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Abstract. We propose and in some cases prove a precise relation between 3-manifold
invariants associated with quantum groups at roots of unity and at generic q. Both types of
invariants are labeled by extra data which plays an important role in the proposed relation.
Bridging the two sides – which until recently were developed independently, using very
different methods – opens many new avenues. In one direction, it allows to study (and
perhaps even to formulate) q-series invariants labeled by spinc structures in terms of non-
semisimple invariants. In the opposite direction, it offers new insights and perspectives on
various elements of non-semisimple TQFT’s, bringing the latter into one unifying framework
with other invariants of knots and 3-manifolds that recently found realization in quantum
field theory and in string theory.
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1 Introduction and summary

As part of a larger quest for new quantum invariants of 3-manifolds, we wish to establish a precise
relation between the CGP invariants Nr(M,ω) and the GPPV invariants Ẑs(M ; q), introduced
in [24] and [43, 44], respectively. While the CGP invariants are defined for almost all closed con-
nected 3-manifolds (suitably decorated, see later), the GPPV invariants are currently defined for
a much smaller class, e.g., surgeries on closures of homogeneous braids with framings satisfying
certain inequalities (see Sections 2.5 and 2.6 for a detailed discussion and various alternative
mathematical definitions). More explicitly there exist formulas for the GPPV invariants for some
(but not all) 3-manifolds but their invariance is proved in a smaller set of cases (e.g., surgeries
over negative plumbing links).
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Here we summarize some of the essential features of these invariants, compare side-by-side
what they depend on, and present a motivation for why one should expect a connection between
these two rather different sets of invariants. First, perhaps the most obvious part of input data
that both sets of invariants need is a choice of 3-manifold M . In either case, however, it needs
to be equipped with additional structure; in the case of CGP invariants Nr(M,ω) it involves
a choice of ω ∈ H1(M ;C/2Z) \H1(M ;Z/2Z), whereas in the case of GPPV invariants Ẑs(M ; q)
it depends on s ∈ Spinc(M)/Z2. Although these structures are clearly different, they both are
related1 to H1(M) and should be regarded as mutual counterparts in identifying the two sets of
invariants, as we will see below.

Similarly, the dependence of Nr(M,ω) on a positive integer r ̸= 0 mod 4 should be compared
to the q-dependence of Ẑs(M ; q). Indeed, both sets of invariants are quantum group invariants

of 3-manifolds, with ξ = e
πi
r and q respectively playing the role of the quantum parameters. The

definition of Nr(M,ω) is based [24] on the representation theory of the unrolled quantum group
UH
ξ (sl2), whereas Ẑs(M ; q) should be thought of as a quantum group invariant associated with

Uq(sl2) at generic |q| < 1. Indeed, Ẑs(M ; q) basically gives a non-perturbative definition2 of
“SL(2,C) Chern–Simons theory” that behaves well under surgery and has line operators labeled
by Verma modules of arbitrary complex weight [38, 66].

Nr(M,ω) Ẑs(M ; q)

Quantum parameter ξ = e
πi
r root of unity generic |q| < 1

Quantum group UH
ξ (sl2) Uq(sl2)

Additional structure ω ∈ H1(M ;C/2Z) \H1(M ;Z/2Z) s ∈ Spinc(M)/Z2

(1.1)

Since the relation between Uq(sl2) and UH
ξ (sl2) involves, among other things, specializing q

to be a root of unity, one might expect Nr(M,ω) to be related to limiting values of Ẑs(M ; q) at
roots of unity. This relation between quantum groups was a large part of the motivation in [39],
where a relation of this form was proposed for knot complements. Indeed, the invariants Nr

are defined in the more general setup of triples (M,ω,L), where L ⊂ M is a C-colored framed
oriented link and ω ∈ H1(M \ L;C/2Z) is a cohomology class whose period on the meridians
of L is congruent (mod 2Z) to the color of L. In this paper, we will only consider the case of
links in S3; in this case the cohomology class ω is uniquely determined by the coloring of the
link therefore, instead of Nr

(
S3, ω, L

)
, we shall use the abusive notation Nr(Lα), with α the

coloring of L. Coming back to the conjectural relations between Ẑ and Nr, we recall that in [40]
it was proposed that for the complement of a knot K in S3 the correct version of Ẑ can be
summarised by a single 2 variable series FK(x, q) := Ẑ

(
S3 \K

)
(not depending on any further

structure on K). This series is conjecturally related to the invariants ADOr(x;K) introduced
by Akutsu–Deguchi–Ohtsuki [1] as follows:

Conjecture 1.1.

(a) There exists WK(x, q) ∈ Z
[
q−1, q

][
x±

1
2

]
such that the following holds for every r ∈ N:

WK(x, q)|q→ξ2 =
ADOr

(
x/ξ2;K

)
∆K(xr)

·
(
x1/2 − x−1/2

)
(1.2)

1Recall that non-canonically Spinc(M) ∼= H1(M ;Z).
2At the perturbative level, in general it contains contributions of all complex SL(2,C) flat connections on M ,

much like, e.g., the Teichmüller TQFT [2] contains contributions of a particular component of the space of SL(2,R)
flat connections. Note, as a result, the Teichmüller TQFT is strictly speaking not a non-perturbative completion
of any perturbative Chern–Simons theory, and is much closer to the “real Chern–Simons theory” than to the
“complex Chern–Simons theory.”
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(Recall that for a knot ∆K

(
x2

)
= ∇K(x)

(
x− x−1

)
where ∆K is the Alexander polynomial

and ∇K the Alexander–Conway function.)

(b) When the series FK(x, q) is defined, it provides such3 a WK(x, q).

Here we address the problem of establishing a similar relation for more general 3-manifolds.
This requires 3-manifold invariants which specialize to ADO invariants for knot complements,
and CGP invariants Nr perfectly fit the bill:

ADOr

(
x2/ξ2;K

)
=

xr − x−r

x− x−1
Nr(Kα), where x = e

πiα
r , ξ = e

πi
r . (1.3)

The composition of (1.2) and (1.3) not only gives us the first instance of the sought-after
relation between CGP and GPPV invariants in a certain class of 3-manifolds, but also provides
a clue for the relation between parameters r and q for more general M :

Nr(M,ω)
?←→ Ẑs(M ; q)

∣∣
q→ξ2=e2πi/r .

Another useful clue that follows from (1.2) and (1.3) is that the relation between Nr(M,ω) and
Ẑs(M ; q) should be linear,

Nr(M,ω) =

(∑
s

cCGP
ω,s Ẑs(M ; q)

)∣∣∣∣
q→e

2πi
r

(1.4)

much like analogous relations between Ẑ(M ; q) and other invariants of M , such as the inverse
Turaev torsion [72, 73], Witten–Reshetikhin–Turaev (WRT) invariants [69, 77], and Rokhlin
invariants. Remark that in the above formula we are summing over all spinc structures although
the Ẑs(M ; q) is invariant under the Z/2Z involution on Spinc(M), so although some terms could
be grouped, this convention is often more convenient to work with.

Figure 1. One of our main goals is to explore possible relations between Nr(M,ω) and the limiting

behavior of Ẑs(M ; q) at roots of unity.

Establishing the relation (1.4) – and, in particular, determining the precise form of the
coefficients cCGP

ω,s that relate additional structures on M that enter the two sets of invariants –
is one of our main goals. We find

3The equality (1.2) does not by itself uniquely fix WK(x, q), as one in particular can always add to W (x, q)
a multiple of

∏
n≥1(1 − qn).
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Conjecture 1.2. Let M be a rational homology sphere.

(a) There exist a collection of series Ws(M) ∈ q∆sQ[[q]]
[
q−1

]
, s ∈ Spinc(M) (for some ∆s ∈

Q) such that the relation holds:4

Nr(M,ω) =

( ∑
s∈Spinc(M)

cCGP
ω,s Ws(M)

)∣∣∣∣
q→e

2πi
r

(1.5)

with

cCGP
ω,σ(b,s)=

T (M, [ω])

|H1(M ;Z)|



−e−
πi
2
µ(M,s)∑

a,f e
2πi

(
− r−1

4
ℓk(a,a)+ℓk(a,f−b)− 1

2
ω(a)+ℓk(f,f)

)
if r = 1 mod 4,√

|H1(M ;Z)|
∑

a e
−πir

2
qs(a)−2πiℓk(a,b)−πiω(a),

if r = 2 mod 4,

−e
πi
2
µ(M,s)∑

a,f e
2πi

(
− r+1

4
ℓk(a,a)−ℓk(a,f+b)− 1

2
ω(a)−ℓk(f,f)

)
if r = 3 mod 4,

(1.6)

where

� T (M, [ω]) is a suitable version of the Reidemeister torsion (see Appendix A);

� ℓk(·, ·) is the linking form on H1(M ;Z), and in the sum a, f ∈ H1(M ;Z) (for more
details about it, see Section 2.2);

� σ is the canonical map

σ : H1(M ;Z)× Spin(M) −→ Spinc(M)

producing a spinc structure s = σ(b, s) on M from a spin structure5 s, and b ∈
H1(M ;Z) (for more details about it, see Section 2.2).

� µ(M, s) is the Rokhlin invariant of M for spin structure s.6

(b) Furthermore, when the invariants Ẑs(M ; q) are defined one can take7 Ws(M) = Ẑs(M ; q).

Note, the invariants Nr(M,ω) are not defined for r = 0 mod 4, which is why this case is
omitted in (1.6). (For more details about this case, see Section 4.3.)

The conjecture above is an analogue of the of the conjecture relating WRT invariant with
the limits of Ẑs that was formulated in [43, 44]. It was proven for certain families of 3-manifolds
in [3, 36, 41, 60]. Some elements of the latter conjecture can trace its origin to the work of
Lawrence and Zagier [58]. It is closely related to resurgence in analytically continued Chern–
Simons theory [3, 41] and quantum modularity [79].

We prove Conjecture 1.2 under some technical hypotheses specified in Theorem 4.17, which
can be stated in a simpler form as follows:

4Note that Ws(M), due to the overall factor q∆s ,∆s ∈ Q, are multivalued functions of q (the values on different
branches differ by an overall phase). Throughout the paper, when writing the limit in the form “q → eiϕ” with
ϕ ∈ [0, 2π), it is assumed that the branch of qδ for some δ ∈ Q is such that qδ → eiϕδ. Equivalently, one can
consider the corresponding single-valued functions of τ , with q = e2πiτ . Then “q → eiϕ” should be understood as
“τ → ϕ/(2π)” (taken from the upper half plane).

5We use the standard typeface to denote spin structures (e.g., “s”) and Fraktur typeface to denote spinc

structures (e.g., “s”).
6Note that conjecturally 1

4
µ(M, s) + 1

2
− ℓk(b, b) = ∆σ(b,s) mod 1, where ∆s is the overall rational shift in the

powers of q in Ẑs for a given s ∈ Spinc(M) [42].
7As in the case of knots, the equality (1.5) does not by itself uniquely fix Ws(q), as one in particular can always

add to them multiples of
∏

n≥1(1 − qn).
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Theorem 1.3 (simplified form of Theorem 4.18). Let M be a rational homology sphere obtained
by integral surgery on a framed link L ⊂ S3 for which Conjecture 1.1 (appropriately extended
from knots to links) holds true. Then, under the technical hypotheses specified in Theorem 4.18,
the parts (a) and (b) of Conjecture 1.2 are true for any pair (M,ω) with ω ∈ H1(M ;C/2Z) \
H1(M ;Z/2Z).

In the statement of the theorem though, we point out that the status of the invariant Ẑ is
the following: assuming that parts (a) and (b) of Conjecture 1.1 hold for L (so that in particular
a series FL is defined), there is an explicit formula providing Ẑ for M but the full proof of the
convergence of the formula and its invariance is not yet available.

An infinite family of cases to which Theorem 4.18 applies is provided in Example 4.20. The
following is a list of cases for which the numerical evidence supports this result:

1. L is a plumbing link (for an infinite list of cases of these plumbing links the hypotheses of
Theorem 4.18 can all be verified: see Example 4.20);

2. L is a trefoil knot.

We also provide another kind of numerical evidence for the case of surgeries on the figure eight
knot by cross checking the above conjectures with similar conjectures relating Ẑ and the WRT
invariants (see Section 6.2).

In the rest of the paper, we will sometimes omit explicit dependence of Ẑs on s, and/or M ,
and/or q.

Remark 1.4. Conjecture 1.2 together with the conjectural relation between Ẑs and mod-2-
cohomology-refined WRT invariant (see Appendix B) can be used to calculate the limiting values

of Ẑs at q → e
2πi
r , r ̸= 0 mod 4. Namely, assuming that T (M, [ω]) ̸= 0 for ω /∈ H1(M ;Z/2Z),

one can invert the linear transform (1.5) formally substituting

Nr(M,ω)/T (M, [ω])⇝ (−1)r WRTr(M,ω)/
(
i
√
8r
)
,

when ω ∈ H1(M ;Z/2Z). For r = 0 mod 4 one can similarly use the relation between Ẑs and
spin-version of CGP invariants (see Section 4.3) together with the spin-refined WRT invariant
(see [42]). This can be especially useful since for many 3-manifolds Ẑs can be computed as
q-series, but their modular properties, needed to determine the limiting values at roots of unity,
are not known. Therefore, the relation to CGP and mod-2-cohomology-refined WRT invariants
can serve as a substitute for modularity properties of Ẑs in problems that involve limiting values
at roots of unity.

When T (M, [ω]) = 0 but Nr(M,ω) ̸= 0 for some ω /∈ H1(M ;Z/2Z) this indicates that
lim

q→e
2πi
r

Ẑs = ∞ at least for some s. (The linear combinations of Ẑs producing refined WRT

invariants can still have finite limits.)

The study of the case of a manifold M with positive first Betti number (denoted b1 from
now on) brought us to notice that the invariant Ẑ for such manifolds requires an additional
structure on M , namely the choice of a splitting H1(M ;Z) into its torsion part and its free
part: Tor(H1(M ;Z))⊕ Free(H1(M ;Z)), which we will denote from now on H1(M ;Z) = T ⊕ F ;
we will also denote b′ (resp. b′′) the projection of b ∈ H1(M ;Z) in T (resp. F ). For a fixed
spinc structure on M , changing such a choice affects Ẑs by multiplying it by a power of q (see
formula (2.40) for the precise formulation) which we call the splitting anomaly.

A version of Conjecture 1.2 for the case of non-rational-homology-spheres is then the following:

Conjecture 1.5. Let M be any closed oriented 3-manifold. Choose a splitting H1(M ;Z) =
T ⊕ F , where T is the torsion part and F the free part.
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(a) There exist Ws(M ;T, F ) ∈ q∆sQ[[q]]
[
q−1

]
, s ∈ Spinc(M) (where, as explained above

H1(M) = T ⊕ F , with F the free part) for some ∆s ∈ Q such that the following holds:

Nr(M,ω) =

( ∑
b=b′+r′m,b′∈T,m∈F

cCGP
ω,σ(b,s)Wσ(b,s)(M)

)∣∣∣∣
q→e

2πi
r

(1.7)

with

cCGP
ω,σ(b′+r′m,s) =

rb1T (M, [ω])

|TorH1(M ;Z)|

×



∑
a′,f ′∈T e2πi

(
− r−1

4
ℓk(a′,a′)+ℓk(a′,f ′−b′)− 1

2
ω(a′)+ℓk(f ′,f ′)+ω′′(m)− 1

4
µ(M,s)+ 1

2

)
if r = 1 mod 4,√

|TorH1(M ;Z)|
∑

a′∈T e−
πir
2

qs(a′)−2πiℓk(a′,b′)−πiω(a′)+πiω′′(m)

if r = 2 mod 4,∑
a′,f ′∈T e2πi

(
− r+1

4
ℓk(a′,a′)−ℓk(a′,f ′+b′)− 1

2
ω(a′)−ℓk(f ′,f ′)+ω′′(m)+ 1

4
µ(M,s)+ 1

2

)
if r = 3 mod 4,

where r′ = r if r is odd and r
2 else and ω′ (resp. ω′′) is the restriction of ω on T (resp.

on F ).

(b) If Ẑs(M) is defined, then one can take8 Ws(M) = Ẑs(M).

Remark 1.6. In the above conjecture, the choice of the splitting is auxiliary: as explained
above, a different choice will provide different values for Ws but these choices are compensated
by the change in the coefficients cCGP, so that the left-hand side is indeed independent on the
splitting. Equivalently, the behavior of Ws under the choice of such splitting is controlled by
the behavior of the coefficients cCGP. Clearly, if M is a rational homology sphere the splitting
is irrelevant and the above conjecture reduces to Conjecture 1.2.

Remark 1.7. The conjecture above implicitly assumes that the sum over m in (1.7), which is
infinite for b1 > 0, converges coefficient-wise in the space of Puiseux series in q with complex
coefficients and, moreover, the resulting sum is a series of a continuous function in {|q| < 1,

arg q ̸= 0} with finite radial limits q → e
2πi
r .

Again, we can prove the above conjecture under suitable technical hypotheses which are
omitted in the following statement:

Theorem 1.8. Under the technical hypotheses of Theorem 4.26, Conjecture 1.5 holds true for
any pair (M,ω) with ω ∈ H1(M ;C/2Z) \H1(M ;Z/2Z).

We provide the following tests:

1) M = Σ× S1 for some closed oriented surface Σ;

2) M obtained by integral surgery on a framed link L ⊂ S3 for which Conjecture 1.1 holds
true.

Moreover, an infinite family of cases to which Theorem 4.26 applies is provided in Exam-
ple 4.27.

In [12], the invariants Nr were extended to a TQFT defined on a suitable category of cobor-
disms decorated with (relative) cohomology classes. Conjecturally, it should be possible to do

8As will be made apparent in Section 2.6, for b1 > 0, the q-series Ẑs are defined only up to a certain equivalence
relation. The statement is that any representative in the equivalence class can be taken.
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the same for the invariant Ẑ. In Section 5.2, we discuss this possibility and define (or sketch)
two “operations on TQFTs” which, if applied to the conjectural TQFT for Ẑ would produce the
TQFT built in [12], thus extending (unfortunately only partially) Conjecture 1.2 to the case of
cobordisms.

The rest of the paper is organized as follows. In general, we tried to be as self-contained as
possible and we ascribed the physical motivations to dedicated sections so that the paper should
be accessible for both mathematicians and physicists. Section 2 gives a self-contained review of
all the relevant invariants that we wish to relate and introduces a number of technical tools that
are used throughout the paper. After presenting a few families of concrete examples in Section 3,
we then proceed to a more general and systematic discussion of the relation between Nr and Ẑ
invariants in Section 4. (A reader more interested in a general argument may prefer to read
Section 4 first, before going through the examples in Section 3.) In Section 5, Ẑ and Nr are
considered as decorated TQFT’s and we propose how a relation between this richer structure
can extend the relation between numerical 3-manifold invariants in the previous sections. Since
both Ẑ and Nr are related to Witten–Reshetikhin–Turaev (WRT) invariants, it is natural to
ask whether our proposed relation between Ẑ and Nr is compatible with the previously known
relations. This question is answered in the affirmative in Section 6. Finally, many useful facts
about various refined invariants, gradings in CGP TQFT, and details related to the order of
limits are collected in appendices.

2 Preliminaries

2.1 ADO invariants of links in a three-sphere

One of the oldest non-semisimple invariants is the collection – labeled by integer r ≥ 2 – of
polynomial link invariants introduced by Akutsu–Deguchi–Ohtsuki [1], or ADO invariants for
short. Namely, let L ⊂ S3 be an oriented framed link with V components and ξ = exp 2πi

2r
for some r ≥ 2. A coloring of L is an assignment to each component LI of L of a complex
number αi. Then, the ADO invariant of L colored by {αi} is an element of Z[ξ±α1 , . . . , ξ±αV ] if
V ≥ 2 and an element of 1

ξrα−ξ−rαZ[ξ±α] otherwise
(
here ξα = exp

(
2πiα
2r

))
.

On the one hand, these polynomial link invariants are close cousins of the Alexander polyno-
mial, and include the Alexander polynomial as a special case (corresponding to r = 2), cf. [61].
On the other hand, the ADO polynomials can be viewed as close cousins of the quantum group
invariants that play a role in the Reshetikhin–Turaev construction. Indeed, the ADO poly-
nomials were later re-formulated by Murakami [62] in terms of the R-matrix and quantum
groups of at roots of unity. Specifically, the R-matrix (and its inverse) used in [62] is a map
Wλ ⊗Wµ →Wµ ⊗Wλ:

Rij
kl = ξ

1
2
(λ−2i−2n)(µ−2j+2n)+n(n−1)/2 {i+ n;n}{µ− j + n;n}

{n;n}
,

(
R−1

)ij
kl
= (−1)nξ−

1
2
(λ−2i)(µ−2j)−n(n−1)/2 {j + n;n}{λ− i+ n;n}

{n;n}
, (2.1)

where n = l− i = j− k, {a} = ξa − ξ−a, {x;n} =
∏n−1

i=0 {x− i} and Hvλi = (λ− 2i)vλi . We warn
the reader that with respect to the notation we will adopt in the definition given in Section 2.4.1
the the colors µ, λ above are highest weight rather than middle weights of the modules. This
creates a shift of r − 1 in the colors with respect to the convention adopted later on, but we
mention the above expression because we will return to it in Section 2.5 and compare it to the
R-matrix that one encounters in the study of Ẑ-invariants.

Also, in Section 2.4 below we review how the ADO invariants were used in [24] to define
invariants of 3-manifolds M endowed with a cohomology class ω ∈ H1(M ;C/2Z). Namely, if L
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is a link such that M is obtained by integral surgery on L, then ω induces a coloring on L by
setting αI = ω(mI) where mI is the oriented meridian of LI .

The study of these invariants remained detached from physics for almost 30 years. This is
especially surprising given a large number of close ties that WRT invariants of knots and 3-
manifolds have with quantum field theory and string theory. The situation started to change
about a year ago [39] and we hope that the present paper can be another step toward bridging
this gap, see also [16, 17, 19, 21, 26, 27, 34, 35, 68] for closely related work.

2.2 Combinatorics of spin and spinc-structures

Let M be obtained as an integral surgery on a framed oriented link L in S3 and let ω ∈
H1(M ;C/2Z) \H1(M ;Z/2Z). Let us index the components of L by a set Vert and denote its
V ×V linking matrix by BIJ , I, J ∈ Vert, V := |Vert|. Then we have the following identifications
(see [30] for details):

H1(M ;Z) ∼= ZVert/BZVert, (2.2)

H1(M ;Z2) ∼=
{
c ∈ ZVert

2

∣∣∣∣ ∑
J∈Vert

BIJcJ = 0 mod 2,∀I
}
, (2.3)

H2(M ;Z) ∼= {h ∈ ZVert/BZVert}, (2.4)

Spin(M) ∼=
{
s ∈ ZVert

2

∣∣∣∣ ∑
J∈Vert

BIJsJ = BII mod 2,∀I
}
, (2.5)

Spinc(M) ∼= Char(B)/2BZVert =
{
K ∈ ZVert/2BZVert | KI = BII mod 2,∀I

}
, (2.6)

where Char(B) :=
{
K ∈ ZVert | KTn = nTBn mod 2, ∀n ∈ ZVert

}
is the space of characteristic

vectors of the lattice dual to the lattice ZVert with the quadratic form B. Here and in what
follows, we use (. . .)T to denote vector transposition. The one-to-one correspondence between
the elements a and K in (2.18) is given by a = K −Bε, where

ε := (1, 1, 1, . . . , 1) ∈ ZVert. (2.7)

The Bockstein homomorphism β : H1(M ;Z2) → H2(M ;Z) writes in the above notation as
follows; for c ∈ ZVert

2 let c̃ ∈ ZVert be such that c̃ ∼= c mod 2. Then

β(c) =
1

2
Bc̃ ∈ ZVert/BZVert, (2.8)

where we observe that since Bc̃ is even, division by two is possible and its result in ZVert/BZVert

is independent on the choice of c̃. We observe that Spin(M) is affine over H1(M ;Z2) via
component-wise addition and Spinc(M) is affine over H2(M ;Z) by defining (K + [h])I := KI +
2hI , ∀I ∈ Vert. Observe also that there is a canonical map i : Spin(M) → Spinc(M) which in
the above notation writes

i(s)I =
∑

J∈Vert
BIJ s̃J , (2.9)

where s̃ is any lift of s ∈ ZVert
2 to s̃ ∈ ZVert so that s = s̃ mod 2. Furthermore, it is clear that i

is affine over the Bockstein homomorphism

i(s+ c) = i(s) + 2β(c) ∀s ∈ Spin(M), c ∈ H1(M ;Z2). (2.10)

Later we will use the canonical map σ

σ : H1(M ;Z)× Spin(M) −→ Spinc(M) (2.11)
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induced by the map B Spin×BU(1) → B Spinc between the corresponding classifying spaces,
combined with the isomorphisms BU(1) ∼= B2Z, H1(M ;Z) ∼= H2(M ;Z). In terms of the above
combinatorial encodings, it is

σ(s, b) = i(s) + 2b.

We will also need the linking pairing

ℓk : TorH1(M ;Z)⊗ TorH1(M ;Z) −→ Q/Z (2.12)

and its quadratic refinement [51]

qs : TorH1(M ;Z) −→ Q/2Z, qs(a+ b)− qs(a)− qs(b) = 2ℓk(a, b). (2.13)

depending on a spin structure s ∈ Spin(M) as follows:

qs+c(a)− qs(a) = c(a), c ∈ H1(M ;Z2). (2.14)

In terms of the identifications (2.2)–(2.18), we have

ℓk(a, b) = aTB−1b mod 1, (2.15)

qs(a) = aTB−1a+ sTa mod 2. (2.16)

We will also use the following expression for the mod 4 reduction of Rokhlin invariant (see,
e.g., [50]):

µ(M, s) = σ − sTBs mod 4, (2.17)

where σ is the signature of the linking matrix B.
A special case is when M is a plumbed manifold, i.e., all the components of L are unknots

which are linked to each other as Hopf links according to the combinatorial structure of a con-
tractible graph Γ, the vertices of which are indexed by Vert. In this case, letting deg(I) be
the degree of I ∈ Vert (i.e., the number of edges containing v), we also have the following
identification for spinc-structures:

Spinc(M) ∼=
{
a ∈ ZVert/2BZVert | aI = deg(I) mod 2

}
. (2.18)

2.3 WRT invariants

Let ξ = exp πi
r , U

H
ξ (sl2) be the so-called “unrolled version” of the quantum sl2 algebra as defined

in [24], given by generators E, F , H, K, K−1 and relations

KK−1 = K−1K = 1, KEK−1 = ξ2E, KFK−1 = ξ−2F, [E,F ] =
K −K−1

ξ − ξ−1
,

HK = KH, [H,E] = 2E, [H,F ] = −2F.

The algebra UH
ξ (sl2) is a Hopf algebra where the coproduct, counit and antipode are defined as

follows:

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(H) = H ⊗ 1 + 1⊗H, ε(H) = 0, S(H) = −H.
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Let C be the category of finite dimensional weight modules (i.e., modules on which H acts
diagonally) and on which K acts as ξH and such that Er and F r act as 0. We will now recall
that the category C is a ribbon category. Let V and W be objects of C. Let {vi} be a basis of V
and {v∗i } be a dual basis of V ∗ = HomC(V,C). Then

−→
coevV : C→ V ⊗ V ∗, given by 1 7→

∑
vi ⊗ v∗i ,

−→
ev V : V ∗ ⊗ V → C, given by f ⊗ w 7→ f(w)

are duality morphisms of C. In [64], Ohtsuki truncates the usual formula of the h-adic quan-
tum sl2 R-matrix to define an operator on V ⊗W by

R = ξH⊗H/2
r−1∑
n=0

{1}2n

{n}!
ξn(n−1)/2En ⊗ Fn,

where ξH⊗H/2 is the operator given by

ξH⊗H/2(v ⊗ v′) = ξλλ
′/2v ⊗ v′

for weight vectors v and v′ of weights of λ and λ′. The R-matrix is not an element in UH
ξ (sl2)⊗

UH
ξ (sl2), however the action of R on the tensor product of two objects of C is a well defined

linear map on such a tensor product. So, R gives rise to a braiding cV,W : V ⊗W →W ⊗V on C
defined by v ⊗ w 7→ τ(R(v ⊗ w)), where τ is the permutation x⊗ y 7→ y ⊗ x. Also, let θ be the
operator given by

θ = Kr−1
r−1∑
n=0

{1}2n

{n}!
ξn(n−1)/2S(Fn)ξ−H

2/2En,

where ξ−H/2 is an operator defined on a weight vector vλ by ξ−H
2/2.vλ = ξ−λ

2/2vλ. Ohtsuki
shows that the family of maps θV : V → V in C defined by v 7→ θ−1v is a twist (see [64]).

Now the ribbon structure on C yields right duality morphisms

←−
ev V =

−→
ev V cV,V ∗(θV ⊗ IdV ∗) and

←−
coevV = (IdV ∗ ⊗ θV )cV,V ∗

−→
coevV ,

which are compatible with the left duality morphisms { −→coevV }V and {−→ev V }V . These duality
morphisms are given by

←−
coevV : C→ V ∗ ⊗ V, where 1 7→

∑
Kr−1vi ⊗ v∗i ,

←−
ev V : V ⊗ V ∗ → C, where v ⊗ f 7→ f

(
K1−rv

)
.

Definition 2.1. The quantum dimension qdim(V ) of an object V in C is the qdim(V ) =
←−
ev V ◦

−→
coevV =

∑
v∗i
(
K1−rvi

)
.

For each n ∈ {0, . . . , r − 1}, let Sn be the usual (n + 1)-dimensional simple highest weight
UH
ξ (sl2)-module with highest weight n. The module Sn is a highest weight module with a highest

weight vector s0 such that Es0 = 0 and Hs0 = ns0. Then {s0, s1, . . . , sn} is a basis of Sn, where

Fsi = si+1, H.si = (n − 2i)si, E.s0 = 0 = Fn+1.s0 and E.si =
{i}{n+1−i}
{1}2 si−1. The quantum

dimension of Sn is qdim(Sn) = (−1)n {n+1}
{1} . Next we consider a larger class of finite dimensional

highest weight modules: for each α ∈ C, we let Vα be the r-dimensional highest weight UH
ξ (sl2)-

module of highest weight α + r − 1 (we stress here that α is then the “mid-weight” of Vα as
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opposed to its highest weight which is α + r − 1). The modules Vα has a basis {v0, . . . , vr−1}
action on which is given by

H.vi = (α+ r − 1− 2i)vi, E.vi =
{i}{i− α}
{1}2

vi−1, F.vi = vi+1.

For all α ∈ C, the quantum dimension of Vα is zero:

qdim(Vα) =

r−1∑
i=0

v∗i
(
K1−rvi

)
=

r−1∑
i=0

ξ(1−r)(α+r−1−2i) = ξ(1−r)(α+r−1) 1− ξ2r

1− ξ2
= 0.

As shown in [25], if L is a framed oriented link in S3 colored by modules ScI , where cI denotes
the coloring of the Ith component of the link, then

F (L) = Jc(L),

where F is the Reshetikhin–Turaev functor and Jc is the (unnormalised) skein theoretical colored
Jones polynomial of L, so that in particular the value for the Si-colored unknot is (−1)i[i + 1]
(as usual, [n] := {n}/{1}). Another well known version of the colored Jones polynomial, which
we shall call “representation theoretical”, is obtained by considering the full subcategory C′ of C
generated by the modules Sn with the same braiding and ribbon structure as above, with the
only difference in the following morphisms:

←−
coevV : C→ V ∗ ⊗ V, where 1 7→

∑
K−1vi ⊗ v∗i ,

←−
ev V : V ⊗ V ∗ → C, where v ⊗ f 7→ f(Kv).

Then the image of L via the Reshetikhin–Turaev functor associated to the category C′ is the
version of the colored Jones considered for instance in [50], let us denote it Vc(L).

Remark 2.2. The definition of representation theoretical Jones polynomial can be extended to
generic values of q as opposed to ξ = exp

(
iπ
r

)
.

Lemma 2.3. It holds Vc(L) = (−1)
∑

I∈Vert(BII+1)cIJc(L).

Proof. It is sufficient to compare when L is the closure of a braid so that for each component
of the resulting link we have BII = 0 for all I. Then the only difference between the two
Reshetikhin–Turaev functors associated to C′ and C is coming from the m maxima: a maximum
colored by cI will contribute to Jc(L) via K1−r and to Vc(L) via K and since Kr acts as
ξrcI = (−1)cI the overall difference is (−1)

∑
cI where the sum is taken over all the m strands

of the braid. But now we claim that this sign coincides with (−1)
∑

I(BII+1)cI . Indeed, observe
that BII is not changed (modulo 2) if one switches the crossings of the braid so that we can
prove the claim when the link is actually a disjoint union of unknots. Now for each such unknot
colored by odd cI we observe that each Reidemeister 1 move changes by one both the number
of maxima and BII , while the other Reidemeister moves do not change these values. Finally,
for the standard diagram of the unknot the statement is true. ■

Lemma 2.4 (symmetry principle for skein theoretical Jones polynomials). Let ξ = exp(πir )
and L be a framed oriented link colored by Sc1 , . . . , ScV with 0 ≤ cI ≤ r−2. For each aI ∈ {0, 1}
and cI ∈ {0, . . . , r − 2}, let aI ∗ cI := aI(r − 2 − cI) + (1 − aI)cI , and for a ∈ {0, 1}V , let
a ∗ c := (a1 ∗ c1, . . . , aV ∗ cV ). Then it holds:

Ja∗c(L) = i(r−2)
∑

I,J∈Vert BIJaIaJ (−1)
∑

I,J∈Vert BIJaIcJ (−1)
∑

I∈Vert(BII+1)(r−2)aIJc(L).
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Proof. The symmetry principle for the representation theoretical Jones polynomial stated
in [50, formula (4.20)] is

Va∗c(L) = i(r−2)
∑

I,J∈Vert BIJaIaJ (−1)
∑

I,J∈Vert BIJaIcJVc(L).

By Lemma 2.3, for each component where aI ̸= 0 we acquire an additional factor

(−1)(BII+1)(cI−(r−2−cI)) = (−1)(BII+1)(cI−(r−cI)). ■

We end this section by recalling the definition of the Witten–Reshetikhin–Turaev invariants
in their TQFT normalisation, according to Blanchet–Habegger–Masbaum–Vogel [13]:

Definition 2.5. Let D =
√

r
2

(
sin

(
π
r

))−1
and M be the three-manifold obtained by surgery on

a framed oriented link L. Then

WRTr(M) = D−b0(M)−b1(M)U
−b+
+ U

−b−
−

∑
c

qdim(c)Jc(L),

where U± =
∑r−2

c=0 qdim(c)Jc(u±), u± is the unknot with framing ±, c runs over all the colorings
of L with colors in {0, 1, . . . , r−2}, qdim(c) =

∏V
I=1 qdim(cI) (see Definition 2.1), bi(M) are the

Betti numbers of M and b± are the number of positive (or negative) eigenvalues of the linking
matrix of L.

We also recall that there exists a cohomological refinement of WRTr(M) defined for coho-
mology classes ω ∈ H1(M ;Z/2Z) (see [25, 50]). Given such a class and an oriented link L ⊂ S3

such that M is obtained by surgery over L, then ω induces a parity on the components of L via
ω(LI) := ω(mI) ∈ Z/2Z, where mI is homology class of the meridian of LI . Let

∆
SO(3)
− :=

∆−
(−1)r−1(ξ − ξ−1)

, ∆
SO(3)
+ := − ∆+

(−1)r−1(ξ − ξ−1)
,

where ∆± are defined in (2.20) and (2.21). Then one defines (see also Appendix B):

Definition 2.6.

WRTr(M,ω) =
D−b0(M)−b1(M)(

∆
SO(3)
+

)b+(∆SO(3)
−

)b− ∑
c=ω mod 2

qdim(c)Jc(L),

where c runs over all the colorings of L with values in {0, 1, . . . , r − 2} which are congruent
mod 2 to ω(LI) for each component of L.

Remark 2.7. With respect to [50], we index modules by highest weight vectors instead of by
their dimension, this causes a shift by one in the above summation range.

2.4 Nr invariants

With the above notation, to calculate Nr(M,ω) in this case it is enough to introduce the following
definitions:9

d(α) :=
sin πα

r

sinπα
=

ξα − ξ−α

ξrα − ξ−rα
, S(α, β) := ξαβ, T (α) := ξ

α2−(r−1)2

2 , (2.19)

9In [24], q was used instead of ξ := e
πi
r and, mainly, the definition of d(α) differs by a factor (−1)r−1r: this

only affects Nr by an overall scalar.
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∆− :=


0, r = 0 mod 4,

iξ
3
2 r

1
2 , r = 1 mod 4,

(1− i)ξ
3
2 r

1
2 , r = 2 mod 4,

−ξ
3
2 r

1
2 , r = 3 mod 4,

(2.20)

∆+ = ∆−. (2.21)

As before, let us denote by mI ∈ H1(M ;Z) the homology class of the oriented meridian of the
component of L indexed by I ∈ Vert. Then define

µI := ω(mI) ∈ C/2Z.

We will assume from now on that µI /∈ Z/2Z, ∀I (it was proved in [24] that one can always
find L presenting M such that this condition is satisfied if ω ∈ H1(M ;C/2Z) \H1(M ;Z/2Z)).
Note that∑

J

BIJµJ = 0 mod 2. (2.22)

2.4.1 Nr for links, ADO and Conway–Alexander polynomials

As proved in [1] (but in what follows we use the notation used in [24]), there is an invariant
Nr(Lµ) associated to each framed oriented link with a C-coloring µ1, . . . , µV of its components,
which, up to a factor depending on the linking form, is valued in C[ξ±µ1 , . . . , ξ±µV ] if V > 1 and

in ξµ1−ξ−µ1

ξrµ1−ξ−rµ1
C[ξ±µ1 ] in the knot case.

This invariant is computed by first cutting open L on one of its components (say the Ith)
to get a (1, 1)-tangle T , then computing the Reshetikhin–Turaev functor F applied to T by
considering a color µJ as the r-dimensional simple projective module VµJ over UH

ξ (sl2) thus
getting

F (T ) = T (VµI )IdVµI

for some scalar T (VµI ); then defining Nr(Lµ) = T (VµI )d(µI). It can be proved that this value
does not depend on the way L was cut to obtain T and is then an invariant of the colored
oriented framed link Lµ.

Comparing with the original definition of the ADO polynomial of links [1], the results of [62]
and taking into account the differences of notations, we remark the following: for each framed
oriented link L ⊂ S3 with V ≥ 2 components we have

ADOr(Lµ)
(
x1 = ξ−2ξ2µ1 , . . . , xV = ξ−2ξ2µV

)
= Nr(Lµ)ξ

−µTBµ
2

+
(r−1)2 TrB

2 . (2.23)

For knots, we remark that Nr is not a polynomial and the relation with ADO polynomial is as
follows:

ADOr(Kµ)
(
x = ξ−2ξ2µ

)
=

ξrµ − ξ−rµ

ξµ − ξ−µ
Nr(Kµ)ξ

− fµ2

2
+

f(r−1)2

2 , (2.24)

where f is the framing of K.
A case of special interest is when r = 2 where, as proved in [12] Nr is equivalent to the

Alexander–Conway function (see Corollary 6.19, taking into account the difference in the defi-
nition of the modified quantum dimension used here). The precise statement is the following,
letting ξ = i:

N2(Lµ) = i∇L

(
iξ−µ1 , iξ−µ1 , . . . , iξ−µV

)
ξ

µTBµ
2
− εT Bε

2

= (−1)V i∇L

(
−iξµ1 ,−iξµ2 , . . . ,−iξµV

)
ξ

µTBµ
2
− εT Bε

2 ,

where ε is the vector (1, 1, . . . , 1) as in (2.7).
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Example 2.8. Let L be a plumbing link the components of which are colored by µI , I ∈ Vert,
and let B be the linking matrix. Using equations (Nf) and (Nh) of [24] one gets

Nr(Lµ) = ξ−
TrB(r−1)2

2 ξ
1
2
(µTBµ)

∏
I∈Vert

d(µI)
1−deg(I).

In the case r = 2, so that ξ = i we get

N2(Lµ) = ξ−
TrB
2 ξ

1
2
(µTBµ)

∏
I∈Vert

(
ξµI + ξ−µI

)deg(I)−1
and

∇L(x1, . . . , xV ) =
∏
I

(
xI − x−1I

)deg(I)−1
.

Indeed, remark that d(µ) = ξµ−ξ−µ

ξ2µ−ξ−2µ = (ξµ + ξ−µ)−1 and replacing xI by ξξ−µI we get

∇L

(
ξξ−µ1 , . . . , ξξ−µV

)
= i(−V+

∑
I deg(I))

∏
I

(
ξµI + ξ−µI

)deg(I)−1
and remarking that if E is the number of edges in the plumbing graph then

∑
I deg(I) = 2E

and that the Euler characteristic of the plumbing graph is 1 we get

∇L

(
ξξ−µ1 , . . . , ξξ−µV

)
= i(−1+

∑
I deg(I))

2

∏
I

(
ξµI + ξ−µI

)deg(I)−1
.

Finally, observe that since ϵ was defined as the vector of whose components are all 1, and we are
considering a plumbing link, we have ϵTBϵ =

∑
I ̸=J∈VertBIJ + tr(B) =

∑
I∈Vert deg(I) + tr(B).

2.4.2 Nr for manifolds

Let M be an oriented 3-manifold, presented by integral surgery on a link L and endowed with
a cohomology class ω ∈ H1(M ;C/2Z) and assume that for the periods of ω on the meridians
of L are represented by µk ∈ (C \ Z) ∪ rZ, k ∈ Vert.

Definition 2.9.

Nr(M,ω) =
1

∆
b+
+ ∆

b−
−

∑
k∈HVert

r

∏
I∈Vert

d(αkI )Nr(Lα), (2.25)

where

αkI := µI + kI , Hr = {−(r − 1),−(r − 3), . . . , (r − 3), r − 1}

and b± are the number of positive/negative eigenvalues of B.

Nr(M,ω) was proved in [24] to be an invariant of pairs (M,ω) up to positive diffeomorphism.

Remark 2.10. The invariant Nr defined above differs by a constant with respect to the in-
variant N ′r defined in [24] and its renormalisation Zr introduced in [11] because of the different
definition of d(α) and consequently of ∆± and of the link invariant. The general relation for
a closed connected manifold is then:

Nr(M,ω) =
N′r(M,ω)

((−1)r−1r)b1(M)+1
=

r
√
r′
(

r2√
r′

)b1(M)
Zr(M,ω)

((−1)r−1r)b1(M)+1
,

where r′ = r if r is odd and r
2 else. Also notice that we recalled the definition when all the

periods are non integral but actually the definition can be extended to the case at least one
period is non-integral (see [24]).
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In the special case of a plumbed M , using the notation introduced in Section 2.2 it reads

Nr(M,ω) =
1

∆
b+
+ ∆

b−
−

∑
k∈HVert

r

∏
I∈Vert

d(αkI )
2−deg(I)T (αkI )

BII
∏

(I,J)∈Edges

S(αkI , αkJ ). (2.26)

Example 2.11 (Σ× S1). Let M = Σg × S1 for a closed oriented surface Σg of genus g and let
ω ∈ H1(M ;C/2Z) \H1(M ;Z/2Z). If β = ω

(
{pt} × S1

)
, then as shown in [11, Theorem 5.9] it

holds

Nr(M,ω) = r2g
∑
k∈Hr

(
{rβ}
{β + k}

)2g−2
.

2.4.3 A relation between Nr and WRTr

The following result outlines a partial direct relation between the invariants Nr and WRTr

(cf. [6]):

Theorem 2.12. Let r ≥ 2 be an integer non divisible by 4 and K ⊂ S3 be an oriented zero
framed knot and M be the surgery on it. Let α ∈ C be a color on K and ωα ∈ H1(M ;C/2Z)
be the unique cohomology class the value of which on the positive meridian of K is α mod 2Z.
Then the following holds:

if r is odd: lim
α→0

[rα]2Nr(M,ωα) = D2WRTr(M),

else: lim
α→0

[rα]2Nr(M,ωα) = 2D2WRTr(M,ω0), and

lim
α→1

[rα]2Nr(M,ωα) = 2D2WRTr(M,ω1),

where D =
√

r
2

(
sin

(
π
r

))−1
, WRTr(M) is the standard WRT invariant of M , WRTr(M,ωi) are

the cohomology refined invariants of M and ωi ∈ H1(M ;Z/2Z) is the cohomology class on M
the value of which on the meridian of K is i = 0, 1.

Proof. Present K as the closure of a (1, 1)-tangle T and for each absolutely simple module V
(i.e., such that End(V ) = C) over UH

q (sl2) let T (V ) ∈ C be the scalar such that F (T ) = T (V )IdV ,
where F is the Reshetikhin–Turaev functor. In particular, we shall use the (n+ 1)-dimensional
highest weight simple module Sn and the absolutely simple r-dimensional module Vα with highest
weight α+ r − 1.

Case r is odd. By definition, for r odd we have

[rα]2Nr(M,ω) =
r−1∑

k=−(r−1), by 2

{α+ k}2

{1}2
T (Vα+k),

WRTr(M) = D−2
r−2∑
j=0

{j + 1}2

{1}2
T (Sj).

By the symmetry principle for the colored Jones polynomials of knots (Lemma 2.4, see [50,
formula (4.20)]) and by the equality {r − 1− j} = {j + 1}, we have also

WRTr(M) = 2D−2
r−3∑

j=0 by 2

{j + 1}2

{1}2
T (Sj).

As shown in [25, Proposition 4],

T (Sr−1−k) = T (Vk) = T (V−k) ∀k ∈ {0, . . . , r − 1},
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so, since by [25, Corollary 15] T (Vα) is a continuous function of α, we have

lim
α→0

[rα]2Nr(M,ω) =
r−1∑

k=−(r−1), by 2

{k}2

{1}2
T (Vk) = 2

r−1∑
k=2, by 2

{k}2

{1}2
T (Vk)

= 2
r−1∑

k=2, by 2

{k}2

{1}2
T (Sr−1−k) = 2

r−3∑
j=0, by 2

{r − 1− j}
{1}

T (Sj)

= 2

r−3∑
j=0, by 2

{j + 1}2

{1}2
T (Sj).

Case r is even. By definition, for r even we have

[rα]2Nr(M,ωα) =
r−1∑

k=−(r−1), by 2

{α+ k}2

{1}2
T (Vα+k),

WRTr(M,ωi) = D−2
r−2+i∑

j=i, by 2

{j + 1}2

{1}2
T (Sj).

So

lim
α→0

[rα]2Nr(M,ωα) =
r−1∑

k=1, by 2

2
{k}2

{1}2
T (Vk) =

r−1∑
k=1 by 2

2
{k}2

{1}2
T (Sr−1−k)

=
r−2∑

j=0, by 2

2
{r − 1− j}2

{1}2
T (Sj) =

r−2∑
j=0, by 2

2
{1 + j}2

{1}2
T (Sj)

= 2D2WRTr(M,ω0).

Similarly,

lim
α→1

[rα]2Nr(M,ωα) =

r−1∑
k=−(r−1), by 2

2
{k + 1}2

{1}2
T (Vk+1) =

r−2∑
s=2, by 2

2
{s}2

{1}2
T (Vs)

=

r−2∑
s=2, by 2

2
{s}2

{1}2
T (Sr−1−s) =

r−3∑
j=1, by 2

2
{r − 1− j}2

{1}2
T (Sj)

= 2D2WRTr(M,ω1)

where in the second equality we used that {r} = {0} = 0. ■

2.5 Ẑ invariants

In this section, we recall some general facts about the invariants Ẑs of 3-manifolds and their
version FL(x, q) := Ẑ

(
S3 \L

)
for links. We formulate some conjectures about the link invariant

and outline how the 3-manifold invariant is built out of the invariant for links. We postpone
examples to a later section.

Before diving into a more detailed discussion of the q-series invariants Ẑs(M ; q), we start with
a few general comments regarding mathematical definition(s) of these invariants and compare
them to other invariants of a similar nature. One important feature that we should stress is
that many such invariants and the corresponding TQFTs require a regularization because –
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manifestly or in disguise – their space of states H(Σ) on a general 2-manifold Σ is infinite-
dimensional. This includes Vafa–Witten invariants [75], the q-series invariants Ẑs(M ; q), the
Teichmüller TQFT [2], and even BCGP theory of our interest here.

So currently the value of the invariants is known only for some (infinite) family of surgery
presentations of some family of 3-manifolds. In a smaller set of cases, it can be shown that
these values are invariants of the 3-manifolds: it is the case of surgeries over plumbing links
where the invariance was proved in [40, Proposition 4.6] by showing that two different surgery
presentations via negative plumbing links yield the same invariant.

Therefore, a mathematical definition that applies to arbitrary manifolds is not available and
this can be traced to a need of a suitable regularization. For example, in the case of the
Teichmüller TQFT, the space of states H(Σ) is expected to be a quantization of a particu-
lar component (namely, the Teichmüller component) in the space of real SL(2,R) flat connec-
tions on Σ. Note, for this reason, the Teichmüller TQFT at best can be described as a “real
Chern–Simons theory,” unlike Ẑs(M ; q), which provides a non-perturbative definition to com-
plex Chern–Simons theory. Indeed, even at the perturbative level, only certain SL(2,R) flat
connections contribute to the Teichmüller TQFT, whereas Ẑs(M ; q) generically includes contri-
butions of arbitrary SL(2,C) flat connections on M . We will return to the TQFT aspects and
discuss H(Σ) in more detail in Section 5.

Compared to the above-mentioned similar invariants, the q-series Ẑs(M ; q) are relatively
young, introduced only a few years ago. Nevertheless, they are quickly developing, in part
thanks to several complementary approaches that we briefly summarize here:

� First, we briefly mention a physics approach based on 3d-3d correspondence because, at
least in principle, it allows to turn the problem of computing Ẑs(M ; q) into a concrete
computation in a certain QFT associated with M . Aside from serving as a bridge between
math and physics, this sometimes is capable of producing concrete expressions for Ẑs(M ; q)
in certain infinite families of 3-manifolds [43]. A notable example is the expression (2.33)
for plumbed manifolds that came out of this approach and will be extensively used in this
paper.

� One of the first mathematical approaches to the q-series Ẑs(M ; q) is based on quantum
groups at generic q, following the Reshetikhin–Turaev construction at roots of unity.
In this approach, one first needs to construct invariants for links and then, via a surgery
formula, produce invariants for closed 3-manifolds. Among all approaches listed here, this
one is by far the most user-friendly and efficient as it comes to computations. In particular,
it produces invariants for many infinite families of knots, such as all torus knots, positive
braid knots, homogeneous braid links, and many other examples, including e.g., all fibered
knots up to 10 crossings [66, 67]. The computations in all these examples have been shown
to be invariant under Reidemeister moves, but the challenge in this approach comes at the
level of 3-manifolds: while the invariants of closed 3-manifodls are very easy to compute
in each case, their invariance under Kirby moves has not been demonstrated in general.
Moreover, the surgery formula which is used, in order to be well defined, requires the link
framings to satisfy certain inequalities. Needless to say, this is one of the good problems
for future research.

� A very different approach to the mathematical formulation of the q-series Ẑs(M ; q) is
based on the geometry of affine Grassmannians. Namely, it was proposed in [39] that
Ẑs(M ; q) can be defined as a Rozansky–Witten TQFT with the target space given by the
space of BFN triples, a particular model for the total space of the cotangent bundle of the
affine Grassmannian GrG. Since Rozansky–Witten theory admits a rigorous mathematical
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definition [49, 53], this formulation is mathematically rigorous and applies to all closed 3-
manifolds, but in practice is rather hard to compute.10

� There are candidates for several other, even more computationally-challenging, approach-
es [43] based on analysis and moduli spaces in gauge theory [78] and in enumerative geom-
etry [33]. Potentially, they can provide alternative mathematical definitions of the q-series
Ẑs(M ; q) and produce important connections to other branches of mathematics.

� Yet another approach, based on resurgent analysis, is in many ways the “middle of the
road.” It is computationally not as efficient as the approach based on quantum groups
at generic q. On the other hand, even though this approach is also analytic in nature, it
is much easier than the analysis involved in studying the moduli spaces of gauge theory
PDEs or curve counting. In particular, using this approach the expressions for Ẑs(M ; q)
computed via other methods listed here were reproduced in large families of 3-manifolds,
see, e.g., [3, 23, 41].

Following this brief summary, it may be worth emphasizing the distinction between ability to
demonstrate invariance under Kirby moves in complete generality versus providing a certificate
in each individual case. This is similar to a Sudoku puzzle where, despite the lack of a general
fast algorithm, verifying correctness of solutions can be done quickly (in polynomial time). For
example, as mentioned in this summary, the approach based on quantum groups at generic q
provides a quick and efficient way to compute Ẑs(M ; q) based on a surgery presentation. There-
fore, using this approach one can easily check Kirby moves in lots of examples, one-by-one, even
before the general proof is available.

Therefore, in the above summary we find one approach (based on quantum groups at gener-
ic q) which is easy to compute, but which is not defined in general, and another approach
(based on the geometry of affine Grassmannians) which is well defined but is very hard to com-
pute. An obvious conjecture is that these two approaches define the same invariants Ẑs(M ; q).
In other words, it is expected that the two approaches – one, which is hard to compute and
the other which is hard to define – are equivalent. Due to the difficulty of computing Ẑs(M ; q)
via Rozansky–Witten theory, the validity of this conjecture has been established only for very
simple 3-manifolds, such as Lens spaces and M = S1 × S2.

2.5.1 Ẑ for links

A physical construction of new q-series invariants of 3-manifolds was proposed in [43, 44]. Much
like invariants Nr(M,ω) reviewed above, these q-series invariants are labeled by extra data, which
originally was interpreted as the choice of abelian flat connection or, equivalently,11 an element
of H1(M). Soon, it was realized [39, 40] that the extra data s which labels Ẑs(M) should be
understood as a spinc structure on M . Recall, that as a set H1(M) is isomorphic to Spinc(M),
but the isomorphism is non-canonical. The difference between the two becomes apparent in
cutting and gluing operations, which in part explains why it was not noticed until the invariants
were extended to 3-manifolds with toral boundaries and link complements, where s is a relative
spinc-structure. In particular, if M is the complement of a knot K in rational homology sphere,

10Another, related challenge in this approach is that the variable q appears as a formal parameter (associated
with the loop rotation) and, therefore, produces only a formal power series in q. This definition would not

be sufficient e.g., for the purposes of the present paper since it does not allow evaluating Ẑs(M ; q) at generic
points in |q| < 1 that we need for approaching the roots of unity and studying the connection with the BCGP
invariants.

11In this paper we only consider SU(2) version of these invariants. The higher-rank version is also available,
see, e.g., [22, 65].
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the invariant is expected to be read off from a single two-variable series:12

FK(x, q) ∈ 2−cq∆Z
[
q−1, q

]][[
x±

1
2
]]

for some c ∈ Z+ and ∆ ∈ Q. Apart from the original physics formulation, several approaches
toward rigorous constructions of this invariant have been developed. For example, the approach
based on recursion and resurgence, although in principle can be applied to any knot (or link)
is rather laborious and was used in [40] to produce FK(x, q) := Ẑ

(
S3 \K

)
only for torus knots

and a single hyperbolic knot, the figure-eight knot K = 41.
Another, much more efficient diagrammatic approach based on the R-matrix for Verma mod-

ules and quantum groups at generic q was proposed by Park [66, 67]. Using this approach,
one can quickly compute FK(x, q) for many hyperbolic knots up to roughly 10 crossings and
also for many infinite families. Specifically, the R-matrix used by Park [66] is the universal
R-matrix [52] applied to the lowest weight Verma modules with complex weights (determined
by complex variables x and y in this expression):

Rij
kl =

[
j
n

] n∏
l=1

(
1− y−1qi+l

)
x−

i
2
−n

4 y−
j−n
2

+n
4 q(j−n)i+

(j−n)n
2

+ j−n+i+1
2 , (2.27)

where n = l − i = j − k, x and y are the exponentiated values of the two complex weights
(i.e., the variable y has the same meaning as the variable x that we already encountered in the
discussion of FK(x, q)), and[

j
n

]
=

[j]!

[n]![j − n]!
=

{1} · · · {j}
{1} · · · {n}{1} · · · {j − n}

=
{j − n+ 1} · · · {j}
{1} · · · {n}

=
{j;n}
{n;n}

(2.28)

One of the main difficulties in Park’s constructions is to deal with closures of braids and making
sense of the resulting infinite sums. It is this delicate aspect that leads to some of the above
mentioned conditions on knots and links currently covered by this construction.

Here, and in relating it to the R-matrix (2.1) we are a little cavalier with the overall powers
of q. Indeed, the fact that (2.1) and (2.27) are related by sending q to a root of unity is the first
indication for the relation (1.2) between the corresponding knot invariants. This also clarifies
the quantum group origin of the Ẑ-invariants. Since they basically provide a non-perturbative
formulation13 of the SL(2,C) Chern–Simons TQFT – where q is a continuous complex variable
and so are the highest weights of representations by which Wilson lines are colored – it was
expected for a long time that SL(2,C) Chern–Simons theory should be described by Uq(g) with
generic q.

In order to relate the R-matrices (2.1) and (2.27), we first need to replace q → q−2 and then
take the root of unity limit. As in the generalized volume conjecture [38], all combinations of
the form qweight must be treated as independent variables and kept fixed. In particular, we need
to use the identifications x = qµ and y = qλ and treat them as independent complex parameters.
Then, using identities of the form (2.28) we arrive at the desired relation between (2.27) and (2.1).
Based on this relation between the R-matrices, it is not surprising to expect the following
conjectural relation between the corresponding knot invariants [17, 39] (cf. Conjecture 1.1):

lim
q→exp(2iπ/r)

FK(x1, q)∆K(xr1) = ADOr(K)

(
x1
q

)∣∣∣
q=exp 2πi

r

,

where ∆K is the Alexander polynomial of K. The r = 1 case of the conjecture holds automati-
cally if one assumes the definition of FK for a class of knots in [67]. For some other values of r,
it has been previously verified for certain knots.

12The notation R[q−1, q]] means the ring of formal Laurent power series in q, with coefficients in R, where one
can have infinitely many terms with positive powers of q but only finitely many terms with negative powers of q.

13The all-order perturbative formulation was known for quite some time, see, e.g., [32] and references therein.
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To properly deal with the case of links, we consider the set

C
[
q−1, q

]][[
x
± 1

2
1 , . . . , x

± 1
2

V

]]
of formal power series in

{
x
± 1

2
I

}
with coefficients in Laurent series in q. Such a set is not a ring

but is a module over the ring:

C
[
q−1, q

]][
x
± 1

2
1 , . . . , x

± 1
2

V

]
of Laurent polynomials in

{
x
± 1

2
I

}
with coefficients in Laurent series in q.

Taking into account the different normalisation between ADOr(L) and Nr(L), we propose
the following conjecture for the link case:

Conjecture 2.13.

(a) For each framed link L in S3 there exists a non-zero formal power series

WL ∈ Z
[
q−1, q

]][[
x
± 1

2
1 , . . . , x

± 1
2

V

]]
such that the following holds for every r ≥ 2 and for every α⃗ ∈ Rn:

lim
t→1

lim
q→exp( 2πi

r
)

W t
L(q

α1 , . . . , qαV , q)

W t
L(q

rα1 , . . . , qrαV , qr)
= Nr(Lα)q

− 1
4
(αTBα−(r−1)2 TrB), (2.29)

where B is the linking matrix of L and W t
L is the formal power series in t obtained by

replacing each x
n/2
I , n > 0 by tnqαI/2 and each x

−n/2
I by tnq−αI/2. In general, the radius

of convergence of W t
L might be less than one but we conjecture that limq→exp( 2πi

r
)W

t
L is

actually a rational function of t so that the limit t→ 1 makes sense via analytic continu-
ation.

(b) When FL ≡ Ẑ
(
S3 \ L

)
is defined, one can take WL = FL.

The relation of Conjecture 2.13 with the previous ones is clarified by the following:

Conjecture 2.14.

(a) If L ⊂ S3 is a framed oriented link multivariable Alexander polynomial ∇L of which is
non-zero then one can choose WL(x, q) in Conjecture 2.13 such that the following holds:

lim
t→1

lim
q→1

W t
L

(
qα1 , . . . , qαV , q

)
∇L

(
qα1 , . . . , qαV

)
= 1.

(b) When FL(x, q) is defined it satisfies the above property.

Indeed, in the case of a knot K endowed with zero framing and colored by α, Conjecture 2.13
becomes:

lim
t→1

lim
q→exp( 2πi

r
)

F t
K(qα, q)

F t
K(qrα; qr)

= Nr(Kα)

so that using Conjecture 2.14 we get

lim
t→1

lim
q→exp( 2πi

r
)
F t
K(qα, q)∇K .

There are, however, links with vanishing Alexander polynomial, e.g.,

927, 1032, 1036, 10107, 11244, 11247, 11334, 11381, 11396, 11404, 11406, . . . .

We then set the following definition:



22 F. Costantino, S. Gukov and P. Putrov

Definition 2.15 (good links). A link L is very good if Conjectures 2.13 and 2.14 are verified
for L and is good if only Conjecture 2.13 is satisfied for it.

We remark that the links with zero multivariable Alexander polynomial cannot be very good.
Also, Conjecture 2.13 does not completely fix FL(x, q). In particular, one can always multiply

it by a function in q that has the same radial limit when q → e
2πi
ℓ for all positive integral ℓ

(including ℓ = 1).
When L is a knot, a version of Conjecture 2.13 was proven by S. Willets [76] in which FL

belongs to a suitable ring obtained as completion of the Laurent polynomials in two variables.

2.5.2 Examples of good links

Let L ⊂ S3 be a plumbing link, with the notation introduced in Example 2.8. In [42], the
following formula was provided for FL:

FL

({
x2I

}
I
, q
)
=

∏
I

(
xI − x−1I

)1−deg(I)
.

If we use this formula for FL, then it is clear that

lim
q→exp(2iπ/r)

FL

({
x2I

}
I
, q
)

FL

({
x2rI

}
I
, qr

) =
∏
I

(
xI − x−1I

)1−deg(I)(
xrI − x−rI

)1−deg(I) = ξ−
αTBα

2
+

(r−1)2

2
Tr(B)Nr(Lα),

where we used Example 2.8 and we set xI = ξαI , so that Conjecture 2.13 holds for these links.
In general, FL is to be considered as a formal power series and in the above case we do it as

follows. Let t be a regularization parameter and let F t
L be the power series development in t of

F t
L

({
x2I

}
I
, q
)
=

∏
I : deg(I)>1

1

2

((
xI/t− tx−1I

)1−deg(I)
+
(
txI − x−1I /t

)1−deg(I))
×

∏
I : deg(I)=0

t
(
xI − x−1I

)
.

For the factors with deg(I) > 1, we used the fact that the expansion of (xI − 1/xI)
1−deg I

at xI = 0 (respectively, xI = ∞) contains only positive (respectively, negative) powers of xI .
Since F t

L is a rational function in t the limit FL = limt→1 F
t
L exists even though the power series

F t
L might have radius of convergence in t less than 1. So that Conjecture 2.13 holds.
Similarly the Alexander–Conway, polynomial of L can be computed directly in these cases as

∇L = F−1L (see Example 2.8) so that also Conjecture 2.14 holds. The plumbing links are then
very good links.

2.5.3 Whitehead link

Starting with the expression for FL(x1, x2, q) obtained by the R-matrix technique [66, 67]:

FL(x1, x2, q) =
∑
n≥0

(−1)nq−
n(n+1)

2

(
qn+1

)
n

(
x
1/2
1 − x

−1/2
1

)(
x
1/2
2 − x

−1/2
2

)∏n
j=0

(
x1 + x−11 − qj − q−j

)(
x2 + x−12 − qj − q−j

) ,

where (a)n :=
∏n−1

i=0 (1− aqi), we get

FL(x1, x2, q)
∣∣
q→−1 =

1(
x
1/2
1 − x

−1/2
1

)(
x
1/2
2 − x

−1/2
2

) .
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According to the identification of the parameters in [39], we should compare this with ADOp

with p = 2, evaluated at xe−2πi/p. In the case of knots, ADOp is also multiplied by x1/2−x−1/2

∆(xp) .

Murakami [62] works in conventions such that q = eπi/p is the 2p-th root of unity and his
ADOp with p = 2 gives the Alexander polynomial

ADO1 = 1, ADO2 =
(
z1 − z−11

)(
z2 − z−12

)
,

where we used z1 = qλ and z2 = qµ in Murakami’s notations [62]. Comparing this with the
multivariable Alexander polynomial

∆ =
(
x
1/2
1 − x

−1/2
1

)(
x
1/2
2 − x

−1/2
2

)
,

we see that Murakami’s zi = x
1/2
i and the relation between FL(x⃗, q) and ADOp(x⃗) for links must

be more complicated; it should convert powers of x
1/2
i − x

1/2
i in the denominator to the powers

of x
1/2
i − x

1/2
i in the numerator.

Note, if as in case of knots we evaluate the ADO invariant at xe−2πi/p, we would have(
x
1/2
1 +x

−1/2
1

)(
x
1/2
2 +x

−1/2
2

)
in the numerator. Then, dividing it by ∆(x2i ) we would get

(
x
1/2
1 −

x
−1/2
1

)(
x
1/2
2 − x

−1/2
2

)
in the denominator. For p = 3, we get

FL(x1, x2, q)
∣∣
q→e2πi/3

=
x21x

2
2 + x21x2 + x21 + x1x

2
2 + x1x2 + i

√
3x1x2 + x1 + x22 + x2 + 1(

x
1/2
1 − x

−1/2
1

)(
x
1/2
2 − x

−1/2
2

)(
1 + x1 + x21

)(
1 + x2 + x22

) . (2.30)

Apart from the familiar ∆(xi), in the denominator we have a factor of

(
x1 + 1 + x−11

)(
x2 + 1 + x−12

)
=

∆(xpi )∏
i

(
x
1/2
i − x

−1/2
i

) ,
so that the entire denominator is basically ∆(xpi ).

On the other hand, the numerator of (2.30) is precisely Murakami’s ADO3 evaluated at
xie
−2πi/p, just as in the case of knots. Therefore, we can write this relation as

FL(x1, x2, q)
∣∣
q→e2πi/p =

ADOp(xie
−2πi/p)

∆(xpi )
. (2.31)

For reasons mentioned above, this also checks out in the p = 2 case. For p = 4 we get

FL(x1, x2, q)
∣∣
q→e2πi/4 =

x
−3/2
1 x

−3/2
2 (x1 + 1)(x2 + 1)

(
x21

(
x22 + 1

)
+ 2ix1x2 + x22 + 1

)
∆
(
x4i

) ,

again, in perfect agreement with (2.31).
As a side remark, we also note that, in general, ADO polynomials have many coefficients

that are algebraic numbers; the coefficients of ADOp(xie
−2πi/p) are also algebraic integers, but

typically much simpler.

2.6 Ẑ for 3-manifolds

Let M = S3(L) where L is a link with linking matrix B and the set of components Vert. Let

F (x, q) := FL

(
x2, q

) ∏
I∈Vert

(
xI − x−1I

)
=

∑
ℓ∈ZVert

Fℓ

∏
I∈Vert

xℓII (2.32)
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be a somewhat differently normalized Ẑ-invariant of the link L or, more precisely, the link
complement S3 \ L. For example, F (x, q) = FK

(
x2, q

)(
x − x−1

)
for a knot (complement), and

F (x, q) =
∏

I∈Vert
(
xI−x−1I

)2−deg(I)
for a plumbing link (complement). Note, the two notations,

F (x, q) and FL(x, q), are very similar and we hope it will not cause a confusion. In fact, FL(x, q)
is used in most of the paper, and in a few places where F (x, q) is used we try to remind the
reader about the relation between the two normalizations.

Remark 2.16. By default here and below, we assume that FL is defined using the R-matrix at
general q (and that the link L is of the type for which that definition works, see [67, Section 1.3]),
but other approaches reviewed above can be also in principle considered.

By an SL(V,Z) transform, we can bring the integral quadratic form B to B′⊕0b1 , where 0b1
is the trivial quadratic form on Zb1 ⊂ ZV [56]. Namely, there exists U ∈ SL(V,Z) such that

UBUT =

(
B′ 0
0 0

)
,

where the right-hand side shows the block decomposition corresponding to the partition V =
(V −b1)+b1. With ε = (1, 1, . . . , 1) and s being mod 2 vectors defined as before (ε = (1, 1, . . . , 1),∑

J BIJsJ = sI mod 2)(
s′

s′′

)
:=

(
UT

)−1
s,

(
ε′

ε′′

)
:=

(
UT

)−1
ε.

Then we can define Ẑ by the following surgery formula:

Ẑσ(b′⊕b′′,s)(M) := (−1)b+q
3σ−TrB

4
+
∑

I |ε′′I ||b′′I |
∑

ℓ′=2b′+B′(s′−ε′)
mod 2B′ZV −b1

F
U−1

(
ℓ′

2b′′

)q− ℓ′TB′−1ℓ′
4 , (2.33)

where b′ ∈ CokerB′ ∼= TorH1(M ;Z), b′′ ∈ Zb1 and σ is the canonical map defined in (2.11).
Here we assume that the sum over ℓ′ in the right-hand side is convergent in the space of formal
power series 2−cq∆Z

[
q−1, q

]]
. This means that any given power of q gets contributions only

from a finite number of terms. The definition of Ẑ via the surgery formula (2.33) also relies on
the conjectural invariance of the right-hand side under Kirby moves. It has been verified in the
literature for the plumbing links [40] and some other cases.

If b1 = 0, then B = B′, and the above formula simplifies to

Ẑσ(b,s)(M) = (−1)b+q
3σ−TrB

4

∑
ℓ=2b+B(s−ε)
mod 2BZV

Fℓq
− ℓtB−1ℓ

4 . (2.34)

If b1 > 0, the result is independent of the choice of U preserving both b′ and b′′, and is conjec-
turally invariant under the Kirby moves only up to the following equivalence relation:

1 ∼ qLCM(2,GCD(b′′)), (2.35)

where GCD(b′′) := GCD
(
{b′′i }

b1
i=1

)
(which is invariant under SL(b1,Z) transformations). Name-

ly, the invariants should be considered as equivalence

Ẑσ(b′⊕b′′,s) ∈ 2−cq∆Z[[q]]/
(
1− qLCM(2,GCD(b′′))

)
Z[q]. (2.36)
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It is easy to see that Ẑσ(·,s) transform covariantly (as functions on H1(M ;Z) ∼= TorH1(M ;Z)
⊕ Zb1) under the automorphisms preserving the splitting. They correspond to changes of the
matrix U of the following form:

U ⇝

(
γ̃ 0
0 ν

)
U,

where γ̃ ∈ SL(V − b1,Z) and ν ∈ SL(b1,Z). Then from the definition (2.33), it follows that

Ẑσ(b′⊕b′′,s) ⇝ Ẑσ(γ−1b′⊕ν−1(b′′),s),

where γ is the automorphism of TorH1(M ;Z) represented by γ̃. Namely,

γ(a′) := γ̃(a′) mod B′ZV−b1 , a′ ∈ ZV−b1 .

However, there is an anomaly under the automorphisms changing the splitting. Modulo the
automorphisms preserving the splitting, they are of the form

TorH1(M ;Z)⊕ Zb1

(
idTorH1

µ

0 idZb1

)
−→ TorH1(M ;Z)⊕ Zb1 , (2.37)

where µ is a non-trivial homomorphism

µ : Zb1 −→ TorH1(M ;Z). (2.38)

This automorphism is realized by the replacement

U ⇝

(
1V−b1 µ̃

0 1b1

)
U, (2.39)

where µ̃ is a (V − b1)× b1 matrix. Under the identification TorH1(M ;Z) = CokerB′, we have

µ(a′′) := µ̃(a′′) mod B′ZV−b1 , a′′ ∈ Zb1 .

The corresponding change of Ẑ depends only on µ, and not the representative µ̃, if one takes
into account the equivalence relation (2.35).

However, it is not true that simply Ẑσ(b
′ ⊕ b′′, s) ⇝ Ẑσ((b

′ − µ(b′′)) ⊕ b′′, s). The covariant
transformation is corrected by an anomalous factor

Ẑσ(b′⊕b′′,s) ⇝ qE(b
′,b′′)Ẑσ((b′−µ(b′′))⊕b′′,s), (2.40)

where

E(b′, b′′) = GCD(b′′) ·

{
GCD(b′′)qs

(
µb̂′′

)
− 2ℓk

(
b′, µb̂′′

)
, GCD(b′′) is odd,

GCD(b′′)ℓk
(
µb̂′′, µb̂′′

)
− 2ℓk

(
b′, µb̂′′

)
, GCD(b′′) is even

and

b̂′′ :=
b′′

GCD(b′′)
∈ Zb1 .

The factor qE(b
′,b′′) is well defined modulo the equivalence relation (2.35).



26 F. Costantino, S. Gukov and P. Putrov

2.7 Physics of non-torsion fluxes

For a given spinc structure b, let Bb be the corresponding boundary condition of the 6d fivebrane
theory on M ×D2 ×q S

1. This defines the boundary condition in 4d gauge theory on M × R+

(obtained by projecting D2 ×q S
1 → R+) as well as the boundary condition in 3d theory T [M ]

on D2 ×q S
1 (obtained by reducing on M):

6d (0, 2) theory on
M ×D2 ×q S

1

4d super-Yang–Mills
on M × R+

3d theory T [M ]
on D2 ×q S

1.

on M (2.41)

In each of these descriptions, including the original 6d system viewed from the enumerative
perspective of Calabi–Yau 3-fold and M2-branes, the ambiguity is naturally associated with the
partition function on M × T 2 × I, where both M × T 2 boundaries are colored by Bb.

The effect of Bb is two-fold: (i) first, it effectively abelianizes the theory, and (ii) it also puts
it in a non-trivial background, so that even abelian fluxes with one “leg” along M and another
“leg” along I now carry a non-trivial q-degree. Note, this latter effect is absent when b is torsion.
The sum over such fluxes gives a q-series unbounded in both directions∑

m∈H1(M)

qm·b
′′

that we would like to remove or factor out, in order to make the partition function onM×D2×qS
1

well-defined. It would be interesting to explore various ways to do this. Relegating a more
systematic study of this question for future work, here we merely sidestep the issue by imposing
the identification qGCD(b′′) ∼ 1 that leads to (2.35) and (2.36).

Let us make a few comments on this interesting phenomenon by examining it from various
perspectives. Reduction to 4d gauge theory (2.41) yields a system of Kapustin–Witten PDE’s on
M ×R+, with a Nahm pole boundary condition at y = 0, where y is a coordinate along R+ [78].
The boundary condition at y =∞ breaks the gauge group G to a Levi subgroup L ⊆ G, which
in applications to Ẑ-invariants is a maximal torus of G. In particular, L = U(1) for G = SU(2).
Other choices of L are also interesting, and lead to a generalization of Ẑ-invariants labeled by
complex coadjoint orbits of GC or, equivalently, by ρ : sl(2)→ g [45].

When L = T, there are infinitely many different topological sectors labeled by monopole
numbers b′′i ∈ Λcochar = Hom(U(1),T) or, more precisely, by spinc structures. In order to keep
track of dependence on b, one can introduce a topological term exp(2πiηb) in the action of 4d
gauge theory. Then, using Pontryagin duality,

x = e2πiη ∈ Hom(H1(M),T)

can be identified with the variable by the same name in FK(x, q) and in the integrand of Ẑ-
invariants. To summarize, on a closed 3-manifold with b1 > 0 the boundary condition Bb breaks
the gauge group G to L = T and creates a “flux” b. When this flux is non-torsion, the solutions to
Kapustin–Witten PDE’s on M×R+ can not approach a constant field configuration at y = +∞.
At best one can require solutions to approach a field configuration periodic in the y-direction,
which leads us to conclude that the anomaly in question is controlled by the moduli space of
solutions on M × S1 with gauge group L. Below we give another interpretation of this claim
from the perspective of 3d-3d correspondence.
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From the point of view of 3d N = 2 theory T [M ], the boundary condition Bb labels the
background momentum / charge sectors of the 2d boundary theory, cf. [29]. In the partition
function on D2 ×q S1, the parameter q keeps track of the spin with respect to the rotation
symmetry of D2. It is defined up to spins of BPS states in 2d boundary theory or, equivalently,
3d theory T [M,T] on a slab T 2 × I with boundary conditions Bb on both sides. This theory
is a close cousin of T

[
M × S1,T

]
in the background of spinc structure b on M . Indeed, both

theories exhibit a qualitative change in behavior depending on whether b1 = 0 or b1 > 0. In the
latter case, the BPS states come in towers infinite in both direction, with spins in each tower
being multiples of b′′, which leads again to the ambiguity (2.35).

Similarly, from the curve counting perspective on T ∗M , when b1 > 0 in addition to open
BPS states one also has a non-trivial “closed sector.”

3 Families of examples

In this section, we illustrate the proposed relation with a number of instructive examples for
which explicit formulas for Ẑ can be provided (recall Remark 2.16).

3.1 Plumbed 3-manifolds

Here we consider the case when M is a rational homology sphere given by a weakly negative
definite plumbing graph Γ [40, 43]. We can then assume that

ω ∈ H1(M ;Q/2Z) \H1(M ;Z/2Z).

With the notation of Section 2.2, formula (2.26) becomes

Nr(M,ω) =
1

∆
b+
+ ∆

b−
−

∑
k∈HVert

r

∏
I∈Vert

d(αkI )
2−deg(I)T (αkI )

BII
∏

(I,J)∈Edges

S(αkI , αkJ ),

where

αkI := µI + kI

and b± are the number of positive/negative eigenvalues of B. In this section, we will be somewhat
cavalier with taking the limits and about convergence of infinite series. Such technical details
will be properly addressed in Section 4.1 and Appendix D.

It is instructive to separate 3 factors:

Nr(M,ω) = A · B · C,

A = r−V/2ξ
3σ−TrB

2 ·


e

πi(σ+TrB)
2 , r = 1 mod 4,

2−V/2e−
πiσ
4 , r = 2 mod 4,

e−
πi
2
TrB(−1)σ, r = 3 mod 4,

where σ is the signature of B,

B = F
({

eπiµI
}
I∈Vert

)−1
, (3.1)

C =
∑

k∈HVert
r

F
({

ξµI+kI
}
I∈Vert

)
· ξ

1
2
(µ+k)TB(µ+k), (3.2)

and

F (x) :=
∏

I∈Vert
(xI − 1/xI)

2−deg(I) =
∑

ℓ∈ZVert

Fℓ

∏
I

xℓII (3.3)
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is a slightly different normalization of the invariant FL(x, q) for the case of the plumbing link L.
Consider a contribution of a monomial

∏
I x

ℓI
I from F (x) into (3.2):

Cℓ :=
∑

k∈HVert
r

ξℓ
T (µ+k) · ξ

1
2
(µ+k)TB(µ+k) =

∑
n∈ZVert/rZVert

e
πi
2r

(µ̃+2n)TB(µ̃+2n)+πi
r
ℓT (µ̃+2n), (3.4)

where

µ̃ := µ+ (r − 1)ε

and ε is the vector (1, 1, . . . , 1, 1). We can now use the following version of Gauss reciprocity
formula [31, 48]:∑

n∈ZVert/rZVert

exp

(
2πi

r
nTBn+

2πi

r
pTn

)

=
e

πiσ
4 (r/2)V/2

|detB|1/2
∑

ã∈ZVert/2BZVert

exp

(
−πir

2

(
ã+

p

r

)T

B−1
(
ã+

p

r

))
. (3.5)

Applying it to (3.4), we have

Cℓ = ξ−
ℓT B−1ℓ

2
e

πiσ
4 (r/2)V/2

| detB|1/2
∑

ã∈ZVert/2BZVert

e−
πir
2

ãTB−1ã−πiãTB−1(ℓ+Bµ̃)

︸ ︷︷ ︸
=:C′ℓ

. (3.6)

Let us make the change of variables ã = BA+ a, A ∈ ZVert/2ZVert, a ∈ ZVert/BZVert:

C′ℓ =
∑

a∈ZVert/BZVert

∑
A∈ZVert/2ZVert

e−
πir
2

aTB−1a−πirAT a−πir
2

ATBA−πiaTB−1(ℓ+Bµ̃)−πiAT (ℓ+Bµ̃)

=
∑

a∈ZVert/BZVert

∑
A∈ZVert/2ZVert

exp

{
−πir

2
aTB−1a− πirATa− πir

2
ATBA

− 2πiaTB−1b− πiaT (s+ µ− rε)− πiATB(s− rε)

}
, (3.7)

where in the last line we used the fact that (3.3) only contains powers
∏

I x
ℓI
I satisfying ℓI =

deg(I) mod 2, and therefore one can introduce b ∈ ZVert/BZVert, s ∈ ZVert/2ZVert,
∑

J BIJsJ =
BII mod 2, such that

ℓ = 2b+B(s− ε) mod 2BZVert. (3.8)

We also used the property (2.22). At this point we will need to consider the cases with differ-
ent r mod 4 values separately.

3.2 Level r = 2 mod 4

Using the fact that r is even, while r/2 is an odd integer, and condition on s the sum (3.7)
simplifies to

C′ℓ = 2V
∑

a∈ZVert/BZVert

exp

{
−πir

2
aTB−1a− 2πiaTB−1b− πiaT (s+ µ)

}
.
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Combining everything together we then have

Nr(M,ω) =
F
({

eπiµI
}
I∈Vert

)−1
|detB|1/2

ξ
3σ−TrB

2

×
∑

ℓ∈ZVert

∑
a∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2 e−
πir
2

aTB−1a−2πiaTB−1b−πiaT (s+µ).

Using the following expressions for Ẑ and Reidemeister torsion14 T for plumbed manifolds (see
formula (A.1) in Appendix A)

Ẑa(M) = (−1)b+q
3σ−TrB

4

∑
ℓ=a mod 2BZVert

Fℓq
− ℓT B−1ℓ

4 , aI = deg(I) mod 2,

T (M, [ω]) = (−1)b+
∏

I∈Vert

(
eπiµI − e−πiµI

)deg(I)−2
, [ω] := ω mod H1(M ;Z/2Z) (3.9)

and the identifications (2.2)–(2.18), we can conjecture the following general relation for a rational
homology sphere M and r = 2 mod 4:

Nr(M,ω) =
T (M, [ω])√
|H1(M ;Z)|

∑
a,b∈H1(M ;Z)

e−
πir
2

qs(a)−2πiℓk(a,b)−πiω(a)Ẑσ(b,s)

∣∣∣
q→e

2πi
r
, (3.10)

where σ is the canonical map

σ : H1(M ;Z)× Spin(M) −→ Spinc(M) (3.11)

producing a spinc structure on M from a spin structure c and b̃ ∈ H1(M ;Z). It is induced
by the map B Spin×BU(1)→ B Spinc between the corresponding classifying spaces, combined
with the isomorphisms BU(1) ∼= B2Z, H1(M ;Z) ∼= H2(M ;Z). In (3.10), we have introduced
an auxiliary spin structure s ∈ Spin(M) (see also formula (3.8)). The result is independent of it
due to (2.14), so that the simultaneous change of b ∈ H1(M ;Z) and s ∈ Spin(M) leaving σ(b, s)
invariant also leaves invariant the exponent in the sum in (3.10).

3.3 Level r = 1 mod 4

The sum (3.7) reads

C′ℓ =
∑

a∈ZVert/BZVert

∑
A∈ZVert/2ZVert

exp

{
−πir

2
aTB−1a− 2πiaTB−1b− πiaTµ

−πiaT (s− ε)− πi

2
ATBA+ πiAT (a+B(s− ε))

}
.

Applying a version of the Gauss reciprocity formula to the sum over A, we can rewrite it as
follows:

C′ℓ =
e−

πiσ
4 2V/2

| detB|1/2
∑

a,f∈ZVert/BZVert

exp

{
−πi(r − 1)

2
aTB−1a− 2πiaTB−1b− πiaTµ

+2πifTB−1f + 2πifTB−1a+
πi

2
(s− ε)TB(s− ε)

}
.

14In principle, the torsion T (M,α), defined for α ∈ H1(M ;Q/Z)
ℓk∼= H1(M ;Z), has sign ambiguity, if no

additional structures on M are introduced. One can fix the sign for example by introducing a spin structure
s ∈ Spin(M) on M , cf. [59]. The change of the spin structure s → s + c, c ∈ H2(M ;Z2) then changes the sign by
(−1)c(α̃) where α̃ ∈ H1(M ;Z) is dual to α. However, since in our case α = ω mod 1, α̃ is even, and the dependence
on spin structure drops out.
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Taking into account that

1

4
εTBε =

V − 1

2
+

1

4
TrB mod 1,

1

2
εTBs =

1

2
TrB mod 1,

and combining everything together we then have

Nr(M,ω) =
F ({eπiµI}I∈Vert)−1

|detB|
e

πi
2
(2−σ+sTBs)ξ

3σ−TrB
2

∑
ℓ∈ZVert

∑
a,f∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2

× e−
πi(r−1)

2
aTB−1a−2πiaTB−1b−πiaTµ+2πifTB−1f+2πifTB−1a.

As in the case r = 2 mod 4, we can then conjecture the following general relation for a rational
homology sphere M and r = 1 mod 4:

Nr(M,ω) =
−e−

πi
2
µ(M,s)T (M, [ω])

|H1(M ;Z)|

×
∑

a,b,f∈H1(M ;Z)

e2πi(−
r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f))Ẑσ(b,s)

∣∣∣
q→e

2πi
r
, (3.12)

where we have used the surgery formula (2.17) for the (mod 4) reduction of the Rokhlin invari-
ant µ(M, s).

It is interesting to remark that unlike in the case r = 2 (mod 4) here the relation between Nr

and Ẑ is based on a triple summation (instead of double).

3.4 Level r = 3 mod 4

This case is analogous to the case r = 1 mod 4 considered above. When r = 3 mod 4, the
sum (3.7) reads

C′ℓ =
∑

a∈ZVert/BZVert

∑
A∈ZVert/2ZVert

exp

{
−πir

2
aTB−1a− 2πiaTB−1b− πiaTµ

−πiaT (s− ε) +
πi

2
ATBA+ πiAT (a+B(s− ε))

}
.

Applying again the Gauss reciprocity formula to the sum over A we have

C′ℓ =
e

πiσ
4 2V/2

| detB|1/2
∑

a,f∈ZVert/BZVert

exp

{
−πi(r + 1)

2
aTB−1a− 2πiaTB−1b− πiaTµ

−2πifTB−1f − 2πifTB−1a− πi

2
(s− ε)TB(s− ε)

}
.

Combining everything together we then have

Nr(M,ω) =
F ({eπiµI}I∈Vert)−1

|detB|
e

πi
2
(2+σ−sTB−1s)ξ

3σ−TrB
2

∑
ℓ∈ZVert

∑
a,f∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2

× e−
πi(r−1)

2
aTB−1a−2πiaTB−1b−πiaTµ+2πifTB−1f+2πifTB−1a.

We can then conjecture the following general relation for a rational homology sphere M and
r = 3 mod 4:

Nr(M,ω) =
−e

πi
2
µ(M,s)T (M, [ω])

|H1(M ;Z)|

×
∑

a,b,f∈H1(M ;Z)

e2πi(−
r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f))Ẑσ(b,s)

∣∣∣
q→e

2πi
r
. (3.13)



Non-Semisimple TQFT’s and BPS q-Series 31

3.5 Generalization to b1 > 0

Let M be, as before, obtained by a surgery on a link with the linking matrix B. However, now
we will allow B to be degenerate. By an SL(V,Z) transform we can bring the quadratic form B
to B′ ⊕ 0b1 where 0b1 is the trivial quadratic form on Zb1 ⊂ ZV [56]. The expression (3.6) then
will be modified to

Cℓ = ξ−
ℓ′TB′−1

ℓ′
2

e
πiσ
4 (r/2)(V−b1)/2

|detB′|1/2

×
∑

ã∈ZV −b1/2B′ZV −b1

e−
πir
2

ãT (B′)−1ã−πiãT (B′)−1(ℓ′+B′µ̃′)rb1e
πiℓ′′T µ̃′′

r δℓ′′=0 mod r,

where ℓ = ℓ′ ⊕ ℓ′′ and µ̃ = µ̃′ ⊕ µ̃′′ according to the splitting of B above.
Consider first the case of r = 2 mod 4. We have

A = ξ
3σ−TrB

2 r−V/2+b1/22b1/2−V/2e−
πiσ
4 .

The relation (3.10) generalizes to

Nr(M,ω)

=
rb1T (M, [ω])√
|TorH1(M ;Z)|

∑
a′,b′∈TorH1(M ;Z)

m∈Zb1

e−
πir
2

qs(a′)−2πiℓk(a′,b′)−πiω(a′)+πiω′′(m)Ẑσ(b′⊕rm/2,s)

∣∣∣
q→e

2πi
r

=
rb1T (M, [ω])√
|TorH1(M ;Z)|

∫
H1(M ;R/Z)

µ(α)
∑

b∈H1(M ;Z)

e−
πir
2

qs(α′)−2πiℓk(α′,b′)−πiω(α′)+2πiα′′(b′′)

× δ(rα′′ − ω′′/2)Ẑσ(b,s)

∣∣∣
q→e

2πi
r
, (3.14)

where we chose explicit splittings ω = ω′ ⊕ ω′′ ∈ H1(M ;C/2Z) ∼= TorH1(M ;Z)⊕ (C/2Z)b1 and
b = b′ ⊕ b′′ ∈ H1(M ;Z) ∼= TorH1(M ;Z) ⊕ Zb1 according to the splitting of the linking matrix
B above. It is straightforward to see that the right-hand side is independent of the choice of
representative of the equivalence class (2.35). The coefficients in the relation (3.14) are not
invariant under the automorphisms (2.37). However, this compensated by the non-covariance
of Ẑ. Taking into account (2.40), one can show that the total sum in (3.14) transforms covariantly
(i.e., as a function on H1(M ;C/2Z) ∼= Hom(TorH1(M ;Z) ⊕ Zb1 ,C/2Z)). Namely, considering
that

qE(b
′,b′′)

∣∣
b′′=mr

2
= e

πir
2

qs(µm)−2πiℓk(µm,b′)

and shifting the summation variables b′ → b′ + r
2µm, a′ → a′ − µm, we have indeed

Nr(M,ω′ ⊕ ω′′)⇝ Nr(M,ω′ ⊕ (ω′′ + 2µ∗ω)),

where ω′ ⊕ ω′′ ∈ TorH1(M ;Z) ⊕ (C/2Z)b1 and µ∗ : TorH1(M ;Z) → (C/Z)b1 is the map dual
to µ in (2.38).

For r = 1 mod 4, we have

A = r−V/2+b1/2ξ
3σ−TrB

2 e
πi
2
(TrB+σ)

and

Nr(M,ω) =
rb1T (M, [ω])

|TorH1(M ;Z)|
∑

a′,b′,f ′∈TorH1(M ;Z)
m∈Zb1

exp

{
2πi

(
−r − 1

4
ℓk(a′, a′) + ℓk(a′, f ′ − b′)

− 1

2
ω(a′) + ℓk(f ′, f ′)−∆σ(b′,s) − ℓk(b′, b′) + ω′′(m)

)}
Ẑσ(b′⊕rm,s)

∣∣∣
q→e

2πi
r
. (3.15)
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Example 3.1. An interesting example is M = Σg × S1. In this case ℓk = 0 and qs = 0.
Furthermore, we have the identity:

T (M, [ω]) = (−2)b1+1

(
i

4

)b1 i

2
N2(M, 2ω).

Thus replacing in the above formula we get

Nr

(
Σg × S1, ω

)
N2

(
Σg × S1, 2ω

) = rb1(−2)1+b1

(
i

4

)b1 i

2

∑
m∈Z2g+1

e+πiω(m)Ẑσ( rm
2

,s)

∣∣∣
q→e

2πi
r
.

If we now recall that

Nr

(
Σg × S1, ω

)
= r2g

∑
k∈Hr

(
{rβ}
{β + k}

)2g−2

(
so in particular, N2

(
Σg × S1, 2ω

)
= 22g+1 1

i2g−2

(
i2β − i−2β

)2g−2)
, where β = ω

(
S1

)
(note the

formula does not depend on the orientation of S1), then we get

1

r

∑
k∈Hr

{rβ}2g−2

({β + k}(i2β − i−2β))2g−2
=

∑
m∈Z2g+1

e+πiω(m)Ẑσ( rm
2

,s)

∣∣∣
q→e

2πi
r
. (3.16)

In order to compute Ẑs, we observe that the formula (3.9) providing the value of Ẑ for surgeries
over plumbing links can be generalised to manifolds which are the boundaries of a plumbing of
surfaces in a tree-like fashion. In particular, for M = Σg × S1,(

x− x−1
)2−2g

=
∑
ℓ∈Z

Fℓx
ℓ. (3.17)

Since Tor(H1(M)) = 0, the first Chern class provides a bijection between the set of spinc

structures on M and H2(M) = H1(M), but Ẑs is zero for all spinc structures s such that
c1(s) ̸= PD

(
ℓ
[
{pt} × S1

])
for some ℓ ∈ Z. So letting ℓ be the spinc structure the first Chern

class of which is Poincaré dual to ℓ
[
{pt}×S1

]
and using (2.33) with U = Id, B = 0, σ = 0 = b+,

we have Ẑℓ = qℓFℓ.

Therefore, equation (3.16) becomes∑
k∈Hr

1(
e

πi
r
(β+k) − e−

πi
r
(β+k)

)2g−2 = r
∑
m∈Z

eπimβẐσ( rm
2

,s)

∣∣
q→e

2πi
r
. (3.18)

Then we have that the left-hand side of (3.18) equals∑
ℓ∈Z

Fℓ

∑
k∈Hr

eℓ
πi
r
(β+k) = r

∑
l∈Z

Frle
πilβ(−1)l(r−1)

and the right-hand side equals

r
∑
m∈Z

eπimβFrmeπim.

So if r is even then (3.18) is verified directly and if r is odd, then the equality is true because
Frl = 0 for odd l.
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3.6 Surgeries on knots

Consider M = S3
p(K) and assume that −p ∈ Z+ for concreteness. Then recalling (see Sec-

tion 2.2) that a spinc structure on S3
p(K) can be encoded by an integer congruent to p mod 2

and that two integers give the same structure iff they differ by a multiple of 2p, the general
surgery formula (2.33) reads:

Ẑa

[
S3
p(K)

]
= q−

3+p
4

∑
ℓ=a mod 2p

Fℓq
− ℓ2

4p , (3.19)

where the coefficients Fℓ appear in the expansion of

F (x, q) := FK

(
x2, q

)(
x− x−1

)
=

∑
ℓ

Fℓx
ℓ (3.20)

with FK introduced in [40]. We will use the facts that FK

(
x−2, q

)
= −FK

(
x2, q

)
and that

FK

(
x2, q

)
∈ xZ

[[
x±2, q

]]
. In particular, it follows that Ẑa ≡ 0 for a = 1 mod 2. As argued

in [39], the series FK(x, q) gives ADO polynomials at roots of unity (which, in turn, are related
to the CGP invariants for knot complements). Note, this already establishes a relation between
FK(x, q) := Ẑ

(
S3 \K

)
and Nr(K) for knots, and tells us the relation between the parameters:

in order to obtain Nr on the CGP side this large class of examples shows that on the GPPV
side we need to take q = e2πi/r (not q = eπi/r).

With our choice of normalization, Conjecture 1.1 (b) states that

FK(x, q)|q=ξ2 =
ADOr(K)

(
x/ξ2

)
∆K(xr)

·
(
x1/2 − x−1/2

)
, ξ := eπi/r, (3.21)

where ∆K(t) denotes the Alexander polynomial of K. We wish to compose this with the relation
between ADO polynomials and CGP invariants for knot complements

ADOr(K)
(
x2/ξ2

)
=

xr − x−r

x− x−1
Nr(Kα), where x = e

πiα
r .

Eliminating the ADO polynomial from the above two relations we get a more direct relation
between GPPV and CGP invariants for knot complements

Nr(Kα) =
FK

(
e

2πiα
r , e

2πi
r

)
∆K

(
e2πiα

)(
eπiα − e−πiα

) . (3.22)

This is the particular case of the more general Conjecture 2.13 (b) combined with Conjecture 2.14,
in the case of the knot with zero framing. On the other hand, we have

Nr

(
S3
p(K), ω

)
=

1

∆−

∑
k∈Hr

d(αk)Nr(Kαk
)T (αk)

p, (3.23)

where Nr(Kα) denotes CGP invariant of a (zero framing) knot in S3 colored by α (e.g., for
unknot U with zero framing Nr(Uα) = d(α)). The other notations are the same as in Section 2.4.
In particular, αk := α + µ, where µ = ω(m) ∈ 2

pZ/Z and m ∈ H1

(
S3
p(K);Z

) ∼= Z/pZ is the
generator represented by the meridian of the knot K.

We want to check that the surgery formulas for homological blocks Ẑ and CGP invariant Nr

are consistent with the conjectural relations between these invariants for knot complements and
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closed manifolds. In other words, we want to check commutativity of the following schematic
diagram:

Ẑb

[
S3
p(K)

]
(q) Nr

(
S3
p(K), ω

)

FK(x, q) Nr(Kα),

q→e
2πi
r

Laplace
transform

q→e
2πi
r

Kirby
color

where, more concretely, the left vertical arrow is given by the equations (3.19)–(3.20), the right
vertical arrow is given by (3.23), the top horizontal arrow is given by (3.12), (3.10) and (3.13),
and the bottom horizontal arrow is given by (3.22).

This check can be done by essentially repeating the analysis done for plumbings in case of
a single vertex (with F in (3.3) replaced by (3.20)) and using the following well known relation
between the Reidemeister torsion of M = S3

p(K) and the Alexander polynomial of the knot K:

T
(
S3
p(K), t

)
=

t∆K(t)

(1− t)2

∣∣∣∣
t∈Zp⊂U(1)

, (3.24)

where t is the holonomy of U(1) flat connection along the the meridian m of the knot K. But
let us write it explicitly anyway.

As for plumbings, after plugging (2.29) into (3.23), it is instructive to separate the result into
three factors:

Nr

(
S3
p(K), ω

)
= A · B · C,

where

A = r−1/2ξ−
3+p
2 ·


e

πip
2 e−

πi
2 , r = 1 mod 4,

2−1/2e
πi
4 , r = 2 mod 4,

−e−
πip
2 , r = 3 mod 4,

(3.25)

B =
∆K

(
e2πiµ

)(
eπiµ − e−πiµ

)2 , (3.26)

C =
∑
k∈Hr

F
(
ξµ+k, ξ2

)
· ξ

p
2
(µ+k)2 , (3.27)

where, as before, ξ := e
πi
r . Consider a contribution of a monomial xℓ from FK(x) into (3.27)

Cℓ :=
∑
k∈Hr

ξℓ(µ+k) · ξ
p
2
(µ+k)2 =

∑
n∈Z/rZ

e
πip
2r

(µ̃+2n)2+πi
r
ℓ(µ̃+2n), (3.28)

where

µ̃ := µ+ (r − 1).

We can now use the following one-dimensional Gauss reciprocity formula:

∑
n∈Z/rZ

exp

(
2πi

r

(
pn2 + ℓn

))
= e

πi sign(p)
4

√
r

2|p|
∑

ã∈Z/2pZ

exp

(
−πir

2p

(
ã+

ℓ

r

)2)
.



Non-Semisimple TQFT’s and BPS q-Series 35

Applying it to (3.28) we have

Cℓ = ξ
− ℓ2

2p e−
πi
4

√
r

2|p|
∑

ã∈Z/2pZ

e
−πir

2p
ã2−πiã(ℓ/p+µ̃)

.

Therefore, taking into account (3.19) we can write

C =
∑
ℓ

CℓFℓ = e−
πi
4 ξ

3+p
2

√
r

2|p|
∑

b∈Z/pZ
ã∈Z/2pZ

e
−πir

2p
ã2− 2πiãb

p
−πiµ̃ã

Ẑ2b

[
S3
p(K)

]∣∣∣
q→ξ2

.

Combining this together with (3.25) and (3.26), we get

Nr

(
S3
p(K), ω

)
=

1√
|p|

∆K(e2πiµ)

(eπiµ − e−πiµ)2

{
2−1, r = 2 mod 4

2−1/2e∓
πip
2 e∓

3πi
4 , r = ±1 mod 4

}
×

∑
b∈Z/pZ
ã∈Z/2pZ

e
−πir

2p
ã2−πi(r−1)ã− 2πiãb

p
−πiµã

Ẑ2b

[
S3
p(K)

]∣∣∣
q→e

2πi
r
.

Using the formula (3.24) with t = e2πiµ, we indeed arrive at the conjectural formula (3.10),
(3.12) or (3.13), depending on the value r mod 4, in the case of M = S3

p(K). For example, when
r = 2 mod 4 the sum over ã reduces to the sum over a = ã mod p:

Nr

(
S3
p(K), ω

)
=

1√
|p|

∆K

(
e2πiµ

)(
eπiµ − e−πiµ

)2 ∑
b∈Z/pZ
a∈Z/pZ

e
−πir

2p
a2−πia− 2πiab

p
−πiµa

Ẑ2b

[
S3
p(K)

]∣∣∣
q→e

2πi
r
.(3.29)

Similarly, for r = 1 mod 4,

cCGP
a,b =

1

|p|
∆K

(
e4πia/p

)
(e2πia/p − e−2πia/p)2

e−2πi
3 sign(p)−p

4

p−1∑
c,f=0

e
− 2πi

p
(−f2+ac+(b−f)c+(r−1) c

2

4
)

and for r = 3 mod 4,

cCGP
a,b =

1

|p|
∆K

(
e4πia/p

)(
e2πia/p − e−2πia/p

)2 e2πi 3 sign(p)−p
4

p−1∑
c,f=0

e
− 2πi

p
(f2+ac+(b+f)c+(r+1) c

2

4
)
,

where we use the notation of (1.6).

Example 3.2. As a concrete example, consider p = −3 surgery on the right-handed trefoil
K = 3r1. In this case, H1(S

3
p(K)) = Z3 and, therefore, there are two independent Ẑ-invariants,

which can be expressed in terms of the false theta-functions (cf. [19, 40]):

Ẑ0 = q
71
72
(
Ψ̃

(1)
18 + Ψ̃

(17)
18

)
= q + q5 − q6 − q18 + q20 + · · · ,

Ẑ±1 = −
1

2
q

71
72
(
Ψ̃

(5)
18 + Ψ̃

(13)
18

)
= −1

2
q4/3

(
1 + q2 − q7 − q13 + q23 + · · ·

)
,
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where the factor 1
2 in the latter expression and “±” in its label appear precisely because we write

these expressions in the unfolded form. Evaluating the right-hand side of (3.29) for various values
of r, we find

r = 5: 4.85591− 6.4514i, r = 13: − 37.2754− 1.28057i,

r = 6: 5.30731− 4.45336i, r = 14: − 11.4885 + 28.4093i,

r = 7: 1.89035 + 3.49675i, r = 15: − 15.3891 + 13.8158i,

r = 9: − 6.77162− 0.394402i, r = 17: − 11.2632 + 37.6555i,

r = 10: − 24.2779 + 7.76375i, r = 18: 17.4965 + 18.5452i,

r = 11: − 6.01733 + 3.60533i, r = 19: 59.3259 + 18.3538i,

· · · · · ·

which match the corresponding values of Nr(S
3
−3(3

r
1)).

3.7 0-surgeries on knots

In general, the invariant of a knot complement is usually written as

FK(x, q) =
1

2

∑
m≥1
odd

fm(q) ·
(
x

m
2 − x−

m
2
)
, (3.30)

which after multiplying by
(
x

1
2 − x−

1
2

)
in the surgery formula gives

(
x

1
2 − x−

1
2
)
FK(x, q) =

1

2

∑
m≥1
odd

fm(q) ·
(
x

m
2
+ 1

2 − x
m
2
− 1

2 − x−
m
2
+ 1

2 + x−
m
2
− 1

2
)
,

which means (with n ∈ Z):

Coeffxn

[(
x

1
2 − x−

1
2
)
FK(x, q)

]
=


f2n−1 − f2n+1 if n ≥ 1,

−2f1 if n = 0,

f2|n|−1 − f2|n|+1 if n ≤ −1.
(3.31)

For the unknot we have fm(q) = δm,1, so that Ẑn = {. . . , 0, 0, 1,−2, 1, 0, 0, . . .}, where by Ẑn we

denote the invariant Ẑs

(
S3(K)

)
associated to the spinc structure encoded by the integer 2n on

the knot (see Section 2.2).

Example 3.3. The right-handed trefoil knot K = 3r1: consider the 0-framed trefoil and let
Hr = {−(r − 1),−(r − 3), . . . , (r − 1)} we have

Nr

(
(3r1)α

)
=

(−1)r−1ξ9(r−1)2/4

{2rα}
∑
n∈Hr

ξ3nα+
3n2

4 {2α+ n}

Therefore, we get

Nr(S
3
0(3

r
1)) =

∑
k∈Hr

d(α+ k)
(−1)r−1ξ9(r−1)2/4

{2rα+ 2rk}
∑
n∈Hr

ξ3nα+3nk+ 3n2

4 {2α+ 2k + n}

= (−1)r−1 ξ9(r−1)
2/4

{rα}{2rα}
∑
k∈Hr

∑
n∈Hr

(−1)k{α+ k}{2α+ 2k + n}ξ3nα+3nk+ 3n2

4 .
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Figure 2. The L927 link (Knotscape image).

On the other hand, for the right-handed trefoil knot K = 3r1 we have fm = ϵmq
m2+23

24 , where

ϵm =


−1 if m ≡ 1 or 11 (mod 12),

+1 if m ≡ 5 or 7 (mod 12),

0 otherwise.

and so

Ẑn =


ϵ2n−1q

(2n−1)2+23
24 − ϵ2n+1q

(2n+1)2+23
24 if n ≥ 1,

−2ϵ1q if n = 0,

ϵ2|n|−1q
(2|n|−1)2+23

24 − ϵ2|n|+1q
(2|n|+1)2+23

24 if n ≤ −1.

Again, we verified numerically and analytically that the proposed relations hold.

3.8 Surgery on a link

Let L be the link L927 in the Thistlethwaite table of links (see also Knot Atlas). Let M be
obtained by a, b, c ∈ N integral surgery on the three components of L, where a corresponds to
the blue component, b to the purple and c to the green one in Figure 2. The linking matrix
of L is diagonal with entries a, b, c so that a cohomology class ω ∈ H1(M ;C/2Z) is described
by a three-uple (α, β, γ) with α ∈

{
2k
a , k = 0, . . . , a − 1

}
, β ∈ {2kb , k = 0, . . . , b − 1} and

γ ∈
{
2k
c , k = 0, . . . , c− 1

}
.

L is one of the first links with the peculiar property that its multicolored Alexander polyno-
mial is zero. Thus we have N2(M,ω) = 0 for any ω ∈ H1(M ;C/2Z).

On the other hand, a direct computer-based calculation gives

ADO3(L)(α, β, γ) = ξ2γ +
(
1− i

√
3
)
+ ξ−2γ

so that in particular it does not depend on α, β and we will denote it P (γ). As a consequence,
we have

N3(M,ω) = ∆−3+

( ∑
k1∈{−2,0,2}

ξ
a
2
((α+k1)2−(r−1)2)d(α+ k1)

)

×
( ∑

k2∈{−2,0,2}

ξ
b
2
((β+k2)2−(r−1)2)d(β + k2)

)

×
( ∑

k3∈{−2,0,2}

ξ
c−1
2

((γ+k3)2−(r−1)2)d(γ + k3)P (γ + k3)

)
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(in the last factor of the above expression we used c−1 as the self linking of the green component
is 1 in the given diagram). Choosing for instance a = b = c = 4 and α = β = γ = 1

2 one can
compute directly that N3(M,ω) ̸= 0. Since the torsion is 0 as the multivariable Alexander
polynomial is, then in this case the invariants Ẑ should have infinite limits when q → exp(2iπ3 ).

4 The relation between Nr and Ẑ

In this section, we present a more general and systematic discussion of the proposed relation.

4.1 Gauss sum vs Laplace transform

Let M be the rational homology sphere obtained by a surgery on a framed link L in S3 with
a linking matrix B. We will use the shorthand notations x ≡ {xI}I∈Vert, x± ≡

{
x±1I

}
I∈Vert.

In particular, K[[x±]] denotes the space of formal Laurent series in x±I with coefficients in K,
considered as a module over the ring of Laurent polynomials K[x±].

As before, ω ∈ H1(M ;C/2Z) and µI = ω(mI), which we assume to be fixed. We also use
notation

ξ ≡ e
πi
r

in what follows.
Let K be a field extension over C (some of the relevant cases are K = C, K = C

((
q1/p

))
,

K = C
((
q1/p

))
(x)). By K(t)′ we will denote the localization of K[t] by the subset of polynomials

in t non-vanishing at t = 1. This is a subset of the field K(t) of rational functions in t closed
under multiplication. One can then consider the following ring homomorphism:

Definition 4.1.

lim
t→1

: K(t)′ −→ K,

P (t)

Q(t)
7−→ P (1)

Q(1)
.

Similarly, by K(x)′ we will denote the localization of K[x±] by the subset of Laurent poly-
nomials non-vanishing at x = ξµ+k for any k ∈ HVert

r . This is a subset of the field K(x) of
rational functions in x closed under multiplication. We can then define the following K-linear
“ω-twisted Gauss sum” operation:

Definition 4.2 (ω-twisted Gauss sum).

Gω : K(x)′ −→ K,

P (x)

Q(x)
7−→

∑
k∈HVert

r

P (ξµ+k)

Q(ξµ+k)
ξ

1
2
(µ+k)TB(µ+k).

Denote p := 4|detB| and let C((q1/p)) ≡ C
[[
q1/p, q−1/p

]
be the field of fractions of C

[[
q1/p

]]
.

Then define the C
((
q1/p

))
-linear “ω-twisted Laplace transform” on a subspace of C

((
q1/p

))
[[x±]]

by the following formula:

Definition 4.3 (ω-twisted Laplace transform).

Lω : C
((
q1/p

))[[
x±

]]
−→ C

((
q1/p

))
,∑

ℓ∈ZVert

m∈Z

Aℓ,mq
m
p xℓ 7−→

∑
n∈Z

q
n
p

∑
ℓ∈ZVert

m∈Z
4m−pℓTB−1ℓ=4n

Aℓ,m · Cωℓ , (4.1)
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where

Cωℓ =
e

πiσ
4 (r/2)V/2

|detB|1/2
∑

ã∈ZVert/2BZVert

e−
πir
2

ãTB−1ã−πiãTB−1(ℓ+B(µ+(r−1)ε)).

We say that Lω is well defined if the interior sum in the right-hand side of (4.1) has a finite
number of non-zero terms.

Remark 4.4. Lω restricted on C
((
q1/p

))[
x±

]
is well-defined.

Remark 4.5. Apart from ω ∈ H1(M ;C/2Z) (equivalently, µ ∈ (C/2Z)Vert s.t. Bµ = 0 mod
2ZVert), the operations Lω and Gω also (implicitly) depend on B and r.

Next we introduce the following limit operation (a morphism of C-algebras).

Definition 4.6.

lim
q→e

2πi
r

: C
((
q1/p

))
−→ C,∑

m

Amq
m
p 7−→ lim

q→e
2πi
r

∑
m

Amq
m
p .

We say that the operation is well defined if the power series in q1/p are convergent for 0 <
|q1/p| < 1 and the limit, taken to the root of unity along the radial direction, exists and is finite.

Remark 4.7. This operation can be extended to the polynomials/series with coefficients in
C
((
q1/p

))
by applying it coefficient-wise.

Proposition 4.8. Let A(x, q) ∈ C
((
q1/p

))[
x±

]
such that lim

q→e
2πi
r

A(x, q) ∈ C
[
x±

]
exists.

Then

Gω lim
q→e

2πi
r

A(x, q) = lim
q→e

2πi
r

GωA(x, q) = lim
q→e

2πi
r

LωA(x, q).

Proof. The first equality follows from the definition of Gω, which involves taking a finite linear
combination of the evaluations at certain values of x. The second equality is shown by apply-
ing the Gauss reciprocity formula (3.5) to individual monomials in x, the number of which is
finite. ■

Proposition 4.9. Let A(x) ∈ K(x)′, B(xr) ∈ K(x)′ ∩K(xr). Then

Gω(B(xr)A(x)) = B((−1)r−1eπiµ)Gω(A(x)).

Proof. Follows from the definition of Gω. ■

Remark 4.10. The statement of the Proposition 4.9 is directly extended to the series in
K ′(x)((t)) by applying it coefficient-wise.

We also define the following limiting operation on a subalgebra of C
((
q1/p

))
((t)):

Definition 4.11.

lim
t→1

: C
((
q1/p

))
((t)) −→ C

((
q1/p

))
,∑

n

(∑
m

An,mq
m
p

)
tn 7−→

∑
m

(∑
n

An,m

)
q

m
p .

We say that the operation is well defined if there is a finite number of non-vanishing coeffi-
cients An,m for any fixed m.
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Remark 4.12. When restricted on the subspace C
((
q1/p

))
(t)′ ⊂ C

((
q1/p

))
((t)) and is well-

defined, the result of the operation in Definition 4.11 coincides with the result of the operation
in Definition 4.1.

With such definitions, consider the following diagram of (partially defined) algebra homo-
morphisms, where the dotted arrow means that we make the hypothesis that in the cases of
interest the image of limq→e2πi/r map is contained in the subspace C(t)′:

C
((
q1/p

))
((t)) C((t)) C(t)′

C
((
q1/p

))
C.

lim
q→e

2πi
r

limt→1 limt→1

lim
q→e

2πi
r

(4.2)

Proposition 4.13. When r ̸= 0 mod 4 and

ℓ = 2b+B(s− ε) mod 2BZVert,

where b and s represent elements of H1(M ;Z) and Spin(M) respectively, the coefficients Cωℓ in
the Definition 4.3 admit the following expression:

Cωℓ =
e

πiσ
4 rV/2

|H1(M ;Z)|

×



e
πi
4
(5σ−2TrB) ∑

a,f∈H1(M ;Z)
e2πi(−

r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

2V/2|H1(M ;Z)|1/2
∑

a∈H1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,

e
πi
4
(−5σ+2TrB) ∑

a,f∈H1(M ;Z)
e2πi(−

r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4.

Proof. Is contained in Section 3.1. ■

Assuming the identification ξαI = xI , one can consider (see (2.24) and (2.23)):

ξ−
1
2
αTBαNr(Lα) ∈ C(x)′ ⊂ C(x).

Proposition 4.14.

1

∆
b+
+ ∆

b−
−

Gω

(
ξ−

1
2
αTBαNr(Lα) ·

∏
I∈Vert

(
xI − x−1I

)∏
I∈Vert

(
xrI − x−rI

)) = Nr(M,ω). (4.3)

Proof. After using the identification xI = ξαI , taking into accound the formula (2.19) for
the modified quantum dimensions, and writing explicitly the action of Gω according to the
formula in the Definition 4.2, the left-hand side of (4.3) becomes the surgery formula (2.25)
for Nr(M,ω). ■

Proposition 4.15.

Lω

(
FL

(
x2, q

)
·

∏
I∈Vert

(
xI − x−1I

))
=

e
πiσ
4 rV/2

|H1(M ;Z)|
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×
∑

b∈H1(M ;Z)



e
πi
4
(5σ−2TrB) ∑

a,f∈H1(M ;Z)
e2πi(−

r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

2V/2|H1(M ;Z)|1/2
∑

a∈H1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,

e
πi
4
(−5σ+2TrB) ∑

a,f∈H1(M ;Z)
e2πi(−

r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4,

× (−1)b+q
TrB−3σ

4 Ẑσ(b,s)

when the left-hand side is well defined.

Proof. Using the expansion (2.32), the left-hand side reads:

Lω

( ∑
ℓ∈ZVert

Fℓx
ℓ

)
=

∑
ℓ

Cω
ℓ Fℓq

− ℓT B−1ℓ
4 =

∑
b∈ZVert/BZVert

∑
ℓ=2b+B(s−ε)
mod 2BZV

Cωℓ Fℓq
− ℓtB−1ℓ

4 , (4.4)

where in the first equality we used Definition 4.3. In the second equality, we split the sum over ℓ
into a sum over ZVert/BZVert ∼= H1(M,Z) and the sum over ℓ with fixed values modulo 2BZVert.
Proposition 4.13 provides an explicit formula for the coefficients Cωℓ , which depend only on the

value ℓmodulo 2BZVert. Combined with the surgery formula (2.34) for Ẑ in the case of a rational
homology sphere it gives us the formula in the statement of the proposition. ■

Note that t-regularization can be understood as the following C-linear map:

Definition 4.16.

( · )t : K[[x±]] −→ K[x±][[t]],

f(x) =
∑

ℓ∈ZVert

fℓx
ℓ 7−→ f t(x) =

∑
m≥0

( ∑
ℓ : ∥ℓ∥=m

fℓx
ℓ

)
tm,

where ∥ · ∥ is the L1 norm.

The target space of this operation is an integral domain, and its ring of fractions is a subfield
of K(x)((t)). In particular,

F t
L

(
x2, q

)
F t
L

(
x2r, qr

) ∈ C
((
q1/p

))
(x)((t)).

The Conjecture 2.13 then states that limq→e2πi/r takes it to an element in

C(x)(t)′ ⊂ C(x)(t) ⊂ C(x)((t)),

and limt→1 then takes it further to

ξ−
1
2
αTBα+

(r−1)2 TrB
2 Nr(Lα) ∈ C(x)′ ⊂ C(x).

Theorem 4.17. Let M = S3(L) and WL(x, q) be such that Conjecture 2.13, part (a), holds with
the following additional assumptions:

(i) LωWL

(
x2, q

)∏
I

(
xI − x−1I

)
is well-defined and limt→1 lim

q→e
2πi
r

= lim
q→e

2πi
r

limt→1 when
applied to the ratio

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)(
Lω|r=1W t

L

(
x2, q

)∏
I

(
xI − x−1I

))
|q→qr

,

that is the maps in the diagram (4.2) commute when restricted to this element in the top
left corner.
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(ii) ∃α(q, t) ∈ C
((
q1/p

))
((t)) such that limq→e2πi α(q, t)W t

L

(
x2, q

)
∈ C[x±]((t)) exists and is

non-zero.

Then there exist Ws(q) ∈ 2−cq∆Z[[q]], s ∈ Spinc(M) such that

Nr(M,ω) = lim
q→e

2πi
r

∑
b∈H1(M ;Z)

Cr
ω,bWσ(b,s)(q)∑

b∈H1(M ;Z)
e2πiω(b)Wσ(b,s)(qr)

,

where

Cr
ω,b :=

1

|H1(M ;Z)|



∑
a,f∈H1(M ;Z)

e2πi(−
r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

|H1(M ;Z)|1/2
∑

a∈H1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,∑
a,f∈H1(M ;Z)

e2πi(−
r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4.

Proof. The Conjecture 2.13, part (a), states that

ξ−
1
2
αTBα+

(r−1)2 TrB
2 Nr(Lα) = lim

t→1
lim

q→e
2πi
r

W t
L

(
x2; q

)
W t

L

(
x2r; qr

) .
Multiplying both sides by

∏
I

(
xI − x−1I

)
/
(
xrI − x−rI

)
and applying Gω we have

Gω

(
ξ−

1
2
αTBα+

(r−1)2 TrB
2 Nr(Lα)

∏
I

(
xI − x−1I

)(
xrI − x−rI

))

= lim
t→1

Gω lim
q→e

2πi
r

W t
L

(
x2, q

)∏
I

(
xI − x−1I

)
W t

L

(
x2r, qr

)∏
I

(
xrI − x−rI

) , (4.5)

where we could bring Gω inside the limit since its definition involves taking a finite sum of
evaluations of the rational functions in x that appear in the coefficients of the series. By Propo-
sition 4.14, the left-hand side of the equation (4.5) gives the left-hand side of the equation in the
statement of the theorem, up to a simple factor. In the right-hand side, inside the limit limt→1

we have

Gω lim
q→e

2πi
r

W t
L

(
x2, q

)∏
I

(
xI − x−1I

)
W t

L

(
x2r; qr

)∏
I

(
xrI − x−rI

) = Gω

lim
q→e

2πi
r

W t
L

(
x2, q

)
α(qr, t)

∏
I

(
xI − x−1I

)
lim

q→e
2πi
r

W t
L

(
x2r, qr

)
α(qr, t)

∏
I

(
xrI − x−rI

)
=

lim
q→e

2πi
r

LωW
t
L

(
x2, q

)
α(qr, t)

∏
I

(
xI − x−1I

)
limq→e2πi W t

L

(
e2πiµ, q

)
α(q, t)

∏
I

(
eπiµI − e−πiµI

) , (4.6)

where in the first equality we used the the assumption (ii) of the theorem. In the second equality
we used the results of the Propositions 4.9 and 4.8.

Using Proposition 4.8 for r = 1, we have

ξ
1
2
µTBµ lim

q→e2πi
W t

L

(
e2πiµ, q

)
α(q, t)

∏
I

(
eπiµI − e−πiµI

)
= lim

q→e2πi
Gω|r=1W

t
L

(
x2, q

)
α(q, t)

∏
I

(
xI − x−1I

)
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= lim
q→e2πi

Lω|r=1W
t
L

(
x2, q

)
α(q, t)

∏
I

(
xI − x−1I

)
.

It follows that the right-hand side of (4.5) is equal to

ξ
1
2
µTBµ lim

t→1
lim

q→e
2πi
r

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)(
Lω|r=1W t

L

(
x2, q

)∏
I

(
xI − x−1I

))∣∣
q→qr

= ξ
1
2
µTBµ lim

q→e
2πi
r

lim
t→1

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)(
Lω|r=1W t

L

(
x2, q

)∏
I

(
xI − x−1I

))∣∣
q→qr

= ξ
1
2
µTBµ lim

q→e
2πi
r

LωWL

(
x2, q

)∏
I

(
xI − x−1I

)(
Lω|r=1WL

(
x2, q

)∏
I

(
xI − x−1I

))∣∣
q→qr

, (4.7)

where we used the assumption (i).

Let Ws(q) be defined through WL(x, q) in the same way as Ẑs(q) is defined through FL(x, q),
i.e., surgery formula (2.34). From Proposition 4.15 with r = 1, we then have

Lω|r=1WL

(
x2, q

)∏
I

(
xI − x−1I

)
=

(−1)b+e
πi
2
(3σ−TrB)

|H1(M ;Z)|
∑

a,b,f∈H1(M ;Z)

e2πi(ℓk(a,f−b)−
1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2)Wσ(b,s)

= (−1)b+e
πi
2
(3σ−TrB)e

πi
2
µTBµ

∑
b∈H1(M ;Z)

e2πi(ω(b)−
1
4
µ(M,s)+ℓk(b,b)+ 1

2)Wσ(b,s)

= (−1)b+e
πi
2
(3σ−TrB)e

πi
2
µTBµ

∑
b∈H1(M ;Z)

e2πiω(b)Wσ(b,s)

∣∣∣
q→qe−2πi

, (4.8)

where we have used the fact that, according to the formula (2.34), the overall rational power
shift of q-series Wσ(b,s) modulo 1 is given by

3σ − TrB

4
− (s− ε)TB(s− ε)

4
− bTB−1b =

1

2
+

µ(M, s)

4
− ℓk(b, b) mod 1.

Using (4.8) in the right-hand side of (4.7) and also using the Proposition 4.15 for general r,
we conclude that the right-hand side of (4.5) gives the the right-hand side of the equation in
the statement of the theorem, up to a simple phase factor. Taking care of the phase factors on
both sides of (4.5) concludes the proof of the first part of the statement of the theorem.

If Conjecture 2.13, part (b), holds, we take WL(x, q) = FL(x, q), and then by construction
Ws(q) = Ẑs(q). ■

Theorem 4.18. Let M = S3(L) and WL(x, q) be such that Conjectures 2.13 and 2.14, parts (a),
hold with the following additional assumption:

(i) LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)
is well defined and limt→1 lim

q→e
2πi
r

= lim
q→e

2πi
r

limt→1 when
applied to

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)
that is the maps in the diagram (4.2) commute when restricted to this element in the top
left corner.
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Then there exist Ws(q) ∈ 2−cq∆Z[[q]], s ∈ Spinc(M) such that

Nr(M,ω) = T (M, [ω]) lim
q→e

2πi
r

∑
b∈H1(M ;Z)

Cr
ω,bWσ(b,s),

where Cr
ω,b are the same as in Theorem 4.17. Moreover, if the parts (b) of Conjectures 2.13

and 2.14 also hold and FL(x, q) satisfies the assumption (i), then one can take Ws(q) = Ẑs(q).

Proof. One can follow the proof of the Theorem 4.17 since, from the Conjecture 2.14, the
assumption (iv) of that theorem automatically holds with α(q, t) = 1. Moreover, the Conjec-
ture 2.14 provides a relation between limt→1 limq→1W

t
L

(
x2, q

)
which appears in the denominator

of (4.6) and the Alexander–Conway function. Using the surgery formula for the torsion (see Ap-
pendix A), we arrive at the statement of the theorem. ■

Remark 4.19. In the case of plumbing surgeries, the assumption (ii) holds if and only if the
plumbing is weakly negative definite, meaning the inverse of the linking matrix, B−1, restricted
on the vertices of degree > 2 is negative definite (cf. [40]).

Example 4.20. Let M be a rational homology sphere obtained by surgery over a plumbing
link corresponding to a “Y -shaped” plumbing graph i.e. one formed by a single trivalent vertex
corresponding to an unknot with strictly negative framing, three 1-valent vertices and some
2-valent vertices. Then as shown in Appendix D the hypothesis of Theorem 4.18 is satisfied.
So this provides an infinite family of examples in which Theorem 4.18 holds. This family of
examples overlaps with the ones considered in [3, 36, 40, 41].

4.2 Generalization to b1 ≥ 0

In this section, we briefly list modifications one needs to do in Section 4.1 in order to gener-
alize the results to the case of general b1 ≥ 0. We will follow the conventions of Section 2.6.
In particular, we fix U ∈ SL(V,Z) such that

UBUT =

(
B′ 0
0 0

)
,

where detB′ ̸= 0 and use the following notations:(
ℓ′

ℓ′′

)
:= Uℓ,

(
µ′

µ′′

)
:=

(
UT

)−1
µ,

(
s′

s′′

)
:=

(
UT

)−1
s,

(
ε′

ε′′

)
:=

(
UT

)−1
ε.

We redefine p := 4|detB′|. Definitions 4.1, 4.2, 4.6, 4.11, 4.16 and Propositions 4.9, 4.14 do
not need to be modified. Definition 4.3 is generalized to

Definition 4.21. Define the “ω-twisted Laplace transform” on a subspace of C
((
q1/p

))
[[x±]]

by the following formula:

Lω : C
((
q1/p

))[[
x±

]]
−→ C

((
q1/p

))
,∑

ℓ∈ZVert

m∈Z

Aℓ,mq
m
p xℓ 7−→

∑
n∈Z

q
n
p

∑
ℓ∈ZVert

m∈Z
4m−p(ℓ′)T (B′)−1ℓ′+2p

∑
I |ℓ′′I ||ε

′′
I |=4n

Aℓ,m · Cωℓ ,

where

Cωℓ =
e

πiσ
4 (r/2)

V −b1
2 rb1

|detB′|1/2
eπi(ℓ

′′)T (ϵ′′+µ′′
r
)δℓ′′=0 mod r
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×
∑

ã∈ZV −b1/2B′ZV −b1

eπi(−
r
2
ãT (B′)−1ã−ãT (B′)−1(ℓ′+B′(µ′+(r−1)ε′))).

We say that Lω is well defined if the interior sum in the right-hand side of (4.1) has finite number
of non-zero terms.

With such modified definitions Proposition 4.8, then still holds by the similar argument.
Propositions 4.13 and 4.15 are modified respectively to the following two:

Proposition 4.22. When r ̸= 0 mod 4 and

ℓ′ = 2b′ +B′(s′ − ε′) mod 2B′ZV−b1 ,

ℓ′′ = LCM(r, 2)m ∈ Zb1 ,

where b′ and s represent elements of TorH1(M ;Z) and Spin(M), respectively, the coefficients Cωℓ
in the Definition 4.21 admit the following expression:

Cωℓ =
e

πiσ
4 r

V +b1
2

|TorH1(M ;Z)|
e

2πiω′′(m)
GCD(r,2)

×



e
πi
4
(5σ−2TrB) ∑

a,f∈TorH1(M ;Z)
e2πi(−

r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

2
V −b1

2 |TorH1(M ;Z)|1/2
∑

a∈TorH1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,

e
πi
4
(−5σ+2TrB) ∑

a,f∈TorH1(M ;Z)
e2πi(−

r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4.

Proof. It is contained in Section 3.1. ■

Proposition 4.23.

Lω

(
FL

(
x2, q

)
·

∏
I∈Vert

(
xI − x−1I

))
=

e
πiσ
4 r

V +b1
2

|TorH1(M ;Z)|
∑

b∈TorH1(M ;Z)
m∈Zb1

e
2πiω′′(m)
GCD(r,2)

×



e
πi
4
(5σ−2TrB) ∑

a,f∈TorH1(M ;Z)
e2πi(−

r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

2
V −b1

2 |TorH1(M ;Z)|1/2
∑

a∈TorH1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,

e
πi
4
(−5σ+2TrB) ∑

a,f∈TorH1(M ;Z)
e2πi(−

r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4

× (−1)b+q
TrB−3σ

4 Ẑσ(b⊕ mr
GCD(r,2)

,s)

when the left-hand side is well defined.

Proof. Follows from the definition of Lω, Proposition 4.22 and the conditional definition of
Ẑσ(b,s) through FL (equation (2.33)). ■

Remark 4.24. In Proposition 4.23 and the theorems below, Ẑσ(b′⊕b′′,s) is understood as a parti-
cular representative in 2−cq∆Z[[q]] ⊂ C

((
q1/p

))
, rather then an element of the quotient over the

subspace
(
1− qLCM(2,GCD(b′′))

)
C
((
q1/p

))
. This representative is fixed by the choice of the surgery

link L in the definition of Ẑ via FL by the formula (2.33).
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Theorems 4.17 and 4.18 are then modified respectively to the following two, with proofs
following similar arguments:

Theorem 4.25. Let M = S3(L) and WL(x, q) be such that Conjecture 2.13, part (a), holds with
the following additional assumptions:

(i) LωWL

(
x2, q

)∏
I

(
xI − x−1I

)
is well-defined and limt→1 lim

q→e
2πi
r

= lim
q→e

2πi
r

limt→1 when
applied to the ratio

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)(
Lω|r=1W t

L

(
x2, q

)∏
I

(
xI − x−1I

))
|q→qr

,

that is the maps in the diagram (4.2) commute when restricted to this element in the top
left corner.

(ii) ∃α(q, t) ∈ C
((
q1/p

))
((t)) such that limq→e2πi α(q, t)W t

L

(
x2, q

)
∈ C[x±]((t)) exists and is

non-zero.

Then there exist Ws(q) ∈ 2−cq∆Z[[q]], s ∈ Spinc(M) such that

Nr(M,ω) = lim
q→e

2πi
r

∑
b∈TorH1(M ;Z)

m∈Zb1

Cr
ω,b,mWσ(b⊕ mr

GCD(r,2)
,s)

∑
b∈H1(M ;Z)

e2πiω(b)Wσ(b,s)(qr)
,

where

Cr
ω,b,m :=

rb1e
2πiω′′(m)
GCD(r,2)

|TorH1(M ;Z)|

×



∑
a,f∈TorH1(M ;Z)

e2πi(−
r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f)− 1

4
µ(M,s)+ 1

2),

r = 1 mod 4,

|TorH1(M ;Z)|1/2
∑

a∈TorH1(M ;Z)
e−

πir
2

qs(a)−2πiℓk(a,b)−πiω(a), r = 2 mod 4,∑
a,f∈TorH1(M ;Z)

e2πi(−
r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f)+ 1

4
µ(M,s)+ 1

2),

r = 3 mod 4.

Moreover, if the parts (b) of Conjectures 2.13 and 2.14 also hold and FL(x, q) satisfies the
assumption (i), then one can take Ws(q) = Ẑs(q).

Theorem 4.26. Let M = S3(L) and WL(x, q) be such that Conjectures 2.13 and 2.14, parts (a),
hold with the following additional assumption:

(i) LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)
is well defined and limt→1 lim

q→e
2πi
r

= lim
q→e

2πi
r

limt→1 when
applied to

LωW
t
L

(
x2, q

)∏
I

(
xI − x−1I

)
that is the maps in the diagram (4.2) commute when restricted to this element in the top
left corner.

Then there exist Ws(q) ∈ 2−cq∆Z[[q]], s ∈ Spinc(M) such that

Nr(M,ω) = T (M, [ω]) lim
q→e

2πi
r

∑
b∈H1(M ;Z)

m∈Zb1

Cr
ω,b,mWσ(b⊕ mr

GCD(r,2)
,s),

where Cr
ω,b,m are the same as in Theorem 4.25. Moreover, if the parts (b) of Conjectures 2.13

and 2.14 also hold and FL(x, q) satisfies the assumption (i), then one can take Ws(q) = Ẑs(q).
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Example 4.27. Let M be obtained by surgery over a plumbing link corresponding to a “Y -
shaped” plumbing graph, i.e., one formed by a single trivalent vertex corresponding to an unknot
with strictly negative framing, three 1-valent vertices and some 2-valent vertices. Then, as shown
in Appendix D, under a certain open condition on the linking matrix, the first hypothesis of
Theorem 4.26 is satisfied. Hypothesis (iii) is satisfied as shown in Section 2.5.2 and Ẑ is defined
via FL. So this provides an infinite family of examples in which Theorem 4.26 holds. Note, the
family of 3-manifolds in this example overlaps with families treated in connection with WRT
invariants in [3, 36, 40, 41].

4.3 Generalization to the spin case

In this section, we briefly mention the relation between Ẑ and the spin version of the Nr invariant
for r = 0 mod 4 which was defined in [11]. We will omit any details and intermediate calculations,
as they are analogous to the non-spin case. The spin version of the invariant depends on the
choice of C/2Z-spin structure, which can be understood as a homotopy class of lifts

BSpin(3,C/2Z)

M B SO(3),

(4.9)

where Spin(3,C/2Z) is an extension of SO(3) by C/2Z equipped with discrete topology:

(C/2Z)discrete −→ Spin(3,C/2Z) ≡ Spin(3)×Z2 (C/2Z)discrete −→ SO(3),

the vertical map in (4.9) corresponds to the projection, and the horizontal map is the classifying
map of the bundle of orthonormal frames in the tangent bundle, which are non-canonically
parametrized by H1(M ;C/2Z). To formulate the relation, it will be useful to consider the
canonical map

σ̃ : H1(M ;C/2Z)× Spin(M) −→ Spin(M,C/2Z)

similar to the map σ. It is induced by the Z2 quotient map of the product Spin(3)×(C/2Z)discrete,
taking into account that B(C/2Z)discrete = K(C/2Z, 1). Then, for general b1 the relation for
r = 0 mod 4 reads

NSpin
r (M, σ̃(ω, s)) =

(−1)µ(M,s)rb1T ([ω])√
|TorH1(M ;Z)|

× lim
q→e

2πi
r

∑
a,b∈TorH1(M ;Z)

m∈Zb1

e−
πir
2

ℓk(a,a)−2πiℓk(a,b)−πiω(a)+πiω′′(m)Ẑσ(b⊕mr
2

,s)(M),

where µ(M, s) is the Rokhlin invariant, for which we used the surgery formula (2.17). Note that
modulo two it is actually independent of spin structure s. For rational homology spheres, the
relation simplifies to

NSpin
r (M, σ̃(ω, s))

=
(−1)µ(M,s)T ([ω])√
|H1(M ;Z)|

lim
q→e

2πi
r

∑
a,b∈H1(M ;Z)

e−
πir
2

ℓk(a,a)−2πiℓk(a,b)−πiω(a)Ẑσ(b,s)(M).
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5 Ẑ and Nr as decorated TQFTs

Both Ẑ and Nr are examples of topological invariants that, on the one hand, behave well under
cutting and gluing (admit surgery formulae) and, on the other hand, depend on additional data
(decoration). In this section, which is of more speculative nature, we describe how this additional
data should behave under cutting and gluing as well as its transformation under the operation
of taking the limit q → e2πi/r that conjecturally relates Ẑ and Nr invariants.

5.1 Hilbert space on a torus

In table (1.1) we omitted the comparison of Hilbert spaces HBCGP

(
T 2

)
and HGPPV

(
T 2

)
in the

two theories on a 2-torus.15 These spaces control surgery operations and deserve a separate
section. Note, in a semisimple TQFT with a finite-dimensional Hilbert space, we have

H
(
T 2

)
= K0

(
MTC

(
S1

))
.

Neither of the two theories we are trying to compare fits into this standard paradigm of the
Reshetikhin–Turaev construction, which nevertheless can be used as a good motivation. In par-
ticular, it is important that both BCGP and GPPV theories are “decorated” TQFTs, with
additional structure ω or s ∈ Spinc(M)/Z2 originating from the equivariance under TC ⊂ GC,
the maximal torus of GC = SL(2,C).

Taking into account these extra structures, the first order approximation toH
(
T 2

)
in our the-

ories is as follows. From cutting and gluing (surgery) rules, we infer that the space HGPPV

(
T 2

)
has basis |n, x⟩a where n ∈ Z, x ∈ C∗ and a is a relative spinc structure. It is often conve-
nient to replace x by a dual variable m ∈ Z, so that the Weyl group of GC = SL(2,C) maps
|n,m⟩a 7→ |−n,−m⟩a. Therefore, for each given spinc structure (= choice of background), we
have

H(a)
GPPV

(
T 2

) ∼= C
[
Λ× Λ∨

W

]
, (5.1)

where, as usual, by C[S] we denote the space of complex valued functions16 on set S. Note
that, compared to the Hilbert space HWRT

(
T 2

)
= C[Λ/(W × kΛ)], the space of states (5.1) has

two copies of the lattice, i.e., corresponds to a toroidal algebra, and has no cut-off due to the
level [20, 40]. The latter property is, of course, anticipated a priori since the invariants Ẑb(M ; q)
depend on q, generic with |q| < 1. From the Kazhdan–Lusztig correspondence and the theory
of W -algebras, it is also natural to attribute this “doubling” to a larger symmetry associated
with the action of two (quantum) groups, such that (5.1) is basically a product of root lattices
for G and its Langlands dual LG.

At a similar level of approximation, for a fixed choice of the “decoration”/equivariant param-
eter α, we have

H(α)
BCGP

(
T 2

) ∼= C[Hr], Hr := {1− r, 3− r, . . . , r − 1},

which is a direct consequence of the corresponding statement for categories C = ⊕α∈C/2ZCα [12].
It is very well known that many affine algebras and VOAs at “critical level” have large center.
The same is true about quantum groups at roots of unity. Very often, the center has a nice
geometric meaning as the space of functions on some variety (moduli space)M, and in the case

15BCGP stands for the TQFT built out of the CGP invariants by Blanchet, Costantino, Geer and Patureau [12].
16In principle, one has to impose a certain asymptotic behavior condition on the functions on the lattice. This

condition should be coherent with a certain continuity condition on the allowed functions on the dual space,
related by Fourier transform. In this work we do not specify such conditions.
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at handM = TC. Below we refine these descriptions of HBCGP

(
T 2

)
and HGPPV

(
T 2

)
by looking

at these spaces from various angles.
Before continuing with Σ = T 2, it is instructive to pause for a moment and consider simpler

cases of Σ = S2 or S2 with two points removed. In a 3d TQFT associated to C, objects in C
correspond to line operators whereas their non-trivial extensions are represented by non-trivial
junctions, i.e., local operators where two line operators meet, illustrated in Figure 3. The space
of such local operators is the space of states on Σ = S2\{p1, p2}; in particular, it is non-trivial for
BCGP theory indicating the non-semisimple nature of the TQFT. As a special case, the space
of local operators at the junction of two trivial lines is simply H

(
S2

)
, and for GPPV theory its

structure is conveniently encoded in the unreduced17 version of the Ẑ-invariant for S1 × S2:

1

2

(x; q)∞(q; q)∞
(
x−1; q

)
∞

(qtx; q)∞(qt; q)∞
(
qtx−1; q

)
∞
, (5.2)

where the refinement variable t corresponds to homological-type grading in the context of cat-
egorification. In general, in a Rozansky–Witten theory the space H

(
S2

)
= C[X] encodes the

geometry of the target space X, and the partition function on S1×S2 can be identified with the
Hilbert series of X. In the case of Ẑ theory, there is a manifest symmetry between the numer-
ator and the denominator of the above expression. It is typical for a partition function of the
cotangent bundles, X = T ∗M , where the numerator and denominator correspond to the fiber
and base, respectively. Indeed, “half” of the expression (5.2) is precisely the Hilbert series of
the affine Grassmannian, whereas the complete expression (5.2) is the Hilbert series of a model
for T ∗GrG that was used in [39].

Figure 3. A sphere with two punctures surrounding a local operator at the junction of two line operators.

Recall, that the affine Grassmannian for G = SU(2) has two connected components, with
a similar Morse cell complex. In each component, the transverse slices are labeled by a pair of
non-negative integers, m and n. In particular, the transverse slices with n = 0 form a family
of hyper-Kähler manifolds with quaternionic dimension m2 that provide a finite-dimensional
approximation to GrG. Their Hilbert series is(

qm+1; q
)
m

(qx; q)m(q; q)m
(
qx−1; q

)
m

.

In the limit m→∞, we recover GrG itself (or, more precisely, one of its connected components)
and the denominator of the formula (5.2) at t = 1.

Now, returning to Σ = T 2, let DbCoh(X) be the (bounded) derived category of coherent
sheaves on X. Then, the proposal of [39] that the GPPV TQFT can be equivalently formulated

17This is the version that includes the contribution of the Cartan component of the adjoint chiral, e.g.,
Ẑ

(unred)
0

(
S3

)
= 1

(t2q2;q)∞
for G = SU(2). The reduced version is obtained by removing this contribution, i.e.,

via multiplying by (qt; q)∞. Moreover, there is also a factor of (1; q)∞ in the numerator which requires regulariza-
tion. Sometimes it is simply removed. And, sometimes only the zero mode is removed so that (1; q)∞ is replaced
by (q; q)∞, as in (5.2).
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as the Rozansky–Witten theory with the target space T ∗GrG implies, among other things,

HGPPV

(
T 2

) ∼= K0
(
Db

C∗×TCoh(T
∗GrG)

)
, (5.3)

where GrG is the affine Grassmannian of G or, rather, the affine Grassmannian of GC to be more
precise. If the left-hand side, here is understood as the Hilbert (5.1) used in the cutting-and-
gluing (surgery) formulae [40], then (5.3) is a priori not obvious at all. We shortly demonstrate
that it is indeed the case, but also point out that producing similar arguments for other ingre-
dients of GPPV theory is necessary to establish the equivalence of different definitions, such
as the explicit integral formula for plumbed manifolds and the mathematically rigorous (but
extremely hard to compute) definition based on the Rozansky–Witten theory with the affine
Grassmannian as the target space.

Returning to the proof of (5.3), first one needs to clarify what exactly is meant by T ∗GrG
which, for general G, is a singular infinite-dimensional space. Luckily, the “space of triples” [14,
15, 63] provides the right candidate for the total space of this cotangent bundle. Let StG be the
affine Grassmannian analogue of the Steinberg variety. Then [9]

KG(O)(StG) ∼= C
[
TC × LTC

]W
and

SpecK
(
DbCoh

G(O)
StG

(T ∗GrG)
) ∼= SpecKG(O)(GrG) ∼=

TC × LTC
W

,

where O = C[[t]], F = C((t)), and GrG = G(F )/G(O). Enhancing the equivariant G(O)-action
to G(O) × U(1) action, where U(1) acts by loop rotation, corresponds to a non-commutative
deformation (quantization) of this space. Up to a two-fold cover, this is precisely the quantization
of the spaceMflat

(
GC, T

2
) ∼= TC×TC

W , thus demonstrating that the left-hand side of (5.3) given
by (5.1) indeed is equal to the right-hand side of (5.3) computed geometrically.

5.1.1 Quantization

The Hilbert space of Chern–Simons theory and its close cousins on a surface Σ can be obtained
by quantizing a suitable “phase space” M , that in many interesting examples can be realized
as a submanifold in the moduli space MH(G,Σ) ∼= Mflat(GC,Σ). For example, a “real slice”
M = Mflat(GR,Σ) that corresponds to a real form GR of GC gives the Hilbert space of “GR
Chern–Simons theory” (closely related to the Teichmüller theory [2]) whereas M =MH(G,Σ)
gives the Hilbert space of Ẑ theory (which provides a non-perturbative definition to what one
might call a “GC Chern–Simons theory”). In all of these cases, we can represent H(Σ) as
a Hom-space (= space of open strings) in the category of branes onMH(G,Σ) [46]:

H(Σ) = Hom(B′,Bcc), (5.4)

where Bcc is a rank-1 brane that carries a line bundle of curvature c1(L) = ω and B′ is supported
on M . Note, at the current stage of development, the definition of the Fukaya category does not
include coisotropic objects. However, as pointed out in [46], the space (5.4) is best computed (and
also defined!) in the derived category of coherent sheaves onMH(G,Σ). Indeed, both B′ and Bcc
are objects in DbCoh(MH(G,Σ)), which is mathematically well defined and is much easier to
work with than the Fukaya category. Then, in the case of compact G, the space (5.4) recovers18

the standard result [47, 77] of the geometric quantization [8, 54, 70], and in the complex case
of GC recovers the Hilbert space of the GPPV TQFT (5.1). For compact G, there is a large

18See [46] for details.
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body of work, that includes [4, 57, 71], showing that the action of the mapping class group is
equivalent to the one in the Reshetikhin–Turaev construction [69], whereas in the complex case
of GC the mapping class group action has been studied in detail only in genus 1 [20, 40].

In the case of BCGP invariants, we have [12, Remark 5.10]

dimHBCGP(Σ) =


r′ if g = 1,

r3g−3 if g > 1 and r is odd,
r3g−3

2g−1 if g > 1 and r is even.

Recall that r′ is r (resp. r
2) when r is odd (resp. even). The choice of a background (“decora-

tion”) that appears in Nr and Ẑ invariants is of the same type as in TC-crossed modules, thus
allowing to describe both TQFTs also in the language of TC-crossed modules.

5.1.2 A prototypical example

Consider bosonic Chern–Simons theory with gauge group U(1) and level r ∈ Z+. It has
a topological C/Z (0-form) global symmetry. On the level of the path integral, on a closed
3-manifold M , it can be coupled to a flat19 background C/Z connection

ω ∈ H1(M ;C/Z) ∼= Hom(H1(M ;Z),C/Z) ∼= Hom
(
H2(M ;Z),C/Z

)
as follows:

ZU(1)r(M,ω) =

∫
DA exp

{
ir

2π

∫
M

AdA+ 2πiω(c1)

}
, (5.5)

where c1 ∈ H2(M ;Z) is the first Chern class of the U(1) gauge connection (locally represented
by 1-form A). On the level of charge/charged operators this 0-form global symmetry can be
understood locally as follows (i.e., as in the general setting of [37]). Charged operators are 0-
dimensional. An operator with chargem ∈ Z can be understood as the puncture in the spacetime
with magnetic flux m = (2π)−1

∫
S2 F over a small 2-sphere S2 surrounding the puncture (i.e.,

monopole). A charge operator Og(Σ) corresponding to a group element g ∈ C/Z and supported
on a 2-dimensional surface Σ is simply

Og(Σ) = exp

(
ig

∫
Σ
F

)
.

Globally, turning on a non-trivial ω in (5.5) can be realized by the insertion of the charge
operator supported on a 2-chain representing the Poincaré dual of ω, with charges on simplices
given by the corresponding coefficients in C/Z. The U(1)r Chern–Simons TQFT, “enriched” by
this C/Z global symmetry, then can be described in terms of a G-crossed MTC C, for G = C/Z,
using the general formalism of [5] (cf. also [7]) as follows. In the decomposition

C =
⊕

g∈C/Z

Cg,

the component Cg has simple objects that correspond to the line operators

We(γ) = exp

(
ie

∫
γ
A

)
19Restriction of connections being flat can be interpreted as considering discrete topology on C/Z symmetry

group.
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with a complex charge e with the fixed value e mod 1 = g ∈ C/Z. For any fixed g there are
exactly r distinct simple objects, as Wr(γ) is known to be a trivial operator on the quantum
level. That is, an equivalence class of the operator is determined by the value e mod r ∈ C/rZ.
The fusion of the line operators is obviously consistent with the grading on the category.

Note that for g ̸= 0, such line operators are not the ordinary line operators. They are not
well defined by themselves, but are only allowed to live on a boundary of a surface Σ (i.e., locally
γ = ∂Σ) where a charge operator Og(Σ) is supported.

5.2 Decorated TQFTs, gradings, and Fourier transform

Here we consider some basic operations on decorated TQFTs. We propose that BCGP and
GPPV TQFTs are related by the combination of such operations (with slight modification
related to the simplifications we will impose below). Namely, for r = 2 mod 4, BCGP TQFT
can be obtained by applying “Fourier transform” followed by “r-wrapping” to GPPV TQFT.
For r = ±1 mod 4, the full transform is more involved, in particular on the level of the partition
functions there is an extra summation over TorH1(M,Z) in Conjectures 1.2 and 1.5. Note
that in this relation, at all intermediate steps r and q should be considered as independent

parameters. Only at the final step, one has to take the radial limit q → e
2πi
r (which, may lead to

some divergences in certain cases). For the purpose of a more transparent exposition, instead of
spinc-TQFTs we consider H2(·;Z)-decorated spin-TQFTs, and instead of H1(·;C/2Z)-decorated
TQFTs we consider H1(·;R/Z)-decorated TQFTs. In the rest of the section, we study general
TQFTs decorated by the structures as above and operations between them. We hope this
discussion can be useful for other applications of decorated TQFTs, beyond the scope of the
present paper.

5.2.1 Decorated TQFTs and grading of Hilbert spaces

“Decorated” TQFTs (i.e., TQFTs defined on bordisms with additional structure) in general
have induced grading on the vector spaces V (Σ) associated to codimension-1 closed manifolds Σ
(i.e., the objects of the bordism category). The general rule is that the choice of the decoration
on Σ×S1 decomposes into a choice of decoration on Σ and a choice of the parameter dual to the
grading on V (Σ). In particular, if the decoration on Σ× S1 is just a pullback of the decoration
on Σ (with respect to the projection Σ × S1 → Σ), then Z

(
Σ × S1

)
= dimV (Σ), where the

right-hand side is the total dimension (over all gradings).

3d H1(·;R/Z)-decorated TQFTs

These are functors on the version of the category of H1(·;R/Z)-decorated cobordisms considered
in [12, Sections 3.1 and 3.2] with some additional data forgotten and the group C/2Z replaced
by R/Z. The objects are closed surfaces Σ with a distinguished point on each connected compo-
nent and decorated by a class in H1(Σ, ∗;R/Z), where ∗ denotes the set of distinguished points.
The morphisms are 3-dimensional cobordisms decorated by H1(M, ∗;R/Z) where ∗ are the set
of the distinguished points on the boundary component.

The choice of the decoration on Σ× S1 is an element of

H1
(
Σ× S1;R/Z

) ∼= Hom(H1(Σ;Z),R/Z)⊕Hom(H0(Σ;Z),R/Z)
∼= H1(Σ;R/Z)⊕Hom(H0(Σ;Z),R/Z).
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So V (Σ) is naturally graded by H0(Σ) ∼= H2(Σ). The graded dimensions are given by the
following relation:∑

n∈H0(Σ;Z)

dimVn(Σ, ω)e
2πiα(n) = Z

(
Σ× S1, ω ⊕ α

)
, (5.6)

where ω ∈ H1(Σ) and α ∈ Hom(H0(Σ;Z),R/Z).
Physically, R/Z is a 0-form symmetry. There are 0-dimensional charged operators with

charges in Z and 2-dimensional charge operators labelled by R/Z, as in the example in Sec-
tion 5.1.2. Turning on α ∈ Hom(H0(Σ;Z),R/Z) ∼= H2(Σ;R/Z) above corresponds to insertion
of a charge operator along the spatial slice Σ.

3d H2(·;Z)-decorated TQFTs

The choice of the decoration on Σ× S1 is an element of

H2
(
Σ× S1;Z

) ∼= H2(Σ;Z)⊕H1(Σ;Z) ∼= H2(Σ;Z)⊕H1(Σ;Z).

So V (Σ) is naturally graded by Hom(H1(Σ;Z),R/Z) ∼= H1(Σ;R/Z). The graded dimensions
are given by the following relation:∑

ω∈H1(Σ;R/Z)

dimVω(Σ, n)e
2πiω(γ) = Z

(
Σ× S1, n⊕ γ

)
, (5.7)

where n ∈ H2(Σ;Z) and γ ∈ H1(Σ;Z). Since H1(Σ;R/Z) is in general not discrete, one has
to specify what is meant by

∑
ω. Consider the case of connected Σ (the generalization to the

disconnected case is straightforward). Let g be the genus of Σ. Then H1(Σ;R/Z) ∼= (R/Z)2g =(
S1

)2g
, but non-canonically. There is a unique homogeneous form µ(ω) ∈ Ω2g

(
H1(Σ;R/Z)

)
normalized such that

∫
µ(ω) = 1. Then∑

ω∈H1(Σ;R/Z)

. . . :=

∫
H1(Σ;R/Z)

µ(ω) . . .

It also satisfies∫
H1(Σ;R/Z)

µ(ω)e2πiω(γ) = δγ :=

{
1, γ = 0,

0, γ ̸= 0,

where γ ∈ H1(Σ;Z).
Physically, Z is a 1-form symmetry. There are 1-dimensional charged operators with charges

in R/Z and 1-dimensional charge operators labelled by Z. Turning on γ ∈ H1(Σ;Z) above
corresponds to insertion of a charge operator supported on a 1-dimensional curve in the spatial
slice Σ.

5.2.2 Fourier transform of TQFTs

In this section, we suppose we are given two TQFTs, called Z and Z ′ defined on the categories of
cobordisms decorated respectively by H2(·;Z) and by H1(·;R/Z) classes, and we suppose that
their partition functions on a closed 3-manifold Y are related by a Fourier transform:

Z ′(Y, ω) =
∑

b∈H2(Y ;Z)

e2πi
∫
Y ω∪bZ(Y, b), (5.8)
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Table 1. A quick guide to the symmetries.

BCGP GPPV

Symmetry U(1) Z
G 0-form 1-form

Charged Z U(1)
objects 0-dimensional 1-dimensional

V (Σ)
H1(Σ,U(1)) H2(Σ;Z)

decorated by

V (Σ)
H2(Σ;Z) H1(Σ,U(1))

graded by

where ω ∈ H1(Y ;C/Z). Such Fourier transform in particular appears as one of the two steps
in the linear transform relating CGP and GPPV invariants in Conjecture 1.7, with the second
step being the “r-wrapping” that will be considered later.

We then try to extend this Fourier transform to the full category of cobordisms. We first
observe that, assuming all the integrals converge, a natural candidate for the inverse transform is

Z(Y, b) =
1

|TorH1(Y ;Z)|

∫
H1(Y ;R/Z)

µ(ω)e2πi
∫
Y ω∪bZ ′(Y, ω), (5.9)

where µ(ω) is the homogeneous top degree form on H1(Y ;R/Z) ∼= TorH1(Y ;Z) × (R/Z)b1
uniquely fixed by the condition that

∫
M µ(ω) = 1 for each connected component M inside

H1(Y ;R/Z). The relation between the values of TQFT on a closed 2-manifold Σ is given by the
swap of grading with decoration

V ′n(Σ, ω) = Vω(Σ, n), (5.10)

where n ∈ H2(Σ;Z) ∼= H0(Σ;Z), ω ∈ H1(Σ;R/Z) and the vector spaces are assumed to be finite
dimensional. It is easy to see that (5.10) is consistent with (5.6), (5.7) combined with (5.8), (5.9).

In order to extend the relation between the TQFTs to cobordisms, let us define the category
of H2-decorated cobordisms as follows:

� The objects are pairs (Σ, b) with b ∈ H2(Σ,Σ\{∗};Z), where {∗} is the datum of one base
point per connected component of Σ.

� A morphism from (Σ−, b−) to (Σ+, b+) is a pair (M, b) with b ∈ H2(M,∂M \{∗};Z), where
∂M = Σ+ ⊔Σ−, {∗} = {∗−}⊔ {∗+} is the set of one basepoint per component of Σ− ⊔Σ+

and b± is the restriction of b to Σ±.

The composition of M1 : (Σ−, b−) → (Σ0, b0) and M2 : (Σ0, b0) → (Σ+, b+) is obtained by glu-
ing M1 and M2 along Σ0 and defining b on M as r(ϕ−1(b− + b+)), where {∗} = {∗+, ∗−, ∗0},

ϕ : H2(M,∂M ∪ Σ0 \ {∗})→ H2(M−, ∂M− \ {∗−, ∗0})⊕H2(M+, ∂M+ \ {∗+, ∗0})

is coming from the Mayer–Vietoris sequence and

r : H2(M,∂M ∪ Σ0 \ {∗+, ∗0, ∗−})→ H2(M,∂M \ ({∗+, ∗−}))

is the restriction map induced by the long exact sequence of the triple

(M, (∂M ∪ Σ0) \ {∗0, ∗+, ∗−}, ∂M \ {∗+, ∗−}).
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We shall now show that V (Σ, b) is endowed by a H1(Σ;R/Z)-grading as follows. First of all
remark that

H2(Σ× [0, 1], (Σ \ {∗})× {0, 1};Z) ∼= H1(Σ, {∗};Z)⊕H2(Σ,Σ \ {∗};Z),

where the injection δ : H1(Σ;Z) ∼= H1(Σ, {∗};Z)→ H2(Σ× [0, 1], (Σ\{∗})×{0, 1};Z) is induced
by the exact sequence of the triple (Σ×[0, 1], (Σ\{∗})×{0, 1}, (Σ\{∗})×{0})); and the generators
H2(Σ,Σ \ {∗};Z) = Zπ0(Σ) are the Poincaré duals of the arcs {p} × [0, 1] for p ∈ {∗}.

Given ω ∈ H1(Σ;R/Z), the ω-homogeneous subspace of Z(Σ, b) is defined as follows:

V (Σ, b)ω : =
{
x ∈ V (Σ, b) | ∀c ∈ H1(Σ;Z) Z(Σ× [0, 1], b+ δ(c))(x) = exp(−2πiω(c))x

}
(remark that the restriction of b+ δ(c) to Σ× {0} is b).

Now observe that there is a well defined map∫
M
: H1(M, {∗};R/Z)⊗H2(M,∂M \ {∗};Z)→ R/Z

defined equivalently as
∫
M ω⊗ b := ⟨ω ∪ b, [M ]⟩ = ω(PD(b)), where [M ] ∈ H3(M,∂M ;Z) is the

fundamental class and PD is Poincaré duality.

Considering all the morphisms M : (Σ−, b−) → (Σ+, b+) for which the underlying manifold
is M we define their Fourier transform for any ω ∈ H1(M, {∗};R/Z) as

Z ′(M,ω)b− :=
∑

b∈H2(M,∂M\{∗};Z)/δ(H1(Σ−;Z))
b|Σ−=b−

exp

(
2πi

∫
M

ω ∪ b

)
Zω(M, b),

where

(i) Zω(M, b) : Vω−(Σ−, b−) → Vω+(Σ+, b+) is the restriction of Z(M, b) to the degree ω± =
ω|Σ± vector subspaces and we use the identification Vω±(Σ±, b±) = V ′b±(Σ±, ω±) to inter-

pret it as a map V ′b−(Σ−, ω−)→ V ′b+(Σ+, ω+);

(ii) δ : H1(Σ−;Z) → H2(M,∂M \ {∗};Z) is induced as above by the exact sequence of the
triple (M,∂M \ {∗},Σ− \ {∗−});

(iii) the sum is over all the representatives of classes b restricting to b− on Σ− and the choice
of a representative is irrelevant because we have:

exp

(
2πi

∫
M

ω ∪ (b+ δ(c))

)
Zω(M, b+ δ(c))

= exp

(
2πi

∫
M

ω ∪ b+ ω ∪ δ(c)

)
Zω(M, b) ◦ Zω(Σ− × [0, 1], b− + δ(c))

= exp

(
2πi

∫
M

ω ∪ b

)
exp(2πiω(c))Zω(M, b) exp(−2πiω(c))

= exp

(
2πi

∫
M

ω ∪ b

)
Zω(M, b),

where in the second equality we used the definition of the grading on V (Σ, b).

Of course, in the above formula we assume that the sum is convergent. So given a cobordism
M : Σ− → Σ+ and ω ∈ H1(M, {∗};R/Z) we will from now on say that Z ′(M,ω) exists if it
exists for all b− ∈ H2(Σ−,Σ− \ {∗−};Z).
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Proposition 5.1. Suppose that M− : Σ− → Σ0 and M+ : Σ0 → Σ+ are two cobordisms and let
M = M+ ◦M−. Let ω± ∈ H1(M±, {∗0, ∗±};R/Z) and ω ∈ H1(M, {∗+, ∗−};R/Z) be defined as
res(ω′), where ω′ ∈ H1(M, {∗−, ∗+, ∗0};R/Z) restricts to both ω±, and

res : H1(M, {∗−, ∗+, ∗0};R/Z)→ H1(M, {∗−, ∗+};R/Z)

is the restriction map. If Z ′(M±, ω±) exist, then also Z ′(M,ω) exists and it holds

Z ′(M,ω) = Z ′(M+, ω+) ◦ Z ′(M−, ω−).

Proof. Let b ∈ H2(M,Σ− \ {∗−} ∪ Σ+ \ {∗+};Z). By the exact sequence of the triple

(M,Σ− ⊔ Σ0 ⊔ Σ+ \ {∗−, ∗0, ∗+},Σ− ⊔ Σ+ \ {∗−, ∗+}),

we have a surjective map

π : H2(M,Σ− ⊔ Σ0 ⊔ Σ+ \ {∗−, ∗0, ∗+};Z)→ H2(M,Σ− ⊔ Σ+ \ {∗−, ∗+};Z)

so that π−1(b) is well defined up to elements of the form δ(c) for some c ∈ H1(Σ0 \ {∗0});R/Z)
where δ is induced by the same exact sequence. So if b′ ∈ π−1(b) then there are well-defined
restrictions res±(b

′) ∈ H2(M±,Σ± \ {∗±} ⊔ Σ0 \ {∗0};Z). Furthermore, one can check that the
restrictions to H2(Σ0,Σ0 \ {∗0};Z) of res+(b

′) and of res−(b
′) coincide and depend only on b

(not on the choice of b′). Let us then denote this common restriction b0 ∈ H2(Σ0,Σ0 \ {∗0};Z).
We have then

Z ′(M,ω)b− =
∑

b∈H2(M,Σ−\{∗−}∪Σ+\{∗+};Z)
δ(H1(Σ−\{∗−};Z))
res−(b)=b−

exp

(
2iπ

∫
M

ω ∪ b

)
Z(M, b)

=
∑

b′∈H2(M,Σ−\{∗−}∪Σ0\{∗0}∪Σ+\{∗+};Z)
δ(H1(Σ0\{∗0}⊔Σ−\{∗−};Z))

res−(π(b′))=b−

exp

(
2iπ

∫
M

ω ∪ π(b′)

)
Z(M,π(b′))

=
∑

exp

(
2iπ

∫
M−

ω− ∪ b′− +

∫
M+

ω+ ∪ b′+

)
Z(M, b′+)Z(M, b′−),

where the last sum ranges over

b′− ∈ H2(M−,Σ− \ {∗−} ∪ Σ0 \ {∗0};Z)/δ
(
H1(Σ− \ {∗−};Z)

)
such that res−(π(b

′
−)) = b− and over

b′+ ∈ H2(M+,Σ+ \ {∗+} ∪ Σ0 \ {∗0};Z)/δ
(
H1(Σ0 \ {∗0};Z)

)
such that res0(π(b

′
+)) = res0(π(b

′
−)) (and where we let b′± be the restriction of b′ to (M±,Σ±⊔Σ0\

{∗±, ∗0}). The last equality uses the Mayer–Vietoris sequence for the pairs (M,Σ+,−,0\{∗+,−,0})
and (M,Σ±,0 \ {∗±,0}) and the fact that Z is functorial. ■

5.2.3 “r-wrapping” of H1(·;R/Z)

The other operation which we will need to upgrade the relation (3.14) to TQFTs is the operation
that takes an H1(·;R/Z)-TQFT Z and produces another H1(·;R/Z)-TQFT Z ′. For closed
connected manifolds, we have (assume r = 2 mod 4):

Z ′(M,ω) =
r−(b0+b1)/2√
|TorH1(M ;Z)|
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×
∫
H1(M ;R/Z)

µ(α)e−
πir
2

qs(α′)−2πiℓk(α′,ω′)rb1δ(rα′′ − ω′′)Z(M,α), (5.11)

where we choose an explicit splitting

ω = ω′ ⊕ ω′′, α = α′ ⊕ α′′ ∈ H1(M ;R/Z) ∼= TorH1(M ;R/Z)⊕ (R/Z)b1 (5.12)

as in Section 3.5.
Applying the formula (5.11) to M = Σ× S1, where Σ is a closed connected oriented genus g

surface, we get the following relation between the dimensions of the corresponding graded vector
spaces:

dimV ′n(Σ, ω) = r−g
∑

m∈(Z/rZ)2g
dimVrn

(
Σ,

ω +m

r

)
,

where n ∈ Z, ω ∈ H1(Σ;R/Z) ∼= (R/Z)2g.
This formula suggests the following generalisation to TQFTs. Assume that after a choice of

a symplectic basis in H1(Σ;Z) (that splits the generators into g A-cycles and g B-cycles) and
the corresponding splitting ω = ωA ⊕ ωB (ωA,B ∈ (R/Z)g), one can identify Vn(Σ, ωA ⊕ ωB)
for a fixed ωA and all possible ωB. That is one can explicitly drop the dependence on ωB:
Vn(Σ, ωA) := Vn(Σ, ωA ⊕ ωB). Then the same is true for V ′n(Σ, ωA ⊕ ωB), and we have

V ′n(Σ, ωA) =
⊕

s∈(Z/rZ)g
Vrn

(
Σ,

ωA + s

r

)
,

where (Z/rZ)g ⊂ (R/Z)g is identified with the subgroup of holonomies of order r along the
A-cycles.

This is consistent with the conjectural relation between the CGP and Ẑ invariants of knots
(which are valued in the corresponding vector spaces above for Σ = T 2).

The extension of the relation (5.11) to general bordisms turns out to be subtle and technically
complicated. One of the reasons is that one requires to choose a splitting of H1(M ;R/Z)
in (5.12), which is not a natural structure on manifolds and there are various ways one can
extend it to the manifolds with boundary. We will not address this issue in this work.

6 Relation to WRT invariants

In the previous sections, we focused on the relations between Ẑ and Nr. But there are also
relations between and Ẑ and WRT invariants and between Nr and WRT invariants (possibly
in their cohomology-refined versions). In this section, we compare this triangle of relations and
show that they are compatible with each other.

6.1 Compatibility of the relations between N0
r, WRTr, and Ẑ

Let M be a rational homology sphere. Consider

ZSO(3)
a (M) :=

∑
s∈Spinc(M)

S
SO(3)
a,s Ẑs(M), a ∈ H1(M ;Z),

where

S
SO(3)
a,σ(b,s) :=

1

|H1(M ;Z)|


∑

f e
2πi(− r−1

4
ℓk(a,a)+ℓk(a,f−b)+ℓk(f,f)− 1

4
µ(M,s)) if r = 1 mod 4,√

|H1(M ;Z)|e−
πir
2

qs(a)−2πiℓk(a,b) if r = 2 mod 4,∑
f e

2πi(− r+1
4

ℓk(a,a)−ℓk(a,f+b)−ℓk(f,f)− 1
4
µ(M,s)) if r = 3 mod 4.
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We have introduced SO(3) subscript in order to explicitly distinguish Z
SO(3)
a (M) from Za(M)

that appeared in [41, 43, 44]. The latter naturally appear in the decomposition of the standard
WRT invariant (corresponding to SU(2) Chern–Simons gauge theory), while the former, as we
will see below, appear naturally in the decomposition of its mod-2-cohomology refined version,
which can be understood as SO(3) version of Chern–Simons gauge theory. In physical terms,
the refinement parameter ω ∈ H1(M,Z/2Z) appears in the action term π

∫
M ω ∪ w2 where

w2 ∈ H2(M,Z/2Z) is the second Stiefel–Whitney class of the SO(3) gauge bundle.
Conjecture 1.2 can be written as follows (for any r ̸= 0 mod 4):

Nr(M,ω) = (−1)rT (M, [ω])
∑

a∈H1(M ;Z)

e−πiω(a)ZSO(3)
a (M)

∣∣∣
q=e

2πi
r

(6.1)

for ω ∈ H1(M ;C/2Z) \ H1(M ;Z/2Z). Similarly, for the H1(M ;Z/2Z)-refined WRT invariant
of [25] it is conjectured (see Appendix B for details):

WRTr(M,ω) =
1

i
√
8r

∑
a∈H1(M ;Z)

e−πiω(a)ZSO(3)
a (M)

∣∣∣
q=e

2πi
r

(6.2)

for ω ∈ H1(M ;Z/2Z).
Given ω ∈ H1(M ;C/2Z), as shown in [24], a normalized invariantN0

r (M,ω) can be defined by

N0
r(M,ω) :=

Nr(M#M ′, ω ⊕ ω′)

Nr(M ′, ω′)
(6.3)

for any M ′ and ω′ ∈ H1(M ′;C/2Z) such that both denominator and numerator in the right-
hand side are well defined and moreover the denominator is non-zero. For ω /∈ H1(M ;Z/2Z),
we have

N0
r(M,ω) = 0.

And for ω ∈ H1(M ;Z/2Z), the conjecture of [25] in this paper’s normalisation (theorem for
knot surgeries) is that20

N0
r(M,ω) = D · |H1(M ;Z)|WRTr(M,ω). (6.4)

The statement of the above conjecture follows from [28, Theorem 1.4] and [18, Theorem 1] at
least for r odd and for ω = 0.

Let us check that (6.4) is consistent with our conjectures (6.1) and (6.2). Plugging (6.1) into
the definition (6.3) we have

N0
r(M,ω) =

T (M#M ′, [ω]⊕ [ω′])

T (M ′, [ω′])
·

∑
a∈H1(M ;Z)
a′∈H1(M ′;Z)

e−πiω(a)−πiω
′(a′)Z

SO(3)
a⊕a′ (M#M ′)∑

a′∈H1(M ′;Z) e
−πiω′(a′)Z

SO(3)
a′ (M ′)

∣∣∣∣∣
q=e

2πi
r

.

Assume that b1(M
′) > 0 and ω′ is a generic element of H1(M ;C/2Z). Then (see, e.g., [74])

T (M#M ′, [ω]⊕ [ω′])

T (M ′, [ω′])
= |H1(M ;Z)|.

Taking a limit (possible since b1(M
′) > 0) where ω′ tends to an element of H1(M ;Z/2Z) (e.g.,

zero) and using (6.2), we then have

N0
r(M,ω) = |H1(M ;Z)|WRTr(M#M ′, ω ⊕ ω′)

WRTr(M ′, ω′)
.

Using WRTr(M#M ′, ω⊕ω′) = D ·WRTr(M,ω)WRTr(M
′, ω′), we then indeed arrive at (6.4).

20For b1 > 0, it is assumed that |H1(M ;Z)| = 0.
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6.2 0-surgeries on twist knots

0-surgeries on knots, M = S3
0(K), all have H1(M) = Z. In such cases, the relation to the

standard (not refined) WRT invariants is expected to be especially simple [20]:

WRTr(S
3
0(K)) = − 1

2D2

[
Ẑ

(+)
0 + Ẑ

(−)
0

]∣∣
q→e2πi/r .

This relation was explicitly verified in [20] for many twist knots and torus knots, and is expected
to hold more generally. Here,

Ẑ
(+)
0

(
S3
0(K)

)
= Resx=0

x1/2 − x−1/2

x
FK(x, q) =

1

2
fK
1 (q)

is Ẑ-invariant in the trivial spinc structure. For twist knots, we also have

Ẑ
(−)
0

(
S3
0(K)

)
= Resx=x0

x1/2 − x−1/2

x
FK(x, q),

where x0 is the root of the Alexander polynomial with Re(x0) > 0. (Recall, that for a twist knot
the Alexander polynomial has degree 2, so that the corresponding residues differ by a sign.)
Therefore, we can write

WRTr

(
S3
0(K)

)
= − 1

2D2
lim

q→e2πi/r

∮
C

dx

2πix

x1/2 − x−1/2

x
FK(x, q)

where the contour C goes around x = 0 and x0. It has been checked in [20] that this procedure
indeed recovers the correct WRT invariants of M = S3

0(K) for many twists knots K.
This way of recovering WRTr

(
S3
0(K)

)
is a priori different from the strategy used earlier in

this paper, where the CGP and WRT invariants of S3
0(K) are obtained from FK(x, q) by first

specializing FK(x, q) to a root of unity q = e2πi/r and then summing over colors / decorations x
as in a typical surgery formula. Roughly speaking, this approach – based on the relation (3.21)
to ADOr invariants – exchanges the order of operations, so that the limit q → e2πi/r comes
first. It is instructive to verify that these two methods are compatible and, therefore, form
a consistent network of proposed relations. Namely, repeating the arguments of Appendix B for
the 0-surgeries on knots, we expect the following relation:

WRTr

(
S3
0(K)

)
= − 1

2D2
lim

q→e2πi/r

∑
n∈Z

Ẑnk, (6.5)

where, as in earlier sections, by Ẑn we denote the invariant Ẑs(S
3(K)) associated to the spinc

structure encoded by the integer 2n on the knot (see Section 2.2). Alternatively, according
to (3.21),

WRTr

(
S3
0(K)

)
= − 1

4D2

r−1∑
n=0

(
ξn − ξ−n

)2
ADOr

(
ξ2n−2;K

)
,

where we used ∆K(1) = 1. Comparing the right-hand sides of the above two formulae we can
eliminate WRTr

(
S3
0(K)

)
from these relations. Similar considerations apply to the invariants

Nr

(
S3
0(K), ω

)
; the only difference is that there is still x-dependence in all of the expressions,

and, as explained in Section 3.7, we obtain

lim
q→e2πi/r

∑
n∈Z

Ẑnrx
nr =

r−1∑
n=0

ADOr

(
xξ2n−2;K

)
2∆K(xr)

·
(
ξnx1/2 − ξ−nx−1/2

)2
. (6.6)
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Since ADOr(x;K) is a polynomial in x, the right-hand side is expected to be a rational function
in x. Let us illustrate how this works for the figure-8 knot. In the conventions (3.30), for the
figure-8 knot we have f1 = 1, f3 = 2, f5 = q−1+3+ q, and so on. From (3.31), we get Ẑ0 = −2,
Ẑ1 = −1, Ẑ2 = −q−1− 1− q, etc. For example, for r = 2 and any knot K, with our conventions
we have ADO2(x;K) = ∆K(x) and the right-hand side of the above relation becomes(

x− 2 + x−1
)
·∆K(−x) +

(
−x− 2− x−1

)
·∆K(x)

2∆K

(
x2

) . (6.7)

For example, for the figure-8 knot, ∆41(x) = −x−1 + 3− x, and we get

−x2 − 4 + x−2

x2 − 3 + x−2
= −1 + x2 + 3x4 + 8x6 + 21x8 + 55x10 + 144x12 + 377x14 + 987x16 + · · · .

The coefficients of this expansion perfectly match Ẑn

∣∣
q→−1 for even values of n.21 Note, that (6.6)

can be viewed as a close cousin of the Conjecture 1.1, obtained from it by multiplying with
x

1
2 − x−

1
2 , replacing x by ξ2jx, and then summing over j = 0, . . . , r − 1. This again verifies the

consistency of various proposed relations.
In order to perform a similar computation for other values of r, it may be convenient, building

on [33, 55], to express Ẑn(q) in the quiver form,

Ẑn(q) = 2f̃n−1(q)− f̃n−2(q)− f̃n(q), n > 1,

where, for the figure-8 knot,

f̃n(q) =
∑

n1+···+n6=n

(
−q1/2

)n4+n5+n6q(n2+n5)(n6−n1)+
1
2
(n2

4+n2
5+n2

6)
6∏

i=1

1

(q; q)ni

.

Curiously, much like fm(q), the coefficients f̃n(q) are all Laurent polynomials in q with integer
coefficients.

Now, once we managed to write the right-hand side of (6.5) with the regularization param-
eter x as a rational function, it is straightforward to set x = 1 and obtain the WRT invariant.
For example, for any knot K we have

WRT2

(
S3
0(K)

)
= 1.

This is indeed what we expect from the surgery formula for

WRTr

(
S3
0(K)

)
= D−2

r−1∑
n=1

(−1)n+1[n]Jn−1(q)
∣∣∣
q=e

2πi
r
.

6.3 From CGP to WRT via Ẑ for 0-surgeries on knots

Consider the general surgery formula (2.33) for Ẑ in the case of 0-surgery on a knot K. We have
V = b1 = 1, ε′′ = 1, σ = 0, B = 0 and

Ẑσ(b′′,s) = qb
′′
F2b′′ , (6.8)

where b′′ ∈ Z ∼= H1

(
S3
0(K);Z

)
runs over integers and F2b′′ are the coefficients of the following

formal power series:

F (x, q) := FK

(
x2, q

)(
x− x−1

)
=

∑
ℓ

Fℓx
ℓ.

For knots only even powers actually appear in the series F (x, q) (not to be confused with
FK(x, q)).

21Turning this around, we can say that
(
x1/2−x−1/2

)
FK(x, q) restricted to even powers of x is a q-deformation

of the rational function (6.7) determined by the Alexander polynomial.
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6.3.1 Odd level r

As before, denote µ := ω(m) ∈ C/2Z, where m is the class of the meridian of the know in
H1

(
S3
0(K);Z

)
. The formula (3.15) in the case of a 0-surgery on K then reads

Nr

(
S3
0(K), ω

)
= r

∆
(
e2πiµ

)(
eπiµ − e−πiµ

)2 ∑
m∈Z

e2πiµmẐσ(rm,s)

∣∣∣
q→e

2πi
r
.

Plugging in (6.8) and using ∆(1) = 1, we then have

lim
µ→0

[rµ]2Nr

(
S3
0(K), ω

)
= lim

µ→1
[rµ]2Nr

(
S3
0(K), ω

)
= −D2

2

∑
m∈Z

F2mr

∣∣∣
q→e

2πi
r
. (6.9)

On the other hand, for WRT invariant we have

WRTr

(
S3
0(K)

)
= D−2

r−1∑
n=1

(−1)n+1Jn−1(q)[n] = −
1

2r

∑
n∈Zr

F
(
qn/2, q

)
|
q→e

2πi
r

= − 1

2r

∑
n∈Zr
b′′∈Z

e
2πinb′′

r F2b′′

∣∣∣
q→e

2πi
r

= −1

2

∑
m∈Z

F2mr

∣∣∣
q→e

2πi
r
. (6.10)

Combining (6.9) and (6.10) we get

lim
µ→0

[rµ]2Nr

(
S3
0(K), ω

)
= lim

µ→1
[rµ]2Nr

(
S3
0(K), ω

)
= D2WRTr

(
S3
0(K)

)
,

which is in agreement with Theorem 2.12.

6.3.2 Even level r

The formula (3.14) in the case of a 0-surgery on K then reads

Nr(M,ω) = r
∆K

(
e2πiµ

)(
eπiµ − e−πiµ

)2 ∑
m

eπiµmẐσ( rm
2

,s)

∣∣∣
q→e

2πi
r
.

Plugging in (6.8) we then have

lim
µ→0

[rµ]2Nr

(
S3
0(K), ω

)
= −D2

2

∑
m∈Z

(−1)mFmr

∣∣∣
q→e

2πi
r
, (6.11)

and

lim
µ→1

[rµ]2Nr

(
S3
0(K), ω

)
= −D2

2

∑
m∈Z

Fmr

∣∣∣
q→e

2πi
r
. (6.12)

On the other hand, for r = 2 mod 4 one can consider WRT invariant refined by an element
γ ∈ H1

(
S3
0(K);Z2

) ∼= Z2 [50]. Let c = γ(m) ∈ Z2. We have

WRTr(S
3
0(K), γ)

= D−2
r−1∑
n=0

n=c+1 mod 2

(−1)n+1Jn−1(q)[n] = D−2
∑

n∈2Zr/2+c+1

F
(
qn/2

)∣∣∣
q→e

2πi
r
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= − 1

2r

∑
a∈Zr/2

b′′∈Z

e
2πi(2a+c+1)b′′

r F2b′′

∣∣∣
q→e

2πi
r

= −1

4

∑
m∈Z

(−1)m(c+1)Fmr

∣∣∣
q→e

2πi
r
. (6.13)

Combining (6.11), (6.12) and (6.13), we get

lim
µ→c

[rµ]2Nr

(
S3
0(K), ω

)
= 2D2WRTr

(
S3
0(K), γ

)
, c = 0, 1,

which is again consistent with Theorem 2.12.

A Spin and spinc sign-refined torsion

The Reidemeister torsion has an intrinsic sign ambiguity. As was shown by Turaev, it is possible
to fix it by choosing an Euler structure [72]. In the case of 3-manifolds, such choice is equivalent
to a choice of a spinc structure [73]. Consider a 3-manifold M = S3(L) obtained by a surgery
on a framed link L ∈ S3. As before, let Vert be the set of components of the link and BIJ ,
I, J ∈ Vert its linking matrix. Denote by σK(M) ∈ Spinc a spinc structure that corresponds to
a characteristic vector K ∈ ZVert/2BZVert, KI = BII mod 2, as in (2.18). Let a ∈ H1(M ;C/Z)
and αI := a(mI) ∈ C/Z. They satisfy the condition

∑
J BIJαJ = 0 mod 1. As before, denote

ε = (1, 1, . . . , 1) ∈ ZVert. The Turaev’s sign refined torsion of M = S3(L) is then given by the
following formula [74] (see also [12]):

T (M,a, σK) = (−1)b+
∏
I

1

eπiαI − e−πiαI
∇L

({
eπiαI

}
I

)
eπi(−α

TK+εTBα),

where ∇L is the Alexander–Conway function of the link L.
The above torsion relates to the invariant N2(M,ω), where ω ∈ H1(M ;C/2Z)\H1(M ;Z/2Z).

Indeed, in [24] (Theorem 6.23, taking into account the different normalisation used in the present
paper) the following was proved:

T
(
M,

ω

2
, σK

)
= (−2)1+b1(M)

(
i

4

)b1(M) iN2(M,ω)

2
i−

µTBµ
2
−KTµ,

where we used that ω
2 ∈ H1(M ;C/Z) is the well defined cohomology class the value of which on

the meridian mI is ω(mI)
2 = µI

2 and we encoded the spinc structure σK via K as above.
In particular, using the canonical map i : Spin(M) → Spinc(M) we can define an invariant

which depends only on a spin structure s as

Ts
(
M,

ω

2

)
:= T

(
M,

ω

2
, i(s)

)
.

More explicitly, if we now let s̃ ∈ ZVert be such that s̃ = s mod 2 and K =
∑

I,J∈VertBIJ s̃J then
it holds:

Ts
(
M,

ω

2

)
:= (−2)1+b1

(
i

4

)b1(M) iN2(M,ω)

2
i−

µTBµ
2
−s̃Bµ.

It is possible to define the version of the torsion depending only on spin structure (cf. [59]).
Using the map (3.11), consider

Ts(M,a) := T (M,a, σ(b, s))e2πia(b).

From the surgery formula, it is easy to see that the right-hand side depends only on spin structure
s ∈ Spin(M), but not b ∈ H1(M ;Z). Namely, using the correspondence (2.5), we have K =
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2b + Bs for σK = σ(b, s), where b ∈ ZVert/BZVert, s ∈ ZVert/2ZVert,
∑

J BIJsJ = BII mod 2.
Therefore, for M = S3(L) we have

Ts(M,a) = (−1)b+
∏
I

1

eπiαI − e−πiαI
∇L

({
eπiαI

}
I

)
eπi(ε−s)

TBα.

In particular, for a plumbed M we have

Ts(M,a) = (−1)b+
∏
I

(
eπiαI − e−πiαI

)deg(I)−2
eπi(ε−s)

TBα. (A.1)

Note that if a = ω mod H1(M ;Z/2Z), where ω ∈ H1(M ;C/2Z) the dependence on the spin
structure disappears, as Bα = Bω ∈ 2ZVert.

B H1(M ;Z/2Z)-refined WRT invariant and Ẑ

In [25], building on [10, 50] the authors define a refined Witten–Reshetikhin–Turaev invariant
WRTr(M,ω) for r ̸= 0 mod 4 that depends on a choice of ω ∈ H1(M ;Z/2Z), see Defini-
tion 2.6. In this appendix we relate this invariant to Ẑ. Let M = S3(L) be the 3-manifold
obtained by a surgery on a framed link L. We will use the same conventions as before. Let
Jn−ε(L) ∈ Z

[
q±1/4

]
be the Jones polynomial of L colored by sl2 representations of dimensions

n ∈ {1, 2, 3, . . .}Vert. Then

WRTr

(
S3(L), ω

)
=

D−b0−b1

(∆
SO(3)
+ )b+(∆

SO(3)
− )b−

∑
n∈{1,2,...,r−1}Vert

n=µ+ε mod 2

Jn−1[L]
∏

I∈Vert
(−1)nI+1 q

nI/2 − q−nI/2

q1/2 − q−1/2

∣∣∣∣
q=e

2πi
r

,

where as before µI := ωI(mI). For r = 2 mod 4, this invariant is a slight modification of the
invariant of [51] (see also [10]). For odd r, the invariant satisfies

WRTr(M, 0) = WRTSO(3)
r (M),

where WRT
SO(3)
r (M) is the SO(3) version of the WRT invariant introduced in [51].

To conjecture a relationship between WRTr(M,ω) and Ẑs(M) consider again the case of
plumbing surgery. In this case,

J [L]n−ε =
q

∑
I BII (n

2
I−1)

4

q1/2 − q−1/2

∏
I∈Vert

(−1)(nI+1)(BII+1)
(
qnI/2 − q−nI/2

)1−deg(I)
×

∏
(I,J)∈Edges

(
qnInJ/2 − q−nInJ/2

)
.

We proceed similarly to Section 3.1

WRTr(M,ω) = Ã · C̃,

Ã =
(−1)b−r−V/2ξ

3σ−TrB
2

i
√
8r

·


e

πiσ
2 if r = 1 mod 4,

2−V/2e
3πiσ
4 if r = 2 mod 4,

eπiσ if r = 3 mod 4,

C̃ =
∑
ℓ

C̃ℓFℓ, C̃ℓ =
∑

ñ∈(Z/2rZ)Vert

ñ=µ+(r−1)ε mod 2

ξℓ
T ñ+ 1

2
ñTBñ.
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We have used the following fact:

(−1)
∑

I(nI+1)BII
∣∣
n=µ+ε mod 2

= (−1)
∑

I µIBII = (−1)µTBµ = 1

since Bµ = 0 mod 2, where Fℓ are the same as in Section 3.1. Applying Gauss reciprocity we
have

C̃ℓ = ξ−
ℓT B−1ℓ

2
e

πiσ
4 (r/2)V/2

| detB|1/2
∑

ã∈ZVert/2BZVert

e−
πir
2

ãTB−1ã−πiãTB−1(ℓ+B(µ+ε))

︸ ︷︷ ︸
=:C̃′ℓ

,

C̃′ℓ =
∑

a∈ZVert/BZVert

∑
A∈ZVert/2ZVert

e−
πir
2

aTB−1a−πirAT a−πir
2

ATBA−2πiaTB−1b−πiaT (s+µ)−πiATBs.

B.1 Level r = 2 mod 4

The sum in Appendix B simplifies to

C̃′ℓ = 2V
∑

a∈ZVert/BZVert

exp

{
−πir

2
aTB−1a− 2πiaTB−1b− πiaT (s+ µ)

}
. (B.1)

Combining everything together, we then have

WRTr(M,ω) =
(−1)b+

i
√
8r| detB|1/2

ξ
3σ−TrB

2

×
∑

ℓ∈ZVert

∑
a∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2 e−
πir
2

aTB−1a−2πiaTB−1b−πiaT (s+µ).

We can then conjecture the following general relation for a rational homology M and r = 2
mod 4:

WRTr(M,ω) =
1

i
√
8r|H1(M ;Z)|

∑
a,b∈H1(M ;Z)

e−
πir
2

qs(a)−2πiℓk(a,b)−πiω(a)Ẑσ(b,s)

∣∣∣
q→e

2πi
r
.

B.2 Level r = 1 mod 4

Applying a version of the Gauss reciprocity formula to the sum over A in Appendix B, we can
rewrite it as follows:

C̃′ℓ =
e−

πiσ
4 2V/2

| detB|1/2
∑

a,f∈ZVert/BZVert

exp

{
−πi(r − 1)

2
aTB−1a− 2πiaTB−1b− πiaTµ

+ 2πifTB−1f + 2πifTB−1a+
πi

2
sTBs

}
.

Combining everything together, we have

WRTr(M,ω) =
(−1)b+

i
√
8r| detB|

e
πi
2
(sTBs−σ)ξ

3σ−TrB
2

∑
ℓ∈ZVert

∑
a,f∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2

× e−
πi(r−1)

2
aTB−1a−2πiaTB−1b−πiaTµ+2πifTB−1f+2πifTB−1a.
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Taking into account (2.17), we can then conjecture the following general relation for a rational
homology M and r = 1 mod 4:

WRTr(M,ω)

=
e−

πi
2
µ(M,s)

i
√
8r|H1(M ;Z)|

∑
a,b,f∈H1(M ;Z)

e2πi(−
r−1
4

ℓk(a,a)+ℓk(a,f−b)− 1
2
ω(a)+ℓk(f,f))Ẑσ(b,s)

∣∣∣
q→e

2πi
r
.

B.3 Level r = 3 mod 4

This case is analogous to the case r = 1 mod 4 considered above. Applying a version of the
Gauss reciprocity formula to the sum over A in Appendix B, we can rewrite it as follows:

C̃′ℓ =
e

πiσ
4 2V/2

| detB|1/2
∑

a,f∈ZVert/BZVert

exp

{
−πi(r + 1)

2
aTB−1a− 2πiaTB−1b− πiaTµ

− 2πifTB−1f − 2πifTB−1a− πi

2
sTBs

}
.

Combining everything together we then have

WRTr(M,ω) =
(−1)b+

i
√
8r| detB|

e
πi
2 (σ−s

TBs)ξ
3σ−TrB

2

∑
ℓ∈ZVert

∑
a,f∈ZVert/BZVert

Fℓξ
− ℓT B−1ℓ

2

× e−
πi(r−1)

2
aTB−1a−2πiaTB−1b−πiaTµ+2πifTB−1f+2πifTB−1a.

We can then conjecture the following general relation for a rational homology M and r = 3
mod 4:

WRTr(M,ω)

=
e

πi
2
µ(M,s)

i
√
8r|H1(M ;Z)|

∑
a,b,f∈H1(M ;Z)

e2πi(−
r+1
4

ℓk(a,a)−ℓk(a,f+b)− 1
2
ω(a)−ℓk(f,f))Ẑσ(b,s)

∣∣∣
q→e

2πi
r
.

C Graded bases of the CGP TQFT

In [12], a TQFT V was built by applying the universal construction to the invariants Nr. It turns
out that the functor one gets is a symmetric monoidal one from a suitable category of decorated
cobordisms into that of graded vector spaces, endowed with the symmetry which is the flip if r
is odd and is the supersymmetric exchange if r is even.

The cobordisms considered for this construction are 3-manifolds M with boundary endowed
with cohomology classes ω ∈ H1(M, {∗};C/2Z) where {∗} is the choice of a base point per each
connected component of the boundary (besides other standard decorations). Furthermore, by
definition

Vk(Σ, ω) = V
(
(Σ, ω) ⊔

(
S2, V ⊗20 ⊗ σ⊗k

))
,

where σ is the 1-dimensional module over UH
q sl2 with weight 2r′ and V is the vector space asso-

ciated to a surface by applying directly the universal construction. Finally, one lets V(Σ, ω) =⊕
k Vk(Σ, ω) which is Z-graded, but it turns out that it is always finite dimensional. As proved

in [12] Theorem 5.9, letting

dimt(V(Σ)) =

{∑
tk dim(Vk(Σ)) if r is odd,∑
(−t)k dim(Vk(Σ)) if r is even,
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Figure 4. The link surgering on which provides Σg × S1.

then if ω ∈ H1(Σ;C/2Z) \H1(Σ;Z/2Z) then it holds

dimt−2r′ (V(Σg)) =
(r′)g

r

∑
k∈Hr

(
tr − t−r

tξk − t−1ξ−k

)2g−2
.

In particular, the ungraded dimension for g ≥ 2 is r3g−3 if r is odd and r3g−3

2g−1 if r is even.

Remark C.1. The value of the Verlinde formula coincides with the value of the invariant Zr

which is NOT equal to Nr:

Zr =

(
(−1)r−1√

r′

)b0((−1)r−1
√
r′

r

)b1

Nr.

Example C.2. If g = 3 the graded dimensions of dimt−2r′ V(Σ) are

r = 2: dimt−2r′ V(Σ) = t4 − 4t2 + 6− 4t−2 + t−4,

r = 3: dimt−2r′ V(Σ) = 108t6 + 513 + 108t−6,

r = 4: dimt−2r′ V(Σ) = −8t12 + 80t8 − 248t4 + 352− 248t−4 + 80t8 − 8t−12.

Example C.3. The above Verlinde formula applies only when (Σ, ω) is admissible. For instance,
when Σ = S2 this is not the case and indeed the invariant is not a Laurent polynomial:

Nr

(
S2 × S1, β

)
=

∑
k∈Hr

(
qβ+k − q−β−k

)2(
qrβ − q−rβ

)2 =
2r(

qrβ − q−rβ
)2 ,

where β ∈ H1
(
S2×S1;C/2Z

)
is a cohomology class the value of which on {pt}×S1 is β ∈ C/2Z.

Example C.4. A special case is when r = 2. In this case, if (Σ, ω) is admissible one gets

dimt−2 V(Σ) =
(
t− t−1

)2g−2
i2−2g.

Then applying [12, Proposition 6.22], one recovers the Conway polynomial of the link in Figure 4:

∇L =
(
qα0 − q−α0

)2g−1 2g∏
i=1

(
qαi − q−αi

)
,

where α0 is the color of the main strand and αi are the colors of the remaining 2g ones.

The definition of the Z-grading of V(Σ, ω) can be given in a more intrinsic way as follows.
Let Y be a three-manifold obtained by taking the complement of an open ball in a three-
dimensional handlebody, so that ∂Y = Σ ⊔ S2. As detailed in [12], V(Σ, ω) is Z-graded with
the grading being induced by the action of H0(Σ) as follows: if ϕ ∈ H0(Σ;C/2Z) we can map
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it to a cohomology class in H0({∗};C/2Z) (where {∗} is set formed by base point on Σ and one
on S2) by extending it to 0 on S2; then let δ(ϕ) ∈ H1(Y, {∗};C/2Z) be the cohomology class
induced by the exact sequence of the pair (Y, {∗}). Observe that its restriction to (∂Y \ {∗})
is the zero cohomology class so that if W ∈ H1(Y, {∗};C/2Z) is a class the restriction of which
to H1(Σ, {∗};C/2Z) is ω then also W + δ(ϕ) is. We say that a vector [Y,W ] ∈ V(Σ, ω) is of
degree k if for each ϕ ∈ H0(Σ;C/2Z) we have [Y, ω + δϕ] = [Y, ω]q2r

′kϕ. It turns out that only
some integer values of k are possible.

For generic ω, a basis of V0(Σg, ω) is obtained as follows. Let Γ be an oriented trivalent
graph the thickening of which is a handlebody Hg of genus g the boundary of which is identified
with Σ. An edge e of Γ is colored by α(e) := ω(me) ∈ C/2Z where me is the oriented meridian
of the edge. Then consider a lift α : Edges(Γ)→ C of α such that (∂α)(v) ∈ Hr for every vertex
v ∈ Γ. Furthermore, restrict to those α such that the real part of α(e) is between [0, 2r[ for
a fixed arbitrary edge e. Such a set is a basis of V0(Σg, ω).

D Commutativity of limits

In this section, we show that the assumption (i) of the Theorem 4.18 is satisfied for a certain
subclass of plumbing links. We will need the following proposition, which is slight generalization
of a corollary to a proposition in [58].22

Proposition D.1. Let C : Z→ C be a function with a period M ∈ Z+ and mean value 0. Then

(i) lim
ϵ→0+

∑
n≥1

C(n)e−ϵ(n+γ) = −
M∑
n=1

n

M
C(n),

(ii) lim
ϵ→0+

∑
n≥1

C(n)e−ϵ(n
2+2αn+β) = −

M∑
n=1

n

M
C(n) for any α, β and γ.

Proof. Can be given for example using Euler–Maclaren asymptotic summation formula:

∑
n≥0

f(n) =

∫ ∞
0

f(x) dx−
∑
r≥1

B−r
r!

f (r−1)(0).

Only the integral part and the term r = 1 in the sum will contribute to constant and possibly
singular terms of the expansion in ϵ. The singular terms and the constant terms depending
on α, β and γ will cancel out due to the zero mean value condition. ■

Consider a plumbing tree with vertex I = 0 of valency 3, three vertices of valency one
(I = 1, 2, 3) and possibly other vertices of valency two. We then have

FL

(
x2; q

)∏
I

(
xI − x−1I

)
=

(
x1 − x−11

)(
x2 − x−12

)(
x3 − x−13

)∑
n≥1

(
x2n−10 − x−2n+1

0

)
. (D.1)

In the case detB ̸= 0 (i.e., b1 = 0), after t-regularization and the Laplace transform the sum
over n above will take the following form (up to a finite number of terms, which do not affect
the issue of commutativity of the limits):

LωFL

(
x2; q

)∏
I

(
xI − x−1I

)
=

∑
n≥1

∑
α,β,γ

Cα,β,γ(n)q
−B−1

00
4

(n2+2αn+β)t2n+γ , (D.2)

22The proposition in [58] considers a slightly less general regularization.
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where the sum over α, β and γ is over a finite set of rational numbers and Cα,β,γ(n) are periodic
in n. For the sum to give a well-defined element in C

((
q1/p

))
, we require B−100 < 0. The zero

mean value condition is satisfied because of the alternating signs in the expansion of (D.1).
We then have

lim
q→e

2πi
r

lim
t→1

LωFL

(
x2; q

)∏
I

(
xI − x−1I

)
= lim

ϵ→0+

∑
n≥1

∑
α,β,γ

C̃α,β,γ(n)e
−ϵ(n2+2αn+β)

and

lim
t→1

lim
q→e

2πi
r

LωFL

(
x2; q

)∏
I

(
xI − x−1I

)
= lim

ϵ→0+

∑
n≥1

∑
α,β,γ

C̃α,β,γ(n)e
−ϵ(n+γ),

where

C̃α,β,γ(n) := Cα,β,γ(n)e
−2πiB−1

00
4r

(n2+2αn+β)

are also periodic (generally with a larger period). Using the Proposition D.1, we can then check
commutativity of the limits.

The analysis can be extended to the case b1 > 0. This in particular covers the case of 0-
surgeries on torus knots, which can be related to the plumbings of this type by Kirby moves.
The main modification is that in (D.2) one has to replace B−100 with

∑V−b1
i,j=1 Ui0Uj0(B

′)−1ij (see
Section 2.6 for the notation), which is again required to be negative in order for Lω operation
to be well-defined.
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