Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 041, 11 pages      arXiv:2208.14936      https://doi.org/10.3842/SIGMA.2023.041
Contribution to the Special Issue on Topological Solitons as Particles

Deformations of Instanton Metrics

Roger Bielawski a, Yannic Borchard a and Sergey A. Cherkis b
a) Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
b) Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., Tucson, AZ 85721-0089, USA

Received January 25, 2023, in final form June 05, 2023; Published online June 13, 2023

Abstract
We discuss a class of bow varieties which can be viewed as Taub-NUT deformations of moduli spaces of instantons on noncommutative $\mathbb R^4$. Via the generalized Legendre transform, we find the Kähler potential on each of these spaces.

Key words: instanton; bow variety; hyperkähler geometry; generalised Legendre transform.

pdf (451 kb)   tex (43 kb)  

References

  1. Adams M.R., Harnad J., Hurtubise J., Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows, Comm. Math. Phys. 134 (1990), 555-585.
  2. Beauville A., Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta Math. 164 (1990), 211-235.
  3. Bielawski R., Asymptotic metrics for ${\rm SU}(N)$-monopoles, Comm. Math. Phys. 1999 (1998), 297-325, arXiv:hep-th/9801092.
  4. Bielawski R., Reducible spectral curves and the hyperkähler geometry of adjoint orbits, J. Lond. Math. Soc. 76 (2007), 719-738, arXiv:math.DG/0605309.
  5. Bielawski R., Line bundles on spectral curves and the generalised Legendre transform construction of hyperkähler metrics, J. Geom. Phys. 59 (2009), 374-390, arXiv:0806.0510.
  6. Cherkis S.A., Instantons on the Taub-NUT space, Adv. Theor. Math. Phys. 14 (2010), 609-641, arXiv:0902.4724.
  7. Cherkis S.A., Instantons on gravitons, Comm. Math. Phys. 306 (2011), 449-483, arXiv:1007.0044.
  8. Cherkis S.A., Larraín-Hubach A., Stern M., Instantons on multi-Taub-NUT spaces III: down transform, completeness, and isometry, in preparation.
  9. Donaldson S.K., Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), 387-407.
  10. Foscolo L., Ross C., Calorons and constituent monopoles, arXiv:2207.08705.
  11. Hitchin N.J., On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145-190.
  12. Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
  13. Hurtubise J., The classification of monopoles for the classical groups, Comm. Math. Phys. 120 (1989), 613-641.
  14. Hurtubise J., Murray M.K., On the construction of monopoles for the classical groups, Comm. Math. Phys. 122 (1989), 35-89.
  15. Lee K., Weinberg E.J., Yi P., Moduli space of many BPS monopoles for arbitrary gauge groups, Phys. Rev. D 54 (1996), 1633-1643, arXiv:hep-th/9602167.
  16. Lindström U., Roček M., New hyper-Kähler metrics and new supermultiplets, Comm. Math. Phys. 115 (1988), 21-29.
  17. Malyshev A.N., Factorization of matrix polynomials, Sib. Math. J. 23 (1982), 399-408.
  18. Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., Vol. 18, Amer. Math. Soc., Providence, RI, 1999.
  19. Nekrasov N., Schwarz A., Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory, Comm. Math. Phys. 198 (1998), 689-703, arXiv:hep-th/9802068.
  20. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129.
  21. Takayama Y., Bow varieties and ALF spaces, Math. Proc. Cambridge Philos. Soc. 158 (2015), 37-82.

Previous article  Next article  Contents of Volume 19 (2023)