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Abstract. One can build an operatorial model for freeness by considering either the right-
handed or the left-handed representation of algebras of operators acting on the free product
of the underlying pointed Hilbert spaces. Considering both at the same time, that is,
computing distributions of operators in the algebra generated by the left- and right-handed
representations, led Voiculescu in 2013 to define and study bifreeness and, in the sequel,
triggered the development of an extension of noncommutative probability now frequently
referred to as multi-faced (two-faced in the example given above). Many examples of two-
faced independences emerged these past years. Of great interest to us are biBoolean, bifree
and type I bimonotone independences. In this paper, we extend the preLie calculus pertaining
to free, Boolean, and monotone moment-cumulant relations initiated by K. Ebrahimi-Fard
and F. Patras to their above-mentioned two-faced equivalents.
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category
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1 Introduction

1.1 Background and motivation

In [42], Voiculescu introduced an extension of free probability; a new notion of independence,
motivated by computations of joint distributions of left and right creation and annihilation op-
erators acting on the reduced free product of pointed Hilbert spaces. These operators prototype
bifree independence (introduced in [6, 42]) between pairs of random variables, in the same way
that left (or right) operators on their own prototype free independence. This operator algebraic
root of bifreeness is supplemented by a combinatorial one [6], to which the poset of noncrossing
bipartitions and Möbius inversion are central, extending the now well-developed combinatorial
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approach to freeness established by Speicher [33, 36]. Since its inception, bifreeness developed
into a theory of noncommutative probability for pairs of random variables, also called two-faced
(left is one face, right is the other) random variables, with a steadily increasing set of two-faced
independences.

Recall that Ben Ghorbal and Schürmann [4] established a set of axioms defining the concept
of independence in noncommutative probability. Muraki proved that there are only five such
independences, namely free, monotone, anti-monotone, Boolean, and tensor independence [32].
The axiomatic framework has been adapted to the two-faced (and more generally multi-faced-
multi-state) case by Manzel and Schürmann [30].

With the works of Skoufranis, Gu, Hasebe, Gerhold, Liu, [14, 19, 20, 21, 27], several more
instances of two-faced independences besides bifreeness emerged, mixing one type of indepen-
dence (free, monotone, anti-monotone, boolean, or tensor) for left-sided random variables with
another one for right-sided random variables (Gerhold, Hasebe and Ulrich in [16] and Gerhold
and Varšo in [17], see also [39], even establish continuous families of two-faced independences,
including nontrivial bi-tensor independences). For most of these independences, cumulants have
been defined by exhibiting a certain poset of bipartitions and applying the usual machinery of
Rota’s combinatorics and Möbius inversion. Note that neither does fixing the independence for
the left and the right variables alone determine the two-faced independence, nor do we know
whether mixings for all combinations of single-faced independences exist.

There are intimate relations between free, Boolean, and monotone cumulants. The work of
Ebrahimi-Fard and Patras [11] shed new light on the interrelation of those three independences
by showing that their corresponding additive convolution products originate from a certain
splitting into two compatible co-operations of a coassociative coproduct on words on random
variables. These (non-coassociative) co-operations satisfy the co-shuffle1 relations. Note that
this coproduct is familiar to deformation theorists, it is called the double bar of an algebra and
was first defined by Baues [3].

Dualization of this coproduct and its splitting yields three different possibly nonassocia-
tive products satisfying the relations constitutive of a shuffle algebra. Subordination products,
Bercovici–Pata bijection, and formulae relating the various families of cumulants can be cast
in the shuffle (and the accompanying preLie) algebraic realm, as shown by Ebrahimi-Fard and
Patras [12]. Ebrahimi-Fard, Foissy, Kock and Patras recognized later that the discussed un-
shuffle structure is the restriction of an unshuffle structure on (polynomials on) noncrossing
partitions, drawing a tight connection with the theory of operads, see [10]. The present work
takes inspiration from [10], where an extension of the perspective on the moments-cumulants
relations described in [11] to operator-valued probability is proposed: both, [10] and this work,
ultimately rely on an appropriate formalism for composing certain partitions, namely noncross-
ing partitions in [10] and noncrossing bipartitions here. In particular, we use notions originating
from higher category theory, duoidal categories namely.

Of particular interest in this article are biBoolean independence, type I bimonotone indepen-
dence, and bifree independence. In those three cases, combinatorics of the moment-cumulant
relations is guided by partitions that are noncrossing after action of a specific permutation
related to the two-faced structure.

In this work, we propose to study the compositional structure of noncrossing bipartitions, in
order to exhibit a preLie algebra connecting bifree, biBoolean and type I bimonotone indepen-
dences. This connection is similar to the single-faced case. We build a monoid and a comonoid
(but with respect to two different tensor products) supported by words on random variables
and placeholders of two types (left, right). Recall that in the single-faced setting the unshuffle
Hopf algebra is supported by words on words on random variables, which can be interpreted
as incomplete words on random variables with placeholders, in our terminology, of only one

1Shuffle algebras have been popularized by Loday [28] under the name dendriform algebras.
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type. The (full) unshuffle coproduct of this monoid splits into two half-unshuffle parts yielding
the structure of a shuffle algebra on the dual space. We reveal a similar picture as for the
single-faced setting: biBoolean moment-cumulant relations correspond to right half-shuffle ex-
ponentiation, bifree moment-cumulant relations correspond to left half-shuffle exponentiation,
and type I bimonotone to full shuffle exponentiation.

One shortcoming of the established (un)shuffle algebra approach in the single-faced case is
the failure to encompass classical moment-cumulant relations. To those corresponds another
(commutative unshuffle) Hopf algebra whose relation to the previous one is unclear. We hope
that the techniques we develop in this article will also help to shed some light in the future on
the relationship between the two aforementioned unshuffle algebras.

1.2 Outline

� In Section 2 we give a brief overview of noncommutative probability for pairs of faces. We
recall the definitions of the three posets of partitions at stake: interval, noncrossing and
monotone bipartitions.

� In Section 3 we introduce a certain category TW which we use to index bipartitions and
words on two-faced random variables in order to formalize their respective compositions.
To that end, the incidence category VectTW of TW-indexed collections of vector spaces
is equipped with a monoidal structure, the vertical composition

⊖

. Additionally, we show
thatVectTW can be equipped with a horizontal semigroupal product ⊖ satisfying a certain
exchange relation with the aforementioned monoidal structure, that we call vertical, to
make a clear distinction between the two.

� In Section 4 we arrive at the TW-indexed collection of incomplete words supporting the
algebraic structures we are interested in and we give our main result in Theorem 4.20.

� In Section 5 we compute the three exponentials (the full shuffle exponential and the two
half-shuffle exponentials), thereby recovering type I bimonotone, biBoolean, and bifree
moment-cumulant relations.

1.3 Conventions

1. We write A ⊂ B if A is a, not necessarily strict, subset of B.

2. For a positive integer n, JnK := {1, . . . , n}.

2 Combinatorics of two-faced independences

Two-faced independence is, roughly speaking, an independence relation for pairs of noncommu-
tative random variables. The axiomatization of the concept of independence in noncommutative
probability based on universal products (suitable replacements for the product measure in classi-
cal probability) has been initiated by Ben Ghorbal and Schürmann in [4]. The different indepen-
dences focused on in the article at hand – bifree, bimonotone, and biBoolean independence – are
covered by a multivariate extension of the theory of universal products, which was spelled out
explicitly by Manzel and Schürmann in [30], see also [15, Section 3]. Those three independences
can be derived from Gu and Skoufranis’ c-bifree independence [20] much like free, monotone and
boolean independence are derived from Speicher and Bożejko’s c-free independence [5]. We will
not give details on the definitions as we are only interested in the associated moment-cumulant
relations. Those have been established by Gu and Skoufranis [21] for biBoolean independence,
Gu, Skoufranis and Hasebe [19] for the bimonotone independence and Mastnak and Nica [31]
for bifree independence, by relating the independences to specific sets of bipartitions.
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2.1 Sets of bipartitions

A partition of a set X is a set π of subsets of X, called blocks of π, such that

� V ̸= ∅ for all blocks V ∈ π,

� V1 ∩ V2 = ∅ for all distinct blocks V1, V2 ∈ π,

�

⋃
V ∈π

V = X.

A partition π is uniquely determined by its associated equivalence relation ∼π on X defined
by i ∼π j, i, j ∈ X if and only if i and j are in the same block of π.

An ordered partition is a partition together with a total order on the blocks, identified as an
injective labelling of the blocks with integers in J|π|K.

From now on, we will only consider (ordered) partitions of totally ordered sets X, the order
on the base space X is fundamental to defining the following classes of partitions.

Definition 2.1. Let (X,<) be a totally ordered set.

� A partition π of X is noncrossing if for all a < b < c < d ∈ X such that a ∼π c and b ∼π d
it follows that a ∼π b, i.e., if the blocks of π do not cross when drawn as an arc diagram.

� A partition π of X is an interval partition if for all a < b < c ∈ X such that a ∼π c it
follows that a ∼π b, i.e., if all blocks of π are intervals of X.

� An ordered partition π of X is a monotone partition if it is noncrossing and for all a <
b < c ∈ X such that a ∼π c it follows that the blocks V ∋ a, c and W ∋ b fulfill V ≤ W ,
i.e., inner blocks are higher than outer blocks.

See examples in Figure 1.

Notation 2.2. The sets of all noncrossing, interval, and monotone partitions of (X,<) are
denoted by NC(X,<), I(X,<), and M(X,<), respectively (or simply NC(X), I(X), and M(X)
if there is no risk of confusion).

Figure 1. Example of (from left to right) a noncrossing partition, an interval partition and a monotone

partition.

A biset is a set X together with a map α : X → {L,R} that we call left-right structure on X.
The elements of XL := α−1(L) are called left, the elements of XR := α−1(R) are called right.
A biset (X,α) with a total order on X is called ordered biset. We depict ordered bisets by
diagrams as in Figure 2: starting from the top, we put in increasing order left elements on a left
string and right elements on a right string. Given an ordered biset, we refer to its given total
order < on X as the natural order. We define the necklace order ⋖ in the following way:

� for x, y ∈ XL, x⋖ y ⇐⇒ x < y, i.e., the order for left elements remains unchanged,

� for x, y ∈ XR, x⋖ y ⇐⇒ x > y, i.e., the order for right elements is reversed,

� for x ∈ XL and y ∈ XR, x⋖ y, i.e., all left elements are smaller than all right elements.

Notation 2.3. Given an ordered biset (X,⋖), we introduce two elements −∞⋖ and +∞⋖ and
extend the order ⋖ to X ∪ {−∞⋖,+∞⋖} by

−∞⋖ ⋖ x⋖+∞⋖, x ∈ X.
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Figure 2. The ordered biset X = {1 < 2 < 3 < 4 < 5} with left-right structure α(1) = R, α(2) = L,

α(3) = R, α(4) = R, α(5) = L and necklace order 2⋖ 5⋖ 4⋖ 3⋖ 1.

The necklace order can easily be read from the corresponding diagram. Having another
look at Figure 2, we connected the vertical strings at the bottom with a horizontal link. The
necklace order is the order in which the elements of X appear when moving along the dotted
line of Figure 2, starting from the top left.

Remark 2.4. Ordered bisets form a category BiSet with morphisms the injective set maps
which respect the natural orders and the left-right structures. As a consequence, morphisms
preserve also the necklace orders.

To emphasize the dependence of the necklace order ⋖ on the left-right structure α, we use at
times a subscript and write ⋖α.

Definition 2.5. A partition of a biset is also called bipartition. Let X be an ordered biset. An
(ordered) bipartition is called noncrossing bipartition, interval bipartition, or monotone bipar-
tition if it is a noncrossing partition, an interval partition, or a monotone partition of (X,⋖),
respectively.

The sets of all noncrossing, interval, and monotone bipartitions of X are denoted by NC(X),
I(X), and M(X) respectively.

Remark 2.6. We will almost exclusively deal with finite ordered bisets. These can be easily
described by words in {L,R}⋆. Indeed, let α = α(1) . . . α(n) ∈ {L,R}⋆ be a word (note that we
do not distinguish between a word α of length n and the corresponding map k 7→ α(k) : JnK →
{L,R}). Then JnK becomes an ordered biset with the natural order induced from N and the
left-right structures given by α. We write Xα for the ordered biset (JnK, α).

Let us say that two ordered bisets are isomorphic if there is a bijection respecting the natural
orders and the left-right structures. Then the prescription α 7→ Xα yields a bijection between
words in {L,R}⋆ and isomorphism classes of finite ordered bisets.

We will usually identify α with Xα in the following.

Notation 2.7. Given α ∈ {L,R}⋆, we use the notations NC(α), I(α), and M(α) for the associated
sets of noncrossing, interval, and monotone bipartitions. A bipartition π of a finite ordered biset
Xα will usually be denoted by the pair (π, α).

Remark 2.8. For a finite ordered biset w ∈ {L,R}⋆, Definition 2.5 of a noncrossing bipartition is
equivalent to the definition given in [6]; indeed, while they apply a permutation to the partition,
we apply the inverse permutation to the partitioned set.

2.2 Cumulants

Let us start with a brief historical account of classical and noncommutative cumulants and the
shuffle perspective on their relation to moments. As mentioned in Hald’s review article [22] on
the early history of cumulants, classical cumulants of a random variable were first introduced
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Figure 3. Example (from left to right) of a noncrossing bipartition, interval bipartition and a monotone

bipartition.

by Thorvald N. Thiele in 1889 via an inductive formula computing the coefficients in a Gram–
Charlier expansion of a density under the name of halfinvariants. Only ten years later, Thiele
recognized them as the coefficients of the logarithm of the generating function of the moments
of the random variable.

Almost a century later, Speed [35] proved a combinatorial formula for computing cumulants
in terms of the moments: they are obtained by Möbius inversion on the lattice of set-partitions of
the partitioned moments of the random variable. Around the same period of time, Voiculescu laid
the foundations of the theory of free probability by introducing the notions of free independence
and free additive convolution [40, 41].

In 1993, Speicher introduced the counterpart of Thiele’s cumulants in free probability theory,
that is, a set of multilinear functionals linearizing free independence [36]. The observation
that moments of words on free random variables that are arranged according to a noncrossing
partition factorize (but not all moments) hints at the definition for free cumulants: replace the
lattice of set-partitions by the lattice of noncrossing partitions in Speed’s combinatorial formula.

Together with the emergence of new independences (Boolean, monotone, antimonotone) came
the corresponding sets of cumulants, see [37] for the Boolean and [24] for the (anti-)monotone
case. Lehner established a very general approach to noncommutative cumulants via so-called
exchangeability systems [25]. To include the monotone case, Lehner and Hasebe generalized the
approach by weakening exchangeability to spreadability [23]. A unified framework for cumulants
with respect to universal product independences is given by Manzel and Schürmann [30]. In this
case, the moment-cumulant relations can always be expressed via a Hopf-algebraic exponential
and logarithm, see also [15]. Formulas relating different sets of noncommutative cumulants of a
random variable were proved in [2] and are still subject of great attention. Using shuffle algebras,
Ebrahimi-Fard and Patras established a single unified Hopf algebraic setting which relates free,
monotone, and boolean cumulants [11] as well as the corresponding additive convolution products
in a group-theoretic sense [12].

We quickly recall the moment-cumulant relations which determine the free cumulants κn,
the monotone cumulants Kn and the boolean cumulants Bn. (The exponential character of the
formulas is most visible in the monotone case because monotone partitions are ordered partitions.
In the other cases, the division by a factorial is hidden by the use of non-ordered partitions; there
are |π|! ordered partitions corresponding to the same partition π.) Let (A, φ) be an algebraic
probability space, i.e., A is an unital algebra over C and φ : A → C an unital linear functional.
For a tuple (a1, . . . , an) and a subset I = {i1 < · · · < ik}, we write (a1, . . . , an)↾I := (ai1 , . . . , aik).
Then κn,Kn, Bn : An → C are the unique sequences of multilinear maps such that

φ(a1 · · · an) =
∑

π∈I(n)

∏
V ∈π

B|V |((a1, . . . , an)↾V ) (MCB)

=
∑

π∈NC(n)

∏
V ∈π

κ|V |((a1, . . . , an)↾V ) (MCf)
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=
∑

π∈M(n)

1

|π|!
∏
V ∈π

K|V |((a1, . . . , an)↾V ) (MCm)

holds for all a1, . . . , an ∈ A (with the convention that the empty product is 1; note that for
n = 0 the empty partition then yields one summand 1 in all three cases).

The two-faced extensions of those moment-cumulant relations have also been established (see
[7, 19, 21, 31] for the specific cases or [30] for the general definition of cumulants with respect
to a universal product). Let (A, φ) be an algebraic probability space and fix subalgebras AL,
AR of left and right random variables (a pair of faces). For a word α = (α1, . . . , αn) ∈ {L,R}⋆
we set Aα := Aα1 × · · · ×Aαn . We also extend the restriction notation to words (which are also
tuples, just with entries from {L,R} instead of A) in an obvious way, (α1, . . . , αn)↾{i1<···<ik} :=
(αi1 , . . . , αik). Then the bifree, biBoolean and bimonotone cumulants κα,Kα, Bα : Aα → C
(α ∈ {L,R}⋆) are the unique families of multilinear maps such that

φ(a1 · · · an) =
∑

π∈I(α)

∏
V ∈π

Bα↾V ((a1, . . . , an)↾V ) [21] (MCbB)

=
∑

π∈NC(α)

∏
V ∈π

κα↾V ((a1, . . . , an)↾V ) [7, 31] (MCbf)

=
∑

π∈M(α)

1

|π|!
∏
V ∈π

Kα↾V ((a1, . . . , an)↾V ) [19] (MCIm)

holds for all (a1, . . . , an) ∈ Aα.

Remark 2.9. In the literature, the moment cumulant relations are often given for arbitrary
a1, . . . , an in some algebraic probability space (B,Φ). Given a1, . . . , an ∈ B and α ∈ {L,R}n, the
given formulas extend as follows. One can construct the algebraic probability space (A, φ) :=
(A ⊔ A,Φ ◦ µ) (µ = id ⊔ id : A ⊔ A → A the canonical homomorphism), which clearly contains
two copies of A as subalgebras, denoted AL and AR, respectively. When interpreting a1 . . . an
as an element of Aα, the given formulas apply.

BiBoolean and bifree independence of a family of two-faced random variables are characterized
by the vanishing of mixed cumulants. Concretely, two-faced random variables

(
aL1, a

R
1

)
and(

aL2, a
R
2

)
are bifree (resp. biBoolean) independent if and only if

κα
(
a
α(1)
ε(1) , . . . , a

α(n)
ε(n)

)
= 0,

(
resp. Bα

(
a
α(1)
ε(1) , . . . , a

α(n)
ε(n)

)
= 0

)
whenever ε ∈ {1, 2}n is not constant (with AL, AR the algebras generated by the aLk and aRk ,
respectively). For (bi-)monotone independence the situation is more involved because those are
nonsymmetric independences, see [30] and [23] for details on this problem.

In [11], Ebrahimi-Fard and Patras present a unified geometric approach to monotone, Boolean
and free cumulants, expressing the three moment-cumulant relations as logarithmic-exponential
correspondences on a shuffle algebra obtained as the dual of an unshuffle coalgebra. In their work,
cumulants correspond to a certain element of a (pre)Lie algebra g and moments of a random
variable to a point in the corresponding group G. The two half-shuffle products, ≺ and ≻, yield
two exponential maps besides the one corresponding to the associative (full shuffle) convolution
product. These exponentials exp≺ : g → G and exp≻ : g → G are solutions to the following fixed
points equations,

exp≺(k) = ε+ k ≺ exp≺(k), exp≻(b) = ε+ exp≻(b) ≻ b,

where k, b ∈ g. The above equations can be shown to be equivalent to the inductive formula
computing moments from free cumulants for the first one and moments from Boolean cumulants
for the second one, see [12]. The three following sections aim at developing this algebraic
interpretation for the two-faced moment-cumulant relations (MCIm), (MCbB) and (MCbf).
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Figure 4. Ambiguity in composing noncrossing bipartition. We want to “insert” the singleton (drawn in

green) in a space delimited by two consecutive elements (for the order defined by the left-right structure).

For the chosen slot, there is an ambiguity about the linear ordering which can be lifted in two ways.

3 A Möbius category of (translucent) words

In this section, we introduce the categorical setting underlying the rest of the paper. This
categorical underpinning is reminiscent of the one underlying operads, but it differs in the fact
that the collections are indexed by words in {L,R}⋆. This is necessary for formalizing the
composition of bipartitions and words on random variables in a two-faced probability space.
In the single-faced case, integers are sufficient to address the operad’s inputs, but here we
additionally have to take the left-right structure into account.

When trying to define a composition of noncrossing bipartitions, drawing their diagrams
hints at a suitable set of inputs: given a noncrossing bipartition (π, α), each segment connecting
two consecutive points for the necklace order ⋖α can be thought of as an input into which one
can insert a certain type of noncrossing bipartition. For example, in a segment bounded by
two left points, one can certainly insert a noncrossing partition of a set all of whose points are
also on the left, in order to obtain a new noncrossing bipartition. However, there is a certain
ambiguity in composing two noncrossing bipartitions this way that is demonstrated in Figure 4.
In order to address the ambiguity in this example, one has to choose the relative positions of the
newly inserted points and the right-sided points that sit between the two boundary points of the
input segment (with respect to the natural order). Such an ordering will be picked by adding
placeholders to the inserted bipartitions, whose sole purpose is to settle the aforementioned
ambiguities in composing bipartitions.

In Section 3.1, we introduce translucent words which form the morphisms of a category
TW. Collections of sets indexed by translucent words form a monoidal category introduced in
Section 3.2. The same holds for collections of vector spaces indexed by translucent words, which
are discussed in Section 3.3.

3.1 The category of translucent words

Definition 3.1 (translucent words). A translucent word (over the alphabet {L,R}) is a pair
t = (α, b) where α ∈ {L,R}⋆ is a word in the letters L, R and b ∈ {0, 1}⋆ is a “Boolean word”
of equal length. We denote by t(i) the pair (α(i), b(i)). A translucent word can thus also be
interpreted as a word in ({L,R} × {0, 1})⋆, in particular, |t| = |α| = |b|. Given a translucent
word t = (α, b), we call its word component αt := α the left-right structure of t and its Boolean
component bt := b the translucent-opaque structure.

We denote by TW the set of all translucent words (including the empty translucent word
∅ := (∅,∅)).

Given a translucent word t, we interpret αt as a finite ordered biset as in Remark 2.6, while bt
marks the positions tagged 0 “translucent” and the positions tagged 1 “opaque” (the terminology
will become clearer below).
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In the sequel, we denote by 0n the Boolean word of length n filled with 0’s and by 1n the
Boolean word with only 1’s. Usually, the length is clear from the context, so we will also omit
the index n. In particular, we write (α,1) for the translucent word with left-right structure α
and all positions opaque.

Definition 3.2. We call a set X together with a translucent-opaque structure (i.e., a map
X → {0, 1}) a translucent set and consequently an ordered biset with a translucent-opaque
structure is called translucent ordered biset.

In the corresponding diagrams, white dots stand for translucent points and black dots stand
for opaque points. The finite ordered translucent set associated with a translucent word t is
sometimes denoted Xt, but usually, we do not distinguish between t and Xt.

Example 3.3. (LLRLRLRR, 01100101) is a translucent word. It is visualized in Figure 5.

Figure 5. Graphical representation of the translucent word (LLRLRLRR, 01100101).

Further below we make use of a few items of notation and terminology that we introduce
now. Let t = (α, b) ∈ TW.

1. For a word w ∈ A⋆ over any alphabet and a letter a ∈ A, we write

[w]a := {j ∈ J|w|K : w(j) = a}.

We extend the notation to translucent words: for t = (α, b) ∈ TW, we set [t]0 := [b]0,
[t]L := [α]L, etc.

2. For a nonempty subset I = {i1 < · · · < ip} of J|t|K, the restriction of t to I, denoted
t↾I = (α↾I , b↾I), is the pair of subwords

α↾I := α(i1) · · ·α(ip), b↾I := b(i1) · · · b(ip).

3. For a subset I as before, one can also define the translucidation of t at I, denoted tI;0 =
(αI;0, bI;0), by turning all positions in I translucid, i.e.,

αI;0 := α, bI;0(i) =

{
0, i ∈ I,

b(i), i ̸∈ I.
(3.1)

Remark 3.4. A translucent word t = (α, b) defines a morphism

ιt : Xα↾[t]0
= (J|[t]0|K, α↾[t]0) → Xα = (J|α|K, α)

in the category BiSet,

ιt(k) := ik, [t]0 = {i1 < · · · < in}.
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Proposition 3.5. The correspondence between translucent words and morphisms between finite
ordered bisets of the form Xα is one-to-one.

Proof. The morphism ιt defined above is clearly strictly increasing and also preserves the left-
right structure because α↾[t]0(k) = α(ik) = α(ιt(k)) for all k ∈ 1, . . . , n = |[t]0|. Conversely, if
ι : Xβ → Xα is a morphism of ordered bisets, then it is easy to see that ι = ιt for t = (α, b)
where

b(k) =

{
0 if k ∈ ι(J|β|K),
1 otherwise.

■

Instead of working directly with the category of finite ordered bisets, we prefer to concretely
define a composition of translucent words, thereby turning them into the morphism class of
a (countable) category which is equivalent to the opposite of the category of finite bisets.

Given a translucent word t = (α, b), define its source to be the word source t := α ∈ {L,R}⋆
and its target to be the word target t := α↾[t]0 ∈ {L,R}⋆. We say that two translucent words s, t
are composable if source s = target t, i.e., if the left-right pattern of s matches the left-right
pattern of the translucent points of t; in this case we define their composition s ◦ t := r, where r
is the unique translucent word with r↾[t]1 = t↾[t1] and r↾[t]0 = s, i.e., opaque points of t stay
opaque in the composition while translucent points of t are coloured according to s. Roughly
speaking, the Boolean word bs overwrites the zeroes of bt to produce br, see Figure 6.

L LLRR LLRLRLRR1011 01100101

11101111

Figure 6. Composition of s = (LLRR, 1011) and t = (LLRLRLRR, 01100101) in TW. Each arrow stands

for the translucent word whose left-right pattern is given by its source and whose translucent-opaque

pattern is the one written above.

The composition of translucent words corresponds to the superimposition of the two diagrams
representing the translucent words: if an opaque point covers a translucent point, the resulting
point is opaque, see Figure 7. The diagrams make apparent that this is just the opposite
of the composition of corresponding inclusion maps of ordered bisets (the translucent word t
corresponds to the unique strictly increasing, left-right structure-preserving map αt↾[t]0 → αt).

Figure 7. Graphical representation of composition of the two translucent words. On the left s =

(LLRR, 1011), in the middle t = (LLRLRLRR, 01100101) and on the right s ◦ t = (LLRLRLRR, 11101111).

Proposition 3.6. In terms of the morphisms of finite ordered bisets defined in Remark 3.4, it
holds that

ιt ◦ ιs = ιs◦t

for all composable translucent words s, t. In particular, the composition of translucent words is
associative.
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Proof. Both maps, ιt ◦ ιs and ιs◦t, are strictly increasing maps from |[s]0| = |[s ◦ t]0| to |t|.
A strictly increasing map between finite totally ordered sets is uniquely determined by its image.
Let [t]0 = {i1 < · · · < in} ⊂ J|t|K and [s]0 = {j1 < · · · < jm} ⊂ J|s|K = JnK, so that ιt(k) = ik
and ιs(ℓ) = jℓ. Then

ιs◦t(JmK) = [s ◦ t]0 = {ik : bs(k) = 0, k = 1, . . . ,m} = ιt([s]0) = ιt(ιs(JmK)

because by definition of the composition bs◦t(i) = 0 if and only if bt(i) = 0 and bs(k) = 0 for the
unique k with i = ik. ■

With this composition, translucent words form the morphisms of a category, also denoted TW,
whose objects are words in {L,R}⋆. The empty word is a (the) terminal object, denoted 1, with
the unique morphism (α,1) : α → 1. In the category TW the identity morphism acting on
a word α corresponds to the translucent word (α,0), where 0 denotes the Boolean vector with
the same length as α and only zeros as entries.

Remark 3.7. Be aware that t ∈ TW always means that t is a translucent word, i.e., t ∈
Mor(TW). This is in contrast to the convention we use for most other categories; for another
category C, we write c ∈ C if c ∈ Obj(C).

LLR

LL LR

L R

1

Figure 8. Objects and arrows in the category TW. The two inner-faces are commutative. While TW
can be drawn as a directed fat-graph, is it is not equivalent to the free category generated by this graph.

Following the terminology introduced in [8] (see also [9, 26]), the category TW is a Möbius
category, which means that any arrow f of TW is finitely decomposable in the sense that∣∣{(f ′, f ′′) : f ′′ ◦ f ′ = f

}∣∣ < +∞.

This type of category is the proper algebraic framework for Möbius inversion, see [8].

3.2 Incidence category with coefficient in Set

Definition 3.8. The category SetTW , whose

� objects are the TW-indexed collections X = (X (t))t∈TW , X (t) ∈ Set.

� morphisms from X to Y are the families of maps (Set morphisms)

ft : X (t) → Y(t), t ∈ TW,

is called incidence category of TW with coefficients in Set.

Remark 3.9. The terminology incidence category we use in this paper is not to be confused
with occurrences in the literature with a different meaning, see [38].
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Recall that the category Set is endowed with a monoidal structure given by the Cartesian
product. As unit object we fix a one-point set {c}. Set is also endowed with a categorical
coproduct, the disjoint union of sets, denoted ⊔ in what follows.

Definition 3.10 (monoidal composition of TW-indexed collections). For two TW-indexed col-
lections of sets X and Y, their composition is defined as the TW-indexed collection X ⊖ Y,
defined as

(X ⊖ Y)(t) :=
⊔

r,s∈TW
t=r◦s

X (r)× Y(s), t ∈ TW.

Define the TW-indexed collection E

⊖

by setting for any t ∈ TW,

E

⊖

(t) =

{
∅ if bt ̸= 0,

{c} if bt = 0.

The collection E

⊖

acts as left and right unit for the composition

⊖

, which means that for any
t ∈ TW,

(X ⊖ E

⊖

)(t) =
⊔

s∈TW
t=s◦(αt,0|t|)

X (s)× {c} = X (t)× {c},

(E

⊖ ⊖ X )(t) =
⊔

s∈TW
t=(αt↾[s]0 ,0|[s]0|)◦s

{c} × X (s) = {c} × X (t).

Associativity for

⊖

follows from the associativity of the monoidal product × on Set, the co-
product ⊔ on Set and the associativity of composition of morphisms in the category TW. The
composition

⊖

hence yields a monoidal structure on SetTW .

3.3 Incidence category with coefficients in Vect

We now shift to the linear setting. The category of (complex) vector spaces is denoted Vect or
VectC if we want to emphasize the field of scalars. A TW-indexed collection V = V(t)t∈TW of
vector spaces V(t) ∈ Vect is also called linear TW-indexed collection.

Definition 3.11. The category VectTW , whose

� objects are the TW-indexed collections of C-vector spaces (V(t))t∈TW , V(t) ∈ Vect,

� morphisms from V to W are the families of linear maps (Vect-morphisms)

ft : V(t) → W(t), t ∈ TW,

is called incidence category of TW with coefficients in Vect.

Remark 3.12. It is sometimes opportune to identify a collection V ∈ VectTW with the TW-
graded vector space

⊕
t∈TW V(t) and a morphism f : V → W with the grade-preserving map

f(v) := ft(v) for v ∈ V(t).

All linear TW-collections in this work are spanned by explicitly given TW-indexed collection
of sets. For a set X, we denote by

CX =
⊕
x∈X

Cx
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the vector space formally spanned by X. For a TW-collection X of sets, we denote by CX the
linear TW-indexed collection spanned by X ,

(CX )(t) := C(X (t)) =
⊕

x∈X (t)

Cx, t ∈ TW.

The dual collection of CX is the linear TW-indexed collection CX ∗ defined by

CX ∗(t) := (CX (t))∗ , t ∈ TW.

There is a natural choice for a monoidal structure on the category of such linear collections.
In the following definition, we denote by ⊗C the tensor product on the category of complex
vector spaces.

Definition 3.13 (“vertical” composition of linear TW-indexed collections). For two linear TW-
indexed collections V and W define the vertical composition V ⊖ W as the TW-indexed collection
given by

(V ⊖ W)(t) :=
⊕
t=r◦s

V(r)⊗C W(s), t ∈ TW.

Again, it follows from a straightforward verification that

⊖

is monoidal, with unit E

⊖

defined
by

E

⊖

(t) =

{
C{c} it bt = 0,

{0} if bt ̸= 0.

Note that E

⊖

(1) = C{c} (1 the empty translucent word). Also, note that we use the same
symbol for the unit in the linear and non-linear setting.

Notation 3.14. We may write x

⊖

y instead of x⊗ y if x ∈ V(r) and y ∈ W(s) for composable
translucent words r and s.

Remark 3.15. Clearly, we have for all X ,Y ∈ SetTW a canonical isomorphism

C(X ⊖ Y) ∼= CX ⊖ CY,

which will be used to identify the two.

Definition 3.16. A (linear) TW-monoid is a monoid in the monoidal category
(
SetTW ,

⊖

, E

⊖ )(
or

(
VectTW ,

⊖

, E

⊖ ))
, i.e., a triple

(
V,m

⊖

, η

⊖ )
where V is a (linear) TW-indexed collection,

m

⊖

: V ⊖ V → V and η

⊖

: E

⊖

→ V are morphisms in SetTW
(
or VectTW

)
satisfying the unitality

and associativity constraints:

m

⊖ (
η

⊖ ⊖

id
)
= m

⊖ (
id

⊖

η

⊖ )
= id, m

⊖ (
m

⊖ ⊖

id
)
= m

⊖ (
id

⊖

m

⊖ )
.

Remark 3.17. Let
(
X ,m

⊖

X , η

⊖

X
)
be a TW-monoid. By Remark 3.15 it is clear that the Set-

monoidal product m

⊖

X : X ⊖ X → X extends to a morphism of linear TW-indexed collections,

m

⊖

CX : CX ⊖ CX → CX ,

thus turning CX into a linear TW-monoid with unit η

⊖

CX the linear extension of η

⊖

X .

Definition 3.18. A linear TW-comonoid is a triple
(
F,∆

⊖

, ε
)
where F is a linear TW-indexed

collection, ∆

⊖

: F → F

⊖

F and ε : F → E

⊖

satisfy the unitaly and coassociativity constraints:

(ε

⊖

id)∆

⊖

= (id

⊖

ε)∆

⊖

= id,
(
∆

⊖ ⊖

id
)
∆

⊖

=
(
id

⊖

∆

⊖ )
∆

⊖

.
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Remark 3.19. We only define linear TW-comonoids, since we are interested in comonoids with
an unshuffle splitting of the coproduct ∆

⊖

, which is a meaningless notion in Set.

Of interest to us will be two linear monoids, which by the following recipe yield two linear
TW-comonoids. Assume for the rest of this section that X is a TW-monoid in which each
set X (t) is finite, t ∈ TW. Thanks to this finiteness assumption, first,

(CX ⊖ CX )∗ ≃ CX ∗ ⊖ CX ∗.

Second, the basis X yields an isomorphism between the collection CX and its dual CX ∗ by
sending X to its dual basis. The algebraic dual of m

⊖

,(
m

⊖ )∗
: CX ∗ → (CX ⊖ CX )∗ ≃ CX ∗ ⊖ CX ∗

yields the structure of a comonoid on CX ∗ ≃ CX . More concretely, under the named iso-
morphism,

(
m

⊖ )∗
and η∗ correspond to the structural morphisms ∆

⊖

: CX → CX ⊖ CX and
ε : CX → E

⊖

defined by

∆

⊖

t (x) =
∑

y,z∈X (t)

x=m

⊖

(y

⊖

z)

y

⊖

z, εt(x) =

{
c if bt = 0,

0 if bt ̸= 0

for any x ∈ X (t).

3.4 Horizontal semigroupal product

We introduce in this subsection a second (non-unital) tensor product on the incidence category
VectTW , which we name horizontal tensor product. The horizontal tensor product turns out to
be compatible with the previously introduced vertical tensor product

⊖

in a way reminiscent
of 2-monoidal categories or duoidal categories. The reader is directed to the monograph [1] for
a detailed account of this notion from higher category theory.

In our case, however, the horizontal tensor product lacks existence of a unit (we use the termi-
nology semigroupal in the sequel), we, therefore, refrain from defining 2-monoidal categories here.

Nevertheless, we will show the existence of a functor, called four-points exchange relation or
interchange relations satisfying the natural associativity constraints. This implies a rather rich
structure on the category of horizontal semigroups (objects equipped with a binary associative
multiplication morphism) that we leverage in the forthcoming sections.

The horizontal semigroupal product is built on splitting a translucent word t at a translucent
point. More precisely, for i ∈ [t]0 we denote the restrictions of t to the ⋖-intervals of positions
before or after i with respect to the necklace order by

t⋖i := t↾{j : j⋖i}, t⋗i := t↾{j : j⋗i}.

Recall that the unique endomorphism of the empty word ∅ ∈ {L,R}⋆ is the empty translucent
word, denoted 1.

Example 3.20. For t = (LRLL, 0101), the necklace order is 1⋖ 3⋖ 4⋖ 2, therefore

t⋖1 = 1, t⋗1 = (RLL, 101), t⋖3 = (L, 0), t⋗3 = (RL, 11).

Definition 3.21 (“horizontal” composition of linear TW-indexed collections). For two TW-
indexed collections V and W, we define the horizontal composition V ⊖W as the TW-indexed
collection

(V ⊖W)(t) =
⊕
i∈[t]0

V
(
t⋖i

)
⊗W

(
t⋗i

)
. (3.2)
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Analogously, for TW-indexed collections of sets,

(X ⊖ Y)(t) =
⊔

i∈[t]0

X
(
t⋖i

)
× Y

(
t⋗i

)
,

so that C(X ⊖ Y) = CX ⊖ CY.

It is straightforward to verify the associativity constraint for ⊖ for the (trivial) associator

α⊖
U ,V,W : (U ⊖ V)⊖W → U ⊖ (V ⊖W), (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w),

where u ∈ U(t⋖i), v ∈ V(t⋗i,⋖j) and w ∈ W(t⋗j) with t⋗i,⋖j the translucent word t restricted
to the interval Ki, jJ⋖. Here we use in a crucial way that this operation of cutting a translucent
word t at a certain position i and forgetting about t(i) is associative.

In fact, one has (omitting the associator α)

U ⊖ V ⊖W(t) =
⊕

i,j∈[t]0
i⋖j

U
(
t⋖i

)
⊖ V

(
t⋗i,⋖j

)
⊖W

(
t⋗j

)
. (3.3)

The bifunctor ⊖ : VectTW×2 → VectTW does not yield a monoidal product, since it cannot be
endowed with a unit, as we see below.2 Therefore, we call it a semigroupal product (a “monoidal
product without unit”). Correspondingly, the equivalent of a monoid in such a category will be
called a semigroup. We denote by SemiGrp(⊖) the category of ⊖-semigroups (with obvious
morphisms).

Remark 3.22. If [t]0 = ∅, then the sum on the right side of equation (3.2) is empty, thus equal
to {0}. In particular, (V ⊖W)(α,1|α|) = {0} for any word α ∈ {L,R}⋆. This also yields that ⊖
has no unit.

Remark 3.23. It is possible to design a horizontal tensor product ⊖′ with unit by

(V ⊖′ W)(t) =
∑
i∈[b]0

V
(
t⋖i

)
⊗W

(
t≥· i

)
,

where t≥· i is the restriction of t to {x : x≥· i}. This tensor product, while unital, seems less
natural than ⊖ because of the choice on which side to include i.

Our next aim is to introduce a natural transformation

R : ⊖ ◦( ⊖ × ⊖

) → ⊖ ◦ (⊖×⊖) ◦ τ2,3,

where τ2,3 :
(
VectTW

)×4 →
(
VectTW

)×4
, (V1,V2,V3,V4) 7→ (V1,V3,V2,V4).

Given an element

(R−

⊖

S−)⊖ (R+

⊖

S+) ∈ (V1

⊖ V2)⊖ (V3

⊖ V4)(t)

=
⊕
i∈[t]0

r−◦s−=t⋖i

r+◦s+=t⋖i

(V1(r−)⊗ V2(s−))⊗ (V3(r+)⊗ V4(s+)) (3.4)

2Being monoidal is a property, not a structure, compare [13, Remark 2.2.9].
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Figure 9. Four point exchange relation. The top left translucent word t is deconcatenated at the

position i marked by the arrow, yielding two diagrams t⋖i and t⋗i shown in the bottom left. In the top

right, we see two translucent words r and s with t = r ◦ s (of course, those are not uniquely determined

by t, the diagram only shows one possible decomposition of t). The bottom right, which shows r−,

r+, s−, s+, can be either obtained by decomposing the bottom left or splitting the top right diagrams,

exemplifying that splitting and decomposition commute as long as the position j at which r is to be split

corresponds to the position i at which s and t are split. On the other hand, these diagrams also show

how r, s and j can be reconstructed from r−, r+, s−, s+ and i.

we want to obtain an element

(R− ⊖R+)
⊖

(S− ⊖ S+) ∈ (V1 ⊖ V3)

⊖

(V2 ⊖ V4)(t)

=
⊕
r◦s=t
j∈[r]0
i∈[s]0

(V1(r
⋖j)⊗ V3(r

⋗j))⊗ (V2(s
⋖i)⊗ V4(s

⋗i)). (3.5)

To this end, we will construct a map which maps each tuple (i, r−, r+, s−, s+) with i ∈ [t]0,
r− ◦ s− = t⋖i, r+ ◦ s+ = t⋗i to a tuple (r, s, i′, i) with

r ◦ s = t, i′ ∈ [r]0, i ∈ [s]0, and r− = r⋖i′ , s− = s⋖i, r+ = r⋗i′ , s+ = s⋗i (3.6)

(we will also see that the map is uniquely determined by those conditions). This is the content
of Construction 3.24 below (see Figure 9 for a graphical example). With such a map in hand, we
can then simply map an element (R−

⊖

S−)⊖(R+

⊖

S+) ∈ (V1(r−)⊗V2(s−))⊗(V3(r+)⊗V4(s+)) ⊂
(V1

⊖ V2) ⊖ (V3

⊖ V4)(t) which lives in one of the direct summands of the direct sum in (3.4)
to the element (R− ⊖ R+)

⊖

(S− ⊖ S+) in the corresponding summand (V1(r
⋖i′) ⊗ V3(r

⋗i′)) ⊗
(V2(s

⋖i)⊗ V4(s
⋗i)) ⊂ (V1 ⊖ V3)

⊖

(V2 ⊖ V4)(t) in (3.5).
Although we will not use those facts explicitly, one can easily observe that the map obtained

from Construction 3.24 is injective but not surjective and, hence, the natural transformation R
is composed of monomorphisms but not of isomorphisms.

Construction 3.24. Pick a translucent word t ∈ TW. Consider an integer i ∈ [t]0 and two
pairs of composable translucent words r−, s− and r+, s+ such that

r− ◦ s− = t⋖i, r+ ◦ s+ = t⋗i.

Note that r−, r+ are determined by the choice of s−, s+.
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We define the translucent word s ∈ TW as the unique translucent word of length |t| fulfilling

s⋖i = s−, s⋗i = s+ and s(i) = t(i),

and the translucent word r ∈ TW as r := t↾[s]0 . Clearly, t = r ◦ s, and there is no other
choice for r and s if (3.6) is to be fulfilled. Note that we used the original i. It remains to
find a i′ ∈ [r]0 with r− = r⋖i′ , r+ = r⋗i′ . Recall that composability implies |r| = |[s]0| and let
[s]0 = {k1 < · · · < k|r|}. The (unique) i′ with i = ki′ has the desired properties. By definition
of the composition, r(i′) = r ◦ s(ki′) = t(i). Let us take for granted for the moment that
= (t↾[s]0)

⋖i′ = t⋖i↾[s⋖i]0 , which is quite clear from the diagrammatic representation and will be

proved below. Then we can conclude from s⋖i = s− and r− ◦ s− = t⋖i that

r⋖i′ = (t↾[s]0)
⋖i′ = t⋖i↾[s⋖i]0 = t⋖i↾[s−]0 = r−,

and analogously we obtain r⋗i′ = r+. In summary, the constructed tuple (r, s, i′, i) fulfills (3.6),
as needed.

To prove the claim that (t↾[s]0)
⋖i′ = t⋖i↾[s⋖i]0 , we need to some more notation. For any

ordered set A, let φA : A → J|A|K denote the unique monotone bijection. Then it is easy to
check that for arbitrary subsets A,B ⊂ J|t|K, one has

(t↾A)↾φA(B∩A) = t↾A∩B = (t↾B)↾φB(A∩B).

In the special case, recall the notation [s]0 = {k1 < · · · < k|r|} and note that φ[s]0(i) = i′. Then
ℓ⋖ j is equivalent to kℓ ⋖ kj and we find

(t↾[s]0)
⋖i′ = (t↾[s]0)↾{ℓ:kℓ⋖i} = (t↾[s]0)↾φ[s]0

([s]0∩{k⋖i}) = (t↾{k⋖i})↾φ{k⋖i}([s]0∩{k⋖i}) = t⋖i↾[s⋖i]0 .

We are now in the position to define the natural transformation R as follows.

Pick elements

R− ∈ V1(r−), S− ∈ V2(s−), R+ ∈ V3(r+), S+ ∈ V4(s+),

so that

(R−

⊖

S−) ∈ (V1

⊖ V2)
(
t⋖i

)
, (R+

⊖

S+) ∈ (V3

⊖ V4)
(
t⋗i

)
and set, with (r, s, i′, i) obtained from Construction 3.24,

RV1,V2,V3,V4((R−

⊖

S−)⊖ (R+

⊖

S+)) := (R− ⊖R+)

⊖

(S− ⊖ S+)

∈
(
V1

(
r⋖i′

)
⊗ V3

(
r⋗i′

))
⊗
(
V2

(
s⋖i

)
⊗ V4

(
s⋗i

))
⊂ (V1 ⊖ V3)

⊖

(V2 ⊖ V4)(t).

We now prove the main proposition of this section.

Proposition 3.25. The morphisms RV1,V2,V3,V4, Vi ∈ VectTW yield a natural transformation

R : ⊖ ◦( ⊖ × ⊖

) → ⊖ ◦ (⊖×⊖) ◦ τ2,3

satisfying the associativity constraints that the diagrams in Figures 10 and 11 commute.

One can depict the commutative diagram in Figures 10 and 11 using horizontal and vertical
bars to indicate which of the horizontal product or vertical tensor product takes precedence.
Omitting the (necessary) bracketing, one obtains Figure 12.



18 J. Diehl, M. Gerhold and N. Gilliers

((A

⊖

B)⊖ (C

⊖

D))⊖ (E

⊖

F ) (A

⊖

B)⊖ ((C

⊖

D)⊖ (E

⊖

F ))

((A⊖ C)

⊖

(B ⊖D))⊖ (E

⊖

F ) (A

⊖

B)⊖ ((C ⊖ E)

⊖

(D ⊖ F ))

((A⊖ C)⊖ E)

⊖

((B ⊖D)⊖ F ) (A⊖ (C ⊖ E))

⊖

(B ⊖ (D ⊖ F ))

α

R⊖id id

⊖

R

R R

α⊖ ⊖

α⊖

Figure 10. First associativity constraint.

((A

⊖

B)

⊖

C)⊖ ((D

⊖

E)

⊖

F ) (A

⊖

(B

⊖

C))⊖ (D

⊖
(E

⊖

F ))

((A

⊖

B)⊖ (D

⊖

E))

⊖

(C ⊖ F ) (A⊖D)
⊖

((B

⊖

C)⊖ (E

⊖

F ))

((A⊖D)

⊖

(B ⊖ E))

⊖

(C ⊖ F ) (A⊖D)

⊖

((B ⊖ E)

⊖

(C ⊖ F ))

R

α⊖⊖α⊖

R

R

⊖

id id

⊖

R

α⊖

Figure 11. Second associativity constraint.

Figure 12. An artistic view on the associativity constraints.

Remark 3.26. We insist upon the fact that the natural transformation R is not an isomorphism.
In fact, with the notations introduced in Construction 3.24, the two integers i and i′ satisfy to the
constraint φ[s]0(i) = i′. In less technical terms, r and s are split at the same positions, when the
letters of r are indexed by the positions they have in the translucent letters of t (placeholders).
This indicates that R is in fact not surjective, but it is easy to check that R is injective.

Proof. Let t be a translucent word. Pick two integers i⋖ j. The notation t⋗i,⋖j = t↾Ki,jJ⋖ has
been introduced at the beginning of the section. We pick three pairs of composable translucent
words

(r−, s−), (r0, s0), (r+, s+)

such that

r− ◦ s− = t⋖i, r0 ◦ s0 = t⋗i,⋖j , and r+ ◦ s+ = t⋗j .

First, note that instead of iterating, we can modify Construction 3.24 to work for the “un-
bracketet” version of the threefold horizontal product (3.3). As in the two-fold case, the only
ambiguous point is where the splitting of r into its given parts (here: r−, r0, r+) takes place,
and the modified construction clearly gives i′ := φ[s]0(i) and j′ := φ[s]0(j) for those positions.
To prove the first associativity constraint (Figure 10), we show that both iterations agree with
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the natural transformation R3 : (A

⊖

B) ⊖ (C

⊖

D) ⊖ (E

⊖

F ) → (A ⊖ C ⊖ E)

⊖

(B ⊖ D ⊖ F )
induced by the modified threefold construction. When we iterate Construction 3.24 to find r
and s, the only problem is to determine and compare the positions where the words are to be
split, and these splitting points determine the obtained natural transformation. We illustrate
the splitting positions in a table:

full word factors split position

t⋖j r−,0 φ[s−,0]0(φ{k⋖j}(i))

s−,0 φ{k⋖j}(i)

t
r φ[s]0(j)

s j

If we want to compare with the threefold splitting, we have to map the positions on the first
two rows to the corresponding positions in J|[s]0|K and J|t|K via the maps φ−1

{k⋖j′} and φ−1
{k⋖j},

respectively (this is hidden in the identification of (U ⊖ V) ⊖W with U ⊖ V ⊖W as in (3.3)).
For the first splitting position of s, φ−1

{k⋖j}(φ{k⋖j}(i)) = i holds trivially. It is not hard to see
that φ[s−,0]0 ◦ φ{k⋖j} = φ[s]0∩{k⋖j} = φ{k⋖j′} ◦ φ[s]0 , so for the first splitting position of r we

have φ−1
{k⋖j′}(φ[s−,0]0(φ{k⋖j}(i))) = φ[s]0(i), as needed. This shows that (under the mentioned

identification) we have (R

⊖

id) ◦R = R3. We can argue analogously to show (id

⊖

R) ◦R = R3,
which concludes the proof of the first associativity constraint Figure 10.

Pick now two composable triples

t⋖i = q− ◦ r− ◦ s− and t⋗i = q+ ◦ r+ ◦ s+.

Set also

(qr)− := q− ◦ r−, (qr)+ = q+ ◦ r+, (rs)− = r− ◦ s−, (rs)+ = r+ ◦ s+,

so that

t⋖i = (qr)− ◦ s−, t⋗i = (qr)+ ◦ s+, t⋖i = q− ◦ (rs)−, t⋗i = q+ ◦ (rs)+.

When we iterate Construction 3.24 to find q, r and s, the only ambiguity lies in the positions
where the words are split (or merged, coming from their given splittings). Recall that for an
ordered set A, we denote φA : A → J|A|K the unique monotone bijection. If we start by merging
(qr)± and s± to obtain qr and s with qr ◦ s = t, this happens at i′ = φ[s]0(i) and i, respectively.
If we then merge q± and r± by applying Construction 3.24 with respect to qr, this happens at
φ[r]0(φ[s]0(i)) and φ[s]0(i), respectively. The following tabular summarizes the result:

full word factors split position

t
qr φ[s]0(i)

s i

qr
q φ[r]0(φ[s]0(i))

r φ[s]0(i)

If we argue analogously for the other iteration, we get:

full word factors split position

t
q φ[rs]0(i)

rs i

rs
r φ[s]0(i)

s i
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Therefore, the associativity constraint in Figure 11 is equivalent to φ[rs]0(i) = φ[r]0(φ[s]0(i)).
This follows easily from Proposition 3.6 because, as a map between ordered sets, ιs is nothing
but φ−1

[s]0
. ■

Existence of such a four-points exchange relation has major consequences for the categories of
horizontal semigroups and vertical comonoids, as stated in the next proposition. For the proof,
we refer the reader to [1, Chapter 4].

Proposition 3.27. Pick
(
V,m⊖

V
)
and

(
W,m⊖

W
)
two ⊖-semigroups, then V ⊖ W is a ⊖-semigroup

if equipped with the product m⊖
V ⊖ W defined by

m⊖
V ⊖ W :=

(
m⊖

V

⊖

m⊖
W
)
◦RV,W,V,W . (3.7)

Pick two TW-comonoids
(
V,∆

⊖

V
)
and

(
W,∆

⊖

W
)
then V ⊖W is a TW-comonoid if equipped

with the vertical coproduct

∆

⊖

V⊖W = RV,W,V,W ◦
(
∆

⊖

V ⊖∆

⊖

W
)
.

This proposition implies that the category SemiGrp(⊖), is monoidal for the vertical tensor
product, in fact E

⊖

is a unit, since it can be equipped with a horizontal product

m⊖
E

⊖ : E

⊖

⊖ E

⊖

→ E

⊖

defined by, for any w− ⊖ w+ ∈ E
⊖

⊖ E

⊖

(α, 1α), w = z ·c, w′ = z′ ·c

m⊖
E

⊖ (w− ⊖ w+) = zz′ ·c.

Likewise, the category of

⊖

-comonoids is a semigroup category if equipped with the horizontal
semigroupal product ⊖.

As mentioned previously, all linear TW-indexed collections considered in this work come
equipped with preferred finite bases; they are all of the form CX with X an TW-indexed
collections of finite sets. Additionally, they are (vertically) augmented, i.e., they come with
a morphism of linear TW-indexed collections

η : E

⊖

→ CX ,

called the augmentation morphism, which induces an isomorphism for each translucent word t
with bt = 0|t|; more concretely one has

CX (α,0) ≃η−1
(α,0)

C{c}

for all α ∈ {L,R}⋆.
In the sequel, we use the notation X+ for the TW-indexed collection with

X+(t) :=

{
X (t) if bt ̸= 0,

∅ if bt = 0.
(3.8)

The resulting linear collection is then given by

CX+(t) :=

{
CX (t) if bt ̸= 0,

{0} if bt = 0.
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Furthermore, when considering TW-comonoid structures on collections of the form CX , we will
always assume nilpotency for the coproduct ∆

⊖

, which means that for every c ∈ X (t), t ∈ TW,
bt ̸= 0,

∆

⊖

t (c) = c⊗C η(αt,0)(c) + ηt↾[t]0
(c)⊗C c+ ∆̄

⊖

(c),

∆

⊖

(α,0)(η(α,0)(c)) = η(α,0)(c)⊗ η(α,0)(c),

with ∆̄

⊖

the reduced coproduct

∆̄

⊖

: CX+ → CX+ ⊗ CX+

and ∆̄

⊖

n(c) = 0 for a certain integer n depending on c where we define recursively ∆̄

⊖

n =
(∆̄

⊖

⊗ id) ◦ ∆̄

⊖

n−1, ∆̄

⊖

1 = ∆̄

⊖

.

3.5 Freely generated horizontal semigroups

Definition 3.28 (opaque collection). For each linear TW-indexed collection V we define its
opaque part V1 as

V1(t) =

{
V(t) if bt = 1,

{0} else.

We call a linear TW-indexed collection V opaque if V = V1. The full sub-category of VectTW

of all opaque TW-indexed collections is denoted VectTW1 .
Analogously, a TW-indexed collections of sets X is opaque if it coincides with X1 defined as

X1(t) =

{
X (t) if bt = 1,

∅ else,

and SetTW1 is the full sub-category of SetTW consisting of all opaque collections.

Remark 3.29. Opaque collections V correspond 1 : 1 to collections of vector spaces indexed by
words in {L,R}⋆.

We consider a functor U : SemiGrp(⊖) → VectTW1 , from the category of ⊖-semigroups to
the category of all linear opaque TW-indexed collections defined by

U(V,m⊖
V )(t) =

{
V(t), t = (α,1),

{0}, otherwise.

Remark 3.30. The functor U is not a forgetful functor in the sense that it simply “forgets”
about the horizontal product m⊖

V : it does also set certain components of V to {0}.
Note that U(V)(t) is a subspace of V(t) for all t ∈ TW; either the two are the same or U(V)(t)

is trivial. This means that U(V), seen as a graded vector space, is a graded subspace of V. This
will play an important role in the next proof.

A left-adjoint for U is a functor F : VectTW1 → SemiGrp(⊖) satisfying

HomVectTW
1

(V, U(W)) ≃ HomSemiGrp(⊖)(F(V),W),

V ∈ VectTW1 , W ∈ SemiGrp(⊖),

where we have used the notation

HomSemiGrp(⊖)(V,W) := {f ∈ HomVectTW (V,W) : m⊖
W ◦ (f ⊖ f) = f ◦m⊖

V }.
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Proposition 3.31. Define the functor F : VectTW1 → SemiGrp(⊖), for any opaque collection
V ∈ VectTW1 , as

F(V) =
⊕
n≥1

V⊖n = V ⊕ V⊖2 ⊕ V⊖3 ⊕ · · · , F(f) =
⊕
p≥1

f⊖p

equipped with its canonical horizontal semigroupal product m⊖
F(V). Then F is a left-adjoint for U .

Proof. For the sake of the proof, we extend the functor F by the same formula to the incidence
category VectTW . Let V ∈ VectTW1 be an opaque collection and W ∈ SemiGrp(⊖) a ⊖-
semigroup. Note that the product m⊖

W yields (thanks to associativity) a morphism of TW-
collections

m⊖p
W : W⊖p → W.

Altogether, the morphisms m⊖p
W , p ≥ 1 yield a morphism of TW-collections

m⊖
W : F(W) → W,

which restricts to a morphism of TW-collections, also denoted m⊖
W , from F(U(W)) to W (we

interpret F(U(W)) as a graded subspace of F(W ) as in Remark 3.30). Pick a morphism of
opaque collections f : V → U(W) and define

f⊖ : F(V) → W, f⊖ := m⊖
W ◦ F(f).

Then f⊖ is a morphism of ⊖-semigroups. This stems from the fact that

F(f) ◦m⊖
F(V) = m⊖

F(W) ◦ (F(f)⊖F(f))

and (from associativity of m⊖
W)

m⊖
W ◦m⊖

F(W ) = m⊖
W ◦m⊖

W ⊖m⊖
W .

Pick a morphism of horizontal semigroups g : F(V) → W, then g is a morphism of TW-
collections, hence

g(V(α,1)) ⊂ W(α,1)

(when considering V ⊂ F(V)). This implies that g yields a morphism between the opaque
collections V and U(W)). This ends the proof. ■

Of course, the analogous statement for SetTW1 with

F(X ) :=
⊔
p≥1

X⊖p, U(X ,m⊖
X )(t) =

{
X (t), t = (α,1),

∅, otherwise,

holds likewise.

Remark 3.32. In the following, we say that a horizontal semigroup V is freely generated by
its opaque part if it is isomorphic as a horizontal semigroup to F(U(V)). This means that to
every element v ∈ V(t) corresponds a unique sequence v1, . . . , vp where p = |[t]0| and vi ∈ U(V),
i = 1, . . . , p, such that

v = m⊖
V (v1 ⊖ · · · ⊖ vp).
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3.6 Monoids of bipartitions and noncrossing bipartitions

We will exploit the results proved in this section in the proofs of our main theorems in Section 5.
Let X be a set. An incomplete partition of X is a partition of a subset of [X]1 ⊂ X. An
incomplete partition π of X becomes a partition π̃ of X by adding the block [X]0 := X \ [X]1,
π̃ = π ∪ {[X]0}. We refer to the blocks of π as opaque blocks and to the block [X]0 of π̃ as
the translucent block of π (although it is not formally an element of π as a set). An incomplete
partition defines a translucent-opaque structure on X, points contained in opaque blocks are
opaque and points contained in the translucent block are translucent. If X is a translucent set
from the beginning, we modify the concept of partition so that it fits with the above observations.

Definition 3.33. A partition of a translucent set X is a partition π of the set of opaque
points [X]1. We refer to the set of translucent points as the translucent block of π although it is
not formally an element of π regarded as the set of its blocks.

Remark 3.34. In diagrams, the translucent block is coloured red, see for example Figure 14.

A partition of a translucent set is an incomplete partition of the underlying set which is
compatible with the translucent-opaque structure. The same applies to finite translucent ordered
bisets and therefore to translucent words. Because of the importance of the concept, we spell it
out concretely.

Definition 3.35. A bipartition of a translucent word t is a partition of [t]1, i.e., a bipartition of
the associated finite translucent ordered biset Xt = (J|t|K, αt, bt). The set of all bipartitions of
a translucent word t is denoted P(t). The collection P = (P(t))t∈TW is called the TW-indexed
collection of incomplete bipartitions.

Remark 3.36. In the remainder of this article, if we speak of an incomplete bipartition, we
always mean a bipartition of some translucent word in the sense of the previous definition.

We will need to extend the notion of restriction to partitions. Let π be a bipartition of
a translucent word t and I = {i1 < · · · < ip} a subset of J|t|K. Then π↾I is the unique bipartition
of t↾I such that i, j ∈ JpK are in the same block of π↾I if and only if ik, iℓ are in the same block
of π. It is straightforward to check that the translucent block of π↾I is {k : ik ∈ [t]0} = [t↾I ]0, so
that π↾I is indeed a partition of the translucent word t↾I .

With these notions at hand, we are now ready to define the composition of incomplete
bipartitions.

Definition 3.37. Let r and s be composable translucent words, ρ ∈ P(r), σ ∈ P(s). The
composition ρ ◦ σ is the unique bipartition π of t := r ◦ s such with π↾[s]0 = ρ and π↾[s]1 = σ↾[s]1 .
Roughly speaking, the translucent block of σ is substituted by the bipartition ρ. See Figure 13
for an example.

Henceforth, we adopt the same notation

⊖

for the vertical monoidal product ◦ on TW-
collections of sets and on TW-collections of vector spaces.

Observation 3.38. The collection P is a TW-monoid with the product

m

⊖

P : P ⊖ P → P, m

⊖

P(ρ, σ) := ρ ◦ σ.

The unit for the vertical product m

⊖

P is the morphism

ηP : E

⊖

→ P

sending c ∈ P(α,0) to the unique incomplete bipartition in P(α,0), the empty partition.
For applications in noncommutative probability, noncrossing partitions are most important.
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Figure 13. Two examples of compositions between bipartitions and noncrossing bipartitions.

Definition 3.39. An incomplete bipartition π ∈ P(t) is called noncrossing if the extended
bipartition π ∪ {[t]0} is a noncrossing bipartition of αt ∈ {L,R}⋆. The set of all noncrossing
bipartitions of t is denoted NC(t). The collection of all incomplete noncrossing bipartitions is
denoted NC := (NC(t))(t∈TW).

Figure 14. On the left an incomplete bipartition and on the right an incomplete noncrossing bipartition.

The underlying translucent word is (LLRLRLRR, 01101101) in both examples.

It is obvious that the composition of noncrossing incomplete bipartitions is again an incom-
plete noncrossing bipartition. Therefore, we document for future reference:

Observation 3.40. The collection NC (and consequently its linearization CNC) is a TW-
monoid with the product

m

⊖

NC : NC ⊖ NC → NC, m

⊖

NC(ρ

⊖

σ) := ρ ◦ σ

(or the linearization thereof).

Neither the collection CP nor CNC lies in the image of the functor F of Proposition 3.31,
i.e., those collections are not freely generated horizontal semigroups. Indeed, A = F(B) implies
A1 = F(B)1 = B1. Now consider the noncrossing bipartition

π ∈ NC(LRLRRR, 110111) ⊂ P(LRLRRR, 110111)

from Figure 15. Then

π /∈ F(P1)(LRLRLR, 110111) = P⊖2
1 (LRLRLR, 110111) ⊃ NC⊖2

1 (LRLRLR, 110111),

where by definition the blocks have to be contained in the ⋖-intervals K−∞⋖, 3J⋖ and K3,∞⋖J⋖.
Below, we define a subcollection of incomplete bipartitions (following [7] we call them shaded
bipartitions) freely generated by the opaque collection of noncrossing bipartitions.
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Figure 15. Example of an incomplete bipartition. The collectionNC is not in the image of the functor F .

Recall that given a partition π of JnK, n ≥ 1, we write ∼π for the equivalence relation induced
by π on JnK.

Definition 3.41 (shaded noncrossing bipartition). Pick a translucent word t ∈ TW and an
incomplete noncrossing bipartition π ∈ NC(t) (recall that π is a partition of [t]1). We say
that π is a shaded noncrossing bipartition of type t if for all integers 1 ≤ k < min[t]0 with
α(k) = α(min[t]0) we have

j ∼π k =⇒ j < min[t]0 and α(j) = α(min[t]0).

Remark 3.42. An alternative description of a partition π ∈ NC|||(t) is as follows. The spines-
and-ribs diagram of π ∪ [t]0 to which a straight vertical chord emerging from the top of the
diagram and connected to the translucent block [t]0 is added has no crossings. In other words,
the translucent block is an outer block of the associated noncrossing partition of J|t|K with respect
to necklace order. As such, shaded noncrossing bipartitions are shaded diagrams in the sense
of [7] with one top chord. In the following figures, we choose to colour the translucent block red.

See Figure 16 for examples and counterexamples. Of course, any shaded noncrossing bipar-
tition is an incomplete noncrossing bipartition.

We denote by NC||| ⊂ NC the TW-collection comprising all shaded noncrossing bipartitions.
Before we observe that NC||| is indeed freely generated by noncrossing bipartitions, we intro-

duce some notation.

Notation 3.43. For a translucent word t ∈ TW, we let int(t) denote the set of maximal ⋖-
intervals inside [t]1 ⊂ J|t|K,

int(t) =
{
I⋖1 (t)⋖ · · ·⋖ I⋖k(t)(t)

}
and call I⋖j (t) the jth ⋖-interval.

Example 3.44. Consider t = (LRLLLR, 011101), then

I⋖1 (t) = {3, 4}, I⋖2 (t) = {2, 6},

Remark 3.45. This sequence of intervals I⋖j (t), 1 ≤ j ≤ k(t) has been introduced in the proof
of Proposition 4.12 in a slightly different way to include empty intervals separating consecutive
integers in [t]0.

Observation 3.46. A fundamental observation is the following: shaded noncrossing biparti-
tions can be reconstructed from their restrictions to the maximal ⋖-intervals. More precisely,
given a translucent word t, each block of a shaded noncrossing bipartition π of type t is contained
in one of the intervals I⋖j (t), 1 ≤ j ≤ k(t) which make up int(t). Thus,

NC|||(t) ∋ π 7→ π↾I⋖1 , . . . , π↾I⋖k(t)
∈ NC|||(t↾I⋖1 )× · · · × NC|||(t↾I⋖

k(t)
)

is well-defined and a bijection.
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As a consequence, the collection of shaded noncrossing bipartitions is identified as the free
⊖-semigroup over the collection of noncrossing partitions, i.e.,

NC||| = F(NC1).

Indeed,

F(NC1)(t) = NC⊖k(t)+1
1 (t) = NC1(t↾I⋖1 )× · · · × NC1(t↾I⋖

k(t)
) ∼= NC|||(t)

because the opaque parts of NC||| and NC agree.

Remark 3.47. We compare the restriction of the product m
⊖

NC to (one-sided) noncrossing

partitions and the gap-insertion operad introduced in [10]. First, the monoidal product m

⊖

NC
restricts to the sub-TW-collection of NC||| comprising all shaded noncrossing partitions; the
shaded noncrossing bipartitions with type (Ln, b), n ≥ 1 and b a Boolean word with length n.

Pick a shaded noncrossing bipartition π with type t = (Ln, b) and denote by I0, . . . , Ip the con-
nected components (i.e., maximal ⋖-intervals) of [t]1. The shaded noncrossing partition π yields
noncrossing partitions π0, . . . , πp, obtained as the restrictions of π to the intervals I0, . . . , Ip. Pick
a noncrossing partition π′ with type (Lp,1). Denote by ρ the gap-insertion operadic product
introduced in [10]. Then

ρ(π′, π0, . . . , πp) = m

⊖

NC(π
′ ⊖ π).

Figure 16. Two partitions on the left are shaded noncrossing bipartitions, the one on the right is not

not shaded noncrossing bipartition.

Finally, we can of course linearize our monoids to obtain monoids in VectTW .

Observation 3.48. The linear extensions of m

⊖

P and m

⊖

NC turn the linear collections CP and
CNC into linear TW-monoids.

Later we will also need incomplete versions of interval and monotone partitions, which we
define now (which do not give rise to

⊖

-monoids).

Definition 3.49 (incomplete interval bipartitions). An interval bipartition of type t is an in-
complete bipartition π ∈ P(t) such that each block of π is an interval for the restriction of the
order ⋖ to [t]1; note that [t]0 is not considered a block of π and therefore is not necessarily
a ⋖-interval.

Given a translucent word t, we denote by I(t) the set of incomplete interval bipartitions.

Definition 3.50 (incomplete monotone bipartitions). An monotone bipartition of type t is
a noncrossing bipartition π ∈ NC(t) equipped with a total order (represented by an injective
labeling λ : π → J|π|K) such that, when the order is extended to {[t]0} ∪ π by declaring [t]0 the
minimum block (represented by λ([t]0) = 0), the resulting partition is a monotone bipartition
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Figure 17. Example of an incomplete interval bipartition.

of αt (i.e., a monotone partition of J|t|K with respect to necklace order). In the sequel, we denote
monotone partitions as pairs (π, λ) to make the labelling explicit. We use the term incomplete
monotone partition to refer to any monotone partition of type t for some translucent word t.

Given a translucent word t ∈ TW, we denote by M(t) the set of all monotone bipartitions
of type t.

Remark 3.51. One could define the set M||| of shaded monotone bipartitions of type t similar
to the noncrossing case, but it amounts to the same thing; indeed, since the block [t]0 is the
minimal block, it must be an outer block and can always be extended to the top. In diagrams of
incomplete monotone partitions, we still draw the red extension in order to make the comparison
with the noncrossing case easier.

Similarly, an incomplete interval bipartition is automatically shaded in the obvious sense.

4 Words on a two-faced family of random variables

Recall that the letters L and R shall act as placeholders, meant to be substituted by left or
right random variables. In this section, we formalize this through the introduction of a vertical
monoid in the category VectTW (depending on a choice of a finite set of left and right variables).
This monoid should be thought of as a two-faced analogon of double bar construction of an
algebra from which the shuffle point-of-view on moment-cumulant relations is derived [11]. It is
supported by a TW-collection of incomplete words on random variables. Some of the entries of
these incomplete words are drawn from the set of random variables we fixed and the others are
drawn from the placeholders L,R.

Finally, we define concatenation of two incomplete words as a horizontal product, yielding
the structure of a ⊖-semigroup. Besides, this semigroup is freely generated by words on random
variables (the opaque part of the collection of incomplete words, see Remark 3.32.)

With the aforementioned vertical composition, this second product on incomplete words yields
(almost) a dimonoid on incomplete words (to be precise, it is not quite a dimonoid because one
of the operations only forms a semigroup, not a monoid).

4.1 Collection of incomplete words on random variables

Let (A, φ) be an algebraic probability space and
(
AL,AR

)
a pair of faces, i.e., a pair of sub-

algebras of A. The unital linear functional φ will not play a role and can be forgotten about
while reading this section, but of course, it will be important later on when we discuss moment-
cumulant relations.

Pick two finite subsets
•
SL ⊂ AL,

•
SR ⊂ AR of random variables in this probability space and
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define

•
S =

•
SL ⊔

•
SR

as their disjoint union. We introduce more notation.

1. Put SL :=
•
SL ∪ {L}, SR :=

•
SR ∪ {R} and S := SL ⊔ SR =

•
S ⊔ {L,R}.

2. As for any alphabet, we denote S⋆,
•
S⋆, etc. the sets of words with letters (or entries) from

the set, including the empty word ∅.

3. Words in
•
S⋆ are referred to as words on random variables or complete words for short.

Words in S⋆ are referred to as incomplete words on random variables or incomplete words,
for short.

4. We put

S(L,0) := {L}, S(R,0) := {R},

S(L,1) :=
•
SL, S(R,1) :=

•
SR

and, for a translucent word t of length n,

W(t) := St(1) × St(2) × · · · × St(n) ⊂ S⋆;

recall the convention t(k) = (αt(k), bt(k)). The TW-indexed collection W = (W(t))t∈TW
is called collection of incomplete words on random variables.

5. We use the set decomposition

S⋆ =
⊔

t∈TW
W(t)

to define the type of a word in W as the translucent word type(w), or shortly tw, if

w ∈ W(tw). For example, if aL ∈
•
SL and aR ∈

•
SR, then type

(
aLaRLaRR

)
= (LRLRR, 11010)

6. For an incomplete word w, we write [w]1 := [type(w)]1 for the set of opaque positions and
[w]0 := [type(w)]0 for the set of translucent positions.

7. For a word in w ∈ W(t), we define sourcew := source t = αt and targetw := target t =
αt↾[t]0 .

Example 4.1. Let
•
SL =

{
aL, bL

}
,

•
SR =

{
aR

}
. Then

S =
{
L,R, aL, bL, aR

}
.

And then, for example,

W(LRL, 011) =
{
LaRaL, LaRbL

}
.

Remark 4.2. Again, we will mostly work with the linear TW-indexed collection CW instead.

4.2 Monoid and comonoid of incomplete words

Given two words w ∈ W(s), w′ ∈ W(t) with source s = target t, we define their composition as
the unique word w ◦ w′ ∈ W(s ◦ t) with

(w ◦ w′)↾[t]1 = w′↾[t]1 and (w ◦ w′)↾[t]0 = w.

To put it another way, the word w overwrites the placeholders in w′.
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Example 4.3. Continuing the example from Figures 6 and 7, let

w = xLLxRyR ∈ W(LLRR, 1011), w′ = LaLaRLRbLRbL ∈ W(LLRLRLRR, 01100101).

Then

w ◦ w′ = xLaLaRLxRbLyRbL ∈ W(LLRLRLRR, 11101111).

Observation 4.4. It is not difficult to see that the composition of words defined above is asso-
ciative. With

m

⊖

: W ⊖ W → W, (w,w′) 7→ w ◦ w′

and the unit η

⊖

: E

⊖

→ W defined by

η

⊖

(α,0)(c) = α,

W becomes a

⊖

-monoid. By linearly extending m

⊖

and η

⊖

, we obtain a linear

⊖

-monoid structure
on CW with

m

⊖

W : CW ⊖ CW → CW, m

⊖

W(w
⊖

w′) = w ◦ w′.

(Recall Notation 3.14, i.e., we write w
⊖

w′ instead of w ⊗ w′ if the types of w and w′, and
therefore w and w′ themselves, are composable.)

We consider now the coproduct ∆

⊖

W dual to the composition product m

⊖

W :

∆

⊖

W : CW → CW ⊖ CW, ∆

⊖

W(w) =
∑

w=w′◦w′′

w′ ⊖ w′′.

On the right-hand side of the formula, we again used Notation 3.14.
We will now give a more concrete formula for ∆

⊖

W by using the operations of restriction and
translucidation, extended to incomplete words.

Let w be an incomplete word and an subset I = {i1 < · · · < ip} ⊂ J|w|K. The restriction of w
to I is already defined for words over arbitrary alphabets, in this case, we get

w↾I := w(i1) . . . w(ip).

Translucidation has already been defined for translucent words, see equation (3.1). For the
incomplete word w, we define the translucidation at I as the word wI;0 with letters

wI;0(k) =


L if k ∈ I and w(k) ∈ SL,

R if k ∈ I and w(k) ∈ SR,

w(k) if k /∈ I.

Example. w = aℓbrLarR, type(w) = LRLRR, I = {2, 5}, wI;0 = aℓRLarR, w↾I = brR.

Note that type(w↾I) = type(w)↾I and type(wI;0) = type(w)I;0. If I ⊃ [w]0, then the
translucent words type(w↾I) and type(wI;0) are composable and

w = w↾I ◦ wI;0. (4.1)

Furthermore, any factorization of w is of the form (4.1) for a unique subset [w]0 ⊂ I ⊂ J|w|K.
This yields the following concrete description of the coproduct ∆

⊖

W .
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Observation 4.5. For any incomplete word w,

∆

⊖

W(w) =
∑

I⊂J|w|K
I⊃[w]0

w↾I

⊖

wI;0.

An admissible cut of a word w is a pair (ℓ, u) of incomplete words, with

ℓ = w↾I , u = wI;0

and [w]0 ⊂ I ⊂ J|w|K. We denote by Adm(w) the set of all admissible cuts of a word w. With
these notations,

∆

⊖

W(w) =
∑

(ℓ,u)∈Adm(w)

ℓ

⊖

u.

Example 4.6.

∆

⊖

W
(
aL1LRa

R
2 a

R
3

)
= LR⊗ aL1LRa

R
2 a

R
3 + aL1LRa

R
2 a

R
3 ⊗ LLRRR

+ aL1LR⊗ LLRaR2 a
R
3 + LRaR2 ⊗ aL1LRRa

R
3 + LRaR3 ⊗ aLLRaR2R

+ aL1LRa
R
2 ⊗ LLRRaR3 + aL1LRa

R
3 ⊗ LLRaR2R+ LRaR2 a

R
3 ⊗ aL1LRRR.

4.3 Double monoid of words on random variables

As for translucent words, we also write w⋖i := w↾{x:x⋖i} and w⋗i := w↾{x:x⋗i} for an incomplete
word w and an integer i ∈ J|w|K.

Definition 4.7 (horizontal semigroup). We define the structure of a ⊖-semigroup on W,

m⊖
W : CW ⊖ CW → CW,

as follows. Pick a translucent word t ∈ TW with [t]0 ̸= ∅, an integer i ∈ [t]0 and

w− ⊖ w+ ∈ (CW ⊖ CW)(t)

such that w− ∈ W(t⋖i), w+ ∈ W(t⋗i). Then, m⊖
W(w− ⊖ w+) is the unique incomplete word

in W(t) satisfying

m⊖
W(w− ⊖ w+)⋖i = w−, m⊖

W(w− ⊖ w+)(i) = αt(i), m⊖
W(w− ⊖ w+)⋗+ = w+.

Further below, we prove the associativity of m⊖
W . The above definition looks cumbersome,

but it is not difficult to grasp, see Example 4.10.

Remark 4.8. For a tensor w− ⊖ w+ ∈ W ⊖W, we replace the symbol ⊗ by ⊖ to emphasize
the belonging to W ⊖W.

Be aware that given two incomplete words w− and w+ computing the horizontal product
m⊖

W(w−⊖w+) between those two words is, in general, meaningless. In fact, a pair of incomplete
words w−, w+ does not (in general) yield an element of the tensor product CW⊖CW. For this to
be true, the types tw− and tw+ of w− and w+ respectively should be compatible, in the sense that
if αtw− contains a letter R then αtw+ (k) = R for all k ∈ J|w+|K, i.e., αtw+ is a word on just the
letter R (note that this is equivalent to the symmetric condition αtw+ (j) = L =⇒ αtw− ∈ {L}⋆).

Even in the case where the words are in fact compatible, one needs to specify the translucent
word t such that w− ⊖ w+ ∈ (W ⊖W)(t). For example, take w− = LaL and w+ = bR. The two
words w− and w+ are compatible. Then w− ⊖ w+ can be either interpreted as an element in
(W⊖W)(LLLR) or in (W⊖W)(LLRR). In the following, we will always be specific about which
component of the collection W ⊖W an element w− ⊖ w+ should be considered as part of.



Shuffle Algebras and Non-Commutative Probability for Pairs of Faces 31

Remark 4.9. In Definition 4.7, suppose, for example, that i = 1, which implies t⋖i = ∅ and w−

is the empty word. Then, m⊖
W(w− ⊖ w+) = αt(1)w

+.

Example 4.10. Let w− = LRaLaR and w+ = bRRR. These words are compatible. We consider

w− ⊖ w+ ∈ (CW ⊖ CW)(t), t := (RLRRRRLR, 10000011).

Denote k̇ the kth element in J|t|K = {1, . . . , 8} with respect to necklace order ≤· , i.e.,

1̇ = 2, 2̇ = 7, 3̇ = 8, 4̇ = 6, 5̇ = 5, 6̇ = 4, 7̇ = 3, 8̇ = 1.

The integer i ∈ [t]0 of Definition 4.7 is then given by 5; indeed, the word w−⊖w+ is composed –
in necklace order – of the four letters of w− in positions 1̇, 2̇, 3̇, 4̇, then a placeholder in position
i = 5̇ = 5, and finally w+ on positions 6̇, 7̇, 8̇. Note how one can always deduce the position i
just from knowing the inputs, w−, w+ and t.

To find the word m⊖
W(w− ⊖ w+), we also have to remember that the letters of w− and w+

are given in natural order, not in necklace order. To keep track of the different labellings of the
positions according to natural and necklace order, it is best to draw a table with the following
rows:

� j ∈ J|t|K in natural order,

� the letters of αt in natural order,

� the corresponding necklace order positions k̇ with k̇ = j,

� the letters of w− ⊖ w+:

– letters of w− in natural order (i.e., from the left in the table) to the first necklace
order positions (here: 1̇, . . . , 4̇ in natural order 1̇ = 2 < 4̇ = 6 < 2̇ = 7 < 3̇ = 8),

– αt(i) in position i (here: 5̇),

– letters of w+ in the natural order to the final positions in necklace order (i.e., the
remaining open positions; here: 8̇ = 1 < 7̇ = 3 < 6̇ = 4).

In the concrete example, we obtain, using colors to visually identify w− and w+ inside m⊖
W(w−⊖

w+):

nat. pos. 1 2 3 4 5 6 7 8

αt R L R R R R L R

neckl. pos. 8̇ 1̇ 7̇ 6̇ 5̇ 4̇ 2̇ 3̇

m⊖
W(w− ⊖ w+) bR L R R R R aL aR

(4.2)

Owing to Propositions 3.25 and 3.27, the vertical composition W ⊖ W is endowed with
a horizontal semigroupal product:

m⊖
W ⊖ W : (CW ⊖ CW)⊖ (CW ⊖ CW) → CW ⊖ CW.

Example 4.11. Consider the words w−
1 = LRaL, w−

2 = LRLaR. The two words w−
1 and w−

2 are
composable and yield w− := w−

1 ◦ w−
2 = LRaLaR. Likewise for the following words: w+

1 = bRR,
w+
2 = RRbR, w+ := w+

1 ◦w+
2 = bRRbR. Since w−LRaLaR and w+ = bRRbR are compatible words,

the above four words yield an element in(
(CW ⊖ CW)⊖ (CW ⊖ CW)

)
(t)

with t = (RLRRRRLR, 10000011).
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Recall that, by definition,

m⊖
W ⊖ W((w−

1

⊖

w−
2 )⊖ (w+

1

⊖

w+
2 )) = m⊖

W(w−
1 ⊖ w+

1 )

⊖

m⊖
W(w−

2 ⊖ w+
2 ) ∈ (CW ⊖ CW)(t).

We draw a table similar to (4.2), but the composable pairs w−
1

⊖

w−
2 and w+

1

⊖

w+
2 are written in

two separate rows. We use colours again so that w− and w+ can be easily recognized and also
write vertical and horizontal tensor products simply as superposition and juxtaposition.

nat. pos. 1 2 3 4 5 6 7 8

αt R L R R R R L R

neckl. pos. 8̇ 1̇ 7̇ 6̇ 5̇ 4̇ 2̇ 3̇

m⊖
W ⊖ W

(
w−
1

w−
2

∣∣∣∣w+
1

w+
2

)
bR L R R R aL

R L R bR R R L aR

The last row containsm⊖
W(w−

2 ⊖w+
2 ) ∈ (CW⊖CW)(t) and is found just as before in Example 4.10.

In the row showing m⊖
W(w−

1 ⊖w+
1 ) ∈ (CW⊖CW)([m⊖

W(w−
2 ⊖w+

2 )]0), the entries are obtained by
the same rules, but restricted to the positions in which m⊖

W(w−
2 ⊖w+

2 ) is translucent, i.e., those
positions in which m⊖

W(w−
2 ⊖ w+

2 ) has a placeholder. In our usual notation, the result reads

m⊖
W ⊖ W((w−

1

⊖

w−
2 )⊖ (w+

1

⊖

w+
2 )) = bRLRRRaL

⊖

RLRbRRRLaR.

From the table, one immediately sees the composability of the obtained words, and could also
easily read off their composition.

Proposition 4.12. The horizontal semigroup of incomplete words is freely generated by its
opaque part, that is

W ≃ F(U(W))

with the adjoint functors F and U as defined in Section 3.5.

Proof. Pick a translucent word t ∈ TW and a non-empty incomplete word on random variables
w ∈ W(t). Let [t]0 = {i1 ⋖ · · · ⋖ ip}. Denote by wj the restriction of w to Kij−1, ijJ⋖, for
1 ≤ j ≤ p+ 1, with the convention that i0 = −∞⋖, ip+1 = +∞⋖ (see Notation 2.3) and set

Φ(w) := w0 ⊖ · · · ⊖ wp+1 ∈ F(U(W))(t).

Then Φ yields in injective morphism Φ: W → F(U(W)) of linear TW-collections. The inverse
morphism Φ−1 satisfies

Φ−1(w1 ⊖ · · · ⊖ wp) = m⊖
W(w1 ⊖ · · · ⊖ wp),

where w1 ⊖ · · · ⊖ wp ∈ F(U(W))(t). ■

In the following, we use the shorter notation

R :=
(
m⊖

W

⊖

m⊖
W
)
◦RW,W,W,W .

Observation 4.13. Pick w− ⊖ w+ ∈ (W ⊖ W)(t) and set w = m⊖
W(w− ⊖ w+). The map R

yields a bijection between the set of admissible cuts of w and pairs of an admissible cut of w−

and an admissible cut of w+.
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Example 4.14. Take t = (RLRRRRL, 1001001), i = 5, w = bRLRbRRRaL, w− = LRaL, w+ =
bRRbR. In the following table, we listed cuts of w and pairs of a cut of w− and w+ that correspond
through R.

Adm(w) LRbRRRaL, bRLRRRRL bRLRRRaL, RLRbRRRL bRLRbRRR, RLRRRRaL

Adm(w+) RbR, bRRR bRR, RRbR bRRbR, RRR

Adm(w−) LRaL, LRL LRaL, LRL LR, LRaL

Proposition 4.15.

∆

⊖

W ◦m⊖
W = m⊖

W ⊖ W ◦
(
∆

⊖

W ⊖∆

⊖

W
)
.

Proof. Pick compatible words with w−⊖w+ ∈ (W ⊖W)(t) and set w = m⊖
W(w−⊖w+). Then

one has

∆

⊖

W(w) =
∑

(ℓ,u)∈Adm(w)

ℓ⊗ u =
∑

(ℓ−,u−)∈Adm(w−)
(ℓ+,u+)∈Adm(w+)

m⊖
W((ℓ− ⊗ u−)⊖ (ℓ+ ⊗ u+))

= m⊖
W ⊖ W

(
∆

⊖
W(w−)⊖∆

⊖

W(w+)
)

as needed. ■

4.4 Unshuffle structure

We now come to the core of the present article: we show that ∆

⊖

W introduced in Section 4.2

splits into two parts ∆

⊖

≺ and ∆
⊖

≻ satisfying the co-shuffle relations.
We start with a short account of shuffle algebras and related structures. The abstract notion

of a shuffle product and its decomposition into two nonassociative products goes back to the
work of Eilenberg, MacLane, and Schützenberger in the 1950s. For introductory materials on
shuffle algebras, we refer the reader to [28, Section 5]. To avoid confusion, we use ⊗C for the
tensor product over the category of vector spaces.

Definition 4.16. A counital unshuffle coalgebra is a coaugmented coassociative coalgebra C =
C⊕ C̄ with coproduct

∆(c) := 1⊗C c+ c⊗C 1 + ∆̄(c)

such that the reduced coproduct on C̄ splits, ∆̄ = ∆≺ +∆≻ with

(∆≺ ⊗C id) ◦∆≺ = (id⊗C ∆̄) ◦∆≺,

(∆≻ ⊗C id) ◦∆≺ = (id⊗C ∆≺) ◦∆≻,

(∆̄⊗C id) ◦∆≻ = (id⊗C ∆≻) ◦∆≻.

The maps ∆≺ and ∆≻ are called respectively the left and right half-unshuffle coproducts.

Definition 4.17. A unital shuffle algebra A is an augmented algebra, which means

A = C⊕ Ā,

where Ā is a two-sideal ideal of A equipped with an algebra product �, which splits into two
(nonassociative) bilinear products ≺ and ≻ on Ā,

a � b = a ≺ b+ a ≻ b, a, b ∈ Ā,

satisfying the shuffle relations, with a, b, c ∈ Ā,

(a ≺ b) ≺ c = a ≺ (b � c), a ≻ (b ≻ c) = (a � b) ≻ c, (a ≻ b) ≺ c = a ≻ (b ≺ c).
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In the following paragraphs, Definition 4.16 undergoes a very light “internalization”3 proce-
dure yielding the definition of a coaugmented conilpotent unshuffle coalgebra but in the category
of linear TW-collections. To keep the presentation contained, and because the study of unshuffle
algebras in the category of TW-indexed collections in full generality is not the core of the present
work, we restrain from giving a general definition of such an object (but we give an example of
it). The reader will, without much effort, be able to extract it from Theorem 4.20.

We now turn to the definition of the unshuffle structure on incomplete words on random
variables.

Recall, (3.8), that we denote by W+ the TW-indexed collection with W+(t) = W(t) if bt ̸= 0
and W+(t) = ∅ if bt = 0.

For w ∈ W+ and a set A ⊂ J|w|K, we denote by
∧
· A the minimum in A with respect to the

necklace order ⋖. In particular,
∧
· [w]1 is the position of the first letter of w in necklace order.

Definition 4.18. We define two TW-collection morphisms, called left and right half-unshuffle
coproduct, respectively,

∆

⊖

≺,∆

⊖

≻ : CW+ → CW+ ⊖ CW+

by, for w ∈ W+,

∆

⊖

≺(w) =
∑

I⊊J|w|K
[w]0⊊I∧
· [w]1∈I

w↾I ⊗ wI;0, ∆

⊖
≻(w) =

∑
I⊊J|w|K
[w]0⊊I∧
· [w]1 ̸∈I

w↾I ⊗ wI;0.

We also put ∆̄

⊖

W = ∆

⊖

≺ +∆

⊖

≻ and call it reduced unshuffle coproduct.

Example 4.19.
•
S =

{
aL, bL

}
⊔
{
aR, bR

}
, then, for example,

∆

⊖

≺
(
aLLbLbR

)
= aLL⊗ LLbLbR + aLLbL ⊗ LLLbR + aLLbR ⊗ LLbL,

∆

⊖

≻
(
aLLbLbR

)
= LbLbR ⊗ aLLLR+ LbL ⊗ aLLLbR + LbR ⊗ aLLbLR,

where, for legibility, we highlight the letter at position
∧
· [w]1.

Theorem 4.20. The linear TW-indexed collection CW equipped with the coproduct ∆

⊖

W is an
unshuffle conilpotent coaugmented comonoid, by which we mean the following.

First, there exist two TW-indexed collection morphisms ε : W → E

⊖

and η : E

⊖

→ W, named
co-unit and co-augmentation map, defined by

ε(α,0)(α) =c and εt = 0 for t ̸= (α,0),

η(α,0)(c) = α.

and satisfying

(ε

⊖

id) ◦∆

⊖

= id, (id

⊖

ε) ◦∆

⊖

= id, ε ◦ η = id.

Second, the coproduct ∆

⊖

W splits for w ∈ W+ as

∆

⊖

W(w) = w

⊖

η(c) + η(c)

⊖

w + ∆̄

⊖

W(w).

Third, the unshuffle relations are satisfied,(
∆

⊖

≺

⊖

id
)
◦∆

⊖

≺ =
(
id

⊖

∆̄

⊖

W
)
◦∆

⊖

≺,
(
id

⊖

∆

⊖

≻
)
◦∆

⊖

≻ =
(
∆̄

⊖

W

⊖

id
)
◦∆

⊖

≻,(
∆

⊖

≻

⊖

id
)
◦∆

⊖

≺ =
(
id

⊖

∆

⊖

≺
)
◦∆

⊖

≻.

Finally, ∆̄

⊖

W is nilpotent in the sense that for every w ∈ W+, there is an n such that ∆̄

⊖

W
n
= 0(

defined recursively, ∆̄

⊖

W
1
= ∆̄

⊖

W , ∆̄

⊖

W
k+1

:=
(
∆̄

⊖

W

⊖

id
)
∆̄

⊖

W
k)
.

3See, for example, the corresponding article on nLab [34].



Shuffle Algebras and Non-Commutative Probability for Pairs of Faces 35

Proof. The only statements for which proofs are needed are the unshuffle relations and the
nilpotency of ∆̄

⊖

W . Nilpotency follows from the fact that if w ∈ W+, then ∆̄

⊖

(w) is a sum of
tensor w′ ⊖ w′ where w and w′ are translucent words with strictly fewer of opaque letters than w
has. Iterating, we eventually end up applying ∆̄

⊖

on some η(c), which gives 0.
We now turn to proving the unshuffle relations. Pick w an incomplete word. Pick a pair

of subsets [w]0 ⊂ X1 ⊂ X2 ⊂ J|w|K. We denote by k 7→ k : X1 → J|X1|K the unique strictly
increasing bijection (i.e., the inverse of the map k 7→ ik for X1 = {i1 ⋖ · · ·⋖ ip}). Then,

(wX2;0)↾X1
= (w↾X1

)
X2;0

.

Coassociativity of ∆

⊖

W entails∑
[w]0⊂X2⊂X1

w↾X2
⊗ (wX2;0)↾X1

⊗ wX1;0 =
∑

[w]0⊂X1

[w]0⊂X2⊂J|X1|K

(w↾X1
)↾X2

⊗ (w↾X1
)
X2;0

⊗ wX1;0.

Now,
∧
· [w]1 ∈ X2 if and only if (with obvious notation)

∧
· [w]1 ∈ X2 and moreover,

∧
· [w↾X1

]1 =∧
· [w]1.

This implies the following chain of equalities,(
∆

⊖

≺

⊖

id
)
◦∆

⊖

≺(w) =
∑

[w]0⊊X1

[w]0⊊X2⊊J|X1|K∧
· [w↾X1

]1∈X2

(w↾X1
)↾X2

⊗ (w↾X1
)
X2;0

⊗ wX1;0

=
∑

[w]0⊊X2⊊X1∧
· [w]1∈X2

w↾X2
⊗ (wX2;0)↾X1

⊗ wX1;0

=
(
id

⊖

∆̄

⊖

W
)
◦∆

⊖

≺(w).

We prove likewise the remaining two identities. If
∧
· [w]1 ∈ Xc

2, then
∧
· [wX2;0] =

∧
· [w]1. This

alone implies(
id

⊖
∆

⊖
≻
)
◦∆

⊖

≻(w) =
∑

[w]0⊊X2⊊X1∧· [w]1∈Xc
1

w↾X2
⊗ (wX2;0)↾X1

⊗ wX1;0

=
∑

[w]0⊊X1

[w]0⊊X2⊊J|X1|K∧
· [w]1∈Xc

1

(w↾X1
)↾X2

⊗ (w↾X1
)
X2;0

⊗ wX1;0

=
(
∆̄

⊖

W

⊖

id
)
◦∆

⊖

≻(w).

Finally, if
∧
· [w]1 ∈ X1, since

∧
· [w↾X1

]1 =
∧
· [w]1 ∈ J|X1|K \X2 is equivalent to

∧
· [w]1 ∈ X1 \X2,

one gets(
∆

⊖

≻ ⊗ id
)
◦∆

⊖

≺(w) =
∑

[w]0⊊X1

[w]0⊊X2⊊J|X1|K∧
· [w↾X1

]1∈J|X1|K\X2

(w↾X1
)↾X2

⊗ (w↾X1
)
X2;0

⊗ wX1;0

=
∑

[w]0⊊X2⊊X1∧
· [w]1∈X1\X2

w↾X2
⊗ (wX2;0)↾X1

⊗ wX1;0

=
(
id⊗∆

⊖

≺
)
◦∆

⊖

≻(w).

This ends the proof. ■



36 J. Diehl, M. Gerhold and N. Gilliers

Proposition 4.21. One has

∆

⊖

≺,≻ ◦m⊖
W = m⊖

W ⊖ W ◦
(
∆

⊖

≺,≻ ⊖∆

⊖

W
)
.

Proof. The proof follows the same line of arguments as in Corollary 4.15 ■

We now turn our attention to the dual structures. Given two linear functionals

ℓ1, ℓ2 :
⊕
t∈TW

CW(t) → C

we define their (full shuffle) convolution product ℓ1 ⋆ ℓ2 by

ℓ1 ⋆ ℓ2 = mC ◦ (ℓ1

⊖

ℓ2) ◦∆

⊖

W ,

where mC is the product of complex numbers.
Since the reduced coproduct ∆̄

⊖

splits into two parts, the bilinear product ⋆ splits as well
into two nonassociative products.

Note that we identify a linear functional in (CW)∗ with ℓ◦η = 0 with the functional in (CW+)∗

obtained by restriction.

Definition 4.22. For two linear functionals ℓ1, ℓ2 ∈ (CW+)∗, we define the left and right
half-shuffle convolution products

ℓ1 ≺ ℓ2 := mC ◦ (ℓ1

⊖

ℓ2) ◦∆

⊖

≺, ℓ1 ≻ ℓ2 := mC ◦ (ℓ1

⊖

ℓ2) ◦∆

⊖

≻.

Corollary 4.23. The space of linear functionals which are constant on the coaugmentation part
of CW,

Cε⊕ (CW+)∗ = {ℓ(CW+)∗ | ℓ ◦ η ∈ Cε},

is a unital shuffle algebra with respect to the splitting

ℓ1 ⋆ ℓ2 = ℓ1 ≺ ℓ2 + ℓ1 ≻ ℓ2

of the shuffle convolution into left and right half-shuffle convolution. Furthermore, for every
w ∈ (CW+), there exists an n0 ∈ N such that (ℓ1 ⋆ · · · ⋆ ℓn)(w) = 0 for all n > n0 and all
ℓ1, . . . , ℓn ∈ (CW+)∗.

Proof. From ∆

⊖

W(η(c)) = η(c)

⊖

η(c), we easily conclude that (CW+)∗ is a two-sided ideal.
The other claims follow immediately from Theorem 4.20. ■

The two products ≺ and ≻ are partially extended to Cε⊕(CW+)∗. This amounts to ascribing
meaning to ℓ ≺ ε and ε ≻ ℓ with ℓ ∈ (CW+)

∗
by setting

ℓ ≺ ε = ℓ, ε ≻ ℓ = ℓ.

and ε ≺ ℓ = 0 = ℓ ≻ ε. Notice that the expressions ε ≺ ε and ε ≻ ε are not defined.
The reader is directed to [29] for the definition of and a short introduction to preLie algebras.

Proposition 4.24. Denote by G the set of linear functionals on CW equal to one on the co-
augmentation part of CW,

G = {ℓ : CW → C, ℓ ◦ η = ε}.

Then, G is a group if equipped with the convolution product ⋆. Besides, the set

g = {ℓ : CW → C, ℓ ◦ η = 0}

is a preLie algebra for the preLie product

ℓ1 ◁ ℓ2 := ℓ1 ≺ ℓ2 − ℓ2 ≻ ℓ1, ℓ1, ℓ2 ∈ g. (4.3)
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Proof. Invertibility of ℓ ∈ G follows from the “argumentwise nilpotency”: ℓ−1(w) =
∑∞

k=0(ε−
ℓ)⋆k(w) where the right hand side is a finite sum. The second statement is a special case of
the well-known fact that, for any shuffle algebra, (4.3) defines a preLie product, see, e.g., [11,
Section 3.1]. ■

In the next two and final sections, we exhibit the two sub preLie algebras of g relevant to
our work. We end this section with the definition of the two “time-ordered” exponentials or
half-shuffle exponentials

exp≺(k) := ε+
∞∑
n=1

k≺n, exp≻(k) := ε+
∞∑
n=1

kn≻,

where k≺1 = k, k≺(n+1) = k ≺ k≺n and k1≻ = k, k(n+1)≻ = kn≻ ≻ k.

5 Lie theory of two-faced independences

In this section, we exhibit two sub-preLie algebras of the preLie algebra g introduced in the
previous section in Proposition 4.24. We need a few additional items of notation. Pick an
incomplete word w with length n. Given a subset I ⊂ [w]1, we write Î := I ∪ [w]0 ⊂ [n]. Pick
two linear forms f, g ∈ g, then

(f ◁ g)(w) = (f ≺ g − g ≻ f)(w) =
∑

I⊂[w]1
∧· [w]1∈I

f(w↾Î)g(wÎ;0)−
∑

I⊂[w]1∧
· [w]1 ̸∈I

g(w↾Î)f(wÎ;0).

Besides translucidation and restrictions of translucent words and incomplete words on random
variables, it will be convenient to consider the same operations on incomplete bipartitions. Let t
be a translucent word and π ∈ P(t) an incomplete bipartition. For a subset of blocks of
P ⊂ π ∪ {[t]0}, π↾P is the restriction of π to P (this includes re-indexing) and πP;0 is the
incomplete bipartition obtained from π by turning translucent all blocks in π \ P . One has

π↾P ∈ P(t↾supp(P )), πP;0 ∈ P(tsupp(P );0),

where supp(P ) :=
⋃

W∈P W . See Figure 18 for an example.

Figure 18. An incomplete bipartitition π, its restriction π↾P and its translucidation πP;0. Here,

P contains [t]0 and the two-element block on the bottom.

5.1 preLie algebra I

Recall Notation 3.43, int(t) = {I⋖1 (t)⋖ · · ·⋖ I⋖k(t)(t)}. For w ∈ W we write I⋖j (w) = I⋖j (tw) and

int(w) = int(tw).

Definition 5.1. We introduce the following subsets of linear functionals (the index I stands for
interval):



38 J. Diehl, M. Gerhold and N. Gilliers

� Define MI to be the set of all linear forms on CW that are multiplicative in the following
sense,

f ∈ MI ⇔ f(w) =
∏

J∈int(w)

f(w↾J), w ∈ W. (5.1)

� Define mI to be the set of all linear forms f on CW such that

– The support of f is contained in the set of words whose [t]1 has only one connected
component, i.e.,

∀w ∈ W : (| int(w)| ≠ 1 ⇒ f(w) = 0). (5.2)

– For words w ∈ W(t) with | int(w)| = 1, the value f(w) only depends upon the
restriction w↾[t]1 of w to the places tagged 1:

f(w) = f(w↾[t]1). (5.3)

Remark 5.2. Notice that for a linear form f ∈ MI the above formula implies f(w) = 1 if w is
a word in {L,R}⋆ since in that case, the product on the right-hand side of (5.1) is empty (thus
conventionally equal to 1). Hence, Definition 5.1 is equivalent to

MI =
{
α ∈ HomSemiGrp(⊖)

((
W,m⊖

W
)
,C⊖) : α(u) = 1, u ∈ {L,R}⋆

}
,

where C⊖ is the linear TW-indexed collection with C⊖(t) = C, t ∈ TW.

We denote by TW I ⊂ TW the set of all translucent words t with | int(t)| = 1, i.e., [t]1 a ⋖-
interval. We also use the notation WI for the set of all incomplete words with | int(w)| = 1, i.e.,
those words whose translucent type lies in TW I. At times we call words in WI interval words.

Proposition 5.3. The preLie product ◁ restricts to linear space mI. Furthermore, for a word
w ∈ W(t), | int(w)| = 1 the following formula holds for all f, g ∈ mI,

(f ◁ g)(w) =
∑

I1,I2,J⊂[t]1
I1,I2 ̸=∅

I1⋖J⋖I2 ⋖−interval,
I1⊔J⊔I2=[t]1

f(w↾I1∪I2)g(w↾J). (5.4)

Example 5.4. Take t = (LRRLL, 10111). Then [t]1 is a ⋖-interval. Then, for example, w :=
aLRaRbLcL ∈ W(t) and for f, g ∈ mI, one has

(f ◁ g)(w) = f
(
aLaR

)
g
(
bLcL

)
+ f

(
aLaRcL

)
g
(
bL
)
+ f

(
aLaRbL

)
g
(
cL
)
.

Proof of Proposition 5.3. Let f, g ∈ mI be linear functionals.

We will show first that f ◁ g(w) = 0 whenever | int(w)| ≠ 1.

� | int(w)| = 0 means that w ∈ {L,R}⋆ is a word containing only placeholders. Then ∆

⊖

≺(w),
∆

⊖

≻(w) are zero and, therefore, (f ◁ g)(w) = 0.

� If | int(w)| > 2, then it is immediate to see that, in every term w′ ⊖ w′′ occurring in the
sum expressing ∆

⊖

≺(w), ∆

⊖

≻(w), one has | int(w′)| ≥ 2 or | int(w′′)| ≥ 2 (or both), so that
f(w′) = 0 or g(w′′) = 0. Consequently, f ◁ g(w) = 0.
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Figure 19. Some example sets appearing in the calculation of f ◁ g.

� Similarly, if int(w) = {I1 ⋖ I2}, there are exactly two ways to write w = w′ ◦ w′′ with
interval words w′, w′′, namely

w = w↾I1∪[w]0 ◦ wI1;0 = w↾I2∪[w]0 ◦ wI2;0,

and, clearly,
∧
· J|w|K ∈ I1. By (5.2), all other summands in the sums expressing ∆

⊖

≺(w),
∆

⊖

≻(w) do not contribute when calculating f ◁ g(w). By (5.3), f(w↾I1∪[w]0) = f(w↾I1)
and g(wI1;0) = g(w↾I2), therefore f ≺ g(w) = f(w↾I1)g(w↾I2). Analogously, g ≻ f(w) =
g(w↾I2)f(w↾I1). Therefore, f ◁ g(w) = 0.

This proves that (5.2) holds for f ◁ g.
It is easy to see that (5.4) implies that (5.3) holds for f ◁ g. Therefore, showing (5.4) will

conclude the proof of the proposition.
We start the second half of the proof with some general observations. If w is an interval word

and ∅ ̸= I ⊂ [w]1, then

� w↾I is always an interval word;

� wI;0 is an interval word if and only if one of the following situations applies: either I is
a ⋖-interval containing exactly one of the ⋖-endpoints of the ⋖-interval

∧
· [w]1,

∨· [w]1, or
I = I1 ∪ I2 is the union of two ⋖-intervals each containing one ⋖-endpoint,

∧
· [w]1 ∈ I1,∨· [w]1 ∈ I2.

Let w ∈ TW, | int(w)| = 1. Using (5.3), we can write

(g ≻ f)(w) =
∑

[w]0⊂X∧
· [w]1 /∈X

g(w↾X)f(wX;0) =
∑

J⊂[w]1∧
· [w]1 /∈J

f(wJ;0)g(w↾J).

The summands on the right-hand side vanish except when w↾J and wJ;0 are both interval
words. By the previous observations, w↾J is automatically an interval word. On the other
hand, wJ;0 is an interval word if and only if J is a ⋖-interval containing

∨· [w]1. In that case,
I := [w]1 \ J is a ⋖-interval containing

∧
· [w]1 and f(wJ;0) = f(w↾I) by (5.3). This amounts to

(g ≻ f)(w) =
∑

I⋖J ⋖-intervals
I∪J=[w]1

f(w↾I)g(w↾J).
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For the second half product, we find

(f ≺ g)(w) =
∑

[w]0⊂X∧
· [w]1∈X

f(w↾X)g(wX;0) =
∑

I⊂[w]1∧
· [w]1∈I

f(w↾I)g(wI;0).

If I is a ⋖-interval, we get exactly the same terms as in the calculation of (f ≻ g)(w). However,
for J := [w]1 \ I to be a ⋖-interval, it is enough that I = I1 ∪ I2 is the union of two ⋖-intervals
I1 ⋖ I2 with

∧
· [w]1 ∈ I1,

∨· [w]1 ∈ I2, giving additional summands corresponding to both I1
and I2 nonempty.

By taking the difference between (f ≺ g)(w) and (g ≻ f)(w), we finally find (5.4). ■

Proposition 5.5. The set MI is a monoid for the convolution product ⋆.

Proof. The proof exploits the compatibility between the monoidal product

⊖

and the semi-
groupal product ⊖ exposed in Section 4.3. Following Definition 5.1, we note that MI is a set of
morphisms of ⊖-semigroups,

f ∈ MI ⇐⇒ f(m⊖
W(w ⊖ w′)) = f(w)f(w′) and

f(u) = 1 for all w ⊖ w′ ∈ W ⊖W, u ∈ {L,R}⋆. (5.5)

From this viewpoint, f ∈ MI(S) is considered valued in the linear TW-indexed collection C⊖

introduced in Remark 5.2. The W-indexed collection C⊖ supports a vertical product

m

⊖

C : C⊖ ⊖ C⊖ → C⊖

(this product already appears, in disguise, in the definition of the convolution product ⋆):

m

⊖

C(z

⊖

z′) = zz′, z

⊖

z′ ∈ C⊖ ⊖ C⊖

and another product m⊖
C : C⊖ ⊖ C⊖ → C⊖,

m⊖
C (z ⊖ z′) = zz′, z ⊖ z′ ∈ C⊖ ⊖ C⊖.

Both products come from the interpretation of the multiplication of complex numbers either as
a vertical product or as a horizontal product. Of course, both products are compatible in the
following sense:

(m

⊖

C ◦ (m⊖
C ⊗m⊖

C )) ◦RC⊖,C⊖,C⊖,C⊖ = m

⊖

C ⊖m

⊖

C,

which is equivalent to saying that m

⊖

C is a morphism of ⊖-semigroups. Then (5.5) is equivalent
to

f ∈ MI ⇐⇒ f ◦m⊖
W = m⊖

C ◦ (f ⊖ f), f(u) = 1, u ∈ {L,R}⋆.

Pick two linear functionals f, g ∈ MI and w− ⊖ w+ ∈ CW ⊖ CW. Then, using Corollary 4.15
and (3.7),

(f ⋆ g)
(
m⊖

W(w− ⊖ w+)
)
=

(
m

⊖

C ◦ (f ⊖

g) ◦∆

⊖

◦m⊖
W
)
(w− ⊖ w+)

=
(
m

⊖

C ◦ (f ⊖

g) ◦m⊖
W ⊖ W

)(
∆

⊖

(w−)⊖∆

⊖

(w+)
)

=
(
m

⊖

C ◦ (f ⊖

g)
(
m⊖

W

⊖

m⊖
W
)
◦RW,W,W,W

)(
∆

⊖

(w−)⊖∆

⊖

(w+)
)

=
(
m

⊖

C ◦
(
m⊖

C

⊖

m⊖
C
)
◦ ((f ⊖ f)

⊖

(g ⊖ g)) ◦RW,W,W,W
)

×
(
∆

⊖

(w−)⊖∆

⊖

(w+)
)
.
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Owing to naturality of R, and using that

m

⊖

C ◦
(
m⊖

C

⊖

m⊖
C
)
◦RC⊖,C⊖,C⊖,C⊖((z1

⊖

z2)⊖ (z3

⊖

z4))

= z1z2z3z4 = m⊖
C ◦ (m

⊖

C ⊖m

⊖

C)((z1

⊖

z2)⊖ (z3

⊖

z4)),

we continue the previous calculation and get

(f ⋆ g)
(
m⊖

W(w− ⊖ w+)
)
=

(
m

⊖

C ◦ (m⊖
C

⊖

m⊖
C ) ◦RC⊖,C⊖,C⊖,C⊖ ◦ ((f ⊖

g)⊖ (f

⊖

g))
)

×
(
∆

⊖

(w−)⊖∆

⊖

(w+)
)

=
(
m⊖

C ◦ (m

⊖

C ⊖m

⊖

C) ◦ ((f

⊖

g)⊖ (f

⊖
g))

)(
∆

⊖

(w−)⊖∆

⊖

(w+)
)

= m⊖
C
(
(f ⋆ g)(w−)⊖ (f ⋆ g)(w+)

)
,

which shows that f ⋆ g ∈ MI. At this point, we have shown that MI is a semigroup. Every
element of MI is invertible, what is left to prove is that this inverse is also in MI. We postpone
the proof of this point after Theorem 5.10. ■

We will prove later on (Corollary 5.11 of Theorem 5.10) that MI is not only a monoid but
a group. The convolution product on MI is defined as the dual of the vertical coproduct ∆

⊖

W ,
while elements in MI are compatible with respect to a horizontal product. In that respect,
MI does not fit in the classical theory of pro-algebraic groups. To emphasize the differences,
we briefly recall what a pro-algebraic group is. Such a group GB(A) can be represented as the
convolution group of algebra morphisms of a (plain, classical) graded connected augmented co-
nilpotent bialgebra (in the category Vect)

(
B̄ = C·1B⊕B,∆,m, ε

)
with values in a commutative

unital algebra A,

GB(A) = HomAlg(B,A).

An infinitesimal morphism κ : B → A is a map such that κ(1B) = 0 and κ(ab) = ε(a)κ(b) +
κ(a)ε(b). The space gB(A) of infinitesimal morphisms is a Lie algebra for the bracket [f, g] =
f ⋆B g − g ⋆B f . The two sets GB(A) and gB(A) are in bijection through the exponentials and
its inverse the logarithm map:

exp⋆B (α) := ε+
∑
n≥1

1

n!
α⋆Bn, ln⋆B (ε+ α) :=

∑
n≥1

(−1)n−1

n
α⋆bn

with α an infinitesimal morphism. We state first an equivalent result in our setting and con-
tinue the discussion then. The following theorem follows from Theorem 5.10 and conilpotency
of

(
W,m

⊖

W
)
.

Theorem 5.6. The Lie algebra mI and the group MI are in bijection through

exp⋆(m) := ε+
∑
n≥1

m⋆Bn, ln(ε+m) =
∑
n≥1

(−1)n−1

n
m⋆Bn.

Remark 5.7. A double monoid in the category TW is a tuple
(
O,m⊖

O,m

⊖

O, η

⊖

O

)
with O a TW-

collection and

m⊖
O : O ⊖O → O, m

⊖

O : O

⊖

O → O, η

⊖

O : E

⊖

→ O

such that
(
O,m

⊖

O, η

⊖

O

)
is a monoid in

(
TW,

⊖

, E

⊖ )
and

(
O,m⊖

O

)
is a horizontal semi-group.

Additionally, we require that m

⊖

O is a morphism of ⊖-semigroups (O

⊖

O is equipped with the
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product m⊖
O

⊖

O =
(
m⊖

O

⊖

m⊖
O

)
◦RO,O,O,O). Then, the proof of Proposition 5.5 generalizes to this

context and the convolution product

f ⋆ g := m⊖
O ◦ (f ⊖

g) ◦∆

⊖

, f, g ∈ HomVectTW (CW, O)

restricts to a group product on the set HomSemigroup(⊖)(W, O) of ⊖-semigroupal morphisms

f : CW → O with f ◦ η = η

⊖

O. Besides, Proposition 5.6 has a straightforward generalization in
this setting.

In the remaining part of this section, we compute the two shuffle exponentials exp≺,≻ and
the (shuffle) exponential exp⋆ by using the defining fixed-point equations:

exp≺(k) = ε+ k ≺ exp≺(k), exp≻(b) = ε+ exp≻(b) ≻ b.

We are now ready to state our main theorem.

Theorem 5.8 (left half-shuffle fixed point equation). Pick a linear form k in the Lie algebra mI.
The solution M of the following left half-shuffle fixed point equation

M = ε+ k ≺ M

is in MI and satisfies the formula

M(w) =
∑

π∈NC |||(t)

∏
V ∈π

k(w↾V ), w ∈ W(t). (5.6)

Proof. We prove first using induction on the number of on-letters |[t]1| that

M(w) =
∏

J∈int(w)

M(w↾J), w ∈ W(t), t ∈ TW. (5.7)

First, if w ∈ W(t) and |[t]1| = 0, equation (5.7) is trivial.
Pick N ≥ 1 and assume that (5.7) holds for any word w ∈ W(t), with t ∈ TW a translucent

word with at most N “opaque” positions; |[t]1| ≤ N . Since k ∈ mI, for every subset I ⊂ [t]1 with∧
· [t]1 ∈ I and I∩I⋖j (t) ̸= ∅ for some j ≥ 2, one has k(w↾Î) = 0 (recall the notation Î = I∪ [t]0).
We thus obtain (and recalling that for any incomplete word v we denote by v⋖i its restriction to
the ith interval in int(v)),

M(w) = (k ≺ M)(w) =
∑
I⊂I⋖1∧
· [t]1∈I

k(w↾Î)M(wÎ;0)

=
∑
I⊂I⋖1∧
· [t]1∈I

k(w↾Î)M
(
(wÎ;0)

⋖
1

)
M

(
(wÎ;0)

⋖
2

)
· · ·M

(
(wÎ;0)

⋖
j

)
,

where we have used the inductive hypothesis applied to the word wÎ;0 to obtain the last equality
since |[tÎ;0]1| ≤ |[t]1| − 1. Since in the last equality the sum ranges over I ⊂ I⋖1 (w),

(wÎ;0)
⋖
1 = w⋖

1 ↾I⋖1 \I , (wÎ;0)
⋖
2 = w⋖

2 , . . . , (wÎ;0)
⋖
j = w⋖

j ,

from which we deduce

M(w) =
∑
I⊂I⋖1∧
· [t]1∈I

k
(
w⋖
1 ↾Î

)
M

(
w⋖
1 ↾I⋖1 \I

)
M

(
w⋖
2

)
· · ·M

(
w⋖
j

)
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= (k ≺ M)
(
w⋖
1

)
M

(
w⋖
2

)
· · ·M

(
w⋖
j

)
= M

(
w⋖
1

)
M

(
w⋖
2

)
· · ·M

(
w⋖
j

)
.

We prove next the formula (5.6). Define G : CW → C by

G(w) :=
∑

π∈NC |||(t)

∏
V ∈π

k(w↾V ), w ∈ W(t), t ∈ TW.

We prove now that G is the solution to the fixed point equation, G = ε+ k ≺ G.
First, owing to Remark 3.46, it is straightforward to check that G is a multiplicative function

in MI. It will thus be sufficient to prove that for any word w ∈ W(w,1n), w ∈ {L,R}⋆, one has

G(w) = (k ≺ G)(w).

Pick such a word w ∈ W(t). Then it holds that

(k ≺ G)(w) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾Î)G(wÎ;0) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾Î)
∑

π∈NC |||(tÎ;0)

∏
W∈π

k(w↾W ).

Pick a noncrossing bipartition π in NC(t) and call π∧· the block that contains
∧
· [t]1. First,

the translucidation ππ∧·;0 of π yields a shaded noncrossing bipartition in NC|||(tπ∧·;0).
Secondly,

NC(t) ∋ π 7→
(
π∧· , ππ∧·;0

)
is a bijection onto the set of pairs (I, π) with

∧
· [t]1 ∈ I ⊂ J1, |t|K and π ∈ NC|||(tI;0). One

concludes the proof with the following equality∑
π∈NC(t)

∏
W∈π

k(w↾W ) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾Î)
∑

π∈NC |||(tÎ;0)

∏
W∈π

k(w↾W ). ■

Example 5.9. Pick w = aRaL, then

M(w) = k
(
aL
)
M

(
aR

)
+ k

(
aRaL

)
= k

(
aL
)
k
(
aR

)
+ k

(
aRaL

)
.

Pick w = aRaLaRaL,

M(w) = k
(
aL
)
M

(
aRaRaL

)
+ k

(
aRaL

)
M

(
aRaL

)
+ k

(
aLaR

)
M

(
aR

)
M

(
aL
)

+ k
(
aLaL

)
M

(
aRaR

)
+ k

(
aRaLaR

)
M

(
aL
)
+ k

(
aRaLaL

)
M

(
aR

)
+ k

(
aLaRaL

)
M

(
aR

)
+ k

(
aRaLaLaL

)
= k

(
aL
)(
k
(
aL
)
M

(
aRaR

)
+ 2k

(
aRaL

)
k
(
aR

))
+ k

(
aRaRaL

))
+ k

(
aRaL

)(
k
(
aL
)
k
(
aR

)
+ k

(
aRaL

))
+ k

(
aLaR

)
k
(
aR

)
k
(
aL
)
+ k

(
aLaL

)(
k
(
aR

)
k
(
aR

)
+ k

(
aRaR

))
+ k

(
aRaLaR

)
k
(
aL
)
+ k

(
aRaLaL

)
k
(
aR

)
+ k

(
aLaRaL

)
k
(
aR

)
+ k

(
aRaLaRaL

)
= k

(
aL
)(
k
(
aL
)(
k
(
aRaR

)
+ k

(
aR

)
k
(
aR

))
+ 2k

(
aRaL

)
k
(
aR

))
+ k

(
aRaRaL

))
+ k

(
aRaL

)(
k
(
aL
)
k
(
aR

)
+ k

(
aRaL

))
+ k

(
aLaR

)
k
(
aR

)
k
(
aL
)

+ k
(
aLaL

)(
k
(
aR

)
k
(
aR

)
+ k

(
aRaR

))
+ k

(
aRaLaR

)
k
(
aL
)

+ k
(
aRaLaL

)
k
(
aR

)
+ k

(
aLaRaL

)
k
(
aR

)
+ k

(
aRaLaRaL

)
.
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Figure 20. Example of an incomplete monotone bipartitions.

Theorem 5.10 (shuffle exponential). Pick a linear function m in the Lie algebra mI. Then, for
any word w ∈ W(t), one has

exp⋆(m)(w) =
∑

(π,λ)∈M(t)

1

|π|!
∏
W∈π

m(w↾W ).

Proof. Pick m ∈ mI. We let Mℓ(t) denotes the set of monotone bipartitions of type t with ℓ
blocks (the block [t]0 is not counted). We prove by induction on ℓ ≥ 1 that for any word w
in W(t),

m

⊖

ℓ ◦
(
∆

⊖

W
)ℓ

=
∑

(π,λ)∈Mℓ(t)

∏
W∈π

m(w↾W ), (5.8)

where
(
∆

⊖ )ℓ
=

((
∆

⊖ )ℓ−1 ⊖
id
)
◦∆

⊖

,
(
∆

⊖ )0
= id.

The formula (5.8) holds if ℓ = 1. Pick an integer N ≥ 1 and suppose that equation (5.8)
holds for every integer ℓ ≤ N .

Using
(
∆

⊖ )N+1
=

((
∆

⊖ )N ⊖

id
)
◦∆

⊖

and the inductive hypothesis, one gets(
m

⊖

(N+1) ◦
(
∆

⊖ )N+1)
(w) =

∑
I⊂[t]1

(
m

⊖

N ◦
(
∆

⊖ )N)
(w↾Î)m(wÎ;0)

=
∑
I⊂[t]1

tÎ;0∈TW I

(
m

⊖

N ◦
(
∆

⊖ )N)
(w↾Î)m(wÎ;0)

=
∑
I⊂[t]1

tÎ;0∈TW I

[ ∑
(π′,λ′)∈MN (t↾Î)

∏
W∈π′

m(w↾W )

]
m(wÎ;0)

=
∑
I⊂[t]1

[t]1\I ⋖-interval

[ ∑
(π′,λ′)∈MN (t↾Î)

∏
W∈π′

m(w↾W )

]
m(wÎ;0).

Pick a monotone partition (π′, λ′) ∈ MN (t↾Î) with I ⊂ [t]1 and J := [t]1 \ I a ⋖-interval. There
exists a unique incomplete bipartition π̂ ∈ P(t) such that π̂↾Î = π′ and π̂Î;0 = {[t]1 \ I} = {J}
an incomplete one block partition of tI;0, namely π̂ = π′◦{J}. We claim that π̂ is an incomplete
noncrossing bipartition: this comes from the fact that J a ⋖-interval and π′ is noncrossing.

Besides, π̂ is a shaded noncrossing bipartition. The translucent block of π̂ is [t]0. Pick an
integer 1 ≤ k < min[t]0 (consequently, k ∈ [t]1) with αt(k) = αt(min[t]0).

If k ∈ I, then j ∼π̂ k implies j ∈ I because I is the complement of the block J inside [t]1.
Thus, j < min[t]0 and α(j) = α(min[t]0) since π̂↾Î is a shaded noncrossing bipartition.
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If k is not in I, since J is a ⋖-interval, one must have αt(k) = αt(j) for all j ∈ J . For example,
suppose αt(min[t]0) = L one has αt(k) = L and k ⋖min[t]0. Again, since J is a ⋖-interval, this
last inequality implies that j ⋖min[t]0 and, thus, αt(j) = L for any j ∈ [t]1 \ I.

The monotone order λ′ on π′ yields an order λ̂ on π̂ labelling the block J = [t]1 \ I by
|π̂| = |π′| + 1 highest. Because J is a ⋖-interval, π̂ endowed with the order induced by λ̂
described above, is a monotone bipartition.

Finally, to any monotone partition (π, λ) in M(t) corresponds a unique pair ((π′, λ′), I) with
I ⊂ [t]1, [t]1\I a ⋖-interval and (π′, λ′) ∈ M(t↾I) such that π = π̂ and λ = λ̂; indeed, J = [t]1\I
has to be the highest block of π, which is always a ⋖-interval. This concludes the proof. ■

Corollary 5.11. The monoid MI is a group with Lie algebra mI, that is

exp⋆(mI) = MI.

Proof. First, Theorem 5.10 implies exp⋆(mI) ⊂ MI. Pick M ∈ MI and define m ∈ mI inductively
on the length of the word w↾[t]0 , for w ∈ W(t), with | int(w)| = 1

m(w) := m(w↾[t]1) := M(w↾[t]1)−
∑

π∈M(t↾[t]1 )

1

|π|!
∏
V ∈π

m(w↾V )

with initial conditions m(s) = M(s), s ∈ S. Again, Theorem 5.10 yields exp⋆(m) = M . Hence
exp⋆(mI) = MI. ■

We end this section with the computation of the right half-shuffle exponential of an element
of mI.

Theorem 5.12. Pick a function b in the Lie algebra mI. The solution M of the following right
half-shuffle fixed point equation

M = ε+M ≻ b (5.9)

is in MI and satisfies the formula

M(w) =
∑

π∈I(t)

∏
V ∈π

b(w↾V ), w ∈ W(t), t ∈ TW.

Proof. To prove M ∈ MI, the reasoning we used in proving the same property for the solution
of the left half-shuffle fixed point equation in Theorem 5.8 applies here. We omit the details for
brevity and move on to the proof of the second statement, the formula for M namely.

We use the notation introduced in the proof of Theorem 5.8. We set

G(w) :=
∑

π∈I(t)

∏
V ∈π

G(w↾V ), w ∈ W(t), t ∈ TW,

and show that G satisfies to the fixed point equation (5.9). Pick an opaque word t ∈ TW, i.e.,
bt = 1, and a word w ∈ W(t). Then one gets

(M ≻ b)(w) =
∑

I⊂J|t|K,∧
· J|t|K∈J|t|K\I

M(w↾I)b(wI;0) =
∑

I⊂J|t|K,∧
· J|t|K∈J|t|K\I

b(wI;0)
∑

π∈I(t↾I)

∏
V ∈π

b(w↾V )

=
∑

∧
· J|t|K∈I⊂J|t|K
I ⋖-interval

b(w↾I)
∑

π∈I(t↾J|t|K\I)

∏
V ∈π

b(w↾V ). (5.10)
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To any interval bipartition π′ in I(t), one associates a unique pair (I, π) of an interval I ⊂ J|t|K
for the order ⋖ and an interval bipartition π ∈ I(tI;0): I is the block of π′ which contains

∧
· J|t|K

and π is the restriction of π′ to J|t|K \ I. The function I(t) ∋ π′ 7→ (I, π) is a bijection between
the set I(t) and the set of pairs (I, π) with I an interval of J|t|K which contains

∧
· J|t|K and

π ∈ I(tI;0).
The double sum on the right-hand side of equation (5.10) can thus be rewritten as a sum

over interval bipartitions in I(t) as follows:

(M ≻ b)(w) =
∑

∧
· [t]1∈I⊂[t]1
I ⋖-interval

b(w↾I)
∑

π∈I(α↾J|t|K\I)

∏
V ∈π

b(w↾V ) =
∑

π′∈I(t)

∏
V ∈π′

b(w↾V ).

This concludes the proof. ■

5.2 preLie algebra II

The purpose of this section is to exhibit a second sub-preLie algebra mP of g. The preLie
product ◁ restricts to the zero preLie product on mP. Both preLie algebras, mI defined in
the previous section and mP introduced now, are meaningful to the theory of noncommutative
probability; they implement moment-cumulant relations corresponding to certain notions of
independence. For the one at stake here, this is tensor independence between random variables
in S.4

Definition 5.13. We introduce the following subsets of linear functionals on incomplete words
(the index P stands for partitions):

� We denote by MP the set of all linear forms f : CW → C with

– f(u) = 1 for all u ∈ W(α,0), α ∈ {L,R}⋆,
– f(w) = f(w↾[t]1) for all w ∈ W(t), t ∈ TW, bt ̸= 0.

� We denote by mP the set of all linear forms f : CW → C such that

– f(u) = 0 for all u ∈ W(α,0),

– f(w) = f(w↾[t]1) for all w ∈ W(t), t ∈ TW, bt ̸= 0.

Remark 5.14. As vector spaces, mI and mP sit in a class of subspaces of g parametrized by
subsets of incomplete bipartitions with one block (besides the translucent block). To an incomplete
word on random variables w ∈ W, we associate the incomplete bipartition πw = {[w]1} with
translucent block [w]0.

Pick a subset U of one-block incomplete bipartitions. At the moment, we do not assume
anything on U . We set

mU := {ℓ ∈ g : ℓ(w) = 0 if πw ̸∈ U and ℓ(w) = ℓ(w↾[w]1) if πw ∈ U}

for the space mI, the corresponding set U is the set I of incomplete interval bipartitions with only
an opaque block (or, what is the same, shaded noncrossing bipartitions with only one opaque
block) while for mP the corresponding set is P, the set of all incomplete bipartition with only
one opaque block. A natural question would then address the complete classification of preLie
algebras arising as mU and meaningful to the theory of probability. We leave such general
considerations for future work.

4The combinatorial structures we study here only lead to trivial bi-tensor independence, which coincides with
usual tensor independence because the full set of partitions of a translucent set is not constrained by colouration.
Non-trivial bi-tensor independences, such as appear in [16] and [39] as deformations are beyond our scope here.
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Remark 28. As vector spaces, mI and mP sit in a class of subspaces of g parametrized by subsets of
incomplete bipartitions with one block (besides the translucent block). To an incomplete word on random
variables w ∈W, we associate the incomplete bipartition πw = {[w]1} with translucent block [w]0.

Pick a subset U of one-block incomplete bipartitions. At the moment, we do not assume anything on U .
We set

mU ∶= {` ∈ g ∶ `(w) = 0 if πw /∈ U and `(w) = `(w↾[w]1) if πw ∈ U}
for the space mI, the corresponding set U is the set I of incomplete interval bipartitions with only an opaque
block (or, what is the same, shaded noncrossing bipartitions with only one opaque block) while for mP the
corresponding set is P, the set of all incomplete bipartition with only one opaque block. A natural question

Figure 21: Shaded noncrossing partitions πw and words w.

would then address the complete classification of preLie algebras arising as mU and meaningful to the theory
of probability. We leave such general considerations for future work.

Proposition 12. The restriction of the preLie product ⊲ to mP is trivial,

f ⊲ g = 0, f, g ∈ mP.

In particular, mP is a sub preLie algebra.

Proof. Pick two linear forms f, g ∈ mP and a word w ∈W(t). We have

(f ⊲ g)(w) = (f ≺ g − g ≻ f)(w) = ∑
I⊂[t]1�[t]1∈I

f(w↾I)g(wI↝0) − ∑
I⊂[t]1�[t]1/∈I

g(w↾I)f(wI↝0)
The result is obtained upon changing the summation variable of the second sum to [t]1 ∖ I in the above
equality. ∎
Theorem 19. Pick a linear form k ∈ mP. For any word w ∈W(t), t ∈ TW, the following formula holds:

exp⋆(k)(w) = exp≻(k)(w) = exp≺(k)(w) = ∑
π∈P(t) ∏V ∈π k(w↾V ). (45)

Proof. Pick a linear form k ∈ mP. The equality between the left and right half-shuffle exponentials and the
full shuffle exponential is a corollary of Proposition 12. This is a direct application of Theorem 18 in [EFP19]
: Ω′ = id.

We prove next the last equality in (45) by using the left half-shuffle fixed point equation. To that end,
denote by G the linear functional on CW whose values are prescribed by the rightmost terms in (45). The
proof proceeds from the same lines of arguments we used to prove Theorem 16 and Theorem 17. The result
trivially holds for incomplete words w with ∣[w]1∣ = 1. Pick an integer N ≥ 1 and assume that the result
holds for incomplete words w with ∣[w]1∣ ≤ N . Pick a translucent word t ∈ TW and a word w ∈ W(t) with∣[w]1∣ = N + 1 then

(k ≺ G)(w) = ∑
I⊂[t]1�[t]1∈I

k(w↾I)G(wÎ↝0) = ∑
I⊂[t]1�[t]1∈I

k(w↾I) ∑
π∈P(tÎ↝0)

∏
V ∈πG(w↾V ) (46)

Figure 21. Shaded noncrossing partitions πw and words w.

Proposition 5.15. The restriction of the preLie product ◁ to mP is trivial,

f ◁ g = 0, f, g ∈ mP.

In particular, mP is a sub preLie algebra.

Proof. Pick two linear forms f, g ∈ mP and a word w ∈ W(t). We have

(f ◁ g)(w) = (f ≺ g − g ≻ f)(w) =
∑
I⊂[t]1∧
· [t]1∈I

f(w↾I)g(wI;0)−
∑
I⊂[t]1∧
· [t]1 ̸∈I

g(w↾I)f(wI;0).

The result is obtained upon changing the summation variable of the second sum to [t]1 \ I in
the above equality. ■

Theorem 5.16. Pick a linear form k ∈ mP. For any word w ∈ W(t), t ∈ TW, the following
formula holds:

exp⋆(k)(w) = exp≻(k)(w) = exp≺(k)(w) =
∑

π∈P(t)

∏
V ∈π

k(w↾V ). (5.11)

Proof. Pick a linear form k ∈ mP. The equality between the left and right half-shuffle ex-
ponentials and the full shuffle exponential is a corollary of Proposition 5.15. This is a direct
application of Theorem 18 in [12]: Ω′ = id.

We prove next the last equality in (5.11) by using the left half-shuffle fixed point equation.
To that end, denote by G the linear functional on CW whose values are prescribed by the
rightmost terms in (5.11). The proof proceeds from the same lines of arguments we used to
prove Theorem 5.8 and Theorem 5.10. The result trivially holds for incomplete words w with
|[w]1| = 1. Pick an integer N ≥ 1 and assume that the result holds for incomplete words w with
|[w]1| ≤ N . Pick a translucent word t ∈ TW and a word w ∈ W(t) with |[w]1| = N + 1 then

(k ≺ G)(w) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾I)G(wÎ;0) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾I)
∑

π∈P(tÎ;0)

∏
V ∈π

G(w↾V ),

where we have used the inductive hypothesis on the word wÎ;0 to derive the last equality. To a
partition π ∈ P(t), we associate the pair (π∧· , ππ∧·;0) where we recall that π∧· is the block of π
containing ∧· [t]1. As before, the application

P(t) ∋ π 7→
(
π∧· , ππ∧·;0

)
is injective. Going backward, given a pair (V, π′) of a subset V ⊂ [t]1 and a partition π′ ∈
P(tV̂;0), by defining π := 1V ◦ π′, where

1V = {{1, . . . , |V |}} ∈ P(t↾V ),
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one has π∧· = V and ππ∧·;0 = π′ (recall that the composition ◦ has been defined in Section 3.6).
Hence,

(k ≺ G)(w) =
∑
I⊂[t]1∧
· [t]1∈I

k(w↾I)
∑

π∈P(tÎ;0)

∏
V ∈π

G(w↾V ) =
∑

π∈P(t)

∏
V ∈π

k(w↾V ) = G(w). ■

6 Conclusion and perspectives

6.1 Summary

In this work, we extended the shuffle-algebraic perspective on the free, boolean, and monotone
moment-cumulant relations to bifree, biBoolean, and bimonotone moment-cumulant relations.
To achieve this, we leverage an idea latent in [10] abridged as follows. There exists a certain
unshuffle structure on noncrossing partitions which, when restricted to “sticks” (partitions into
singletons) yields the unshuffle coalgebra introduced in [11]. That former unshuffle structure
stems from a certain composition rule, formalized using the theory of operads, between non-
crossing partitions, the gap insertion operad in which a partition is inserted into another by
“placing” blocks in between two consecutive elements of the latter. In the current work, these
gap-insertion operations are extended to noncrossing bipartitions and we chose inputs gaps be-
tween two consecutive elements for a necklace order coming with any bipartition. Formalizing,
we were led to introduce:

1. a set of shaded noncrossing bipartitions, following the terminology introduced in [6], that
are bipartitions with one-pointed block acting as a placeholder,

2. a Möbius category TW whose morphisms (we call them translucent words) index sets of
objects (e.g. shaded noncrossing bipartitions and incomplete words) we compose.

3. To formalize compositions and following [8], we defined a certain tensor product

⊖

on
VectTW .

4. Additionally, we showed that this category supports an additional semigroupal product ⊖
compatible with

⊖

, see Proposition 3.25.

5. We defined a double monoid W in VectTW supported by incomplete words also equipped
with a certain unshuffle structure (after internalization to the incidence category of TW
of this notion) compatible with the horizontal composition.

6. We proved finally that inside the convolution monoid of linear functionals on W sit two
groups and their corresponding Lie algebras (defined in Section 5) among which a subset
of the group of horizontal characters of

(
W,m⊖

W
)
. This latter is equipped with three

exponentials encoding the bifree, biBoolean, and bimonotone moment-cumulant relations.

6.2 Outlook

As alluded to in the introductory section, other independences were introduced in the past
few years, including operator-valued counterparts of the ones investigated in this work. Going
operator-valued should cause no additional problems, since the algebra developed here is closely
related to the one expounded in [18]. An interesting challenge would be to “blend” to the shuffle
picture developed above also other two-faced independences, such as the boolean-free one [27].
This can be approached in at least two different ways: (1) including boolean-free independence
to a triple of independences (loosing perhaps positivity), identifying the appropriate sub-preLie
algebra of g to cast boolean-free moment-cumulant relations as shuffle exponential type relations,
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(2) possibly supplement the shuffle operations≺ and≻ with others, compatible in a certain sense,
to reach more moment-cumulant relations.

In this direction, as already pointed out in Section 4.3, incomplete words on random variables
come with two orders, the natural one and the necklace one ⋖, one can track the first letter
for each order to define half-coproducts. This yields four of them, among which only two are
addressed in this work.
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