpe R.W., Differential geometry: Cartan’s generalization of Klein’s Erlangen program, Grad. Texts
Math., Vol. 166, Springer, New York, 1997.

[57] Sharpe R.W., An introduction to Cartan geometries, Rend. Circ. Mat. Palermo (2) Suppl. (2002), 61–75.

[58] Siu Y.-T., Abundance conjecture, in Geometry and analysis. No. 2, Adv. Lect. Math. (ALM), Vol. 18,
International Press, Somerville, MA, 2011, 271–317, arXiv:0912.0576.

[59] Springer T.A., Linear algebraic groups, 2nd ed., Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2009.
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