0">

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 005, 26 pages      arXiv:2304.04951      https://doi.org/10.3842/SIGMA.2024.005
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Computing the Tracy-Widom Distribution for Arbitrary $\beta>0$

Thomas Trogdon and Yiting Zhang
Department of Applied Mathematics, University of Washington, Seattle, Washington, USA

Received April 19, 2023, in final form January 03, 2024; Published online January 13, 2024

Abstract
We compute the Tracy-Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways. The first method is a second-order finite-difference method and the second is a highly accurate Fourier spectral method. Since $\beta$ is simply a parameter in the boundary-value problem, any $\beta> 0$ can be used, in principle. The limiting distribution of the $n$th largest eigenvalue can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl.

Key words: numerical differential equation; Tracy-Widom distribution; Fourier transformation.

pdf (5686 kb)   tex (3287 kb)  

References

  1. Bloemendal A., Finite rank perturbations of random matrices and their continuum limits, Ph.D. Thesis, University of Toronto, Canada, 2011.
  2. Bloemendal A., Virág B., Limits of spiked random matrices I, Probab. Theory Related Fields 156 (2013), 795-825, arXiv:1011.1877.
  3. Bornemann F., On the numerical evaluation of distributions in random matrix theory: a review, Markov Process. Related Fields 16 (2010), 803-866, arXiv:0904.1581.
  4. Bornemann F., On the numerical evaluation of Fredholm determinants, Math. Comp. 79 (2010), 871-915, arXiv:0804.2543.
  5. Borot G., Nadal C., Right tail asymptotic expansion of Tracy-Widom beta laws, Random Matrices Theory Appl. 1 (2012), 1250006, 23 pages.
  6. Dumaz L., Virág B., The right tail exponent of the Tracy-Widom $\beta$ distribution, Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), 915-933, arXiv:1102.4818.
  7. Dumitriu I., Edelman A., Matrix models for beta ensembles, J. Math. Phys. 43 (2002), 5830-5847, arXiv:math-ph/0206043.
  8. Edelman A., Sutton B.D., From random matrices to stochastic operators, J. Stat. Phys. 127 (2007), 1121-1165, arXiv:math-ph/0607038.
  9. Ferrari P.L., Spohn H., A determinantal formula for the GOE Tracy-Widom distribution, J. Phys. A 38 (2005), L557-L561, arXiv:math-ph/0505012.
  10. Grava T., Its A., Kapaev A., Mezzadri F., On the Tracy-Widom$_\beta$ distribution for $\beta=6$, SIGMA 12 (2016), 105, 26 pages, arXiv:1607.01351.
  11. Kevorkian J., Partial differential equations. Analytical solution techniques, Wadsworth & Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990.
  12. LeVeque R.J., Finite difference methods for ordinary and partial differential equations. Steady-state and time-dependent problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.
  13. Li Y., On the open question of the Tracy-Widom distribution of $\beta$-ensemble with $\beta=6$, arXiv:1812.00522.
  14. Mays A., Ponsaing A., Schehr G., Tracy-Widom distributions for the Gaussian orthogonal and symplectic ensembles revisited: a skew-orthogonal polynomials approach, J. Stat. Phys. 182 (2021), 28, 55 pages, arXiv:2007.14597.
  15. Mehta M.L., Random matrices, Pure Appl. Math. (Amsterdam), Vol. 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004.
  16. Nadal C., Matrices aléatoires et leurs applications à la physique statistique et quantique, Ph.D. Thesis, Université Paris Sud - Paris XI, 2011, available at https://theses.hal.science/tel-00633266.
  17. Nadal C., Majumdar S.N., A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, J. Stat. Mech. Theory Exp. 2011 (2011), P04001, 29 pages, arXiv:1102.0738.
  18. Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.8 of 2022-12-15, aviable at http://dlmf.nist.gov/.
  19. Ramírez J.A., Rider B., Virág B., Beta ensembles, stochastic Airy spectrum, and a diffusion, J. Amer. Math. Soc. 24 (2011), 919-944, arXiv:math.PR/0607331.
  20. Rumanov I., Painlevé representation of Tracy-Widom$_\beta$ distribution for $\beta=6$, Comm. Math. Phys. 342 (2016), 843-868, arXiv:1408.3779.
  21. Sutton B.D., The stochastic operator approach to random matrix theory, Ph.D. Thesis, Massachusetts Institute of Technology, 2005.
  22. Townsend A., Olver S., The automatic solution of partial differential equations using a global spectral method, J. Comput. Phys. 299 (2015), 106-123, arXiv:1409.2789.
  23. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Phys. Lett. B 305 (1993), 115-118, arXiv:hep-th/9210074.
  24. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, arXiv:hep-th/9211141.
  25. Tracy C.A., Widom H., On orthogonal and symplectic matrix ensembles, Comm. Math. Phys. 177 (1996), 727-754, arXiv:solv-int/9509007.
  26. Valkó B., Virág B., Continuum limits of random matrices and the Brownian carousel, Invent. Math. 177 (2009), 463-508, arXiv:0712.2000.
  27. Zhang Y., Trogdon T., TracyWidomBeta, 2023, available at https://github.com/Yiting687691/TracyWidomBeta.jl.

Previous article  Next article  Contents of Volume 20 (2024)