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Abstract. We compute the Tracy–Widom distribution describing the asymptotic distribu-
tion of the largest eigenvalue of a large random matrix by solving a boundary-value problem
posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways.
The first method is a second-order finite-difference method and the second is a highly accu-
rate Fourier spectral method. Since β is simply a parameter in the boundary-value problem,
any β > 0 can be used, in principle. The limiting distribution of the nth largest eigenvalue
can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl.
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1 Introduction

Tracy and Widom [23, 24, 25] introduced the Tracy–Widom distribution that gives the limiting
distribution of the rescaled largest eigenvalue of a random matrix taken from an appropriate
symmetry class. More precisely, the largest eigenvalue λmax satisfies the following fundamental
limit

lim
n→∞

P
(
n1/6(λmax(An)− 2

√
n) ≤ x

)
= Fβ(x) for all x ∈ R,

where Fβ is the Tracy–Widom distribution and β = 1, 2, 4 if An ∼ Gaussian orthogonal
ensemble, Gaussian unitary ensemble, Gaussian symplectic ensemble, respectively.

For an n × n Gaussian ensemble An with ordered eigenvalues {λj}nj=1, the joint probability
density function (jpdf) for its eigenvalues is given by

ρ (λ1, λ2, . . . , λn) = Z−1
n,β

∏
i

e−βλ2
i /4
∏
i<j

|λj − λi|β , λ1 ≥ λ2 ≥ · · · ≥ λn, (1.1)

where Zn,β is the partition function. For β = 1, 2, 4, (1.1) is solvable: all correlation functions in
finite dimensions can be explicitly calculated using Hermite polynomials. This provides defini-
tive local limit theorems and establishes clear limits for the random points [15]. Importantly,
(1.1) also describes a one-dimensional Coulomb gas at inverse temperature β for any β > 0.
If β ̸= 1, 2, 4, 6, there are no known explicit formulae which appear amenable to asymptotic
analysis (see, for example, [10, 13, 20] for β = 6). One, in general, must resort to numerical
computations, see [3] for β = 1, 2, 4.

This paper is a contribution to the Special Issue on Evolution Equations, Exactly Solvable Mod-
els and Random Matrices in honor of Alexander Its’ 70th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Its.html
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Dumitriu and Edelman [7] established that a family of symmetric tridiagonal (Jacobi) matrix
models have (1.1) as their eigenvalue density for any β > 0. More specifically, the matrix given by

Hβ
n =

1√
β


g χ(n−1)β

χ(n−1)β g χ(n−2)β

χ(n−2)β g
. . .

. . .
. . . χβ

χβ g

 , (1.2)

has (1.1) as the jpdf of its eigenvalues. Here the entries are independent random variables, up

to symmetry, g ∼ N(0, 2) and χk ∼ Chi(k). We call Hβ
n the β-Hermite ensemble.

Sutton and Edelman [8, 21] then presented an argument1 describing how the spectrum of the
rescaled operator

H̃β
n = n1/6

(
2
√
nI −Hβ

n

)
,

where I is the n×n identity matrix, should be described by the spectrum of the stochastic Airy
operator

Hβ = − d2

dx2
+ x+

2√
β
b′x,

as n → ∞, where b′x is standard Gaussian white noise.
As a result, the following eigenvalue problem was considered in [19]

Hβf = Λf on L2(R+)

with a Dirichlet boundary condition f(0) = 0. Ramı́rez, Rider, and Virág [19] proved the
following theorem.

Theorem 1.1. With probability one, for each k ≥ 0, the set of eigenvalues of Hβ has a well-

defined (k + 1)st lowest element Λk. Moreover, let λ1 ≥ λ2 ≥ · · · denote the eigenvalues of Hβ
n .

Then the vector(
n1/6(2

√
n− λl)

)
l=1,...,k

converges in distribution to (Λ0,Λ1, . . . ,Λk−1) as n → ∞.

Ramı́rez, Rider, and Virág showed that the distribution of −Λ0 is a consistent definition of
Tracy–Widom(·) for general β > 0. Based on [19, 26], Bloemendal and Viraǵ [1, 2] considered
a generalized eigenvalue problem

Hβf = Λf on L2(R+)

with boundary condition f ′(0) = ωf(0), where ω ∈ R represents a scaling parameter. Let Hβ,ω

denote Hβ together with this boundary condition. According to [19], the distribution Fβ,ω

of −Λ0 in the case ω = +∞ thus coincides with Tracy–Widom for general β > 0.
Bloemendal and Virág [2] further showed that F = Fβ,ω can be characterized using the

solution of a boundary value problem, as we now discuss in the following section. We also
point out that Bloemendal [1] provided Mathematica code to approximate F . The goal of the
current work is to expand and improve upon this scheme.

This paper is laid out as follows. In Section 2, we outline our two algorithms to compute the
Tracy–Widom distribution. In Section 3, we validate and compare our methods. In Section 4, we
present a number of additional numerical results. We also include two appendices to discuss some
nuances in the numerical algorithms (Appendix A) and to discuss the large β limit (Appendix B).
Code to produce all figures in this paper can be found here [27].

1A version of this argument was first presented by Edelman at the SIAM Conference on Applied Linear Algebra
held at the College of William & Mary in 2003.
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2 Algorithm description

The Tracy–Widom distribution function Fβ can be characterized as follows [1]. Consider

∂F

∂x
+

2

β

∂2F

∂ω2
+
(
x− ω2

)∂F
∂ω

= 0 for (x, ω) ∈ R2, (2.1)

with boundary conditions given by

F (x, ω) → 1 as x, ω → ∞ together,

F (x, ω) → 0 as ω → −∞ withx bounded above.

Then [2, Theorem 1.7]

Fβ(x) = lim
ω→∞

F (x, ω). (2.2)

Using ω = − cot θ, we rewrite (2.1) as

∂H

∂x
+

(
2

β
sin4 θ

)
∂2H

∂θ2
+

[(
x+

2

β
sin 2θ

)
sin2 θ − cos2 θ

]
∂H

∂θ
= 0, (2.3)

with boundary condition

H(x, 0) = 0.

To address the boundary condition as x → ∞ and θ → π, we truncate the domain at a finite
value, denoted as x = x0 > 0. We then employ the Gaussian asymptotics established by
Bloemendal [1, Theorem 4.1.1] to obtain the following approximate asymptotic initial condi-
tion [1, p. 103]:

H(x0, θ) =

Φ

(
x0 − cot2 θ√
(4/β) cot θ

)
, 0 ≤ θ ≤ π/2,

1, π/2 ≤ θ.

(2.4)

Here Φ denotes the standard normal distribution function. Note that H(x0, θ) is continuous
in both x0 > 0 and θ ≥ 0. One then approximates the undeformed Tracy–Widom distribu-
tion Fβ(x) at θ = π by ω = − cot θ and (2.2), i.e., Fβ(x) ≈ H(x, π).

2.1 Finite-difference discretization

One way to solve this boundary-value problem is by discretizing it using finite differences, see,
for example, [12]. For 0 ≤ n ≤ N , 0 ≤ m ≤ M , define

xn = x0 + n∆x, θm = mh.

Given that β > 0, one integrates equation (2.3) backward in “time” with respect to the time-
like variable x to guarantee its well-posedness: ∆x < 0. Denote the approximation of H(x, θm)
by Hm(x). We then replace partial derivatives of H with respect to θ by centered differences,
with grid spacing h. The method of lines formulation reads

∂HHHM

∂x
= −

(
2 sin4 θ

βh2

)
ŤHHHM +

[(
x+ 2

β sin 2θ
)
sin2 θ − cos2 θ

]
2h

ǓHHHM , (2.5)
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where HHHM (x) = [H1(x), H2(x), . . . ,HM (x)]T, Mh = θM , and

Ť =



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


, Ǔ =



0 −1
1 0 −1

1 0 −1
. . .

. . .
. . .

1 0 −1
−1 4 −3


. (2.6)

HHHM excludesH0 sinceH0(x) = 0. The coefficients in the last row of Ǔ come from the parameters
of the two-step backward difference formula (BDF2). Note that there is no need to replace the
last row of Ť using a backward difference formula since θM = π and, mathematically, there is
no need to set an additional boundary condition since (2.5) has vanishing diffusivity for θ = π.

Let

T (β,θθθM , h) := −
(
2 sin4 θθθM

βh2

)
Ť =


−2 sin4 θ1

βh2
. . .

−2 sin4 θM
βh2

 Ť , (2.7)

and

U(β, x,θθθM , h) :=

[(
x+ 2

β sin 2θθθM
)
sin2 θθθM − cos2 θθθM

]
2h

Ǔ

=


(x+ 2

β sin 2θ1) sin
2 θ1 − cos2 θ1

2h
. . .

(x+ 2
β sin 2θM ) sin2 θM − cos2 θM

2h

 Ǔ , (2.8)

where θθθM = [θ1, θ2, . . . , θM ]T. Then

∂HHHM

∂x
= [T (β,θθθM , h) + U(β, x,θθθM , h)]HHHM . (2.9)

Noting that x is the time-like variable, we apply the trapezoidal rule with time step ∆x < 0
to (2.9) yielding

HHHn+1
M −HHHn

M

∆x
=

1

2

[
T (β,θθθM , h)HHHn

M + U(β, xn, θθθM , h)HHHn
M

]
+

1

2

[
T (β,θθθM , h)HHHn+1

M + U(β, xn+1, θθθM , h)HHHn+1
M

]
,

where HHHn
M ≈HHHM (xn). Upon rearranging, this gives[

I − ∆x

2
T (β,θθθM , h)− ∆x

2
U(β, xn+1, θθθM , h)

]
HHHn+1

M

=

[
I +

∆x

2
T (β,θθθM , h) +

∆x

2
U(β, xn, θθθM , h)

]
HHHn

M . (2.10)

Finally, we obtain Fβ(x) ≈ F̃β(x) := HM (x) ≈ Hn
M , n = 0, 1, . . . , N . Below, we also explore

other time integration methods, in addition to the trapezoidal method. We use the trapezoidal
method as our default due to its A-stability, but it can be outperformed by BDF methods in
this context.
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2.2 Spectral discretization

To obtain better accuracy, we apply a Fourier spectral method. As before, for 0 ≤ n ≤ N , define
xn = x0 + n∆x. Suppose H(x, θ) =

∫ θ
0 ρ(x, θ′) dθ′, then we rewrite (2.3) as

∂H

∂x
+

(
2

β
sin4 θ

)
∂ρ

∂θ
+

[(
x+

2

β
sin 2θ

)
sin2 θ − cos2 θ

]
ρ = 0.

Upon taking the derivative with respect to θ on both sides, we arrive at a partial differential
equation for ρ(x, θ),

∂ρ

∂x
+

(
8

β
sin3 θ cos θ

)
∂ρ

∂θ
+

(
2

β
sin4 θ

)
∂2ρ

∂θ2

+

[
(2x+ 2) sin θ cos θ +

2

β

(
2 sin2 θ cos 2θ + 2 sin θ cos θ sin 2θ

)]
ρ

+

[(
x+

2

β
sin 2θ

)
sin2 θ − cos2 θ

]
∂ρ

∂θ
= 0. (2.11)

Now, suppose

ρ(x, θ) ≈
M∑

m=−M

am(x)e2imθ/l, θ ∈ [0, lπ), θM = lπ. (2.12)

Substituting (2.12) in (2.11) gives a system of ordinary differential equations for am(x), m =
−M, . . . ,M , after truncation

daaaM (x)

dx
= (A+ xB)aaaM (x), aaaM (x) =

a−M (x)
...

aM (x)

 , (2.13)

where

A = − 2

β

(
3

8
I − 1

4
S−l −

1

4
S+l +

1

16
S+2l +

1

16
S−2l

)
D2

+

[
1

2
I +

1

4
S−l +

1

4
S+l −

2

β

(
1

2i
S−l −

1

2i
S+l

)(
1

2
I − 1

4
S+l −

1

4
S−l

)]
D1

−
[
8

β

(
1

−8i
S+3l/2 +

1

8i
S−3l/2 +

3

8i
S−l/2 −

3

8i
S+l/2

)(
1

2
S−l/2 +

1

2
S+l/2

)]
D1

− 4

β

(
1

2
I − 1

4
S+l −

1

4
S−l

)(
1

2
S+l +

1

2
S−l

)
− 4

β

(
1

2i
S−l/2 −

1

2i
S+l/2

)(
1

2
S+l/2 +

1

2
S−l/2

)(
1

2i
S−l −

1

2i
S+l

)
− 2

(
1

2i
S−l/2 −

1

2i
S+l/2

)(
1

2
S+l/2 +

1

2
S−l/2

)
, (2.14)

and

B =

(
− 1

2
I +

1

4
S−l +

1

4
S+l

)
D1 − 2

(
1

2i
S−l/2 −

1

2i
S+l/2

)(
1

2
S+l/2 +

1

2
S−l/2

)
. (2.15)
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Here S±k represent the (Fourier modes) shift matrices, S±k = Sk
±1, where

S+1 =



0 1 0
0 1

0 1
. . .

. . .

0 1
1 0


, S−1 =



0 1
1 0
0 1 0

. . .
. . .

1 0 0
0 1 0


.

Also D1 and D2 represent the first and second-order differentiation matrices in the Fourier space,
i.e., D2 = D2

1, where

D1 =


−2iM/l

−2i(M − 1)/l
. . .

2i(M − 1)/l
2iM/l

 .

The Fourier coefficients of the initial condition are obtained via

am(x0) =
1

lπ

∫ lπ

0
ρ(x0, θ)e

−2imθ/l dθ. (2.16)

Instead of applying the second-order accurate trapezoidal rule to integrate the system of ODEs
for ρ(x, θ), we suggest the use of a five-step backward differentiation formula method (BDF5),
see [12, Section 8.4]. To use BDF5, we need four more starting conditions, i.e., aaaM (x0 − i∆x),
i = 1, 2, 3, 4, which can be obtained by (2.4) and (2.16). We then proceed with BDF5 to solve
for aaanM ≈ aaaM (xn)

[137I − 60∆x (A+ xnB)]aaanM = 300aaan−1
M − 300aaan−2

M + 200aaan−3
M − 75aaan−4

M + 12aaan−5
M . (2.17)

Other time integration methods can be used, and this will be discussed further below.
Finally, the value of H(x, θ) can be recovered from

H(x, θ) ≈
∫ θ

0

M∑
m=−M

am(x)e2imθ′/l dθ′ =
M∑

m=−M

am(x)

∫ θ

0
e2imθ′/l dθ′.

The Tracy–Widom distribution can then be approximated by setting θ = π,

Fβ(x) ≈ F̃β(x) =

M∑
m=−M

am(x)

∫ π

0
e2imθ′/l dθ′ =

M∑
m=−M

am(x)
l

2im

(
e2imπ/l − 1

)
,

from which we find

Fβ(xn) ≈ F̃β(xn) ≈
M∑

m=−M

anm
l

2im

(
e2imπ/l − 1

)
, n = 0, 1, . . . , N.

3 Algorithm validation and comparison

At this point, we have approximated the values of Fβ(x) on equally-spaced grid points x0, x1,
. . . , xN . To obtain a continuous function, we perform Fourier interpolation. Since Fourier
interpolation has high accuracy when the function being interpolated is periodic, we define

φ(x) =
erf(x) + 1

2
, x ∈ R,
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where erf denotes the error function [18]. Then consider

Gβ(x) := F̃β(x)− φ(x),

which is nearly a periodic function. Note that other functions can also be used instead of the error
function erf(x) in constructing a periodic function. We perform Fourier interpolation to Gβ(x)
on the grid x1, . . . , xN . The resulting interpolant is then evaluated on a shifted and scaled
Chebyshev grid on [xN , x0]. By adding back in φ(x) evaluated on the same Chebyshev grid and
then interpolating with Chebyshev polynomials, we obtain a useful high-accuracy approximation
of Fβ(x). The number of Chebyshev coefficients is user-decided (we use 103 by default).

We point out that using either (2.5) or (2.13), we can also obtain the approximation of F ′
β(x)

on the grid x0, x1, . . . , xN at nearly no extra cost. We then perform the same procedure of
interpolation to get an approximation of F ′

β(x), without using φ(x) since the function being
interpolated is already nearly periodic.

Algorithm 1 shows the pseudocode for the Fourier interpolation, where T is the grid points
xN , xN−1, . . . , x0 with grid spacing ∆x, K is an integer that gives the number of Chebyshev
coefficients, F is the value of F̃β(xj), j = 1, . . . , N , and f is the value of F̃ ′

β(xj). We think of F, f
as functions on T and need to extend them to all of [xN , x0].

Algorithm 1 Fourier interp(T, K, F, f)

1: Set D=[min T,max T]
2: Set G(T)=F(T)-φ(T)
3: Perform Fourier interpolation to G(T) and f(T) to obtain the interpolant G(x) and f(x), x ∈ D

4: Set F̃=G(x̄)+φ(x̄) and f̃(x̄)=f(x̄), where x̄ is a Chebyshev grid on D with K points
5: Perform Chebyshev interpolation to F̃ and f̃ and return the interpolants

For the finite-difference discretization using trapezoidal method to compute either the cumu-
lative distribution function (cdf) or the probability density function (pdf) of Fβ using TW(β), as
provided in TracyWidomBeta.jl, the following default values for the parameters are used:

x0 =

⌊
13√
β

⌋
, xN = −10, ∆x = −10−3, θM = π, K = 103, M = 103, (3.1)

where ⌊·⌋ denotes the floor function.

Notation. Throughout we use TW(β; params) to refer to our implementation with different
choices of parameters. For example,

TW(β; method="finite", step="trapz", pdf=true),

refers to using the finite-difference discretization, time-stepped with the trapezoidal method,
outputting an approximation of F ′

β with the default parameters (3.1).

The default values of x0 and xN are chosen to be ⌊13/
√
β⌋ and −10 respectively so that

Fβ(x0) ≈ 1 and Fβ(xN ) ≈ 0 for β ≥ 1. Though not optimal, larger values of x0 and smaller
values of xN can also be used. See Section 3.3.3 for a discussion on the selection of the default
value for x0. For 0 < β < 1, a larger domain for x should be used. The values of ∆x and M are
chosen so that M = ⌊−1/∆x⌋. In this way, the local truncation error of the trapezoidal method
is of the optimal order. Algorithm 2 shows the pseudocode for TW(β; pdf=true). Step 6 may be
replaced by solving an alternate discretization of (2.9).

Similarly, for the spectral discretization using BDF5 method to compute either the cdf or the
pdf using

TW(β; method="spectral", step="bdf5") or

TW(β; method="spectral", step="bdf5", pdf=true),
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Algorithm 2 TW(β; pdf=true)

1: Set the values of x0, xN , ∆x, θM, K, and M as in (3.1)
2: Set x=x0 : ∆x : xN
3: Set up the initial condition as in (2.4)
4: Set up the matrices as in (2.6), (2.7), and (2.8)
5: for m=1, . . . , length(x)-1 do
6: Solve (2.10) and denote the result by H

7: Use (2.5) and denote the result by h

8: end for
9: Take the values of H and h for θ=π and denote the results by F and f

10: Perform Algorithm 1 with F, f, and T=x
11: Return the interpolant for f̃

the following values for the parameters are used:

x0 =

⌊
13√
β

⌋
, xN = −10, ∆x = −10−3, θM = 20π, K = 103, M = 8× 103. (3.2)

One thing to note here is that θM is set to be 20π, which is much larger than π as used for finite-
difference discretization. This setting is necessary since a periodic boundary condition (2.12)
is imposed on ρ(x, θ), or equivalently, on H(x, θ). If the length of the domain, θM , is not
large enough, due to periodicity, the approximation to H(x, θ) will propagate to the end of
the domain and reappear at the lower boundary θ = 0. In other words, θM depends on the
speed of propagation of the approximation to H(x, θ), and it turns out that setting θM = 20π
is sufficient. M is set to be 8 × 103 regardless of the value of ∆x to make sure we have large
enough number of Fourier modes to represent the initial condition. See Section 3.4 for details
on which value of M to use for each method in terms of both accuracy and computation time.
Algorithm 3 shows the pseudocode for TW(β; method="spectral", step="bdf5", pdf=true). As
with the finite-difference method, step 11 can be replaced with solving an alternate discretization
of (2.13).

Algorithm 3 TW(β; method="spectral", step="bdf5", pdf=true)

1: Set the values of x0, xN , ∆x, θM, K, and M as in (3.2)
2: Set x=x0 : ∆x : xN
3: Set D=0 : h : θM − h with h=θM/M
4: Set up the initial conditions using (2.4) and (2.16).
5: Construct matrices A and B as in (2.14) and (2.15)
6: Set N=-floor(M/2) : 1 : floor((M−1)/2)
7: for m ∈ N do
8: Compute the vector integ= l

2im

(
e2imπ/l-1

)
with l=θM/π

9: end for
10: for k=2 : length(x) do
11: Solve (2.17) to find anM
12: Use (2.13) and denote the result by bn

M

13: end for
14: Compute F=

〈
anM, integ

〉
and f=

〈
bn
M, integ

〉
15: Perform Algorithm 1 with F, f, and T=x
16: Return the interpolant for f̃
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(a) Zoomed-out view
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Figure 1. The absolute stability region of trapezoidal method applied to the finite-difference discretiza-
tion (the maroon-shaded region along with the orange boundary curve) and the eigenvalues of ∆x(T +U)
(the red dots with white boundary) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 103.

(a) Zoomed-out view

Im
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)

Re(z)
(b) Zoomed-in view

Im
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)
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Figure 2. The absolute stability region of BDF3 applied to the finite-difference discretization (the
maroon-shaded region along with the orange boundary curve) and the eigenvalues of ∆x(T +U) (the red
dots with white boundary) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 103.

Remark 3.1. To optimize the use of the spectral method, one should consider θ from the
interval [k1(x)π, k2(x)π], where k1, k2 are x-dependent integers that adapt to where the solution
is non-zero, see Figure 10.

Note that when β is very large, numerical instabilities can occur. This instability arises
primarily because the initial condition closely resembles a step function. To get an accurate
result in this case, first of all, one needs to use finer grid for x and larger value for M , i.e.,
refinement in both time and space. Also, one needs to use more Chebyshev coefficients. With
current values for the parameters, TW(β) and TW(β; method="spectral", step="bdf5") exhibits
stability roughly for 1 ≤ β ≤ 30.

3.1 Eigenvalues of ∆x[T (β, θM , h) + U(β, x, θM , h)]
for finite-difference discretization

The default time-stepping routine for the finite-difference discretization is the trapezoidal me-
thod but BDF3, BDF4, BDF5, and BDF6 can also be used on (2.5) to solve for HHHM . It turns
out that with values for the parameters as in (3.1), convergence occurs for all these methods.
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(a) Zoomed-out view

Im
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)

Re(z)
(b) Zoomed-in view

Im
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Re(z)

Figure 3. The absolute stability region of BDF5 applied to the spectral discretization (the maroon-
shaded region along with the orange boundary curve) and the eigenvalues of ∆x(A+ xB) (the red dots
with white boundary) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 8× 103.

(a) Zoomed-out view

Im
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)

Re(z)
(b) Zoomed-in view

Im
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Re(z)

Figure 4. The absolute stability region of BDF6 applied to the spectral discretization (the maroon-
shaded region along with the orange boundary curve) and the eigenvalues of ∆x(A+ xB) (the red dots
with white boundary) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 8× 103.

Since with the finite-difference discretization, the trapezoidal method and BDF3 are usually
used, Figures 1 and 2 show the absolute stability regions of trapezoidal method and BDF3 along
with eigenvalues of ∆x(T + U) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 103.
The eigenvalues in the left-half plane are firmly within the region of absolute stability in each
case.

3.2 Eigenvalues of ∆x(A + xB) for the spectral discretization

Figures 3 and 4 show the absolute stability regions of BDF5 and BDF6 along with eigenvalues
of ∆x(A + xB) for β = 2, x = x0, x0 − 1, . . . , xN , ∆x = −10−3, and M = 8 × 103. It is clear
that, with the values of the parameters given as in (3.2), the eigenvalues in the left-half plane
are firmly within the region of absolute stability for these methods. We choose BDF5 over
BDF6 because with the same values of these parameters, the performance is roughly the same
yet BDF5 has a larger absolute stability region. Selecting ∆x is more nuanced than one might
think, see Appendix A for more details.
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3.3 Error analysis

We now compare the accuracy of these two algorithms when computing the cdf for β = 1, 2, 4.
For reference solutions, we implement the Fredholm determinant representations for β = 1, 2, 4
[3, 4, 9] by porting the code in the Julia package RandomMatrices to Mathematica and
implementing it in high-precision arithmetic. This ensures that our reference solutions are
accurate to beyond the ≈ 10−16 machine precision for standard double precision. Observe that
for F4(x), x should be divided by a factor of 21/6. This difference in variance convention has
also been underscored in [16, p. 47], [14, 17], and [1, Remark 5.1.4].

3.3.1 Error across the domain

(a) FD (Trapz)

E
rr
o
r

x
(b) SD (BDF5)

E
rr
or

x

Figure 5. Absolute errors from the two algorithms are presented over the domain x ∈ [−10, 13] for
β = 1, 2, 4 with x0 = ⌊13/

√
β⌋ and ∆x = −10−3. For the finite-difference discretization, M = 103 is

used, while for the spectral discretization, M = 8× 103 is employed.

With values of the parameters given as in (3.1) and (3.2), Figure 5 shows the absolute errors
of the two algorithms across the domain. Tables 1 and 2 show the absolute errors of some
selected x-values with same values for the parameters.

For finite-difference discretization, from either Figure 5 (a) or Table 1, the error is roughly on
the order of 10−7 around the peak of the distribution, and it improves when x approaches either
end of the domain. This is due to the fact that exact values, 0 and 1, for the initial condition
are imposed on the endpoints of the domain, and the Dirichlet boundary condition ensures that
the solution tends to zero.

For spectral discretization, from either Figure 5 (b) or Table 2, the error is roughly on the
order of 10−13 throughout the entire domain. Regardless of the order of error, the reason for this
discrepancy from finite-difference discretization near the edges of the domain is that an error is
introduced for the initial condition when we represent ρ(x, θ) in terms of a truncated Fourier
series.

3.3.2 Order of error

For β = 2 evaluated at x = −2, Figure 6 shows the order of error plots of finite-difference
discretization and spectral discretization. We choose x = −2 since it is near the peak of the
distribution. With ∆x = −0.004,−0.002,−0.001 for finite-difference discretization and ∆x =
−0.2,−0.1,−0.05 for spectral discretization, Figure 7 shows the change of error as the value
of |∆x| decreases.



12 T. Trogdon and Y. Zhang

x
β

1 2 4

−8 1.832(−15) 5.024(−17) 1.950(−17)

−6 7.278(−10) 9.602(−12) 4.766(−16)

−4 3.715(−7) 3.600(−7) 1.807(−7)

−2 6.553(−7) 1.027(−7) 2.020(−6)

0 1.295(−6) 4.014(−7) 3.319(−8)

2 4.116(−7) 1.137(−8) 6.185(−12)

4 3.352(−8) 3.286(−11) 1.565(−14)

6 9.575(−10) 3.186(−14) 5.995(−15)

Table 1. Absolute errors of finite-difference discretization using trapezoidal method with values of the
parameters as in (3.1).

x
β

1 2 4

−8 5.912(−13) 6.870(−13) 3.509(−13)

−6 3.278(−13) 3.470(−14) 2.021(−13)

−4 9.057(−13) 4.580(−13) 4.525(−13)

−2 2.663(−12) 2.740(−12) 4.809(−12)

0 2.162(−12) 1.090(−13) 1.135(−12)

2 7.924(−13) 3.514(−13) 9.293(−14)

4 5.719(−13) 1.423(−13) 7.527(−14)

6 1.819(−13) 7.094(−14) 6.439(−15)

Table 2. Absolute errors of spectral discretization using BDF5 with values of the parameters as in (3.2).

For both the finite-difference discretization and the spectral discretization, from Figure 6,
the error has the expected order with respect to |∆x|. However, if we decrease the value of |∆x|
further, each BDF method has a corresponding range for ∆x that causes instability. Moreover,
once the value of ∆x exits this range, the corresponding BDF method becomes accurate again.
See Appendix A for more details.

Remark 3.2. In addition to the trapezoidal and BDF methods, one could consider A-stable
and L-stable diagonally implicit Runge–Kutta methods as alternative options for time-stepping.
Furthermore, one could even consider adaptive time-stepping. While these alternative methods
can effectively address the stability concerns arising from the spectrum of ∆x(A + xB) and
∆x(T +U), they do tend to increase the computation time. These methods likely require more
than one linear solve at each time step (possibly one matrix factorization and multiple uses of
it). And our target time step is |∆x| = 10−3 and, with this time step, BDF5 is stable with the
default parameters, requiring only one (sparse) linear solve per time step. Then the comparison
of methods becomes a complicated competition between more expensive, higher-order methods
that allow a larger time step and less expensive, but still fairly high-order, methods requiring
a smaller time step. It is possible that savings can be achieved here, but we did not see it in our
experiments.

3.3.3 Error with respect to x0

Figure 8 shows how the maximum error over x = −8,−7, . . . , x0 changes with respect to the
value of x0. For β = 4 with spectral discretization using BDF5, the error for x0 = 12, 13 is
roughly O

(
10−11

)
, which can be improved to O

(
10−12

)
using more Fourier modes. Except for
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(a) FD discretization
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|∆x|
(b) Spectral discretization

E
rr
or

|∆x|

Figure 6. The order of accuracy for the finite-difference (FD) discretization and the spectral dis-
cretization. (a) The finite-difference discretization. The errors for trapezoidal (Trapz) method are
computed by treating TW

(
β=2; x0 = ⌊13/

√
β⌋, step="trapz", interp=false, ∆x= − 10−3, M=103

)
as the reference and compared with ∆x = −0.005,−0.01,−0.02 at x = −2. For BDF methods, the
same reference is used with step changed accordingly. For BDF3, ∆x = −0.01,−0.02,−0.04 are used.
For BDF4, ∆x = −0.02,−0.04,−0.05 are used. For BDF5, ∆x = −0.1,−0.2,−0.25 are used. For
BDF6, ∆x = −0.25,−0.3,−0.4 are used. (b) The spectral discretization. The errors for trapezoidal
(Trapz) method are computed by treating TW

(
β=2; x0 = ⌊13/

√
β⌋, method="spectral", step="trapz",

interp=false, ∆x= − 10−3, M=8000
)
as the reference and compared with ∆x = −0.025,−0.04,−0.05

at x = −2. For BDF methods, the same reference is used with step changed accordingly. For BDF3 and
BDF4, ∆x = −0.025,−0.04,−0.05 are used. For BDF5, ∆x = −0.1,−0.2,−0.25 are used. For BDF6,
∆x = −0.22,−0.25,−0.44 are used.

(a) FD (Trapz)

E
rr
or

x
(b) SD (BDF5)

E
rr
or

x

Figure 7. Change of error of finite-difference discretization using trapezoidal method with ∆x =
−0.004,−0.002,−0.001 and spectral discretization using BDF5 with ∆x = −0.2,−0.1,−0.05. Values
of the other parameters are used as in (3.1) and (3.2). When applying BDF5 to the spectral discretiza-
tion, errors are more pronounced for smaller time steps at the left edge due to the onset of instability
discussed in the appendix.

these two cases, for both methods, as the value of β increases, the value of x̃0, the minimum
value of x0 that can be used without affecting the accuracy, decreases. This is exactly what we
expect since the larger value of β is, the more concentrated the distribution becomes. Based
on [5, 6], one expects x̃0 ≈ C/β

2
3 for some constant C. This suggests a way to choose the optimal

value of x0 in terms of accuracy and computation time. For our algorithms, we choose C = 13
since for β = 1, Fβ(13) ≈ 1. In practice, instead of using β

2
3 for the denominator, we are more
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(a) FD (Trapz)

E
rr
o
r

x0

(b) SD (BDF5)

E
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or
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Figure 8. Change of error of finite-difference discretization using trapezoidal method and spectral
discretization using BDF5 with respect to the value of x0. β = 1, 2, 4 and x0 = 13, 12, . . . , 2 are used.
Values of the other parameters are the same as in (3.1) and (3.2). For each value of β and x0, the error
is taken to be the maximum over x = −8,−7, . . . , x0.

Discretization Method Time (default) Error (default) Time
(
10−6

)
Finite

difference

Trapz 12.684s 1.027(−7) 0.203s
BDF3 10.731s 5.461(−8) 0.138s
BDF4 10.458s 5.457(−8) 0.142s
BDF5 10.947s 5.538(−8) 0.141s
BDF6 11.067s 5.539(−8) 0.140s

Spectral

Trapz 222.135s 4.790(−8) 10.906s
BDF3 205.888s 4.298(−11) 1.949s
BDF4 209.175s 2.346(−12) 1.388s
BDF5 201.819s 2.663(−12) 1.008s
BDF6 204.295s 2.677(−12) 204.295s

Table 3. For each discretization in the first column and time-stepping method in the second column,
computation time to get the interpolated cdf for the Tracy–Widom distribution and the corresponding
error at x = −2 for β = 2 are recorded in the next two columns. The computation times in the third
column are generated using the default parameters as in (3.1) and (3.2), with the corresponding errors in
the fourth column. If we aim for an error of O

(
10−6

)
, the last column shows the corresponding minimum

observed computation times for each discretization and time-stepping method to achieve this error.

conservative and use β
1
2 since, based on Figure 8 (b), when β = 4, using x0 = 13/β

2
3 ≈ 5.16

brings in an error of O
(
10−9

)
.

3.4 Computation time

The values in Table 3 are obtained by running on a computer with processor: 11th Gen Intel(R)
Core(TM) i7-11800H 2.30GHz with 16.0GB of RAM.

Table 3 shows the computation time with default values of the parameters as in (3.1) and (3.2)
for β = 2 along with the corresponding error at x = −2. The last column provides the compu-
tation time if we aim for an error of O

(
10−6

)
at x = −2. For finite-difference discretization, to

have the error of O
(
10−6

)
at x = −2, ∆x = −0.01 can be used instead of ∆x = −0.001. For

spectral discretization, to have the error of O
(
10−6

)
at x = −2, M = 4×103 can be used instead

of M = 8× 103 with ∆x = −0.01 for trapezoidal method, ∆x = −0.05 for BDF3, ∆x = −0.07
for BDF4, and ∆x = −0.1 for BDF5. It turns out that the error using BDF6 will jump from
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O
(
10−5

)
to O

(
10−12

)
. From Table 3, it takes about 204.295s using BDF6 to have the error of

O(10−12) with parameters as in (3.2). To have the error of O
(
10−5

)
, it takes about 0.639s with

M = 5×103 and ∆x = −0.2. Work to improve the speed of the spectral discretization is ongoing.
Using the same machine, Bloemendal’s code (see [1, Section 6]), which uses Mathematica’s

NDSolve, takes approximately 3 seconds to compute the approximation to the function H. We
point out that Mathematica 13.2, generates warnings from NDSolve regarding the errors in
the approximate solution. The accuracy of this approach, while simple, appears to be limited to
a maximum of 7 digits. Yet, the fact that this is indeed so simple, and works, is an important
reminder of the conceptual simplicity of this representation of the Tracy–Widom distribution
function.

Our methods expand upon this, providing both the cdfs and pdfs as output and produc-
ing high-accuracy interpolants while leaving the trade-off between accuracy and speed to the
user’s discretion. And since we consider the general-β Tracy–Widom distribution functions as
important nonlinear special functions, developing methods, with the highest possible accuracy,
is critical. See Section 5 for some thoughts on further improvements.

4 Additional numerical results

In this section, we present additional plots to demonstrate the power and flexibility of the code.

4.1 Comparison with large random matrices

We verify numerically that the pdf generated by our algorithm agrees with the model presented
by Dumitriu and Edelman [7]. Recall that Hβ

n in (1.2) has (1.1) as the jpdf for its eigenvalues,
and the distribution of its largest eigenvalue, after rescaling, converges to Fβ for any β > 0 as
n → ∞.

Histograms in Figure 9 are the normalized histograms for n1/6
(
λmax

(
Hβ

n

)
− 2

√
n
)
, where

λmax

(
Hβ

n

)
denotes the largest eigenvalue of the β-Hermite ensemble Hβ

n .

4.2 Evolution of the density ρ(x, θ) := ∂H(x, θ)/∂θ

Figure 10 shows the waterfall plots of the approximation of ρ(x, θ) := ∂H(x, θ)/∂θ for θ ∈ [0, 10π]
and x = 0,−2, . . . ,−10 using finite-difference discretization with trapezoidal method on (2.11)
with θM = 10π and M = 104. Values of the other parameters are the same as in (3.1). As the
value of x decreases, the density of the solution propagates to the right.

Figure 11 shows the contour plots of the approximation of H(x, θ) using finite-difference
discretization with trapezoidal method with values of the parameters given as in (3.1). For each
contour plot, the initial conditionH(x0, θ) is found along the top of the plot and the approximate
Tracy–Widom distribution, Fβ(x) ≈ H(x, θM ), is obtained on the right-hand side of the plot.

4.3 Density of the Tracy–Widom distribution

Figure 12 (a) shows the plot of the approximation of F ′
β for β = 1 to 10 and x ∈ [−6, 4] using

finite-difference discretization with trapezoidal method with values of the other parameters as
in (3.1). As we can see from the plot, as the value of β increases, F ′

β becomes more concentrated,
and its peak moves leftwards (See Appendix B for a discussion of the exact limiting behavior as
β → ∞).

Figure 12 (b) is a two-dimensional version of Figure 12 (a), which is also generated using the
finite-difference discretization with trapezoidal method. It provides a closer view of F ′

β for β = 1
to 4 with step size = 0.2. The red curves from right to left correspond to β = 1, 2, 4 respectively.
The black curves show F ′

β for the other values of β.
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(a) β = 3

F
′ 3
(x
)

x
(b) β = 5

F
′ 5
(x
)

x

(c) β = 6

F
′ 6
(x
)

x
(d) β = 7

F
′ 7
(x
)

x

Figure 9. The histograms for n1/6
(
λmax

(
Hβ

n

)
−2

√
n
)
using 106 samples with n = 104. The density F ′

β(x)
is generated by TW(β; pdf=true) for β = 3, 5, 6, 7. The small positive bias in each histogram can be
improved by using larger values of n.

(a) β = 3
θ

x

(b) β = 5
θ

x

(c) β = 6
θ

x

(d) β = 7
θ

x

Figure 10. The evolution of ρ(x, θ) := ∂H
∂θ as x decreases from x = 0 to −10 with step size = −2 for

β = 3, 5, 6, 7. Finite-difference discretization with trapezoidal method is used on (2.11) with ∆x = −10−3

and M = 104 for θ ∈ [0, 10π].
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(a) β = 3
θ

x

(b) β = 5
θ

x

(c) β = 6
θ

x

(d) β = 7
θ

x

Figure 11. The evolution of H(x, θ) as x decreases from ⌊13/
√
β⌋ to −10 for β = 3, 5, 6, 7. Finite-

difference discretization with trapezoidal method is used with ∆x = −10−3 and M = 103.

-5.0 -3.0 -1.0 1.0 3.0

(a) β = 1 to 10

x

β

(b) β = 1 to 4

F
′ β
(x
)

x

Figure 12. Approximation of the density of the Tracy–Widom distribution for different values of β
using the finite-difference discretization with trapezoidal method with values for the other parameters as
in (3.1).

4.4 Limiting densities of other eigenvalues

By [1, Theorem 2.4.3], one finds the limiting density of the kth largest eigenvalue, after rescaling,

of the β-Hermite ensemble Hβ
n at θ = kπ.

Using finite-difference discretization with trapezoidal method with values for the parame-
ters as in (3.1), Figure 13 shows the limiting densities of the largest three eigenvalues of Hβ

n ,
namely, F ′(·, π), F ′(·, 2π), and F ′(·, 3π) from right to left respectively. They can also be inter-
preted as the densities of −Λ0, −Λ1, and −Λ2 of the stochastic Airy operator Hβ. As the value
of k increases, the limiting distribution becomes more concentrated.
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(a) β = 3

x
(b) β = 5

x

(c) β = 6

x
(d) β = 7

x

Figure 13. Densities of −Λ0, −Λ1, and −Λ2 of Hβ for β = 3, 5, 6, 7. Finite-difference discretization
with trapezoidal method is used with values of the parameters as in (3.1).

5 Outlook and open questions

The error analysis in this paper was empirical, as a proof of convergence is elusive. It is likely
that eigenvalue perturbation theory could be used to help show that the spectrum of the x-
dependent families of matrices we consider remains close to, or inside of, the stability regions for
the time-steppers we have chosen — at least for sufficiently small time steps. A challenge here is
to obtain quantitative bounds, making “sufficiently small” precise, and giving useful conclusions.
Furthermore, even if the spectrum is understood, it is currently not known how to estimate the
eigenvector condition numbers and pseudospectra of these families of matrices.

We also believe it to be possible to achieve better accuracy by adapting the global spectral
method of Olver and Townsend [22] and future work will be in this direction. A high-precision
implementation of this idea could help corroborate conjectures about the tail behavior of the
Tracy–Widom distribution.

A The range of ∆x that causes instability

When applying BDF methods to the spectral discretization, we find that each BDF method
has a corresponding range for ∆x that causes instability. Moreover, once the value of ∆x exits
this range, convergence appears to occur at the expected rate. As a result, when an error
plot is generated with respect to the value of |∆x|, we will observe a non-monotonic pattern of
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(a) Error at x = −2
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Figure 14. The non-monotonic convergence for BDF3 along with the mean fraction ⟨δ (x,∆x)⟩
of the unstable eigenvalues and the mean value ⟨µ(x,∆x)⟩. (a) TW(β=2; x0 = ⌊13/

√
β⌋,

method="spectral", step="bdf3", interp=false, ∆x, M=8000) is implemented with ∆x = −1,
−0.5,−0.2,−0.1,−0.05,−0.04,−0.02,−0.01,−0.005,−0.004,−0.002,−0.001,−0.0005,−0.0002,−0.0001.
Measured errors are capped at one for readability. (b) The blue (red) dots correspond to the mean
fraction ⟨δl(x,∆x)⟩(⟨δr(x,∆x)⟩) as defined in (A.3) ((A.4)). (c) The blue (red) dots correspond to the
mean value ⟨µl(x,∆x)⟩(⟨µr(x,∆x)⟩) as defined in (A.1)((A.2)).

(a) Zoomed-out view
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(b) Zoomed-in view
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Figure 15. The absolute stability region of BDF3 applying on spectral discretization (the maroon-
shaded region along with the orange boundary curve) and the eigenvalues z of ∆x(A+xB) (the red dots
with white boundary correspond to Re(z) > 0, and the pink dots with white boundary correspond to
Re(z) < 0) for β = 2, x = xN ,−9, . . . , x0, ∆x = −0.004,−0.002, and M = 8× 103.
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Figure 16. The non-monotonic convergence for BDF4 along with the mean fraction ⟨δ (x,∆x)⟩ of the
unstable eigenvalues and the mean value ⟨µ(x,∆x)⟩. The detailed computing process for each plot is the
same as for BDF3, see the caption of Figure 14.

(a) Zoomed-out view
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(b) Zoomed-in view
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Figure 17. The absolute stability region of BDF4 (the maroon-shaded region along with the orange
boundary curve) and the eigenvalues z of ∆x(A+ xB) (the red dots with white boundary correspond to
Re(z) > 0, and the pink dots with white boundary correspond to Re(z) < 0) for β = 2, x = xN ,−9, . . . , x0,
∆x = −0.01,−0.005,−0.004,−0.002, and M = 8× 103.

convergence. Applying a r-step linear method with the form [12, Section 7.3]
r∑

j=0

αjU
n+j = k

r∑
j=0

βjf
(
Un+j , tn+j

)
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Figure 18. The non-monotonic convergence for BDF5 along with the mean fraction ⟨δ (x,∆x)⟩ of the
unstable eigenvalues and the mean value ⟨µ(x,∆x)⟩. The detailed computing process for each plot is the
same as for BDF3, see the caption of Figure 14.

(a) Zoomed-out view
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)

Re(z)
(b) Zoomed-in view

Im
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)
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Figure 19. The absolute stability region of BDF5 (the maroon-shaded region along with the orange
boundary curve) and the eigenvalues z of ∆x(A+ xB) (the red dots with white boundary correspond to
Re(z) > 0, and the pink dots with white boundary correspond to Re(z) < 0) for β = 2, x = xN ,−9, . . . , x0,
∆x = −0.02,−0.01,−0.005,−0.004, and M = 8× 103.

to u′ = λu gives
r∑

j=0

αjU
n+j = k

r∑
j=0

βjλU
n+j =⇒

r∑
j=0

(αj − zβj)U
n+j = 0,
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Figure 20. The non-monotonic convergence for BDF6 along with the mean fraction ⟨δ (x,∆x)⟩ of the
unstable eigenvalues and the mean value ⟨µ(x,∆x)⟩. The detailed computing process for each plot is the
same as for BDF3, see the caption of Figure 14.

(a) Zoomed-out view
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Figure 21. The absolute stability region of BDF6 (the maroon-shaded region along with the orange
boundary curve) and the eigenvalues z of ∆x(A+ xB) (the red dots with white boundary correspond to
Re(z) > 0, and the pink dots with white boundary correspond to Re(z) < 0) for β = 2, x = xN ,−9, . . . , x0,
∆x = −0.1,−0.05,−0.04,−0.02,−0.01,−0.005,−0.004, and M = 8× 103.

where z ≡ kλ. We call
∑r

j=0(αj − zβj)ξ
j the stability polynomial of this method and denote

it by π (ξ; z) [12, Section 7.3]. The absolute stability region of a general r-step method consists
of the values of z such that the roots ξi(z), i = 1, 2, . . . , r of π(ξ; z) satisfy the following two
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conditions:

(1) |ξi| ≤ 1 for i = 1, 2, . . . , r,

(2) If ξi is a repeated root, then |ξi| < 1.

See, for example, [12, Definition 6.2] for the definition. To analyze the roots of π(ξ; z) for each
BDF method as a function of x and ∆x, suppose the eigenvalues of (A + xB) are given by
λ1, λ2, . . . , λ2M+1 and define

µl(x,∆x) := max
j

∣∣∣∣maxi |ξi(∆xλj)| − 1

∆x

∣∣∣∣ for Re(∆xλj) < 0,

µr(x,∆x) := max
j

∣∣∣∣maxi |ξi(∆xλj)| − 1

∆x

∣∣∣∣ for Re(∆xλj) > 0.

Similarly, define

δl(x,∆x) :=
1

2M + 1
#
{
j : max

i
|ξi(∆xλj)| > 1, Re(∆xλj) < 0

}
,

δr(x,∆x) :=
1

2M + 1
#
{
j : max

i
|ξi(∆xλj)| > 1, Re(∆xλj) > 0

}
,

where A+xB is the coefficient matrix of the spectral discretization and # gives the cardinality of
the set. The function µl(x,∆x) (µr(x,∆x)) helps capture the maximum growth rate instabilities
in the numerical method caused by the eigenvalues of ∆x(A+ xB) in the left(right)-half plane
and δl(x,∆x) (δr(x,∆x)) gives the fraction of eigenvalues of ∆x(A+ xB) in the left(right)-half
plane that give rise to a positive growth rate.

We then compute the mean value ⟨µl(x,∆x)⟩, ⟨µr(x,∆x)⟩, ⟨δl(x,∆x)⟩, and ⟨δr(x,∆x)⟩ re-
spectively over x = −10,−9, . . . , ⌊13/

√
β⌋:

⟨µl(x,∆x)⟩ := 1

10 + ⌊13/
√
β⌋

⌊13/
√
β⌋∑

x=−10

µl(x,∆x), (A.1)

⟨µr(x,∆x)⟩ := 1

10 + ⌊13/
√
β⌋

⌊13/
√
β⌋∑

x=−10

µr(x,∆x), (A.2)

⟨δl(x,∆x)⟩ := 1

10 + ⌊13/
√
β⌋

⌊13/
√
β⌋∑

x=−10

δl(x,∆x), (A.3)

⟨δr (x,∆x)⟩ := 1

10 + ⌊13/
√
β⌋

⌊13/
√
β⌋∑

x=−10

δr(x,∆x). (A.4)

Figures 14–21 show the non-monotonic convergence for each BDF method along with the mean
fraction ⟨r (x,∆x)⟩ of the unstable eigenvalues of ∆x(A+ xB), the value of ⟨µ(x,∆x)⟩, and the
eigenvalues of ∆x(A + xB) within the unstable range for ∆x. On one hand, it is not the un-
stable eigenvalues in the right-half plane causing the non-monotonic convergence. On the other
hand, the range for ∆x that causes instability coincides with the range for ∆x whose values of
⟨µ(x,∆x)⟩ in the left-half plane are larger than exp(1) and have the largest magnitudes. More-
over, it also coincides with the range for ∆x that contains the largest mean fraction ⟨r(x,∆x)⟩
of the unstable eigenvalues from the left-half plane. Note that for BDF6, though the error at
x = −0.1 does not blow up, it still suggests that x = −0.1 causes instability. For BDF3, the
range for ∆x that causes instability is approximately [−0.004,−0.002]. For BDF4, the range
is approximately [−0.01,−0.002]. For BDF5, the range is approximately [−0.02,−0.004]. For
BDF6, the range is approximately [−0.1,−0.004].
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B The case when β = ∞
We consider the limiting behavior of Fβ as β → ∞. If we let β = ∞, the original boundary
value problem becomes

∂F

∂x
+
(
x− ω2

)∂F
∂ω

= 0 for (x, ω) ∈ R2, (B.1)

with the following boundary conditions:

F (x, ω) → 1 as x, ω → ∞ together, (B.2)

F (x, ω) → 0 as ω → −∞ with x bounded above. (B.3)

Using the method of characteristics [11], rewrite (B.1) as

dF

dx
= 0,

where

dF

dx
=

∂F

∂x
+

dω

dx

∂F

∂ω

along curves for which

dω

dx
= x− ω2. (B.4)

Substituting ω = u′/u in (B.4) yields the Airy equation

u′′ − xu = 0,

whose solution is given by

u = c1Ai(x) + c2Bi(x),

a linear combination of Ai(x), the Airy function of the first kind, and Bi(x), the Airy function
of the second kind [18, Chapter 9]. Thus, the solution of (B.4) is given by

ω =
u′

u
=

c1Ai
′(x) + c2Bi

′(x)

c1Ai(x) + c2Bi(x)
, (B.5)

which are the characteristic curves of F (x, ω).

Claim B.1. There exists a unique characteristic curve for F (x, ω) along which ω → −∞ as
x → ∞.

Proof. For existence, consider the characteristic curves

ω̃(x) =
Ai′(x)

Ai(x)
, (B.6)

which is obtained from (B.5) by setting c2 = 0 and c1 ̸= 0. By [18, Section 9.7 (ii)],

lim
x→∞

ω̃(x) = lim
x→∞

Ai′(x)

Ai(x)
= −∞. (B.7)

Therefore, among the characteristic curves represented by (B.6), there exists one along which
ω → −∞ as x → ∞.

For uniqueness, note that for fixed values of c1 and c2 ̸= 0, as a well-defined function of x,
ω → ∞ as x → ∞. Thus, combined with (B.7), we conclude that only one such characteristic
curve exists. ■
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θ
x

Figure 22. Contour plot of (B.8) with respect to x and θ for x ∈ [−10, 10] and θ ∈ [0, π]. The red
curves correspond to the level zero. The values of x where the red curves cross θ = π coincide with the
zeros of Ai(x).

After the change of variable ω = − cot θ, we obtain

cot θ = −c1Ai
′(x) + c2Bi

′(x)

c1Ai(x) + c2Bi(x)
, (B.8)

and the boundary conditions become

F (x, θ) → 1 as x → ∞ and θ → π,

F (x, θ) → 0 as θ → 0 with x bounded above.

Figure 22 shows the contour plot of (B.8) with respect to x and θ for x ∈ [−10, 10] and
θ ∈ [0, π]. The red curves correspond to the level zero, which occurs when c1 ̸= 0 and c2 = 0.
We can see that there is one and only one red curve along which θ → 0 as x → ∞. Denote the
first real zero (closest to x = 0) of Ai(x) by x1 ≈ −2.33811. It can be verified from (B.8) by
setting c2 = 0 and c1 ̸= 0 that x → x+1 as θ → π−. Set F (x, ω) in the following way:

F (x, ω) =


0, ω <

Ai′(x)

Ai(x)
,

1, ω >
Ai′(x)

Ai(x)
.

(B.9)

Then (B.9) is the solution of (B.1) satisfying both boundary conditions (B.2) and (B.3).
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