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Abstract. This paper develops moving frame theory for partial difference equations and
for differential-difference equations with one continuous independent variable. In each case,
the theory is applied to the invariant calculus of variations and the equivariant formulation
of the conservation laws arising from Noether’s theorem. The differential-difference theory
is not merely an amalgam of the differential and difference theories, but has additional
features that reflect the need for the group action to preserve the prolongation structure.
Projectable moving frames are introduced; these cause the invariant derivative operator to
commute with shifts in the discrete variables. Examples include a Toda-type equation and
a method of lines semi-discretization of the nonlinear Schrödinger equation.
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1 Introduction

The modern formulation of moving frames introduced by Fels and Olver [2, 3] is a powerful
tool in the analysis of partial differential equations (PDEs). It enables one to reduce a given
system of PDEs to an invariant system by factoring out Lie symmetry group orbits (locally,
at least). If the symmetries are extraneous to the problem of interest (for instance, projective
symmetries in computer vision [20]), the moving frame provides a major simplification. For
a clear, straightforward introduction to moving frames, see Mansfield’s text [12].

Many PDE systems of interest are Euler–Lagrange equations with a Lie group of variational
symmetries. For such systems, moving frames are most effectively applied by invariantizing
the Lagrangian functional directly [10]. With this approach, Noether’s theorem has an elegant
formulation in terms of the adjoint action of the Lie group on a set of invariants [4, 5, 6].

Difference equations have discrete independent variables, so any Lie symmetries act only on
the dependent variables. Commonly, the action varies with the discrete variables. Moving frames
can be adapted to an equation on a finite set of points by using a finite-dimensional product
space. Finite difference approximation of a given differential equation requires consistency as
the points coalesce. This constraint led to the introduction of multi-space [19], which has been
used to construct (highly accurate) invariant approximations of ordinary differential equations
(ODEs) [9]. More generally, a discrete moving frame attaches a finite-dimensional product space
to each base point, without imposing coalescence or any other structure in advance [14]. The
discrete moving frame construction works for any number of independent variables and has been
used to generalize multi-space to higher dimensions [17].

This paper is a contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of
Peter J. Olver. The full collection is available at https://www.emis.de/journals/SIGMA/Olver.html
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Figure 1. (a) The total space for scalar O∆Es is T = Z× R; (b) the total space for scalar P∆Es with
two independent variables is T = Z2 × R.

Difference equations have an intrinsic structure that arises from their mesh point labels. We
restrict attention to the most common case, an m-dimensional logically rectangular mesh. The
labels ni ∈ Z, i = 1, . . . ,m, can be regarded as the independent variables. Each label belongs
to an ordered set, so it is helpful to incorporate this ordering into the moving frame definition.
This has been achieved for ordinary difference equations (O∆Es), resulting in the invariant
variational calculus and equivariant Noether’s theorem [15, 16]. The current paper extends this
approach to partial difference equations (P∆Es) and to differential-difference equations (D∆Es)
with one continuous independent variable.

Section 2 summarizes the building-blocks of the P∆E theory, from which we develop difference
moving frames (see Section 3), the invariant calculus of variations (see Section 4), and the
equivariant formulation of Noether’s conservation laws (see Section 5). Even for scalar P∆Es,
it is necessary to use several generating invariants and to take the relations between these into
account. The more dependent and independent variables there are, the more complex these
relations can become. For clarity, we illustrate the general theory with fairly straightforward
examples. In particular, we use a Toda-type equation as a running example to show the various
aspects of the theory.

There is one aspect of the P∆E theory that is simpler than its counterpart for PDEs: the Lie
group action on the independent variables is trivial. This is not necessarily the case for D∆Es,
although there are constraints on the group action, as discussed in Section 6. These constraints
suggest the idea of a projectable moving frame, which is a major simplification. Section 7 outlines
the invariant variational calculus and Noether conservation laws for D∆Es, emphasizing those
aspects of the theory that do not follow immediately from the P∆E theory. Section 8 presents
some examples, including a method of lines semi-discretization of the nonlinear Schrödinger
equation. Concluding remarks are given in Section 9.

2 A brief summary of the building-blocks

2.1 Difference prolongation space

A given differential equation can be represented as a variety within an appropriate jet space
(see [18]). A difference equation has discrete independent variables, so to use moving frames,
one must represent the equation as a variety within an appropriate continuous space. Such
spaces are subspaces of the difference prolongation space [21], which is described briefly in this
section.

Consider a difference equation with independent variables n :=
(
n1, n2, . . . , nm

)
∈ Zm and

dependent variables u :=
(
u1, u2, . . . , uq

)
∈ Rq. These variables are coordinates on the total

space Zm × Rq; a solution of the P∆E is a graph on the total space. Figure 1 illustrates the
total spaces for a scalar O∆E and P∆E. For simplicity, we assume that the equation holds for
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all n ∈ Zm; our results apply mutatis mutandis to difference equations on any product lattice
(see [7]). We also assume that all functions are smooth in their continuous arguments.

The total space is mapped to itself by horizontal translations

TI : Zm × Rq → Zm × Rq, TI : (n,u) 7→ (n+ I,u),

where I ∈ Zm is a multi-index. Over each n, one can construct the prolongation space P (Rq),
which is an infinite-dimensional Cartesian product space with coordinates uαJ ∈ R, where J ∈ Zm.
Let Pn(Rq) denote the prolongation space over a given n; this is a continuous fibre over the fixed
base point n. Every graph on the total space defines a point in Pn(Rq), with the coordinate uαJ
taking the value of uα given by the graph at n+ J.

Horizontal translation extends naturally to the total prolongation space Zm×P (Rq) as follows:

TI :
(
n,
(
uαJ
))

7→
(
n+ I,

(
uαJ
))
.

Suppose that f is a function on Zm × P (Rq); its restriction to Pn(Rq) is denoted by

fn
((
uαJ
))

= f
(
n,
(
uαJ
))
.

The pullback T∗
I of fn+I

((
uαJ
))

to Pn(Rq) is

T∗
Ifn+I

((
uαJ
))

= f
(
n+ I,

(
uαJ+I

))
.

This can be represented on the prolongation space over n as a mapping SI, called the shift by I,
which acts on smooth functions f ∈ C∞(Pn(Rq)) as follows:

SIf
(
n,
(
uαJ
))

= f
(
n+ I,

(
uαJ+I

))
.

To summarize, each shift operator represents the action of the pullback on functions as follows:
SIfn := T∗

Ifn+I. Although SI represents a translation, it does not change the fibre. By using
the shift operators, one can represent a given P∆E as a variety on Pn(Rq). We do this from here
on, using the Einstein summation convention to denote sums over all variables other than n, as
far as possible. For simplicity, we omit the multi-index subscript 0 on variables, except where
this may cause confusion. In particular, uα denotes uα0 henceforth.

Remark 2.1. For a given P∆E, one can restrict attention to a finite-dimensional subspace of
the prolongation space, provided that this includes all uαJ for which J lies within the stencil of
the P∆E with respect to uα (see [7]), together with any other relevant uαJ for the problem being
considered. However, for generality, we use the full prolongation space over n.

2.2 The difference variational calculus

This section summarizes the difference variational calculus from the formal viewpoint introduced
by Kupershmidt [11]. It closely resembles the formal differential variational calculus described
in [18]. Summation by parts replaces integration by parts, and a difference version of the
divergence is used, which we now describe.

Each shift operator SJ, where J =
(
j1, . . . , jm

)
, may be written as a product of unit shift

operators, Si := S1i , and their inverses. Here 1i is the multi-index whose only non-zero entry
is the ith one, which is 1. Thus Si is the forward shift in the ni-direction. By the composition
rule for translations, SiSj = SjSi and SJ = Sj11 · · · Sjmm ; consequently, (SJ)

−1 = S−J. The
identity operator, id := S0, maps every function to itself, and the forward difference operator
in the direction nk is Dnk = Sk − id. A difference divergence is an expression of the form
Div(F ) = DnkF k for some F :=

(
F 1, . . . , Fm

)
. It is straightforward to write a given expression

of the form (SJ − id)f , where f is a function, as a difference divergence; however, the resulting
functions F k are not unique if m > 1 and may be messy.
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Definition 2.2. A conservation law of a given system of P∆Es is a difference divergence ex-
pression, C = Div(F ), such that C = 0 on all solutions of the system.

A linear difference operator on Pn(Rq) is an operator of the form H = hJSJ, where each hJ

is a function. The formal adjoint of H is the operator H† defined by

fHg −
(
H†f

)
g ∈ im(Div)

for all functions f , g. Explicitly, H†f = S−J

(
hJf

)
, because

fhJSJg −
(
S−J

(
hJf

))
g = (SJ − id)

{(
S−J

(
hJf

))
g
}
.

A special case is the very useful summation by parts formula

f(SJg) = (S−Jf)g + (SJ − id){(S−Jf)g}.

The basic variational problem is to find the extrema of a given functional

L[u] =
∑
n

L(n, [u]),

where [u] represents finitely many shifts of the dependent variables. Extrema are found by
requiring that{

d

dϵ
L[u+ ϵw]

}∣∣∣∣
ϵ=0

= 0,

for all w : Zm → Rq that vanish sufficiently rapidly as any independent variable approaches
infinity. Using summation by parts,

d

dϵ

∣∣∣∣
ϵ=0

L(n, [u+ ϵw]) =

(
SJw

α ∂L

∂uαJ

)
= wαEuα(L) + Div(Au(n, [u], [w])),

where

Euα = S−J
∂

∂uαJ

is the difference Euler–Lagrange operator with respect to uα, and

Div(Au(n, [u], [w])) =
∑
J

(SJ − id)

(
wαS−J

∂L

∂uαJ

)
.

As w is arbitrary and the sum of Div(Au(n, [u], [w])) over n is zero (by Stokes’ theorem),
the extrema satisfy the following system of Euler–Lagrange (difference) equations,

Euα(L) = S−J

(
∂L

∂uαJ

)
= 0.

Remark 2.3. If the dependent variables are regarded as depending smoothly on a continuous
parameter t as well as n, the same result is achieved by using

d

dt

∣∣∣∣
(uα)′=wα

L[u] = 0,

where (uα)′ = duα/dt. This approach is used later to derive the Lie group invariant version of
the Euler–Lagrange equations.
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2.3 Variational point symmetries and Noether’s theorem

We now outline some relevant facts about Lie point symmetries, with application to variational
calculus (see [7, 18] for further details). Let G be an R-dimensional Lie group parametrized
by ε =

(
ε1, . . . , εR

)
∈ RR in some neighbourhood of the identity, e. For now, we restrict

attention to such a neighbourhood, in which the elements of G are Γ(ε), where Γ depends
smoothly on ε, with Γ(0) = e. Locally, the left action of G on the coordinates u =

(
u1, . . . , uq

)
is denoted by û = Γ(ε) · u. The R-dimensional Lie algebra X of infinitesimal generators has
a basis

vr = Qα
r (n,u)∂uα , r = 1, . . . , R, where Qα

r =
∂ûα

∂εr

∣∣∣∣
ε=0

,

so every infinitesimal generator of a one-parameter (local) Lie subgroup of point transformations
is of the form v = Qα(n,u)∂uα , where Qα = crQα

r for some real constants cr. The q-tuple
Q =

(
Q1, . . . , QR

)
is the characteristic of the Lie subgroup whose infinitesimal generator is v.

Each infinitesimal generator is a tangent vector field on the total space. It is represented on
the prolongation space Pn(Rq) by the prolonged vector field

prv = (SJQ
α)

∂

∂uαJ
.

From here on, we refer to prv simply as v, because it will always be clear whether the generator
is acting on the total space or the prolongation space over n. Note that n is invariant under the
Lie group action, as are the shift operators SJ.

Denote the left action of a general group element g ∈ G (not necessarily in the neighbourhood
of the identity) on the total space by ũ = g · u and define

ṽr = Qα
r (n, ũ)∂ũα , r = 1, . . . , R.

The adjoint representation of g on X can be expressed as a matrix, Ad(g) = (asr(g)), whose
components are determined from the following relations (see [15]):

vr = asr(g)ṽs, r = 1, . . . , R. (2.1)

By regarding the infinitesimal generators as differential operators and applying the left-hand
side of the identity (2.1) to each ũα in turn, one obtains(

∂ũα

∂uβ

)
Qβ

r (n,u) = vr(ũ
α) = Qα

s (n, ũ)a
s
r(g), (2.2)

where the matrix
(
∂ũα/∂uβ

)
is the Jacobian matrix of the transformation g : u → ũ. Prolonging

this result to each uαJ gives the identities(
∂ũαJ

∂uβJ

)
Qβ

r (n+ J,uJ) = Qα
s (n+ J, ũJ)a

s
r(g).

Definition 2.4. The point transformations generated by v are variational symmetries of the
Lagrangian L(n, [u]) if there exist functions Bi(n, [u]) such that

v(L) := (SJQ
α)
∂L

∂uαJ
= DniBi. (2.3)

The Lagrangian is invariant under the symmetries generated by v if Bi = 0 for all i. Sum-
ming (2.3) by parts leads to Noether’s theorem for P∆Es (see [7]).
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Figure 2. Moving frame defined by a cross-section; O(z) denotes the group orbit through z.

Theorem 2.5 (difference Noether’s theorem). Suppose that a Lagrangian L has a variational
symmetry with characteristic Q ̸= 0. Then the system of Euler–Lagrange equations has the
following conservation law:

−DniBi +
∑
J

(SJ − id)

(
QαS−J

∂L

∂uαJ

)
= 0. (2.4)

From here on, we restrict attention to Lie groups of variational point symmetries that leave
the Lagrangian invariant, so Bi = 0, i = 1, . . . ,m.

2.4 Moving frames

We now outline some basics of moving frames on an arbitrary manifold (see [2, 3, 12] for further
details). LetM be a smooth manifold. Suppose that a Lie group, G, of point transformations has
a smooth left action onM that is free and regular1 in a neighbourhood U ⊂M of a point z ∈M .
Freeness and regularity are necessary and sufficient to guarantee the existence of a cross-sectionK
that is transverse to the group orbits that foliate U , as shown in Figure 2. Moreover, each orbit
intersects K at a unique point.

If a group action is not free and regular, it can be made so by replacing M by a Cartesian
product space MN of sufficiently high dimension and using the induced product action (see
Boutin [1]). Henceforth, we assume that M is of sufficiently high dimension that the action is
free and regular.

Definition 2.6 (moving frame). Given a smooth Lie group action G×M →M , a moving frame
is a smooth equivariant map ρ : U ⊂M → G. Here U is called the domain of the frame.

Given a left action, g ·z, a left equivariant map satisfies ρ(g ·z) = gρ(z) and a right equivariant
map satisfies ρ(g · z) = ρ(z)g−1. The frame is called left or right accordingly. The inverse of
a right frame is a left frame.

To find a right frame for an R-dimensional Lie group, G, write the cross-section K as a system
of equations ψr(z) = 0, r = 1, . . . , R. Then solve the normalization equations,

ψr(g · z) = 0, r = 1, . . . , R, (2.5)

to obtain the unique group element g = ρ(z) that maps z to the intersection of its group orbit
with K (see Figure 2). Both ρ(g · z) and ρ(z)g−1 satisfy the equation ψr(ρ(g · z) · (g · z)) = 0, so
by uniqueness, the solution is a right frame.

1The action is free if the only group element g ∈ G that fixes every point in the neighbourhood is the identity.
The action is regular if the orbits form a regular foliation.
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An important part of the method of moving frames is to choose a cross-section K that makes
computations as simple as possible. It is usually easiest to choose a cross-section on which R of
the coordinates on U are constant. The normalization equations are then expressed as

g · z1 = c1, g · z2 = c2, . . . , g · zR = cR,

where zr are coordinates and cr are fixed constants. We will use this approach in our examples.

Given a left action G×M →M and a right frame ρ, let

ι(z) = ρ(z) · z = g · z|g=ρ(z).

The components of ι(z) are invariant under the Lie group action, because

ι(g · z) = ρ(g · z) · (g · z) = ρ(z) · g−1g · z = ρ(z) · z = ι(z).

The non-constant components of ι(z) are called the normalized invariants. Note that ρ(ρ(z) · z)
is the identity element of G, so ι(ι(z)) = ι(z). In other words, the operator ι projects z to its
invariant components. This operator extends to functions f(z), as follows: ι(f(z)) = f(ι(z)).
Note that ι(ι(f(z))) = ι(f(z)), so ι projects out the invariant component of f(z); hence, ι is
called the invariantization operator. Indeed, if F (z) is any invariant, the following replacement
rule applies:

F (z) = F (ι(z)). (2.6)

Consequently, the set of all invariants is generated by the normalized invariants ι(z).

2.5 Discrete moving frames

The discrete moving frame developed by Mansfield, Maŕı Beffa and Wang [14] and Maŕı Beffa
and Mansfield [17] can be thought of as a moving frame adapted to discrete base points. The
Lie group action on M is extended to the diagonal (left) action on the Cartesian product
manifold M =MN :

g · (z1, z2, . . . , zN ) 7→ (g · z1, g · z2, . . . , g · zN ).

No assumptions are made about any relationship between the elements z1, . . . , zN .

Definition 2.7 (discrete moving frames). Let GN denote the Cartesian product of N copies of
the group G. A map

ρ : MN → GN , ρ(z) = (ρ1(z), . . . , ρN (z))

is a right discrete moving frame if

ρk(g · z) = ρk(z)g
−1, k = 1, . . . , N,

and a left discrete moving frame if

ρk(g · z) = gρk(z), k = 1, . . . , N.

The frame is right (resp. left) equivariant under the action of the Lie group.
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A set of normalization equations yields a corresponding right discrete moving frame. The
component ρk is the unique element of G that takes z to the cross-section Kk. The sequence
of moving frames with a nontrivial intersection of domains (ρk) which makes up the discrete
moving frame is, locally, uniquely determined by the cross-section K = (K1, . . . ,KN ) to the
group orbit through z (see [14] for more details). Again, no assumptions are made about any
relationship between the components of the cross-section.

The invariants of the right (discrete) frame are Ik,j := ρk(z) · zj . If M is q-dimensional,
each zj has components z1j , . . . , z

q
j . So the components of Ik,j are

Iαk,j := ρk(z) · zαj , α = 1, . . . , q.

The discrete moving frame applies to a wide variety of discrete domains. We now show how
it can be adapted to the difference prolongation space for P∆Es, yielding the difference moving
frame.

3 Difference moving frames

In view of Remark 2.1, one can restrict attention to a finite prolongation space M of arbitrarily
high dimension. This enables one to treat a difference moving frame as a particular type of
discrete moving frame, so that the key definitions and theorems for discrete moving frames
in [14, 15, 17] apply. The main distinction is that for the difference frame, there is a relation
between the cross-sections and frames on the different fibres: they must be consistent with the
pullback to any particular fibre.

3.1 Difference frames and invariants

Let K and ρ([u]) denote the cross-section and frame on n, respectively. The cross-section on n,
denoted K, is replicated for all the other base points n + J if and only if the cross-section
over n + J is represented on M by SJK. Consequently, ρJ([u]) = SJρ([u]); this constraint
can be extended to the infinite-dimensional prolongation space Pn(Rq). From here on we use ρ
(resp. ρJ) as shorthand for ρ0([u]) (resp. ρJ([u])).

Definition 3.1. A difference moving frame is a discrete moving frame such that M is a pro-
longation space and the cross-section over n+ J is represented on M by SJK.

The normalized invariants for difference moving frames are

IK,J := ρK · uJ = (SKρ) · (SJu).

By definition, SiIK,J = IK+1i,J+1i . Hence, every invariant IK,J can be expressed as a shift of

IK−J,0 = (SK−Jρ) · u. (3.1)

Definition 3.2 (discrete Maurer–Cartan invariants). Given a right discrete moving frame ρ([u])
(which commonly is expressed as a matrix), the right discrete Maurer–Cartan invariants are
the components of

K(i) = (Siρ)ρ
−1 = ι(Siρ), i = 1, . . . ,m,

together with their shifts SJK(i). Invariance of K(i) follows from equivariance of the frame.

Definition 3.3. A set of invariants is a generating set for the algebra of functions of difference
invariants if any difference invariant in the algebra can be written as a function of elements of
the generating set and their shifts.
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The invariantization of a multiply-shifted frame is obtained by concatenating the matrices of
Maurer–Cartan invariants and their shifts. For instance,

ι(SiSjρ) = (SiSjρ)ρ
−1 = (SjK(i))K(j).

Consequently, (3.1) can be written as IK−J,0 =
{
(SK−Jρ)ρ

−1
}
I0,0, where the term in braces is

a concatenation of the Maurer–Cartan invariants and their shifts. This establishes the following
result.

Proposition 3.4. Given a right difference moving frame ρ([u]), the set of all invariants is
generated by I0,0 = ρ · u and the set of components of K(j) = (Sjρ)ρ

−1, j = 1, . . . ,m.

Definition 3.5 (syzygy). A syzygy on a set of invariants is a relation between the invariants
that expresses functional dependency.

In other words, a syzygy on a set of invariants is a function of the invariants that becomes
an identity when it is expressed in terms of the underlying variables [u]. In general, there are
syzygies between the invariants in Proposition 3.4, which lead to useful recurrence relations.
Such relations enable all of these invariants to be expressed in terms of a small2 generating set
of invariants, κβ, and their shifts, κβJ := SJκ

β.

Example 3.6. As a running example to illustrate the theory, we use the Lagrangian

L = ln

∣∣∣∣u1,0 − u0,1
u1,1 − u0,0

∣∣∣∣, (3.2)

where n =
(
n1, n2

)
and ui,j represents the value of u at

(
n1 + i, n2 + j

)
. The Euler–Lagrange

equation is

Eu(L) =
1

u1,1 − u0,0
− 1

u−1,1 − u0,0
− 1

u1,−1 − u0,0
+

1

u−1,−1 − u0,0
= 0, (3.3)

which is a Toda-type equation that is satisfied by all solutions of the autonomous dpKdV equa-
tion and the cross-ratio equation (see [7] for details). This equation is partitioned into two
independent components, with n1 + n2 being either odd or even.

The Lagrangian (3.2) has a six-parameter Lie group of variational symmetries, whose in-
finitesimal generators are linear combinations of

v1 = ∂u0,0 , v2 = u0,0∂u0,0 , v3 = u20,0∂u0,0 ,

v4 = (−1)n
1+n2

∂u0,0 , v5 = (−1)n
1+n2

u0,0∂u0,0 , v6 = (−1)n
1+n2

u20,0∂u0,0 ,

where we use ∂z as shorthand for ∂/∂z from here on. The corresponding characteristics are

Q1 = 1, Q2 = u0,0, Q3 = u20,0, Q4 = (−1)n
1+n2

,

Q5 = (−1)n
1+n2

u0,0, Q6 = (−1)n
1+n2

u20,0,

and the prolonged generators are

prvr =
(
Si1S

j
2Qr

)
∂ui,j .

2The number of generating invariants depends on the number of dependent and independent variables, as well
as on the group G and the normalization that is used. Finding a relation between these quantities is an open
problem.
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Only the symmetries generated by linear combinations of v1, v2 and v4 leave the Lagrangian
invariant. (The other generators produce divergence terms, although these can be absorbed
without changing the Euler–Lagrange equation, by adding a divergence to the Lagrangian.)

Consider the two-parameter Lie group action generated by v1 and v2; this is

g : ui,j 7→ ũi,j = bui,j + a,

which is defined for every a ∈ R and b ∈ R+. For the half-space U = {M : u1,1 > u0,0}, we
choose the normalization equations3 (2.5) to be

ũ0,0 = 0, ũ1,1 = 1.

Then the frame ρ is the group element with the parameters

a =
−u0,0

u1,1 − u0,0
, b =

1

u1,1 − u0,0
.

For this frame, the invariantization of ui,j is

ι(ui,j) = (ũi,j)
∣∣
g=ρ

=
ui,j − u0,0
u1,1 − u0,0

.

The basic Maurer–Cartan invariants are

κ = ι(u1,0) =
u1,0 − u0,0
u1,1 − u0,0

, λ = ι(u0,1) =
u0,1 − u0,0
u1,1 − u0,0

.

These two invariants generate all invariants ι(ui,j).
As an example, we show how to find ι(u2,1) in terms of these generating invariants and their

shifts. First shift λ to involve u2,1 and lower shifts of κ and λ:

λ1,0 =
u1,1 − u1,0
u2,1 − u1,0

.

As shifts of invariants are invariant, the replacement rule yields

λ1,0 =
ι(u1,1)− ι(u1,0)

ι(u2,1)− ι(u1,0)
=

1− κ

ι(u2,1)− κ
.

Rearranging,

ι(u2,1) = κ+
1− κ

λ1,0
.

Similarly, the replacement rule gives

S1ι(ui,j) =
ui+1,j − u1,0
u2,1 − u1,0

=
ι(ui+1,j)− κ

ι(u2,1)− κ
,

which leads to the first of two general recurrence relations:

ι(ui+1,j) = κ+

(
1− κ

λ1,0

)
S1ι(ui,j), (3.4)

ι(ui,j+1) = λ+

(
1− λ

κ0,1

)
S2ι(ui,j). (3.5)

Note that the invariantization operator ι does not commute with the shift operators.
The invariant ι(u2,2) can be calculated from the identity ι(u1,1) = 1 in two ways: either

use (3.4) first, then (3.5), or vice versa. This leads to the following syzygy between the generating
invariants and their shifts:

(λ− 1)(κ0,1 − 1)

κ0,1λ1,1
=

(κ− 1)(λ1,0 − 1)

λ1,0κ1,1
. (3.6)

The syzygy (3.6) arises because two dependent variables (κ, λ) are used instead of one (u).
3For the other half-space, with u1,1 < u0,0, an appropriate normalization is ũ0,0 = 0 and ũ1,1 = −1.
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3.2 Differential invariants and syzygies

From Remark 2.3, one can derive the Euler–Lagrange equations by regarding the variables uαJ as
depending smoothly on a continuous parameter t. The same is true in the context of invariants,
if one stipulates that

� t is invariant under the Lie group action;

� every shift commutes with differentiation with respect to t (as is required for differential-
difference equations [21]).

This approach was used in Mansfield et al. [15] to invariantize the Euler–Lagrange equations
for O∆Es. We now extend it to P∆Es.

As t is invariant, the Lie group action (for point transformations) extends to the first-order
jet space of M as follows:

g ·
duαJ
dt

=
d(g · uαJ)

dt
=
∂(g · uαJ)
∂uδJ

duδJ
dt

.

As the action is free and regular on M, it will remain so on the jet space and we may use the
same frame to find the first-order differential invariants. Let

σα := ι

(
duα

dt

)
=
∂(g · uα)
∂uδ

∣∣∣∣
g=ρ

duδ

dt
, α = 1, . . . , q. (3.7)

The Jacobian matrix of any Lie group transformation on M is necessarily non-singular, so (3.7)
can be inverted, as follows:

duδ

dt
= θδα([u])σ

α.

Here the coefficients θδα([u]) are the components of the inverse of the Jacobian matrix, evaluated
on the moving frame. Consequently, for each J,

ι

(
duδJ
dt

)
= ι
(
SJ
(
θδα([u])σ

α
))

= ι
(
SJθ

δ
α([u])

)
SJσ

α. (3.8)

So all of the first-order differential invariants can be written in terms of the generating invari-
ants κβ, the generating differential invariants σα, and their shifts. In particular,

σδ = ι

(
duδ

dt

)
= ι
(
θδα([u])

)
σα,

so the invariantization of the matrix
(
θδα([u])

)
is the identity matrix.

To calculate the invariantized Euler–Lagrange equations, it is necessary to determine the
differential syzygies

dκβ

dt
= ι

(
∂κβ

∂uαJ

)
ι

(
duαJ
dt

)
= Hβ

ασ
α.

The terms Hβ
α are linear difference operators whose coefficients are functions of κβ and their

shifts.
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Example 3.7 (Example 3.6 cont.). We now find the differential invariants for the running
example. The action of the group on the derivative u′i,j = dui,j/dt is

g · u′i,j =
∂(g · ui,j)
∂ui,j

u′i,j = bu′i,j .

Therefore, the first-order differential invariants are

ι(u′i,j) =
u′i,j

u1,1 − u0,0
.

The generating differential invariant is

σ =
u′0,0

u1,1 − u0,0
,

so (3.8) amounts to

ι(u′i,j) = {ι(ui+1,j+1)− ι(ui,j)}Si1S
j
2σ.

For instance,

ι(u′0,1) = {ι(u1,2)− ι(u0,1)}S2σ =
1− λ

κ0,1
S2σ.

The derivatives of the generating invariants are

dκ

dt
=
u′1,0 − u′0,0
u1,1 − u0,0

−
(u1,0 − u0,0)(u

′
1,1 − u′0,0)

(u1,1 − u0,0)2
,

dλ

dt
=
u′0,1 − u′0,0
u1,1 − u0,0

−
(u0,1 − u0,0)(u

′
1,1 − u′0,0)

(u1,1 − u0,0)2
. (3.9)

Invariantizing (3.9), using the replacement rule (2.6), we obtain

dκ

dt
= ι(u′1,0)− κι(u′1,1) + (κ− 1)ι(u′0,0),

dλ

dt
= ι(u′0,1)− λι(u′1,1) + (λ− 1)ι(u′0,0). (3.10)

Replacing each ι(u′i,j) in (3.10) by its expression in terms of σ gives

dκ

dt
= Hκσ,

dλ

dt
= Hλσ,

where

Hκ =
1− κ

λ1,0
S1 −

κ(κ− 1)(λ1,0 − 1)

λ1,0κ1,1
S1S2 + (κ− 1)id,

Hλ =
1− λ

κ0,1
S2 −

λ(κ− 1)(λ1,0 − 1)

λ1,0κ1,1
S1S2 + (λ− 1)id. (3.11)
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4 The invariant formulation of the Euler–Lagrange equations

Here we show how to calculate the Euler–Lagrange equations, in terms of invariants, for a given
invariant difference Lagrangian. Any such Lagrangian, L(n, [u]), can be written in terms of the
generating invariants κβ and their shifts κβJ = SJκ

β:

L(n, [u]) = Lκ(n, [κ]). (4.1)

The key result is the following proposition, which generalizes O∆E invariantization [15] to P∆Es.

Proposition 4.1 (invariant Euler–Lagrange equations). Suppose that the Lagrangian L(n, [u])
is invariant under an R-parameter Lie group of point transformations, so that (4.1) holds. Given

the differential syzygies, dκβ/dt = Hβ
ασα, the following identity holds:

Euα(L)
duα

dt
=
((
Hβ

α

)†
Eκβ

(
Lκ
))
σα, (4.2)

where

Eκβ = S−J
∂

∂κβJ

is the difference Euler operator with respect to κβ. The invariantization of the original system
of Euler–Lagrange equations is

ι(Euα(L)) =
(
Hβ

α

)†
Eκβ (Lκ) = 0, α = 1, . . . , q. (4.3)

Proof. In the original coordinates,

dL

dt
=

∂L

∂uαJ

duαJ
dt

= Euα(L)
duα

dt
+Div(Au); (4.4)

here summation by parts has produced the difference divergence

Div(Au) =
∑
J

(SJ − id)

(
S−J

(
∂L

∂uαJ

)
(uα)′

)
=: Dni

(
Ai

α(n, [u]
)
(uα)′), (4.5)

where each Ai
α is a linear difference operator. In the invariant coordinates,

dLκ

dt
=
∂Lκ

∂κβK

dκβK
dt

= Eκβ (Lκ)
dκβ

dt
+Div(Aκ) = Eκβ (Lκ)Hβ

ασ
α +Div(Aκ)

=
{(

Hβ
α

)†(
Eκβ (Lκ)

)}
σα +Div(AH +Aκ). (4.6)

Here, there are two contributions to the difference divergence:

Div(Aκ) =
∑
K

(SK − id)

(
S−K

(
∂L

∂κβK

)(
κβ
)′)

=: Dni

(
F i
β(n, [κ])

(
κβ
)′)
,

Div(AH) = Eκβ (Lκ)Hβ
ασ

α −
{
(Hβ

α)
†(Eκβ (Lκ)

)}
σα =: Dni

(
H i

α(n, [κ])σ
α
)
,

where F i
β andH i

α are linear difference operators. The difference between (4.4) and (4.6), summed
over n to annihilate the divergence terms, is

0 =
∑
n

(
dL

dt
− dLκ

dt

)
=
∑
n

(
Euα(L)(uα)′ −

(
Hβ

α

)†(
Eκβ (Lκ)

)
σα
)
.
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Note that the invariants at a particular n are invariantized by the frame at that n. Each uα(n, t)
has arbitrary (smooth) dependence on t; there is no link between uα(n, t) and uα(m, t) for n ̸= m.
Therefore, (4.2) holds for each n, and so

ι(Euα(L))σα =
(
Hβ

α

)†(
Eκβ (Lκ)

)
σα.

Equation (4.3) follows from the independence of the differential invariants σα. ■

Corollary 4.2. Under the conditions of Proposition 4.1, using the notation in its proof,

Div(Au) = Div(AH +Aκ).

Proof. Compare (4.4) and (4.6), taking (4.2) into account. ■

Example 4.3 (Example 3.6 cont.). The Lagrangian (3.2) is written in terms of the generating
invariants κ = ι(u1,0) and λ = ι(u0,1) as

Lκ = ln
∣∣κ− λ

∣∣.
Applying the Euler operators with respect to κ and λ gives

Eκ(L
κ) =

1

κ− λ
, Eλ(L

κ) =
−1

κ− λ
.

From (3.11),

H†
κ =

1− κ−1,0

λ
S−1
1 − κ−1,−1(κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1
S−1
1 S−1

2 + (κ− 1)id,

H†
λ =

1− λ0,−1

κ
S−1
2 − λ−1,−1(κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1
S−1
1 S−1

2 + (λ− 1)id.

By Proposition 4.1, the invariant Euler–Lagrange equation for the running example is

0 = H†
κEκ(L

κ) +H†
λEλ(L

κ)

=
1− κ−1,0

λ(κ−1,0 − λ−1,0)
− 1− λ0,−1

κ(κ0,−1 − λ0,−1)
− (κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1
+ 1.

This is the invariantization of the Toda-type equation (3.3) given by the chosen normalization,
which has the advantage that Lκ depends only on unshifted invariants.

5 Conservation laws

For ODEs [4, 5, 12], PDEs [6] and O∆Es [15, 16], it has been shown that the conservation laws
associated with an R-parameter Lie group of variational point symmetries are equivariant and
can be written in terms of the invariants and the moving frame. For P∆Es, we use the same
reasoning as in the papers above to show that the R conservation laws can be written in the
equivariant form

Dni

{
V i
l (n, [κ])a

l
r(ρ)

}
= 0, r = 1, . . . , R,

where alr(ρ) are the components of the adjoint representation of ρ and each V i
l (n, [κ]) is invariant.

For a Lagrangian L(n, [u]) that is invariant under the one-parameter group generated by vr,
the corresponding conservation law (2.4) given by Noether’s theorem is∑

J

(SJ − id)

(
Qα

r (n, [u])S−J
∂L

∂uαJ

)
= 0. (5.1)
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The left-hand side of (5.1) is almost the same as DivAu in (4.5), with the exception that (uα)′

in Au is replaced by the characteristic component Qα
r (n, [u]). This replacement can be achieved

by substituting the group parameter εr for t and evaluating the result at εr = 0.
By Corollary 4.2, the conservation law Div(Au) = 0 amounts to

Div(Aκ +AH) = Dni

(
F i
β(n, [κ])

(
κβ
)′
+H i

α(n, [κ])σ
α
)
= 0.

If t is the group parameter εr then
(
κβ
)′

= 0, because each κβ is invariant. Consequently, the
conservation law given by Noether’s theorem is

Dni

(
H i

α(n, [κ])σ
α
)
= 0, (5.2)

where σα is the invariantization of the tangent vector to the group generated by vr, evaluated
at ε = 0.

Proposition 5.1. Suppose that the conditions of Proposition 4.1 hold. If the linear difference
operators in (5.2) are

H i
α(n, [κ]) = Ci,J

α (n, [κ])SJ,

then Noether’s theorem gives the R conservation laws,

Dni

{
Ci,J
α (n, [κ])SJ{ι(Qα

s (n,u))a
s
r(ρ)}

}
= 0, r = 1, . . . , R.

Proof. This proof is a slimmed-down analogue of its counterpart for O∆Es (see [15]). We
replace t by the parameter εr and let û(n,u, εr) be the orbit of the one-parameter local Lie
group generated by vr. Let û

α
r denote dûα/dεr and note that û(n,u, 0) = u. By the chain rule,

σαr := ι(ûαr ) =

{
∂(g · ûα)
∂ûβ

ûβr

} ∣∣∣∣
g=ρ

.

In particular, from (2.2),

σαr
∣∣
εr=0

=

{
∂(g · uα)
∂uβ

Qβ
r (n,u)

} ∣∣∣∣
g=ρ

=
{
Qα

s (n, g · u)asr(g)
}∣∣

g=ρ
= ι(Qα

s (n,u))a
s
r(ρ).

Substitute σαr
∣∣
εr=0

for σα in (5.2) to complete the proof. ■

By the prolongation formula, the conservation laws amount to

Dni

{
Ci,J
α (n, [κ])(SJι(Q

α
s ))a

s
r(ρJ)

}
= 0.

The adjoint representation is a Lie group representation, so

asr(ρJ) = asl
(
ρJρ

−1
)
alr(ρ) = asl (ι(ρJ))a

l
r(ρ).

This leads to the following corollary.

Corollary 5.2. The conservation laws for a difference frame may be written in the form

Dni

{
V i
l (n, [κ])a

l
r(ρ)

}
= 0,

where

V i
l (n, [κ]) = Ci,J

α (n, [κ])(SJι(Q
α
s ))a

s
l (ι(ρJ)).
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Example 5.3 (Example 3.6 cont.). For the running example, the equivariant conservation laws
are obtained as follows:

Div(AH) = Eκ(L
κ)Hκσ + Eλ(L

κ)Hλσ −
{
(Hκ)

†Eκ(L
κ) + (Hλ)

†Eλ(L
κ)
}
σ

= (S1 − id)

(
1− κ−1,0

λ(κ−1,0 − λ−1,0)
σ

)
+ (S2 − id)

(
λ0,−1 − 1

κ(κ0,−1 − λ0,−1)
σ

)
+ (S1S2 − id)

(
−(κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1
σ

)
= Dn1

{
1− κ−1,0

λ(κ−1,0 − λ−1,0)
σ − (κ−1,0 − 1)(λ− 1)

κ0,1λ
S2σ

}
+Dn2

{
λ0,−1 − 1

κ(κ0,−1 − λ0,−1)
σ − (κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1
σ

}
.

The invariantized (unprolonged) infinitesimals are ι(Q1) = 1 and ι(Q2) = 0, so

ι(Qs(n,u))a
s
r(ρ) = a1r(ρ).

The adjoint action of g : u 7→ ũ = bu + a on the infinitesimal generators gives v1 = bṽ1

and v2 = −aṽ1 + ṽ2, so the components of the adjoint matrix are

a11 = b, a21 = 0, a12 = −a, a22 = 1.

On the frame ρ (at (m,n)), these components are

a11(ρ) =
1

u1,1 − u0,0
, a21(ρ) = 0, a12(ρ) =

u0,0
u1,1 − u0,0

, a22(ρ) = 1. (5.3)

Applying S2 to (5.3) gives the components on the frame at (m,n+ 1). In particular,

a11(S2ρ) =
1

u1,2 − u0,1
=

κ0,1
1− λ

a11(ρ),

a12(S2ρ) =
u0,1

u1,2 − u0,1
=

κ0,1
1− λ

a12(ρ) +
λκ0,1
1− λ

a22(ρ).

Consequently, in terms of the frame (5.3), the equivariant versions of the conservation laws
arising from Noether’s theorem are

0 = Dn1

{(
1− κ−1,0

λ(κ−1,0 − λ−1,0)
+
κ−1,0 − 1

λ

)
a11(ρ)

}
+Dn2

{(
λ0,−1 − 1

κ(κ0,−1 − λ0,−1)
− (κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1

)
a11(ρ)

}
,

0 = Dn1

{(
1− κ−1,0

λ(κ−1,0 − λ−1,0)
+
κ−1,0 − 1

λ

)
a12(ρ) + (κ−1,0 − 1)a22(ρ)

}
+Dn2

{(
λ0,−1 − 1

κ(κ0,−1 − λ0,−1)
− (κ−1,−1 − 1)(λ0,−1 − 1)

κλ0,−1

)
a12(ρ)

}
.

6 Differential-difference structure

Differential-difference moving frames are set in a continuous space that embodies prolongation
with respect to both derivatives and shifts (see [21]). Just as for P∆Es, the discrete independent
variables, n =

(
n1, . . . , nm

)
, and the corresponding shift operators are invariant. In general, the
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n n+ 1n− 1

x

u

Figure 3. A graph on (ordered) slices in the total space T = R× Z× R.

invariant derivative operators do not commute with one another or with the shift operators,
a problem that can be resolved with substantial technical machinery.4 However, such machinery
is not needed for systems of D∆Es for u =

(
u1, . . . , uq

)
∈ Rq with just one continuous indepen-

dent variable, x, provided that the group action on x is sufficiently simple. For consistency with
our presentation of difference moving frames, we restrict attention to such systems and actions.

The total space, T = R × Zm × Rq, consists of a continuous slice, Tn = R × {n} × Rq, over
each n ∈ Zm. Consequently, each graph on T defined by u = f(x,n) restricts to a graph on every
slice, as illustrated in Figure 3. We consider only graphs that are smooth on each slice, which
can be prolonged by differentiation as many times as needed.5 The differential prolongation
structure on the slice over any n is embodied by the infinite jet space, J∞(Tn). This space
has vertical coordinates uαj;0, where j denotes the number of derivatives with respect to x. In
particular, uα0;0 represents uα at n.

The differential prolongation structure over any fixed n is replicated over all other points
n+K. Consequently, one can use difference prolongation to construct the (differential-differ-
ence) prolongation space over n, denoted P (J∞(Tn)). This space has coordinates (x, (uαj;K)),
where uαj;K represents the value of uαj;0 on the jet space over n+K.

Just as for difference equations, the horizontal translation TI maps n to n+I without changing
any other coordinates. The pullback of

TI : P (J∞(Tn)) → P (J∞(Tn+I))

to P (J∞(Tn)) is the shift operator SI, which can be regarded as a product of unit forward
shifts Si, i = 1, . . . ,m, and their inverses. This acts on functions f ∈ C∞(P (J∞(Tn))) as
follows:

SIf(x,n, (u
α
j;K)) = f(x,n+ I, (uαj;K+I)).

All shift operators SK commute with one another and with the total derivative operator,

D =
∂

∂x
+ uj+1;k

∂

∂uj;k
.

For notational consistency, we define D(j) := Dj , so the vertical coordinates on P (J∞(Tn)) may
be written as uj;K = SKD(j)u

α
0;0.

The differential-difference divergence of a given (1+m)-tuple of functions in C∞(P (J∞(Tn))),
A =

(
A0;A1, . . . , Am

)
, is

Div(A) := DA0 +DniAi,

where Dni = Si− id is the ith forward difference operator. Note: we sum over i from 1 to m only.
A linear differential-difference operator on the prolongation space P (J∞(Tn)) is an operator of

4Moving frames for differential Euler–Lagrange equations can be expressed naturally in terms of the variational
bicomplex [10]; for a constructive approach that lends itself to symbolic computation, see [6].

5If graphs are only locally smooth, restrict attention to neighbourhoods in which they are smooth.
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the form H = hj;KSKD(j), for given functions hj;K. The formal adjoint of H is the unique

operator H† such that

fHg −
(
H†f

)
g ∈ im(Div).

Using the standard identities

S†K = S−K, D†
(j) = (−D)(j) := (−1)jDj ,

one obtains

H†f = (−D)(j)S−K

(
hj;Kf

)
.

Definition 6.1. A conservation law of a given system of D∆Es is a differential-difference di-
vergence expression, C = Div(A), such that C = 0 on all solutions of the system.

A given D∆E defines a variety in the continuous space P (J∞(Tn)), on which it is possible
to construct moving frames that respect both the differential and difference structures. Every
Lie group, G, of point transformations of the total space, whose prolongation to P (J∞(Tn))
preserves these structures, consists of projectable diffeomorphisms on each slice:

g : T → T , g : (x,n,u) 7→ (g · x, g · n, g · u) := (x̃(x),n, ũ(x,n,u)).

The projectability condition arises because mappings for which x̃ depends on n or u are in-
compatible with the prolongation structure (see [21] for details). This is a key distinction
between D∆Es and PDEs, for which Lie point transformations do not have to be projectable.
For each n, the mapping g is a diffeomorphism, and therefore the Jacobian determinants,

Jx :=
dx̃

dx
, Ju := det

(
∂ũα

∂uβ

)
,

are nonzero. The prolongation conditions give the action of g on P (J∞(Tn)) (recursively):

g · uαj+1;0 = ũαj+1;0 :=
Dũαj;0
Dx̃

, g · uαj;K = ũαj;K := SKũ
α
j;0.

A tilde ˜ over a function or operator denotes that x and each uαj;K are replaced by x̃ and ũαj;K
respectively.

From here on, we consider R-parameter Lie groups of (projectable) point transformations,
whose generators are of the form

vr = ξr(x)∂x + ηαr (x,n,u)∂uα , r = 1, . . . , R.

The adjoint action of g on the Lie algebra spanned by v1, . . . ,vR satisfies the identities

vr = asr(g)ṽs, r = 1, . . . , R. (6.1)

The characteristic corresponding to vr is Qr =
(
Q1

r , . . . , Q
q
r

)
, where

Qα
r = ηαr (x,n,u)− ξr(x)u

α
1;0.

This enables the differential-difference prolongation of vr to be written as

prvr = ξrD +Xr, where Xr := (SKD(j)Q
α
r )∂uα

j;k
. (6.2)

The operator Xr is the characteristic form of the generator; it acts only on the vertical coordi-
nates of P (J∞(Tn)). From here on, we write prvr simply as vr; generators are assumed to be
prolonged wherever this is needed. Note that (6.1) holds equally for the prolonged generators.
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Lemma 6.2. Let G be a Lie group of projectable transformations of the total space T , and
let g ∈ G. Using the above notation, the following identities hold:

ξrD = asr(g)ξ̃sD̃; (6.3)

Xr = asr(g)X̃s; (6.4)

Jxξr = ξ̃sa
s
r(g); (6.5)(

∂ũα

∂uβ

)
Qβ

r = Q̃α
s a

s
r(g). (6.6)

Proof. The chain rule and (6.1) give

ξrD = ξr
dx̃

dx
D̃ = vr(x̃)D̃ = asr(g)ṽs(x̃)D̃ = asr(g)ξ̃sD̃,

which proves (6.3). To obtain (6.4), substitute (6.2) into the prolongation of (6.1) and take (6.3)
into account. Then apply (6.3) to x̃ and (6.4) to ũα to prove (6.5) and (6.6). ■

The construction of a differential-difference moving frame is essentially the same as that of
a difference moving frame. Suppose that the Lie group G acts smoothly, freely and regularly
on M ⊂ P (J∞(Tn)), a finite prolongation space over n whose coordinates include all relevant
variables, including at least one derivative uαj;K, j ≥ 1. Let the cross-section and frame on M
be K and ρ, respectively. Such a moving frame uses the Kth translate of K at every other base
point n+K; the cross-section and frame at n+K are represented onM by SKK and ρ0;K = SKρ,
respectively. This construction extends immediately to P (J∞(Tn)), because M has arbitrary
dimension.

As usual, the invariantization (denoted by ι) of a function, operator, etc., is obtained by
evaluating the transformed quantity on the frame ρ. The freedom to choose a cross-section leads
to the possibility that ι(x) may depend on one or more of the variables uαj;K, because x̃ = g · x
depends on x and the group parameters.

Lemma 6.3. The invariantized total derivative, D = ι(D), commutes with all (invariant) shift
operators SK if and only if J = Jx|g=ρ is a function of x alone.

Proof. Evaluating the identity D = JxD̃ on ρ gives D = JD. Each Si commutes with D, so

[D, Si] = J −1DSi −
(
SiJ −1

)
SiD = J −1[D,Si]−

(
DniJ −1

)
SiD = −

(
DniJ −1

)
SiD.

The right-hand side is zero if and only if SiJ = J , which requires that J is independent of ni

and [u]. So a necessary and sufficient condition for every shift operator to commute with D is
that J depends on neither n nor [u]. ■

Every group parameter that occurs in Jx also occurs in x̃, which may also have one further
parameter associated with translations in x. So a sufficient condition for D to commute with all
shifts is that ι(x) depends on x alone.6 Indeed, even if x̃ includes translations, the requirement
for the parameters in Jx to depend on x alone (on ρ) ensures that there exist normalizations for
which ι(x) depends on x only: simply set ι(x) to be constant. These observations motivate the
following general definition.

6The only exception to this condition being necessary occurs when G includes translations in x. As an
example, consider (x̃, ũ) = (x+ a, eau+ b). The unusual normalization ι(u) = 0, ι(u1;0) = 1 gives a = − ln(u1;0),
so ι(x) = x − ln(u1;0), but D commutes with all shifts because J = 1. A normalization for which ι(x) depends
on x only is ι(x) = 0, ι(u) = 0.
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Definition 6.4. Given a prolongation space7 P on which the Lie group G acts smoothly, freely
and regularly, let B denote the space coordinatized by the continuous independent variables,
x =

(
x1, . . . , xp

)
. A moving frame, ρ, is projectable if ι(x) = ρ · x is a function of x alone.

If G consists of projectable transformations, then B is invariant. Thus, one can restrict atten-
tion to the action of G on B, ignoring those elements of G that fix every x ∈ B. Let GB : B → B
denote the resulting Lie group of restricted transformations.

Lemma 6.5. Let G be a Lie group of projectable transformations that acts smoothly, freely and
regularly on a prolongation space P. Then there exists a projectable moving frame on P if and
only if GB acts freely and regularly on B.

Proof. Suppose that GB acts freely and regularly on B; smoothness is inherited from G. A mov-
ing frame ρB on B can be constructed by imposing normalization conditions. This determines
the group parameters that occur in GB and ensures that ρB · x depends on x alone. Then ρB
can be extended to a moving frame ρ on P by choosing a normalization that determines the
remaining parameters in G. Conversely, if there exists a projectable moving frame ρ on P, its
restriction to B is a moving frame, whose existence requires GB to act freely and regularly. ■

In particular, if x is the only continuous independent variable, a projectable moving frame
exists only if GB depends on at most one parameter, for otherwise the restricted action is not
free. The moving frame is projectable if either x is invariant, or x̃ depends on just one group
parameter that is determined by a normalization equation of the form ι(x) = const. Either of
these conditions ensures that D commutes with SK. We restrict attention to projectable moving
frames for the remainder of this paper.

7 Differential-difference variational calculus

The D∆E variational calculus in terms of invariants is derived in much the same way as its
counterpart for P∆Es, so we present the basic method concisely to avoid too much repetition.
However, there are some important differences that stem from the group action on the continuous
independent variable x; we describe these in detail. Here and henceforth, square brackets around
an expression denotes the expression and finitely many of its derivatives and shifts.

Let G be an R-parameter Lie group of variational point symmetries for a given Lagrangian
functional,

L =
∑
n

∫
L(x,n, [u])dx,

that leave the one-form L(x,n, [u])dx invariant under the group action. Then

Ldx = L̃dx̃ = L̃Jxdx. (7.1)

In particular, invariance under the transformations generated by vr amounts to the condition

vr(L) + LDξr = 0

(see [18] for details). A useful equivalent form of this condition is

Xr(L) +D(Lξr) = 0, (7.2)

where Xr is the generator in characteristic form (whose action on x and dx is trivial).

7This definition includes jet spaces for differential equations, as projectability is also useful in this context.
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The Euler–Lagrange equations are

Euα(L) := S−K(−D)(j)

(
∂L

∂uαj;K

)
= 0, α = 1, . . . ,m.

Just as for P∆Es, these equations can be obtained by allowing [u] (but not x) to depend
smoothly on a continuous invariant parameter t ∈ R. Then, using ′ to denote the derivative
with respect to t,

d

dt
(Ldx) =

∂L

∂uαj;k
(uαj;k)

′dx = Euα(L)(uα0;0)
′dx+Div(Au)dx, (7.3)

where Div(Au) consists of the divergence terms arising from the summation and integration
by parts. Note that Xr(L) is obtained from dL/dt by setting [(uα0;0)

′ = Qα
r ]. So, from (7.2)

and (7.3), the Noether conservation law corresponding to invariance under vr is

0 = −Qα
rEuα(L) = Div(Au)

∣∣
[(uα

0;0)
′=Qα

r ]
−Xr(L) = Div(Au)

∣∣
[(uα

0;0)
′=Qα

r ]
+D(Lξr). (7.4)

Evaluating (7.1) on the frame gives

Ldx = ι(L)ι(dx) =: Lκ(ι(x),n, [κ])ι(dx),

where κ denotes the generating invariants that depend on [u] (and possibly also on x). Explicitly,
ι(dx) = J dx, so Lκ = LJ −1. As the frame is projectable, J depends only on x; in particular,
if x is invariant, J = 1.

To obtain the invariantized Euler–Lagrange equations, differentiate the one-form Lκι(dx)
with respect to t. Each κβ depends on t through its dependence on [u], giving rise to the

syzygies dκβ/dt = Hβ
ασα, where σα = ι((uα0;0)

′) and each Hβ
α is a an invariant differential-

difference operator. Specifically,

Hβ
α = ι

(
∂κβ

∂uαj;K

)
D(j)SK,

where D = J −1D is the invariantized total derivative and D(j) := Dj . Note that D commutes
with each SK; thus the invariant derivatives and shifts of κβ can be written as κβj;K := D(j)SKκ

β.
Integration by parts is straightforward: given two functions, f and g,

f(Dg)ι(dx) = f(Dg)dx = {D(fg)− (Df)g}dx = {D(fg)− (Df)g}ι(dx).

AsD(fg)ι(dx) is a divergence, define the adjoint ofD relative to ι(dx) to beD† = −D. (The bold
dagger † distinguishes this adjoint from the standard adjoint, †.) As the frame is projectable,

S†K = S†K = S−K. Therefore, using the notation (−D)(j) := (−1)jD(j), we obtain

d

dt
(Lκι(dx)t) =

∂Lκ

∂κβj;K

dκβj;K
dt

ι(dx)

=

(
(−D)(j)S−K

∂Lκ

∂κβj;K

)
dκβ

dt
ι(dx) +Div(Aκ)ι(dx)

= Eκβ (Lκ)
(
Hβ

ασ
α
)
ι(dx) +Div(Aκ)ι(dx)

=
{(

Hβ
α

)†
(Eκβ (Lκ))

}
σαι(dx) +Div(AH +Aκ)ι(dx). (7.5)
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The one-forms Div(Aκ)ι(dx) and Div(AH)ι(dx) are defined by the above; Div has the same
form as Div, but with D replaced by D. The following identity is useful:

Div
(
A0;A1, . . . , Am

)
ι(dx) = Div

(
A0;JA1, . . . ,JAm

)
dx. (7.6)

Similarly to P∆Es, the ith component of Aκ (resp. AH) is of the form F i
β

(
κβ
)′ (

resp. H i
ασ

α
)
;

here F i
β and H i

α are invariant differential-difference operators.

Proposition 7.1. Suppose that the Lagrangian one-form L(n, x, [u])dx is invariant under an
R-parameter Lie group of point transformations. In the above notation,

Euα(L)(uα0;0)
′dx =

((
Hβ

α

)†
Eκβ (Lκ)

)
σαι(dx), (7.7)

so the invariantized Euler–Lagrange D∆Es are

ι(Euα(L)) =
(
Hβ

α

)†
Eκβ (Lκ) = 0, α = 1, . . . , q. (7.8)

Furthermore,

Div(Au)dx = Div(AH +Aκ)ι(dx). (7.9)

Proof. The proof is essentially the same as for P∆Es. In view of (7.6),

0 =
∑
n

∫
d

dt
(Ldx− Lκι(dx)) =

∑
n

∫
Euα(L)(uα0;0)

′dx−
{(

Hβ
α

)†
(Eκβ (Lκ))

}
σαι(dx).

This holds for arbitrary functions (uα0;0)
′, which are independent at each base point n. Therefore,

(7.7) follows, from which (7.8) is obtained by invariantizing and using the independence of the
functions σα. Equation (7.9) is derived by equating the right-hand sides of (7.3) and (7.5),
taking (7.7) into account. ■

In the original variables, there are two types of contribution to each Noether conservation
law (7.4) for which ξr ̸= 0. The first type arises from integration and summation by parts,
so can be treated in much the same way as for P∆Es. However, unlike the P∆E case, Aκ

cannot be neglected. Each fundamental invariant κβ satisfies vr

(
κβ
)
= 0. However, only the

vertical variables [u] depend on t, so the characteristic form of the generator is used. If t = εr,
then

(
κβ
)′
, evaluated at εr = 0, reduces to

Xr

(
κβ
)
= vr

(
κβ
)
− ξrD

(
κβ
)
= −ξrD

(
κβ
)
= −D

(
κβ
)
ι(ξs)a

s
r(ρ). (7.10)

The last equality arises from (6.3), evaluated on the moving frame ρ.
The counterpart of the remaining term in (7.4), namely D(Lξr), is derived as follows. From

(6.5) and (7.1),

Lξr = LJ−1
x ξ̃sa

s
r(g) = L̃ξ̃sa

s
r(g),

for all g ∈ G; on the moving frame, this amounts to

Lξr = Lκι(ξs)a
s
r(ρ).

Consequently,

D(Lξr)dx = D(Lκι(ξs)a
s
r(ρ))ι(dx). (7.11)

Combining all of the above, we obtain the following formulation of the Noether conservation
laws.
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Proposition 7.2. Suppose that the conditions of Proposition 7.1 hold. Then Noether’s theorem
gives the R conservation laws

Div(Ar)ι(dx) = 0, r = 1, . . . , R, (7.12)

whose components are

A0
r = H0

α{ι(Qα
s )a

s
r(ρ)} − F 0

β

{
D
(
κβ
)
ι(ξs)a

s
r(ρ)

}
+ Lκι(ξs)a

s
r(ρ), (7.13)

Ai
r = H i

α{ι(Qα
s )a

s
r(ρ)} − F i

β

{
D
(
κβ
)
ι(ξs)a

s
r(ρ)

}
, i = 1, . . . ,m. (7.14)

Proof. For each r in turn, replace t by εr and uα by

ûα = uα + εrQα
r (n, x, [u]) +O

(
(εr)2

)
(prolonged as necessary), and evaluate the results at εr = 0. Using the same reasoning as
for P∆Es,

σαr
∣∣
εr=0

=

{
∂(g · uα)
∂uβ

Qβ
r

} ∣∣∣∣
g=ρ

=
{
Q̃α

s a
s
r(g)

}∣∣∣∣
g=ρ

= ι(Qα
s )a

s
r(ρ),

which is substituted for σα in AH. The proof is completed by replacing
(
κβ
)′

in Aκ by the
right-hand side of (7.10), and adding the remaining term (7.11). ■

Corollary 7.3. Each component of the conservation laws (7.12) is equivariant with respect to
the moving frame ρ, because there exist functions f is of the invariants such that

Ai
r = f is(n, ι(x), [κ])a

s
r(ρ), i = 0, . . . ,m, r = 1, . . . , R.

Proof. The invariant differential-difference operators in (7.13) and (7.14) act linearly on prod-
ucts of invariants and adjoint components asr(ρ). Consequently, every term in Ai

r is of the
form ϕila

l
r(ρj;K), where ρj;K = D(j)SKρ and ϕis is invariant. The invariantization of ρ1;0 (in

a matrix representation) is the curvature matrix, ρ1;0ρ
−1 (see [6, 12]). By applying powers of D

to the curvature matrix and eliminating derivatives of order 1, . . . , j−1, one finds that the term
in braces in the identity below is invariant:

ρj;0 =
{
ρj;0ρ

−1
}
ρ.

Shifting this, and using our earlier result that ρ0;Kρ
−1 is invariant for a difference moving frame,

shows that

ρj;K =
{
ρj;Kρ

−1
0;K

}{
ρ0;Kρ

−1
}
ρ =

{
ρj;Kρ

−1
}
ρ

is a product of invariants (in braces) and ρ. The adjoint matrices
(
alr(g)

)
constitute a Lie group

representation, so

ϕila
l
r(ρj;K) =

{
ϕila

l
s

(
ρj;Kρ

−1
)}
asr(ρ),

which is in the required form. ■
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8 Examples

Example 8.1. To illustrate the calculations in a simple context (without any particular appli-
cation), consider the Lagrangian one-form

Ldx =
(u1;0)

2

u0;1 − u0;0
dx, (8.1)

whose Euler–Lagrange equation is

Eu(L) =

(
−2u2;0

u0;1 − u0;0
+

2u1;0u1;1 − (u1;0)
2

(u0;1 − u0;0)2
− (u1;−1)

2

(u0;0 − u0;−1)2

)
= 0. (8.2)

The one-form (8.1) is invariant under the two-parameter Lie group of point transformations

g : (x, n, u) 7−→ (x̃, n, ũ) = (bx, n, bu+ a).

The infinitesimal generators are linear combinations of v1 = ∂u and v2 = x∂x + u∂u, which
yield (ξ1, Q1) = (0, 1) and (ξ2, Q2) = (x, u0;0−xu1;0). Then (7.4) gives the following conservation
laws (expressed as one-forms for comparison):

−Q1Eu(L)dx = D

(
2u1;0

u0;1 − u0;0

)
dx+Dn

(
−(u1;−1)

2

(u0;0 − u0;−1)2

)
dx = 0,

−Q2Eu(L)dx = D

(
u1;0(2u0;0 − xu1;0)

u0;1 − u0;0

)
dx+Dn

(
(u1;−1)

2(xu1;0 − u0;0)

(u0;0 − u0;−1)2

)
dx = 0. (8.3)

Note that (8.3) includes the term D(Lξ2)dx.

Reflecting the identities v1 = bṽ and v2 = −aṽ1 + ṽ2, the adjoint representation is given by

a11(g) = b, a21(g) = 0, a12(g) = −a, a22(g) = 1.

The normalization ι(x) = 1, ι(u0;0) = 0 gives a projectable moving frame ρ, on which

a =
−u0;0
x

, b =
1

x
.

Therefore, ι(dx) = x−1dx and the invariantized total derivative operator is D = xD. On the
moving frame, the adjoint representation has components

a11(ρ) =
1

x
, a21(ρ) = 0, a12(ρ) =

u0;0
x
, a22(ρ) = 1.

A generating set of invariants is

κ1 = ι(u1;0) = u1;0, κ2 = ι(u0;1) =
u0;1 − u0;0

x
,

which satisfy the syzygy

κ10;1 = ι(u1;1) = κ1 + κ21;0 + κ2. (8.4)

The Lagrangian one-form amounts to

Lκι(dx) =

(
κ1
)2

κ2
ι(dx),
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and so

Eκ1(Lκ) =
2κ1

κ2
, Eκ2(Lκ) = −

(
κ1

κ2

)2

.

In terms of σ = ι(u′0;0) = x−1u′0;0, the t-derivatives of the generating invariants are
(
κβ
)′
= Hβσ,

where

H1 = D + id, H2 = S− id.

Consequently,

dLκ

dt
ι(dx) =

(
2κ1

κ2
(
κ1
)′ − (κ1

κ2

)2 (
κ2
)′)

ι(dx) = Eκβ (Lκ)
(
κβ
)′
ι(dx)

= Eκβ (Lκ)
(
Hβσ

)
ι(dx) =

((
Hβ
)†
Eκβ (Lκ)

)
σι(dx) +Div(AH)ι(dx),

where

Div(AH) = D
(
Eκ1(Lκ)σ

)
+Dn

({
S−1Eκ2(Lκ)

}
σ
)
.

In this example, Lκ does not involve derivatives or shifts of the generating invariants, and
hence Div(Aκ) = 0. The invariantized Euler–Lagrange equation is

0 =
(
Hβ
)†
Eκβ (Lκ) = (−D + id)

(
2κ1

κ2

)
+
(
S−1 − id

)(
−
(
κ1

κ2

)2
)

=
2
(
κ1 − κ11;0

)
κ2

+
κ1
(
κ1 + 2κ21;0

)(
κ2
)2 −

(
κ10;−1

κ20;−1

)2

.

For comparison, one can invariantize (8.2) directly, using (8.4) and

ι(u2;0) = κ11;0, ι(u1;−1) = κ10;−1, ι(u0;−1) = −κ20;−1.

From Proposition 7.2, the conservation laws given by Noether’s theorem amount to

D
{
(Eκ1(Lκ)ι(Qs) + Lκι(ξs))a

s
r(ρ)

}
ι(dx)

+Dn

{{
S−1Eκ2(Lκ)

}
ι(Qs)a

s
r(ρ)

}
ι(dx) = 0. (8.5)

Substituting

ι(Qs)a
s
1(ρ) =

1

x
, ι(Qs)a

s
2(ρ) =

u0;0
x

− κ1, ι(ξs)a
s
1(ρ) = 0, ι(ξs)a

s
2(ρ) = 1,

into (8.5) gives the conservation laws

0 = D
{
2κ1

xκ2

}
ι(dx) +Dn

−1

x

(
κ10;−1

κ20;−1

)2
 ι(dx),

0 = D

{
2κ1

κ2

(u0;0
x

− κ1
)
+

(
κ1
)2

κ2

}
ι(dx) +Dn


(
κ10;−1

κ20;−1

)2 (
κ1 − u0;0

x

) ι(dx)

= D
{
κ1

κ2

(
2u0;0
x

− κ1
)}

ι(dx) +Dn


(
κ10;−1

κ20;−1

)2 (
κ1 − u0;0

x

) ι(dx).
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Example 8.2. Method of lines semi-discretizations are a common source of D∆Es with just one
continuous independent variable. The nonlinear Schrödinger (NLS) equation for a field with real
and imaginary parts u and v respectively has the following (non-integrable) semi-discretization,
with uniform step length h:

−v1;0 + u0;0
(
u20;0 + v20;0

)
+ h−2(u0;−1 − 2u0;0 + u0;1) = 0,

u1;0 + v0;0
(
u20;0 + v20;0

)
+ h−2(v0;−1 − 2v0;0 + v0;1) = 0.

These are the Euler–Lagrange equations corresponding to the Lagrangian one-form

Ldx =

{
1

2
(v0;0u1;0 − u0;0v1;0) +

1

4

(
u20;0 + v20;0

)2
− 1

2
h−2

(
(u0;1 − u0;0)

2 + (v0;1 − v0;0)
2
)}

dx,

which is invariant under the two-parameter abelian Lie group of point transformations

g : (x, n, u, v) 7−→ (x̃, ñ, ũ, ṽ) = (x+ a, n, u cos b+ v sin b,−u sin b+ v cos b).

The infinitesimal generators are v1 = ∂x and v2 = v∂u − u∂v, so (using variable names rather
than indices, for clarity)

(ξ1, Q
u
1 , Q

v
1) = (1,−u1;0,−v1;0), (ξ2, Q

u
2 , Q

v
2) = (0, v0;0,−u0;0).

As the Lie group is abelian, the adjoint representation is the identity, so asr(g) = δsr for all g.
We now choose the normalization ι(x) = 0, ι(v0;0) = 0, temporarily restricting attention

to u0;0 > 0. (Other normalizations can be used for the remaining coordinate patches.) This
gives the frame ρ defined by

a
∣∣
ρ
= −x, b

∣∣
ρ
= tan−1

(
v0;0
u0;0

)
.

In the calculations that follow, cos b and sin b (but not b) are evaluated on the frame, so we use

a
∣∣
ρ
= −x, cos b

∣∣
ρ
=

u0;0√
u20;0 + v20;0

, sin b
∣∣
ρ
=

v0;0√
u20;0 + v20;0

,

which extends to other coordinate patches. Note that ι(dx) = dx, and so the invariantized total
derivative is D = D. The invariants are generated by

κ1 = ι(u0;0) =
√
u20;0 + v20;0, κ2 = u0;0v1;0 − v0;0u1;0, κ3 = u0;0u0;1 + v0;0v0;1.

To see this, note that all derivatives can be obtained from

u1;0 =
u0;0κ

1κ11;0 − v0;0κ
2(

κ1
)2 , v1;0 =

u0;0κ
2 + v0;0κ

1κ11;0(
κ1
)2 ,

and that under the constraint ι(v0;1) ≥ 0, all shifts can be obtained from

u0;1 =
u0;0κ

3 − v0;0ϕ(
κ1
)2 , v0;1 =

u0;0ϕ+ v0;0κ
3(

κ1
)2 ,

where

ϕ =
{(
κ1κ10;1

)2 − (κ3)2}1/2.
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We adopt this constraint for definiteness; if it is not satisfied, replace ϕ by −ϕ throughout. By
calculating u1;1 (or v1;1), one obtains the syzygy

κ3κ11;1
κ10;1

− κ31;0 +
κ11;0
κ1

+
ϕκ2(
κ1
)2 −

ϕκ20;1(
κ10;1

)2 = 0.

In terms of the generating parametric derivatives,

σu = ι(u′0;0) =
u0;0u

′
0;0 + v0;0v

′
0;0

κ1
, σv = ι(v′0;0) =

u0;0v
′
0;0 − v0;0u

′
0;0

κ1
,

the derivatives of the generating invariants are

(
κ1
)′
= σu,

(
κ2
)′
=

2κ2

κ1
σu +

(
κ1D − κ11;0

)
σv,

(
κ3
)′
=

(
κ3

κ1
+

κ3

κ10;1
S

)
σu +

(
ϕ

κ1
− ϕ

κ10;1
S

)
σv.

As ι(dx) = dx and D = D, the invariant Euler–Lagrange equations and conservation laws can
be calculated directly from

Lκ = −1

2
κ2 +

1

4

(
κ1
)4 − 1

2
h−2

((
κ10;1

)2 − 2κ3 +
(
κ1
)2)

.

Differentiating this, we obtain

d

dt
Lκ = − 1

2

(
κ2
)′
+
(
κ1
)3(

κ1
)′ − h−2

(
κ10;1

(
κ10;1

)′ − (κ3)′ + κ1
(
κ1
)′)

=
{(
κ1
)3 − 2h−2κ1

}(
κ1
)′ − 1

2

(
κ2
)′
+ h−2

(
κ3
)′
+Dn

(
−h−2κ1

(
κ1
)′)︸ ︷︷ ︸

DivAκ

(8.6)

=

{(
κ1
)3 − 2κ1

h2
− κ2

κ1
+

κ3

h2κ1
+

κ3

h2κ10;1
S

}
σu

+

{
−1

2
κ1D +

1

2
κ11;0 +

ϕ

h2κ1
− ϕ

h2κ10;1
S

}
σv +Dn

(
−h−2κ1

(
κ1
)′)

=

{(
κ1
)3 − 2κ1

h2
− κ2

κ1
+

κ3

h2κ1
+
κ30,−1

h2κ1

}
σu +

{
κ11;0 +

ϕ

h2κ1
− S−1ϕ

h2κ1

}
σv

+D

(
−1

2
κ1σv

)
+Dn

(
κ30,−1

h2κ1
σu − S−1ϕ

h2κ1
σv

)
+Dn

(
−h−2κ1

(
κ1
)′)
.

Consequently, the invariantized Euler–Lagrange equations are

ι(Eu(L)) =
(
κ1
)3 − 2κ1

h2
− κ2

κ1
+

κ3

h2κ1
+
κ30,−1

h2κ1
= 0,

ι(Ev(L)) = κ11;0 +
ϕ

h2κ1
− S−1ϕ

h2κ1
= 0.

In this example, the conservation laws have contributions from both Aκ (see (8.6)) and AH.
Using asr(ρ) = δsr and

ι(Qu
1) = −κ11;0, ι(Qv

1) = −κ2/κ1, ι(Qu
2) = 0,

ι(Qv
2) = −κ1, ι(ξ1) = 1, ι(ξ2) = 0,
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we obtain the following conservation laws from Proposition 7.2:

0 = D

{
−1

2
κ1ι(Qv

1) + ι(ξ1)L
κ

}
+Dn

{
κ30,−1

h2κ1
ι(Qu

1)−
S−1ϕ

h2κ1
ι(Qv

1)−
κ1

h2
(
−ι(ξ1)κ11;0

)}

= D

{
1

4

(
κ1
)4 − (κ10;1)2

2h2
+
κ3

h2
−
(
κ1
)2

2h2

}
+Dn

{
−
κ11;0κ

3
0,−1

h2κ1
+
κ2S−1ϕ

h2
(
κ1
)2 +

κ1κ11;0
h2

}
,

0 = D

{
−1

2
κ1ι(Qv

2)

}
+Dn

{
κ30,−1

h2κ1
ι(Qu

2)−
S−1ϕ

h2κ1
ι(Qv

2)

}

= D

{
1

2

(
κ1
)2}

+Dn

{
S−1ϕ

h2

}
.

9 Concluding remarks

For P∆Es and D∆Es, the prolongation space over a fixed base point n provides a continuous
setting in which moving frames can be used. Difference moving frames respect the ordering
of each discrete independent variable and the arbitrariness of the base point. For variational
problems, we have shown how to calculate the invariantized Euler–Lagrange equations and
equivariant Noether conservation laws directly from an invariant Lagrangian, Lκ.

We have treated the coordinates ni on the lattice of independent variables, Zm, as being
fixed by the Lie group of transformations. For a formulation that allows discrete symmetries
of the lattice, it would be necessary to replace the Lagrangian Lκ by the Lagrangian m-form,
Lκvol, where vol denotes the difference volume form (see [8, 13]). This adds complexity, but
little extra insight. However, when each ni is fixed, only the coefficients of difference forms are
transformed by the group action, so one can use moving frames as we have done, without the
additional machinery of difference forms.

Our treatment of D∆Es has been restricted to a single continuous independent variable and
a projectable moving frame, enabling the shift and invariant differential operators to commute.
More generally, let p be the number of continuous independent variables. If p > 1, the complexity
increases, because the invariant differential operators do not necessarily commute with one
another. However, if the moving frame is projectable, all shift operators commute with the
invariant derivatives, enabling existing results from PDE theory to be used for the differential
part of the calculations. The requirement for the group action to be projectable is not sufficient
to guarantee the existence of a projectable moving frame. Nevertheless, projectable moving
frames are relevant to many D∆Es of interest, including some well-known integrable systems
and method of lines semi-discretizations of PDEs.
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