Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 043, 15 pages      arXiv:2302.13792      https://doi.org/10.3842/SIGMA.2023.043
Contribution to the Special Issue on Topological Solitons as Particles

The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space

Guido Franchetti a and Calum Ross b
a) Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, England, UK
b) Department of Mathematics, University College London, London, WC1E 6BT, England, UK

Received February 28, 2023, in final form June 21, 2023; Published online July 04, 2023

Abstract
We construct an asymptotic metric on the moduli space of two centred hyperbolic monopoles by working in the point particle approximation, that is treating well-separated monopoles as point particles with an electric, magnetic and scalar charge and re-interpreting the dynamics of the 2-particle system as geodesic motion with respect to some metric. The corresponding analysis in the Euclidean case famously yields the negative mass Taub-NUT metric, which asymptotically approximates the $L^2$ metric on the moduli space of two Euclidean monopoles, the Atiyah-Hitchin metric. An important difference with the Euclidean case is that, due to the absence of Galilean symmetry, in the hyperbolic case it is not possible to factor out the centre of mass motion. Nevertheless we show that we can consistently restrict to a 3-dimensional configuration space by considering antipodal configurations. In complete parallel with the Euclidean case, the metric that we obtain is then the hyperbolic analogue of negative mass Taub-NUT. We also show how the metric obtained is related to the asymptotic form of a hyperbolic analogue of the Atiyah-Hitchin metric constructed by Hitchin.

Key words: hyperbolic monopoles; moduli space metrics.

pdf (416 kb)   tex (26 kb)  

References

  1. Atiyah M., Magnetic monopoles in hyperbolic space, in M. Atiyah, Collected works. Vol. 5. Gauge theories, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988, 577-611.
  2. Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988.
  3. Atiyah M., Lebrun C., Curvature, cones and characteristic numbers, Math. Proc. Cambridge Philos. Soc. 155 (2013), 13-37, arXiv:1203.6389.
  4. Bielawski R., Schwachhöfer L., Hypercomplex limits of pluricomplex structures and the Euclidean limit of hyperbolic monopoles, Ann. Global Anal. Geom. 44 (2013), 245-256, arXiv:1201.0781.
  5. Bielawski R., Schwachhöfer L., Pluricomplex geometry and hyperbolic monopoles, Comm. Math. Phys. 323 (2013), 1-34, arXiv:1104.2270.
  6. Bolognesi S., Cockburn A., Sutcliffe P., Hyperbolic monopoles, JNR data and spectral curves, Nonlinearity 28 (2015), 211-235.
  7. Braam P.J., Austin D.M., Boundary values of hyperbolic monopoles, Nonlinearity 3 (1990), 809-823.
  8. Cannon J.W., Floyd W.J., Kenyon R., Parry W.R., Hyperbolic geometry, in Flavors of Geometry, Math. Sci. Res. Inst. Publ., Vol. 31, Cambridge University Press, Cambridge, 1997, 59-115.
  9. Diacu F., The non-existence of centre-of-mass and linear-momentum integrals in the curved $N$-body problem, Lib. Math. (N.S.) 32 (2012), 25-37, arXiv:1202.4739.
  10. Donaldson S.K., Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), 387-407.
  11. Fehér L.G., Horváthy P.A., Dynamical symmetry of monopole scattering, Phys. Lett. B 183 (1987), 182-186.
  12. Franchetti G., Harmonic spinors on a family of Einstein manifolds, Nonlinearity 31 (2018), 2419-2441, arXiv:1705.02666.
  13. Franchetti G., Maldonado R., Monopoles, instantons, and the Helmholtz equation, J. Math. Phys. 57 (2016), 073502, 14 pages, arXiv:1603.09575.
  14. Franchetti G., Schroers B.J., Adiabatic dynamics of instantons on $S^4$, Comm. Math. Phys. 353 (2017), 185-228, arXiv:1508.06566.
  15. Galperin G.A., A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys. 154 (1993), 63-84.
  16. García-Naranjo L.C., Some remarks about the centre of mass of two particles in spaces of constant curvature, J. Geom. Mech. 12 (2020), 435-446, arXiv:2009.13455.
  17. García-Naranjo L.C., Marrero J.C., Pérez-Chavela E., Rodríguez-Olmos M., Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations 260 (2016), 6375-6404, arXiv:1505.01452.
  18. Gibbons G.W., Manton N.S., Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B 274 (1986), 183-224.
  19. Gibbons G.W., Manton N.S., The moduli space metric for well-separated BPS monopoles, Phys. Lett. B 356 (1995), 32-38, arXiv:hep-th/9506052.
  20. Gibbons G.W., Warnick C.M., Hidden symmetry of hyperbolic monopole motion, J. Geom. Phys. 57 (2007), 2286-2315, arXiv:hep-th/0609051.
  21. Hawking S.W., Gravitational instantons, Phys. Lett. A 60 (1977), 81-83.
  22. Hitchin N.J., A new family of Einstein metrics, in Manifolds and Geometry (Pisa, 1993), Sympos. Math., Vol. 36, Cambridge University Press, Cambridge, 1996, 190-222.
  23. Kronheimer P., Monopoles and Taub-NUT Metrics, Master's Thesis, Oxford University, 1985.
  24. LeBrun C., Explicit self-dual metrics on ${\bf C}{\rm P}_2\#\cdots\#{\bf C}{\rm P}_2$, J. Differential Geom. 34 (1991), 223-253.
  25. Manton N.S., A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982), 54-56.
  26. Manton N.S., Monopole interactions at long range, Phys. Lett. B 154 (1985), 397-400.
  27. Manton N.S., Errata: ''Monopole interactions at long range'', Phys. Lett. B 157 (1985), 475.
  28. Manton N.S., Sutcliffe P., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004.
  29. Murray M.K., Norbury P., Singer M.A., Hyperbolic monopoles and holomorphic spheres, Ann. Global Anal. Geom. 23 (2003), 101-128, arXiv:math.DG/0111202.
  30. Nash O., A new approach to monopole moduli spaces, Nonlinearity 20 (2007), 1645-1675, arXiv:math.DG/0610295.
  31. Nash O., Singular hyperbolic monopoles, Comm. Math. Phys. 277 (2008), 161-187.
  32. Schroers B.J., Singer M.A., $D_k$ gravitational instantons as superpositions of Atiyah-Hitchin and Taub-NUT geometries, Q. J. Math. 72 (2021), 277-337, arXiv:2004.02759.
  33. Shchepetilov A.V., Two-body problem on two-point homogeneous spaces, invariant differential operators and the mass center concept, J. Geom. Phys. 48 (2003), 245-274, arXiv:math-ph/0203050.
  34. Sutcliffe P., A hyperbolic analogue of the Atiyah-Hitchin manifold, J. High Energy Phys. 2022 (2022), no. 1, 090, 14 pages, arXiv:2112.02949.
  35. Sutcliffe P., Boundary metrics on soliton moduli spaces, J. High Energy Phys. 2022 (2022), no. 1, 118, 10 pages, arXiv:2110.14572.
  36. Tod K.P., Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221-224.

Previous article  Next article  Contents of Volume 19 (2023)