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Abstract. We present the exact realization of the extended Snyder model. Using similarity
transformations, we construct realizations of the original Snyder and the extended Snyder
models. Finally, we present the exact new realization of the κ-deformed extended Snyder
model.
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1 Introduction

The first example of NC geometry was presented in [36]. Fundamental length scale could be
identified in natural way with Planck length Lp =

√
Gℏ/c3 ≈ 1.62 × 10−35 m [11]. The length

scale enters the theory through commutators of spacetime coordinates in [1, 2, 8, 9]. Deforma-
tions of spacetime symmetries-gravity, group-valued momenta, and noncommutative fields were
presented in [3].

Coproduct and star product in the Snyder model were calculated in [6, 12] using ideas from
development of NC geometry [20]. However, in the Snyder model, the algebra generated by
position operators is not closed and the bialgebra resulting from implementation of the coproduct
is not a Hopf algebra. In particular, the coproduct is noncoassociative and the star product is
nonassociative as well [6].

A closed Lie algebra can be obtained if one adds generators of Lorentz algebra [12] to position
generators. In this way one can define a Hopf algebra with a coassoaciative coproduct. If Lorentz
generators are added as extended coordinates, we call this algebra extended Snyder algebra, and
the theory based on this the extended Snyder model [26].

Some recent advances in the Snyder model are presented in [5, 6, 12, 31]. Construction of field
theory was addressed in [6, 10, 12] and different applications to phenomenology were considered
in [34, 35]. Extensions in curved background were given in [4, 13, 15, 16, 26, 29, 30, 33].

The Snyder model is defined as a Lie algebra generated by noncommutative coordinates x̂µ
and Lorentz generators Mµν , (Mµν = −Mνµ), satisfying the commutation relations[

x̂µ, x̂ν
]
= iβ2Mµν , µ, ν = 0, 1, 2, 3, β ∈ R, (1.1)[

Mµν , x̂λ
]
= −i

(
x̂µηνλ − x̂νηµλ

)
, (1.2)

[Mµν ,Mρσ] = i
(
ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

)
, (1.3)

where η = diag(−1, 1, 1, 1) is the Minkowski metric.
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Our goal is to construct realizations of the Snyder algebra (1.1)–(1.3) in terms of the Heisen-
berg algebra generated by coordinates xµ and momenta pµ satisfying the commutation relations

[xµ, xν ] = [pµ, pν ] = 0, [xµ, pν ] = iηµν .

In Section 2, we start with the original Snyder realization with Mµν = xµpν − xνpµ and use
similarity transformations to construct a family of realizations of Snyder model. In Section 3,
we apply this method to construct realizations of the extended Snyder model in which the
Lorentz generators are realized by Mµν = x̂µν +xµpν −xνpµ, where x̂µν are additional tensorial
generators. In Section 4, we present the exact new realization of the κ-deformed extended Snyder
model. Finally, in Section 5, we give the discussion and conclusion.

2 Realizations of the Snyder model

The original Snyder realization in terms of xµ and pν is given by

x̂µ = xµ + β2(x · p)pµ, (2.1)

Mµν = xµpν − xνpµ, (2.2)

where x · p = xαpα.
1 Further realizations of the Snyder model can be obtained by similarity

transformations by the operator S = eiG, where

G = F0(u) + (x · p)F (u), u = β2p2, β ∈ R,

F0(0) = 0, F (0) = 0, p2 = pαpα. (2.3)

Note that for β2 = 0 we have G = 0 and S = id and G is Lorentz invariant and linear in the
coordinates xα.

Theorem 2.1. Using similarity transformation defined by S = eiG, where G is given by (2.3),
we obtain the corresponding realizations of Snyder model

x̂µ = S
(
xµ + β2(x · p)pµ

)
S−1 = xµφ1(u) + β2(x · p)pµφ2(u) + β2pµφ3(u),

where

φ2(u) =
1 + φ̇1(u)φ1(u)

φ1(u)− 2uφ̇1(u)
, φ̇1 =

dφ1(u)

du
and u = β2p2. (2.4)

In order to prove the above theorem, first we prove the following propositions. Note that
if F0(u) = 0, then φ3(u) = 0, hence, for simplicity in what follows we assume that F0(u) = 0
and G = (x · p)F (u).

Proposition 2.2. Let x′µ = SxµS
−1, where S = eiG and G = (x · p)F (u). Then

x′µ = xµg1(u) + β2(x · p)pµg2(u), (2.5)

where

g1(u) =
(
eF (1−2u d

du
)
)
(1). (2.6)

1We denote xαpα =
∑3

α,β=0 ηαβxαpα, and generally summation over pair of repeated indices is assumed.
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Proof. By defining the iterated commutator

(adG)
n(xµ) = [G, . . . , [G, [G︸ ︷︷ ︸

n times

, xµ]] . . .], (adG)
0(xµ) = xµ,

and using the Hadamard formula, we have

x′µ = SxµS
−1 = eiGxµe

−iG = xµ +

∞∑
n=1

(adiG)
n(xµ)

n!
. (2.7)

We prove relation (2.5) by induction on n. Using the Leibniz rule for adjoint representation and

[F, xµ] = −i
∂F

∂pµ
= −i2β2pµḞ , F ≡ F (u) and Ḟ =

dF

du
, (2.8)

it is easy to see that for n = 1 we have

(adiG)(xµ) = i[(x · p)F, xµ] = xµg11(u) + β2(x · p)pµg21(u),

where g11(u) = F and g21(u) = 2Ḟ . In following, we denote gij ≡ gij(u). Assume that the
relation

(adiG)
n(xµ) = xµg1n + β2(x · p)pµg2n (2.9)

holds for some n > 1. Then by the induction assumption, we have

(adiG)
n+1(xµ) = i

[
(x · p)F, xµg1n + β2(x · p)pµg2n

]
= xµg1(n+1) + β2(x · p)pµg2(n+1),

where, using the Leibniz rule and (2.8), we obtain

g1(n+1) = Fg1n − 2uġ1nF (2.10)

and

g2(n+1) = 2Ḟ g1n + 2uḞ g2n − g2nF − 2uġ2nF.

Let us denote

g1(u) =

∞∑
n=0

g1n
n!

, where g10 = 1,

and

g2(u) =
∞∑
n=1

g2n
n!

.

Then, substituting (2.9) into (2.7), it follows that (2.5) holds. Now, we expand

(
eF (1−2u d

du
)
)
(1) =

∞∑
n=0

(
F
(
1− 2u d

du

))n
(1)

n!

and prove by induction on n that

g1n =

(
F

(
1− 2u

d

du

))n

(1). (2.11)
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Note that for n = 0, we have g10 = id(1) = 1 and for n = 1 it is easy to verify that(
F

(
1− 2u

d

du

))
(1) = F = g11.

Suppose that relation (2.11) is true for some n > 1. By the induction assumption and from (2.10),
we have(

F

(
1− 2u

d

du

))n+1

(1) =

((
F

(
1− 2u

d

du

))
◦
(
F

(
1− 2u

d

du

))n)
(1)

=

(
F

(
1− 2u

d

du

))
(g1n) = Fg1n − 2uġ1nF = g1(n+1),

which proves our claim (2.11) and consequently (2.6) holds. ■

Proposition 2.3. Let p′µ = SpµS
−1, where S = eiG and G = (x · p)F (u). Then

p′µ = pµg3(u), (2.12)

where

g3(u) =
(
e−F (1+2u d

du
)
)
(1). (2.13)

Proof. Analogous to the proof of the previous proposition, first by using the Hadamard formula,
we find

p′µ = SpµS
−1 = eiGpµe

−iG = pµ +
∞∑
n=1

(adiG)
n(pµ)

n!
.

Then, by induction on n, we prove that

(adiG)
n(pµ) = pµg3n. (2.14)

After short computation, for n = 1 we have

i[(x · p)F, pµ] = i[(x · p), pµ]F = pµg31,

where g31 = −F . Assume that relation (2.14) holds for some n > 1. Then by the induction
assumption, we find

(adiG)
n+1(pµ) = i[(x · p)F, pµg3n] = pµg3(n+1),

where

g3(n+1) = −Fg3n − 2uġ3nF, (2.15)

which proves claim (2.14). Finally, if we denote

g3(u) =

∞∑
n=0

g3n
n!

, where g30 = 1,

then (2.12) holds. Also, we prove by induction on n that

g3n =

(
−F

(
1 + 2u

d

du

))n

(1). (2.16)
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Note that for n = 0, we have g30 = id(1) = 1, and for n = 1, we get(
−F

(
1 + 2u

d

du

))
(1) = −F = g31.

Suppose that relation (2.16) holds for some n > 1. Then by the induction assumption and
from (2.15), we have(

−F

(
1 + 2u

d

du

))n+1

(1) =

((
−F

(
1 + 2u

d

du

))
◦
(
−F

(
1 + 2u

d

du

))n)
(1)

=

(
−F

(
1 + 2u

d

du

))
(g3n)

= −Fg3n − 2uġ3nF = g3(n+1).

Therefore, (2.16) holds for every n, which implies that (2.13) holds. ■

Now, using results proven in the previous propositions, we can finally prove our main result
given by Theorem 2.1.

Proof of Theorem 2.1. Let us denote x′µ = SxµS
−1 and p′µ = SpµS

−1, where S = eiG

and G = (x · p)F (u). Then

[x′µ, x
′
ν ] = [p′µ, p

′
ν ] = 0, [x′µ, p

′
ν ] = iηµν (2.17)

and

x′µ + β2(x′ · p′)p′µ = S
(
xµ + β2(x · p)pµ

)
S−1. (2.18)

Inserting (2.5) and (2.12) into (2.17), we get

iηµνg1g3 + ipν
∂g3
∂pµ

g1 + iβ2

(
∂pν
∂pα

pαg3 +
∂g3
∂pα

pαpν

)
pµg2 = iηµν ,

gi ≡ gi(u), i = 1, 2, 3,

which implies

g3 =
1

g1
(2.19)

and

2g1ġ3 + g2(g3 + 2uġ3) = 0. (2.20)

Substituting (2.19) into (2.20), we find

g2 =
2ġ1g1

g1 − 2uġ1
. (2.21)

Finally, using (2.5) and (2.12), it follows from (2.18) that

S
(
xµ + β2(x · p)pµ

)
S−1 = xµg1 + β2(x · p)pµ

(
g2 + g3 + ug2g

2
3

)
. (2.22)

If we denote φ1 = g1 and φ2 = g2 + g3 + ug2g
2
3, then (2.4) follows from (2.19) and (2.21). ■



6 T. Martinić Bilać and S. Meljanac

Example 2.4. For F0 = 0 and F = −1
2u, we get

φ1(u) =
√
1− u and φ2(u) = 0,

hence,

x̂µ = xµ
√
1− u.

Remark 2.5. If F = 0 and F0 ̸= 0, then x′µ = xµ + 2β2pµḞ0, p
′
µ = pµ and

x̂µ = eiF0
(
xµ + β2(x · p)pµ

)
e−iF0 = xµ + β2(x · p)pµ + 2β2pµḞ0(1 + u).

Remark 2.6. When φ1(u) is fixed and φ2(u) is given with (2.4), then φ3(u) depends on F0 and
can be arbitrary. There is a family of realizations with fixed φ1(u) and arbitrary φ3(u).

Remark 2.7. A Hermitian realization can be obtained starting with the hermitian form of (2.1),
that is

x̂µ = xµ +
1

2
β2((x · p)pµ + pµ(p · x))

and instead of G writing 1
2

(
G + G†). Then result of Theorem 2.1 is obtained in hermitian

form 1
2

(
x̂µ + x̂†µ

)
.

3 Realizations of the extended Snyder model

Different realizations of the Snyder algebra can be obtained introducing additional tensorial
generators x̂µν = −x̂νµ. This alternative approach was suggested in [12] and it was studied
perturbatively from a different point of view in [26, 31, 32] based on the results in [23]. The
additional generators x̂µν are assumed to satisfy the commutation relations[

x̂µν , x̂ρσ
]
= i
(
ηµρx̂νσ − ηµσx̂νρ − ηνρx̂µσ + ηνσx̂µρ

)
, (3.1)[

x̂µν , xλ
]
= 0,

[
x̂µν , pλ

]
= 0. (3.2)

In this case, we consider realizations of the Lorentz generators of the form

Mµν = x̂µν + xµpν − xνpµ, Mµν � 1 = x̂µν � 1 = xµν and pµ � 1 = 0,

where xµν are commuting variables.

Theorem 3.1. Extension of the Snyder realization (2.1)–(2.2) with additional generators x̂µν
is given by

x̂µ = xµ + β2(x · p)pµ − β2x̂µαpα
1

1 +
√
1 + u

, (3.3)

Mµν = x̂µν + xµpν − xνpµ. (3.4)

Proof. In order to prove that we can construct the realization of the Snyder model by (3.3)
and (3.4), we show that (3.3) and (3.4) satisfy Snyder algebra (1.1)–(1.3). A short computation
using (2.8) yields[

xµ,
1

1 +
√
1 + u

]
=

−iβ2pµ√
1 + u

(
1 +

√
1 + u

)2 , (3.5)[
1

1 +
√
1 + u

, (x · p)
]
=

iu
√
1 + u

(
1 +

√
1 + u

)2 , (3.6)

and [
Mµν ,

1

1 +
√
1 + u

]
= 0. (3.7)
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Now, from (3.1)–(3.2) and (3.5)–(3.6) using bilinearity of the Lie bracket, we obtain

[
x̂µ, x̂ν

]
=

[
xµ + β2(x·p)pµ − β2x̂µαpα

1

1 +
√
1 + u

, xν + β2(x·p)pν − β2x̂νρpρ
1

1 +
√
1 + u

]
= iβ2(xµpν − xνpµ) + i2β2 x̂µν

1 +
√
1 + u

+ iβ2u
x̂µν

(1 +
√
1 + u)2

= iβ2
(
xµpν − xνpµ + x̂µν

)
= iβ2Mµν .

Similarly, by using (3.7), we check that (3.3) and (3.4) satisfy (1.2)–(1.3), therefore (3.3) and (3.4)
is a realization of the extended Snyder model. ■

In order to obtain a family of realizations of the extended Snyder model, we use similarity
transformations from Section 2, by S = eiG where G = (x · p)F (u). First, note that

S

(
1

1 +
√
1 + u

)
S−1 = S

( ∞∑
m=1

( 1
2

m

)
um−1

)
S−1

=

∞∑
m=1

( 1
2

m

)(
β2p′2

)m−1
=

1

1 +
√

1 + β2p′2
(3.8)

and

S
(
x̂µν
)
S−1 = x̂µν . (3.9)

Now (3.8) and (3.9) implies that

x̂µ = S

(
xµ + β2(x · p)pµ − β2x̂µαpα

1

1 +
√
1 + u

)
S−1

= x′µ + β2(x′ · p′)p′µ − β2x̂µαp
′
α

1

1 +
√

1 + β2p′2
.

Finally, by using results given in Section 2, (2.19) and (2.22), we obtain a family of realizations
of the extended Snyder model

x̂µ = xµφ1(u) + β2(x · p)pµφ2(u)− β2x̂µαpα
1

φ1(u) +
√
φ2
1(u) + u

, (3.10)

where φ1(u) and φ2(u) satisfy (2.4).
Note that realizations (3.3), (3.4), (3.10) and (2.4) are the exact results written in closed

form.

4 κ-deformed extended Snyder model

In this section we consider a family of Lie algebras containing κ-Poincaré [7, 14, 18, 19, 21, 22]
and Snyder algebras as special cases. They are generated by the NC coordinates x̂µ and Lorentz
generators Mµν satisfying[

x̂µ, x̂ν
]
= i
(
aµx̂ν − aν x̂µ + β2Mµν

)
, (4.1)[

Mµν , x̂λ
]
= −i

(
x̂µηνλ − x̂νηµλ + aµMνλ − aνMµλ

)
, (4.2)

[Mµν ,Mρσ] = i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ), (4.3)
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where aµ = 1
κuµ, u

2 = (−1, 0, 1) and κ is the mass parameter with 1
κ ̸= β. Such models were

considered in [24, 25] and the κ-deformed extended Snyder model was considered in [17, 21, 28].

If Mµν = xµpν − xνpµ and [Mµν , pλ] = i(pνηµλ − pµηνλ), then one particular realization of
above algebra is given in [24, 25] with

x̂µ = xµ

√
1 +

(
a2 − β2

)
p2 +Mµαaα.

For aµ = 0, we get a realization of the Snyder model

x̂µ = xµ
√
1− u.

For β2 = 0, we get the natural realization [21, 22], i.e., a realization in the classical basis [7] of
the κ-Poincaré algebra

x̂µ = xµ
√
1 + a2p2 +Mµαaα.

In the following paper we present the exact new result for the κ-deformed extended Snyder model
that is written in closed form and different from the perturbative results discussed in [27, 28].

Theorem 4.1. Let

Mµν = x̂µν + xµpν − xνpµ. (4.4)

Then one particular realization of the algebra (4.1)–(4.3) is given by

x̂µ = xµ

√
1 +

(
a2 − β2

)
p2 +Mµαaα +

(
a2 − β2

)
x̂µαpα

1

1 +
√
1 +

(
a2 − β2

)
p2

. (4.5)

Proof. We have to show that realization (4.5) satisfies the algebra (4.1)–(4.3). By using (3.1)–
(3.2), it is easy to see that

[Mµν , pλ] = i(pνηµλ − pµηνλ), [Mµν , xλ] = i(xνηµλ − xµηνλ) (4.6)

and [
Mµν , x̂ρσ

]
= i
(
ηµρx̂νσ − ηµσx̂νρ − ηνρx̂µσ + ηνσx̂µρ

)
. (4.7)

Furthermore, from (2.8) we getxµ, 1

1 +
√
1 +

(
a2 − β2

)
p2

 =
−i
(
a2 − β2

)
pµ√

1 +
(
a2 − β2

)
p2
(
1 +

√
1 +

(
a2 − β2

)
p2
)2 , (4.8)

[
xµ,
√
1 +

(
a2 − β2

)
p2
]
=

i
(
a2 − β2

)
p2√

1 +
(
a2 − β2

)
p2

, (4.9)

and Mµν ,
1

1 +
√

1 +
(
a2 − β2

)
p2

 =

[
Mµν ,

√
1 +

(
a2 − β2

)
p2
]
= 0. (4.10)
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Now, from (4.6)–(4.10) we have

[
x̂µ, x̂ν

]
=
[
xµ

√
1 +

(
a2 − β2

)
p2 +Mµαaα +

(
a2 − β2

)
x̂µαpα

1

1 +
√
1 +

(
a2 − β2

)
p2

,

xν

√
1 +

(
a2 − β2

)
p2 +Mνρaρ +

(
a2 − β2

)
x̂νρpρ

1

1 +
√
1 +

(
a2 − β2

)
p2

]
= − i

(
a2 − β2

)
(xµpν − xνpµ) + i(aµxν − aνxµ)

√
1 +

(
a2 − β2

)
p2

+ i(aµMνρaρ − aνMµαaα + a2Mµν)− i
(
a2 − β2

)
x̂µν

= i
(
aµx̂ν − aν x̂µ + β2Mµν

)
.

In similar way, by using (4.6)–(4.10), we show that (4.4) and (4.5) satisfy (4.2)–(4.3). ■

For aµ = 0, we get the realization of the extended Snyder model found in Section 3

x̂µ = xµ
√
1− u− β2x̂µαpα

1

1 +
√
1− u

.

For β2 = 0, we find

x̂µ = xµ
√

1 + a2p2 +Mµαaα + a2x̂µαpα
1

1 +
√

1 + a2p2
.

This is a new result corresponding to the κ-Poincaré algebra with additional tensorial genera-
tors x̂µν . The most general realizations of x̂µ in all cases in this section are obtained by using the
most general corresponding similarity transformations. Construction of Hermitian realizations
in Sections 3 and 4 can be obtained simply by changing x̂µ with 1

2

(
x̂µ + x̂†µ

)
, as in Remark 2.7.

5 Conclusion and discussion

In Section 2, we defined similarity transformations (2.3) and using Propositions 2.2 and 2.3,
we proved realizations of the Snyder model (2.4) in Theorem 2.1. This result was obtained
in [5, 6] without using similarity transformations. In Section 3, we gave a proof of Theorem 3.1
(equations (3.3)–(3.4)) that includes additional tensorial generators x̂µν and it is a generalization
of the original Snyder realization. This is a new exact result leading to an associative star
product and coassociative coproduct [26]. Also, we obtained exact results for the realizations
of the extended Snyder model with functions φ1(u) and φ2(u) (3.10) using Propositions 2.2
and 2.3. In Section 4, we proved Theorem 4.1 (equations (4.4) and (4.5)) and this is a new exact
result for the κ-deformed extended Snyder model.

The physical role of the additional tensorial generators x̂µν is not completely clear, except that
they mathematically lead to an associative star product and coassociative coproduct [12, 26].
Some attempts for applications of the extended Snyder model were made in [12, 16, 26] and of the
κ-deformed extended Snyder model in [17, 27, 28]. Possible applications of the generalizations
of the Snyder model to curved spaces were discussed in [29, 30]. The future prospect of our
investigation is the construction of the star product and twist.
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