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Abstract. We discuss canonical transformations relating well-known geodesic flows on the
cotangent bundle of the sphere with a set of geodesic flows with quartic invariants. By
adding various potentials to the corresponding geodesic Hamiltonians, we can construct
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1 Introduction

In the study of metric spaces, there are various notions of two metrics on the same underly-
ing space Q being “the same”, or equivalent. For instance, there are topologically equivalent
metrics and strong equivalent metrics [3]. In the Riemannian geometry two metrics are projec-
tively equivalent if their geodesics coincide, in Kähler geometry two metrics are c-projectively
equivalent if their J-planar curves coincide and so on, see [9, 10, 12] and references within.

In symplectic geometry, it is natural to say that two metrics g and g′ on the configuration
space Q are equivalent if the corresponding geodesic Hamiltonians

T =
n∑

i,j=1

gij(q)pipj and T ′ =
n∑

i,j=1

g′ij(q)pipj (1.1)

are related by some transformation of the phase space

ρ : T ∗Q→ T ∗Q (1.2)

preserving canonical symplectic form ω = dp∧dq. Here q = q1, . . . , qn are coordinates on Q and
p = p1, . . . , pn are are fibrewise coordinates with respect to the cotangent vectors dq1, . . . ,dqn.
Well-known examples of such canonical transformations are point transformations and non-point
transformations in T ∗Rn

ρ : qi → pi and pi → −qi, i = 1, . . . , n,

relating two geodesic Hamiltonians (1.1) when both metrics are the homogeneous polynomials
of second order in coordinates. We aim to construct and classify other non-point canonical
transformations relating to two polynomials of the second order in momenta (1.1).

Canonical transformation preserves the form of canonical Poisson brackets, which allows us
to obtain new integrable geodesic flows by using the following algorithm:

� take some known integrable geodesic flow with Hamiltonian T = T1 and independent
integrals of motion T2, . . . , Tn in the involution

{Ti, Tj} = 0, i, j = 1, . . . , n;
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� take non-point canonical transformation ρ (1.2), which maps geodesic Hamiltonian T to
geodesic Hamiltonian T ′, and calculate a set of independent functions ρ(Tk) in the involu-
tion on T ∗Q with respect to the same canonical Poisson brackets

{ρ(Ti), ρ(Tj)} = 0, i, j = 1, . . . , n;

� compute n − 1 functions Km on integrals of motion ρ(Tk), so that functions Km are
polynomials in momenta, which simplifies all further calculations;

� find potential V (q) solving equations

{Hi, Hj} = 0, i, j = 1, . . . , n,

where H1 = T ′ + V (q) and Hm = Km +Wm(p, q), with respect to V and polynomials in
momenta Wm;

� calculate new integrable metric g̃ on Q by using Maupertuis principle

H̃ =
T ′

h− V
=

n∑
i,j=1

g̃ij(q)pipj . (1.3)

The main unsolved problems in this method are the construction of the non-point canonical
transformations ρ (1.2) relating a given quadratic polynomial T with other quadratic poly-
nomial T ′ and computation of the applicable to the Maupertuis principle polynomials in mo-
menta Km. Several canonical transformations ρ were obtained in the framework of algebraic
geometry for the 2D Euclidean space in [16, 22, 24, 25], for the 2D sphere in [17, 18, 20, 21] and
for the 2D ellipsoid in [19].

In this note, we present canonical transformation ρ (1.2) on the cotangent bundle to (n− 1)-
dimensional sphere S(n−1) using globally defined coordinates on the ambient space Rn. At n = 3
this transformation was obtained in [20, 21] in terms of the locally defined coordinates on the
sphere. Because we only want to prove the existence of such non-point canonical transforma-
tions ρ (1.2) and their applicability to the construction of new integrable metrics and so-called
magnetic Hamiltonians H1 = T ′ + V with generalized potential V depending on velocities

V =
n∑

i=1

ui(q)pi + U(q),

we do not discuss the properties of obtained integrable systems, the curvature of the metrics,
etc.

2 Non-point canonical transformations

Let us consider Cartesian coordinates x = (x1, . . . , xn) in Euclidean space Rn and the conjugated
momenta pxi on T

∗Rn, so that

{xi, xj}′ = {pxi , pxj}′ = 0, {xi, pxj}′ = δij , i, j = 1, . . . , n.

The unit (n − 1)-dimensional sphere S(n−1) ⊂ Rn and its cotangent bundle T ∗S(n−1) ⊂ T ∗Rn

are defined via constraints

F1 = x21 + · · ·+ x2n = 1, F2 = x1px1 + · · ·+ xnpxn = 0. (2.1)
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Induced symplectic structure on T ∗Sn−1 is given by the Dirac–Poisson bracket

{f, g} = {f, g}′ − {F1, f}′{F2, g}′ − {F1, g}′{F2, f}′

{F1, F2}′
,

which reads as

{xi, xj} = 0, {xi, pxj} = δij − xixj , {pxi , pxj} = xjpxi − xipxj . (2.2)

Images of these variables (x, px) we denote as y = (y1, y2, y3) and py = (py1 , py2 , py3)

Proposition 2.1. Consider the following mapping of the cotangent bundle T ∗S(n−1)

ρb : (xi, pxi) → (yi, pyi), i = 1, . . . , n,

defined by equations

yi =

√
bi
H
pxi and xipxi + yipyi = 0, (2.3)

where

H = b1p
2
x1

+ · · ·+ bnp
2
xn

and bi > 0.

This mapping preserves constraints

F1 = x21 + · · ·+ x2n = 1 = y21 + · · ·+ y2n,

F2 = x1px1 + · · ·+ xnpxn = 0 = y1py1 + · · ·+ ynpyn ,

the form of Hamiltonian

H = b1p
2
x1

+ · · ·+ bnp
2
xn

= b1p
2
y1 + · · ·+ bnp

2
yn , (2.4)

and the form of induced Poisson brackets (2.2).

The proof is a straightforward verification of the Poisson bracket, the forms of constraints,
and the form of Hamiltonian.

Below we also consider composition of ρb (2.3) and similar map ρc

ρc : yi =

√
ci∑n

i=1 cip̃
2
xi

p̃xi and x̃ip̃xi + yipyi = 0, ci ∈ R,

which is the canonical transformation

σbc : (x, px) → (x̃, p̃x) (2.5)

depending on 2n parameters bi, ci, i = 1, . . . , n. This composition also preserves canonical
Poisson brackets (2.2) and the form of Hamiltonian

H = p2x1
+ · · ·+ p2xn

= p̃2x1
+ · · ·+ p̃2xn

.

Here p̃xi are momenta corresponding to coordinates x̃i.
We can construct a family of equivalent integrable metrics on the sphere using these canonical

transformations ρb and σbc. For instance, applying mapping (2.3) to the geodesic Hamiltonian
on T ∗S(n−1)

T =

n∑
i=1

aip
2
yi +H

n∑
i=1

ciy
2
i , H =

n∑
i=1

bip
2
yi , (2.6)
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we obtain geodesic Hamiltonian of the similar form

ρb(T ) =
n∑

i=1

bicip
2
xi
+H

n∑
i=1

aib
−1
i x2i , H =

n∑
i=1

bip
2
xi
. (2.7)

When bi = 1, we have a simple permutation of parameters ai ↔ ci in the original Hamilto-
nian (2.6).

This permutation of parameters is not as trivial as it seems. Let us take Hamiltonian T (2.6)
and polynomial of the second order in momenta

K =
√
w(y)H, w(y) =

∑
i≥j

eijy
2
i y

2
j , (2.8)

where w(y) is a polynomial of second order in squares y2j , which is not a full square. If we
substitute T (2.6) and K (2.8) into

{T,K} = 0

and solve the resulting system of algebraic equations for bi, ci, and di, we obtain a geodesic flow
with two integrals of motion which are polynomials of second order in momenta.

Mapping ρb (2.3) relates second order polynomial in momenta T to the second order polyno-
mial in momenta ρb(T ) (2.7) commuting with ρb(K),

{ρb(T ), ρb(K)} = 0, ρb(K) = ρ
(√

w(y)H
)
=

√∑
i≥j

eijbibjp2xi
p2xj

, (2.9)

and with its square ρ2(K), which is a polynomial of the fourth order in momenta.

For instance, when n = 3 and bi = 1, the following Hamiltonian

T = a1p
2
y1 + a2p

2
y2 + a3p

2
y3

− 1

2

(
(a2 + a3)y

2
1 + (a1 + a3)y

2
2 + (a1 + a2)y

2
3

)(
p2y1 + p2y2 + p2y3

)
(2.10)

commutes with the polynomial of second order in momenta

K =
√
w(y)

(
p2y1 + p2y2 + p2y3

)
,

where

w(y) =
(
(a2 − a3)y

2
1 + (a3 − a1)y

2
2 − (a1 − a2)y

2
3

)2
+ 4(a3 − a2)(a3 − a1)y

2
1y

2
2.

After transformation (2.3), we obtain geodesic Hamiltonian (2.7)

ρb(T ) = −1

2

(
(a2 + a3)p

2
x1

+ (a1 + a3)p
2
x2

+ (a1 + a2)p
2
x3

)
+
(
a1x

2
1 + a2x

2
2 + a3x

2
3

)(
p2x1

+ p2x2
+ p2x3

)
commuting with a square root ρb(K) (2.9) and with its square ρ2(K)

ρ2(K) =
(
(a2 − a3)p

2
x1

+ (a3 − a1)p
2
x2

− (a1 − a2)p
2
x3

)2
+ 4(a3 − a2)(a3 − a1)p

2
x1
p2x2

,

which is the quartic polynomial in momenta.
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So, on the two-dimensional sphere, we have at least one non-trivial example of equivalent
geodesic flows with quadratic and quartic polynomial invariants T , K and ρb(T ), ρ

2(K), re-
spectively. An application of the Maupertuis principle to the construction of the corresponding
nonequivalent metrics (1.3) is discussed in Section 3.

In the next subsection, we rewrite canonical transformations ρb (2.3) and σbc (2.5) in other
variables on cotangent bundle T ∗S2 to the two-dimensional sphere S2 and study properties
of these transformations. It allows us to construct other examples of equivalent metrics and
understand how to construct similar ones on the (n− 1)-dimensional sphere.

For brevity, below we will drop ρb and σbc which do not affect understanding, and simply
write H instead of ρb(H) or σbc(H).

2.1 Euler flow on two-dimensional sphere

The three-dimensional Euler top on the phase space so(3) is defined by Hamiltonian

He = a1M
2
1 + a2M

2
2 + a3M

2
3 (2.11)

commuting with any component M1, M2 and M3 of the angular momentum vector

M = (M1,M2,M3) ∈ so(3).

Many implicit and explicit maps preserve a form of this Hamiltonian, see [23] and references
within.

We consider another Hamiltonian system defined by the same Hamiltonian (2.11) but on the
six-dimensional phase space T ∗S2, when vector M = x× px is a cross product of two vectors x
and px so that

M1 = x3py2 − x2py3 , M2 = x1py3 − x3py2 , M3 = x2p1 − x1py2 .

We denote the similar cross product of the vectors y and py from (2.3) as L = y × py.
By definition

x21 + x22 + x23 = 1, x1M1 + x2M2 + x3M3 = 0,

y21 + y22 + y23 = 1, y1L1 + y2L2 + y3L3 = 0, (2.12)

and the symplectic structure on T ∗S2 is given by the bracket

{Mi,Mj} = εijkMk, {Mi, xj} = εijkxk {xi, xj} = 0,

{Li, Lj} = εijkLk, {Li, yj} = εijkyk, {yi, yj} = 0, (2.13)

where εijk is the skew-symmetric tensor.
Let us rewrite map (2.3) in these variables on T ∗S2.

Proposition 2.2. When b1 = b2 = b3 = 1, map ρb (2.3) on T ∗S2 has the following form

Lk =Mk, and y2k + x2k +
M2

k

M2
1 +M2

2 +M2
3

= 1, k = 1, 2, 3. (2.14)

This map preserves the angular momentum vector and the Poisson brackets (2.13).

Proof: From (2.3) and (2.12), we have

x1(x3M2 − x2M3) + y1(y3L2 − y2L3) = 0,

x2(x1M3 − x3M1) + y2(y1L3 − y3L1) = 0,
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x3(x2M1 − x1M2) + y3(y2L1 − y1L2) = 0,

and

(yiLj − yjLi)
2

L2
1 + L2

2 + L2
3

= 1− y2k −
L2
k

L2
1 + L2

2 + L2
3

, i ̸= j ̸= k ̸= i.

Solving these equations for xi and Mi we obtain

x1 =
(y2L3 − y3L2)√

H
, M1 =

x2y3(y1L2 − y2L1)

x3
− x3y2(y3L1 − y1L3)

x2
,

x2 =
(y3L1 − y1L3)√

H
, M2 =

x3y1(y2L3 − y3L2)

x1
− x1y3(y1L2 − y2L1)

x3
,

x3 =
(y1L2 − y2L1)√

H
, M3 =

x1y2(y3L1 − y1L3)

x2
− x2y1(y2L3 − y3L2)

x1
, (2.15)

where

H = L2
1 + L2

2 + L2
3 =M2

1 +M2
2 +M2

3

is the square of the angular momentum vector. After that, we can directly verify that

Lk −Mk = 0, k = 1, 2, 3,

when constraints (2.12) hold. Using (2.15), we can also directly check the Poisson brackets (2.13).

2.2 Magnetic flow on the sphere

Let us take geodesic Hamiltonian on the sphere (2.4)

H = a1p
2
x1

+ a2p
2
x2

+ a3p
2
x3
,

which in (x,M) coordinates reads as

H = a1(x2M3 − x3M2)
2 + a2(x1M3 − x3M1)

2 + a3(x2M1 − x1M2)
2

= a1M
2
1 + a2M

2
2 + a3M

2
3 +

(
a1x

2
1 + a2x

2
2 + a3x

2
3 − a1 − a2 − a3

)(
M2

1 +M2
2 +M2

3

)
.

After the shift of momenta

px → px + βx, β ∈ R,

we obtain the magnetic flow on the sphere defined by the Hamiltonian

H = a1(px1 + βx1)
2 + a2(px2 + βx2)

2 + a3(px3 + βx3)
2, (2.16)

with linear terms in momenta [2, 8, 11].
An integrable map preserving this flow is given by mapping (2.15) after the shift of momenta.

Proposition 2.3. Let us consider mapping on T ∗S2

ρβ : (y, L) → (x,M)

defined as

x1 =
(y2L3 − y3L2 + βy1)√

H
, x2 =

(y3L1 − y1L3 + βy3)√
H

, x3 =
(y1L2 − y2L1 + βy3)√

H
,
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and

M1 =
x2y3(y1L2 − y2L1 + βy3)

x3
− x3y2(y3L1 − y1L3 + βy2)

x2
,

M2 =
x3y1(y2L3 − y3L2 + βy1)

x1
− x1y3(y1L2 − y2L1 + βy3)

x3
,

M3 =
x1y2(y3L1 − y1L3 + βy2)

x2
− x2y1(y2L3 − y3L2 + βy1)

x1
. (2.17)

This mapping preserves the form of Hamiltonian H (2.16), Poisson bracket (2.13) and values of
its Casimir functions (2.12).

In contrast with the previous transformation (2.14), this transformation changes the angular
momentum vector so that Li ̸=Mi.

Thus, we rewrite map ρb (2.3) using the entries of the angular momentum vector (2.15) and
construct its trivial generalisation ρβ (2.17). Below we apply these maps to construct equivalent
geodesic and non-equivalent potential flows on the two-dimensional sphere.

3 Main example of equivalent metrics on the sphere

Elliptic coordinate system u1, . . . , un−1 on the sphere with parameters a1 < · · · < an is defined
through equation

n∑
i=1

x2i
λ− ai

=

∏n−1
k=1(λ− uk)∏n
i=1(λ− ai)

, (3.1)

that implies
∑
x2i = 1. Elliptic coordinates are orthogonal and locally defined, they take values

in the intervals

a1 < u1 < a2 < u2 < · · · < un−1 < an.

The Poisson bracket between elliptic coordinates uk and their conjugated momenta puk
is the

canonical Poisson bracket

{ui, uj} = 0, {pui , puj} = 0, {ui, puj} = δij , i, j = 1, . . . , n− 1.

When n = 3 six variables xi andMi are expressed via four variables u1,2 and pu1,2 in the following
way

xi =

√
(u1 − ai)(u2 − ai)

(aj − ai)(ak − ai)
, i ̸= j ̸= k ̸= i,

Mi =
2εijkxjxk(aj − ak)

u1 − u2

(
(ai − u1)pu1 − (ai − u2)pu2

)
. (3.2)

Similar second pair of elliptic coordinates v1,2 on the sphere together with the conjugated mo-
menta pv1,2

{v1, v2} = {v1, pv2} = {v2, pv1} = {pv1 , pv2} = 0, {v1, pv1} = {v2, pv2} = 1,

determine the second set of variables on T ∗S2

yi =

√
(v1 − ai)(v2 − ai)

(aj − ai)(ak − ai)
, i ̸= j ̸= k ̸= i,
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Li =
2εijkyjyk(aj − ak)

v1 − v2

(
(ai − v1)pv1 − (ai − v2)pv2

)
.

In elliptic coordinates, the square of the angular momentum is equal to

H =
4(a1 − u1)(a2 − u1)(a3 − u1)p

2
u1

u1 − u2
+

4(a1 − u2)(a2 − u2)(a3 − u3)p
2
u1

u2 − u1
(3.3)

and mapping (2.15)

ρb : (u, pu) → (v, pv)

can be rewritten using a pair of the so-called Abel polynomials on auxiliary variable z defining
intersection divisor on the hyperelliptic curve C [20, 21]:

P(z) =
(z − v2)φ(v1)pv1

v1 − v2
+

(z − v1)φ(v2)pv2
v2 − v1

= −(z − u2)φ(u1)pu1

u1 − u2
− (z − u1)φ(u2)pu2

u2 − u1
(3.4)

and

ψ(z) = H(z − v1)(z − v2)(z − u1)(z − u2) = φ(z)(zH+He)− P(z)2, (3.5)

where φ(z) = −(a1 − z)(a2 − z)(a3 − z), H is the square of the angular momentum vector (3.3)
and He is the Hamiltonian of the Euler top (2.11)

He = a1M
2
1 + a2M

2
2 + a3M

2
3 =

4u2φ(u1)p
2
u1

u1 − u2
+

4u1φ(u2)p
2
u2

u2 − u1

= a1L
2
1 + a2L

2
2 + a3L

2
3 =

4v2φ(v1)p
2
v1

v1 − v2
+

4v1φ(v2)p
2
v2

v2 − v1
.

These equations (3.4) and (3.5) should be interpreted as an identity for z and each set of elliptic
variables u, pu and v, pv.

Transformation ρb (2.14) is a partial case of the integrable maps associated with the non-
holonomic Chaplygin and Veselova systems on the sphere [20, 21].

3.1 Integration of the original integrable flow

Let us come back to the geodesic Hamiltonian (2.10), which becomes additive separable Hamil-
tonian in elliptic variables

H = S1 + S2, Sk = −(a1 − vk)(a2 − vk)(a3 − vk)p
2
vk
, (3.6)

commuting with linear integrals of motion

I1 =
√

(a1 − v1)(a2 − v1)(a3 − v1)pv1 and I2 =
√
(a1 − v2)(a2 − v2)(a3 − v2)pv2 ,

quadratic integral of motion J = S1 − S2 (2.8) and any other functions f(S1,S2) on S1,2.

The corresponding diagonal metric

g(v1, v2) =

(
φ(v1) 0
0 φ(v2)

)
, φ(z) = −(a1 − z)(a2 − z)(a3 − z) (3.7)
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has a non-trivial isometry group. Integrals of motion f(S1,S2) are in involution with respect to
the Poisson brackets associated with the canonical Poisson bivector P ,

P =
∂

∂v1
∧ ∂

∂pv1
+

∂

∂v2
∧ ∂

∂pv2
(3.8)

and second compatible Poisson bivector

P ′ = S1
∂

∂v1
∧ ∂

∂pv1
+ S2

∂

∂v2
∧ ∂

∂pv2
. (3.9)

This pair of compatible Poisson bivectors determines the bi-Hamiltonian vector field

X = P ′dH = PdH ′, where H ′ =
S2
1 + S2

2

2
.

The Hamilton–Jacobi equation H = E (3.6) admits additive separation

H = E1 + E2, S1(v1, pv1) = E1, S2(v2, pv2) = E2.

Because

dvk
dt

= {H, vk} = 2(a1 − vk)(a2 − vk)(a3 − vk)pvk , k = 1, 2, (3.10)

and

p2vk = − Ek

(a1 − vk)(a2 − vk)(a3 − vk)
, (3.11)

we have the following separate equations(
dvk
dt

)2

+ 4(a1 − vk)(a2 − vk)(a3 − vk)Ek = 0, k = 1, 2. (3.12)

Standard substitution

vk =
a1 + a2 + a3

3
+

w

Ek
,

dv1
dt

=
1

Ek

dw

dt
, (3.13)

reduces equations (3.10) to equations for the elliptic Weierstrass function(
dw

dt

)2

= 4w3 − g2w + g3,

where

g2 =
4(a21 − a1a2 − a1a3 + a22 − a2a3 + a23)E

2
k

3
,

g3 =
4(2a1 − a2 − a3)(a1 − 2a2 + a3)(a1 + a2 − 2a3)E

3
k

27
.

Thus, we can express variables v1, v2 (3.13) and pv1 , pv2 (3.11) via two elliptic ℘-functions on
time.

Below we apply transformation ρb (2.14) to this simple geodesic flow (3.12).



10 A.V. Tsiganov

3.2 Some properties of the equivalent metrics

Let us introduce the diagonal matrix

A =

a1 0 0
0 a2 0
0 0 a3

 ,

and its spectral characteristics

b = a1 + a2 + a3, c = a1a2 + a1a3 + a2a3, d = a1a2a3. (3.14)

It allows us to rewrite Hamiltonian H (3.6) using the angular momentum vector

H =
1

2
(L,AL) +

(x,Ax)− b

4
(L,L).

After transformation ρb (2.14) this Hamiltonian has the following form

H =
1

4
(M,AM)− 1

4
(x,Ax)(M,M), (3.15)

so in elliptic coordinates (3.2) we have

H = g11p
2
u1

+ g22p
2
u2

=
(u1 + 2u2 − b)φ(u1)p

2
u1

u1 − u2
+

(2u1 + u2 − b)φ(u2)p
2
u2

u2 − u1
, (3.16)

which allows us to calculate the corresponding diagonal metric on S2

g(u1, u2) =

(u1 + 2u2 − b)φ(u1)

u1 − u2
0

0
(2u1 + u2 − b)φ(u2)

u2 − u1

 . (3.17)

For metric space
(
S2, g

)
we can define a vector space of symmetric (m, 0) Killing tensors K,

which are solutions of the Killing equations

[[g,K]] = 0, (3.18)

where [[·, ·]] is a Schouten bracket.

When m = 1, solutions K are said to be infinitesimal isometries that form an isometry
group. According to [7]: “everybody knows that isometry group Isom(M, g) = Id for generic
Riemannian or pseudo-Riemannian metrics g for dimM ≥ 2”. Our metric is no exception.

Proposition 3.1. Metric g (3.17) on a two-dimensional sphere S2 has the trivial isometry group
and trivial vector spaces of Killing tensors of valency two and three when m = 2, 3.

The proof is a straightforward solution of the Killing equation (3.18) at m = 1, 2, 3.

Transformation ρb (2.14) maps integral of motion

K = S1S2

to the following polynomial of fourth order in momenta

K = K2
1 ·K2 =

1

16
(M,Ax)2(M,M).
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In elliptic coordinates (3.2) these factors are equal to

K1 =
pu1 − pu2

u1 − u2
, K2 =

φ(u1)φ(u2)
(
φ(u1)p

2
u1

− φ(u2)p
2
u2

)
u1 − u2

, (3.19)

which allows us to determine the Killing tensor K of valency m = 4 on the sphere S2, which
satisfies the Killing equation (3.18).

Transformation ρb (2.14) preserves the form of the canonical Poisson bivector P (3.8)

P =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 (3.20)

and changes the form of the second Poisson bivector P ′ (3.9)

P ′ =


0 A1 A2 A3

−A1 0 A4 A5

−A2 −A4 0 A6

−A3 −A5 −A6 0

 , (3.21)

where

A1 =
2φ1φ2(pu1 − pu2)

(u1 − u2)2
, A2 = −g11p

2
u1

− φ1φ2(pu1 − pu2)
2

(u1 − u2)3
,

A5 = −g22p
2
u2

+
φ1φ2(pu1 − pu2)

2

(u1 − u2)3
, A3 =

φ2
1(pu1 − pu2)

2

(u1 − u2)3
− g11pu2(2pu1 − pu2),

A4 = −φ
2
2(pu1 − pu2)

2

(u1 − u2)3
+ g22pu1(pu1 − 2pu2),

A6 = −(pu1 − pu2)pu1pu2

(u1 − u2)2

(
∂

∂u1

φ1φ2

(u1 − u2)3
− ∂

∂u2

(
g22 −

φ2
2

(u1 − u2)3

))
,

and φk = φ(uk) for brevity. The structure of this Poisson bivector P ′ is completely different
from the structure of the so-called natural Poisson bivectors on the sphere [15, 26].

Both bivectors P (3.8) and P ′ (3.21) are invertible, which allows us to introduce a hereditary
or recursion operator defined as

N = P ′P−1.

The spectral curve of N has the form

det(N − λId) =
(
λ2 +Hλ−K

)2
,

where H and K are given by (3.16)–(3.19). Thus, the following equation holds

P ′dH = PdJ, J =
H2

2
−K =

S2
1 + S2

2

2
,

where P and P ′ are given by (3.20) and (3.21) and

dH =



∂H

∂u1
∂H

∂u2
∂H

∂pu1

∂H

∂pu2


and dH ′ =



∂H ′

∂u1
∂H ′

∂u2
∂H ′

∂pu1

∂H ′

∂pu2


.
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So, we have a geodesic flow on the bi-Hamiltonian manifold
(
T ∗S2, P, P ′) defined by the coeffi-

cients of the Casimir functions of the Poisson pencil Pλ = P + λP ′.

Proposition 3.2. On the cotangent bundle T ∗S2 Hamiltonian H (3.16)

H =
1

4
(M,AM)− 1

4
(x,Ax)(M,M) =

(u1 + 2u2 − b)φ(u1)p
2
u1

u1 − u2
+

(2u1 + u2 − b)φ(u2)p
2
u2

u2 − u1

yields bi-Hamiltonian vector field

X = PdH =
(
N−1P

)
dJ, N = P ′P−1,

where P and P ′ are given by (3.20) and (3.21).

The proof is a straightforward calculation.

3.3 Potential motion

Let us discuss potentials V (x) which can be added to the geodesic Hamiltonian H (3.15). For
instance, starting with the following separable Hamiltonian

H1 = S1 + S2 + β
v1S1 − v2S2

S1 − S2
,

so that

H1 = E ⇒ S2
1 + βv1S1 − ES1 = S2

2 + βv2S2 − ES2,

we obtain Hamiltonian

H1 = (M,AM)− (x,Ax)(M,M) + V (x), V (x) = β(Ax, x) = β
(
a1x

2
1 + a2x

2
2 + a3x

2
3

)
,

commuting with the second integral of motion

H2 = (M,Ax)2
(
(M,M)− β

)
.

Other potentials may be obtained using the following substitution

H1 = (M,AM)− (x,Ax)(M,M) + V (x),

H2 =
(
(M,Ax)2 + (M,Ax)U1(x) + U2(x)

)(
(M,M) + U3(x)

)
. (3.22)

The equation {H1, H2} = 0 has several solutions from which we single out the following poly-
nomial “cubic” potential

V (x) = α

(
(x,Ax)− b

3

)3

, α ∈ R,

where b = a1 + a2 + a3, and

U1(x) = 0, U2(x) = 0, U3(x) = −αW (x),

W (x) = (a1 − a3)(a1 − a2)x
4
1 + (a2 − a1)(a2 − a3)x

4
2 + (a3 − a1)(a3 − a2)x

4
3

−
(
a21 + 2a2a3

)
x21 −

(
a22 + 2a1a3

)
x22 −

(
a23 + 2a1a2

)
x23 +

b2

3
.
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In this case polynomial H1 (3.22) becomes a rational function in v-variables

H1 = (S1 + S2) + α

(
(3v1 − b)S1 − (3v2 − b)S2

S1 − S2

)3

and we know nothing about the separation of variables and the bi-Hamiltonian structure of the
corresponding vector field when α ̸= 0.

Following [6, 13, 14], we can use the Maupertuis principle to construct a new metric on the
sphere associated with the Hamiltonian

H̃ =
g11p

2
u1

+ g22p
2
u2

E − V (x)
.

The corresponding additional integral of motion is the polynomial of the fourth order in mo-
menta.

4 One family of equivalent metrics

As an example, we take another separable Hamiltonian

H = λ̂1 + λ̂2, λ̂k = vkSk = −vk(a1 − vk)(a2 − vk)(a3 − vk)p
2
vk
,

which in (y, L) variables reads as

H = a1(y2L3 − y3L2)
2 + a2(y1L3 − y3L1)

2 + a3(y2L1 − y1L2)
2,

up to the factor 1/4. In Cartesian coordinates, it has the form

Ĥ = a1p
2
y1 + a2p

2
y2 + a3p

2
y3 .

Below we apply transformations ρb (2.3) with different values of bi to this Hamiltonian and
present equivalent metrics on the sphere related to canonical transformation σ (2.5).

Case 1. Using transformation ρb (2.3) with

b1 = b2 = b3 = 1,

we obtain the following integrals of motion

H(1) =

(
2φ(u1)

(u1 − u2)2
− u1 +

(b2 − bu2 − 2c

u1 − u2

)
φ1p

2
u1

− 4φ1φ2pu1pu2

(u1 − u2)2

+

(
2φ(u2)

(u1 − u2)2
− u2 +

b2 − bu1 − 2c

u2 − u1

)
φ2p

2
u2
, (4.1)

K(1) = φ(u1)φ(u1)K
2
1K2, where K1 =

p1 − py2
u1 − u2

,

where

K2 =

(
φ(u2)

(u1 − u2)2
− u2 −

u2(b− 2u1)

u1 − u2

)
φ(u1)pu2

1
− 2φ(u1)φ(u2)pu1pu2

(u1 − u2)2

+

(
φ(u1)

(u1 − u2)2
− u1 −

u1(b− 2u2)

u2 − u1

)
φ(u2)p

2
u2
,

and φ(z) is given by (3.7).
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Case 2. Using transformation ρb (2.3) with

b1 = a1, b2 = a2, b3 = a3,

we obtain the following integrals of motion

H(2) =

(
d− cu1 + (u1 − 2u2 + b)u1u2

)
φ(u1)p

2
u1

(u1 − u2)2
+

2φ(u1)φ(u2)pu1pu2

(u1 − u2)2

+

(
d− cu2 + (u2 − 2u1 + b)u1u2

)
φ(u2)p

2
u2

(u1 − u2)2
,

K(2) = K2
1K2 =

(
u1pu1 − u2pu2

u1 − u2

)2

·
φ(u1)φ(u2)

(
φ(u1)p

2
u1

− φ(u2)p
2
u2

)
u1u2(u1 − u2)

. (4.2)

Case 3. Using transformation ρb (2.3) with

b1 = a21, b2 = a22, b3 = a23,

we obtain the following integrals of motion

H(3) =
u1
(
2u1 + u2 − b̃u1u2

)
φ(u1)p

2
1

u1 − u2
+
u2
(
u1 + 2u2 − b̃u1u2

)
φ(u2)p

2
y2

u2 − u1
,

K(3) = K2
1K2 =

(
u21p1 − u22p2
u1 − u2

)2

·
φ(u1)φ(u2)

(
u1φ(u1)p

2
1 − u2φ(u2)p

2
2

)
u1 − u2

, (4.3)

where b̃ = a−1
1 + a−1

2 + a−1
3 .

Proposition 4.1. Geodesic Hamiltonians H(1) (4.1), H(2) (4.2) and H(3) (4.3) are related to
each other by canonical transformations σ (2.5) with the suitable set of parameters.

Thus, we have three equivalent metrics on the two-dimensional sphere.

4.1 Potential motion

We can try to destroy this equivalence of the geodesic flows by adding potentials to the geodesic
Hamiltonian, for instance, changing Hamiltonians in the following way

H1 = H + V and H2 = K2
1 (K2 + U).

Let us present some potentials explicitly:

V (1) =
1

b− u1 − u2

(
α

(
b− c

b− u1 − u2
− d

(b− u1 − u2)2

)
+ β

)
,

U (1) =
φ(u1)φ(u2)

b− u1 − u2

(
α

u2φ(u1)− u1φ(u2)

(b− u1 − u2)2(u1 − u2)
+ β

)
,

and

V (2) = u1u2
(
α
(
u21u

2
2 − cu1u2 + bd

)
+ β

)
,

U (2) = φ(u1)φ(u2)
(
α
(
u21u

2
2 − cu1u2 + d(u1 + u2)

)
+ β

)
.

In the third case, we have

V (3) = α
(u1 + u2)(u1 + u2 + b̃u1u2)

2

u31u
3
2

+ β
u1 + u2
u1u2

,
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U (3) =
φ(u1)φ(u2)

4u1u2(u1 − u2)2

(
α
d(u21 + u1u2 + u22)− cu1u2(u1 + u2)

u21u
2
2

+ β

)
.

Using relations

u1 + u2 = a1x
2
1 + a2x

2
2 + a3x

2
3 − b, u1u2 = a2a3x

2
1 + a1a3x

2
2 + a1a2x

2
3,

we can rewrite these potentials in terms of Cartesian coordinates.
As above, the Maupertuis principle allows the construction of a new metric on the sphere

associated with the Hamiltonian

H̃ =
g11p

2
u1

+ g22p
2
u2

E − V
,

where g and V are metrics and potentials associated with H(1) (4.1), H(2) (4.2) and H(3) (4.3).

4.2 Hamiltonians with linear in momenta terms

Let us come back to the separable Hamiltonian (3.6)

H = S1 + S2 = φ(v1)p
2
v1 + φ(v2)p

2
v2 .

Using transformation ρb (2.3) with

b1 = a1, b2 = a2, b3 = a3,

we obtain

H =

(
2a1 −

a2 + a3
a2a3

w

)
(x2M3 − x3M2)

2 +

(
2a2 −

a1 + a3
a1a3

w

)
(x1M3 − x3M1)

2

+

(
2a3 −

a1 + a2
a1a2

w

)
(x2M1 − x1M2)

2,

where

w = u1u2 = a2a3x
2
1 + a1a3x

2
2 + a1a2x

2
3.

In elliptic coordinates, this Hamiltonian has the following form

H = g11p
2
u1

+ 2g12pu1pu2 + g22p
2
u2
, (4.4)

where the metric is

g =


d(2u1 − u2)− u21u

2
2 + bu1u

2
2 − cu1u2

(u1 − u2)2
u1u2φ(u1)φ(u2)

(u1 − u2)2

u1u2φ(u1)φ(u2)

(u1 − u2)2
d(u1 − 2u2)− u21u

2
2 + bu21u2 − cu1u2

(u1 − u2)2

 ,

and b, c and d are combinations of a1, a2 and a3 (3.14). The corresponding quartic invariant is
a product of two polynomials in momenta

K =

(
u1pu1 − u2pu2

u1 − u2

)2 φ(u1)φ(u2)
(
u1φ(u1)p

2
u1

− u2φ(u2)pu2

)
u1 − u2

. (4.5)

These integrals of motion H and K coincide with integrals H (3.16) and K (3.19) after canonical
transformation σbc (2.5) depending on parameters bi = 1 and ck = ak.
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The main difference is that canonical transformation pk → pk + βk acts trivially when bi = 1

H =
∑

(pk + βxk)
2 =

∑
p2k + 2β

∑
xkpk + β2

∑
x2k =

∑
p2k + β2

according to constraints (2.1). When bi = ai, this transformation adds nontrivial term to the
Hamiltonian H (2.4), which is linear polynomial in momenta

H =
∑

ak(pk + βxk)
2 =

∑
akp

2
k + 2β

∑
akxkpk + β2

∑
akx

2
k.

As a result, applying a transformation (2.17) to the Hamiltonian

H̃ = S̃1 + S̃2, S̃k = Sk + β2vk = φ(vk)p
2
vk

+ β2vk,

we obtain Hamiltonian on the T ∗S2

H̃ = H −
2βu1u2

(
u2φ(u1)pu1 − u1φ(u2)pu2

)
u1 − u2

− β2
(
u22φ(u1)− u21φ(u2)

u1 − u2
+ d(u1 + u2)

)
involving linear terms in velocity. Here H is given by (4.4) and the corresponding second integral
of motion is equal to

K̃ = K + β4B4 + β3B3 + β2B2 + βB1,

where K is given by (4.5) and

B4 = −bu21u22 − d
(
u21 + 2u1u2 + u22

)
+ cu1u2(u1 + u2),

B3 = −
2u1u2

(
u22φ(u1)pu1 − u21φ(u1)pu2

)
u1 − u2

,

B1 = −2u1u2φ(u1)φ(u2)pu1pu2(u1pu1 − u2pu2)

u1 − u2
,

B2 =

(
d
(
2u21 + u1u2 − u22

)
− 2cu2u

2
1 + 2bu21u

2
2 + u1u

3
2(u2 − 3u1)

)
u1φ(u1)p

2
u1

(u1 − u2)2

+
2u1u2(u1 + u2)φ(u1)φ(u2)pu1pu2

(u1 − u2)2

+

(
d
(
2u22 + u1u2 − u21

)
− 2cu1u

2
2 + 2bu21u

2
2 + u2u

3
1(u1 − 3u2)

)
u2φu2p

2
u2

(u1 − u2)2
.

According [2, 8, 11] this Hamiltonian defines magnetic flow on the sphere.

5 Conclusion

We discuss a relatively simple map ρb (2.3) preserving the form of Hamiltonian

H = b1p
2
x1

+ · · ·+ bnp
2
xn
, bi ∈ R,

and the Dirac–Poisson bracket (2.2) on cotangent bundle T ∗S(n−1) to the sphere.

Applying this map to the following Hamiltonian, which in terms of elliptic coordinates (3.1)
has the form

T = S1 + · · ·+ Sn−1, Sk = umk

n∏
i=1

(uk − ai)p
2
uk
, m = 0, 1, . . . ,
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we obtain polynomials of the second order in momenta at bi = aℓi , ℓ = 0, 1, . . . ,

ρb(T ) =
n∑

i,j=1

gijb (x)pxipxj .

Because these polynomials commute with n independent, non-polynomial functions ρb(Sk), they
determine a set of equivalent metrics gb(x) on the sphere. By adding various potentials Vb to
these equivalent geodesic Hamiltonians ρb(T ) we can construct different integrable flows and
different metrics (1.3) on the sphere.

The main problem is how to get a set of functions on ρb(Sk) which are polynomials in
momenta. In this note, we study two-dimensional sphere when n = 3 and prove that second-
order polynomial ρb(S1+S2) commutes with a polynomial of fourth order in momenta ρb(S1S2).
In further publications, we will present a similar result for equivalent metrics on the three-
dimensional 3D sphere.

Another interesting problem is to consider canonical transformations preserving Hamiltonian
of the form

H = b1p
2
x1

+ · · ·+ bnp
2
xn

+ V (x), bi ∈ R,

which were obtained for different partial cases in [17, 18, 19, 20, 21].

A The Maupertuis principle

In modern invariant, coordinate-free Hamiltonian mechanics [1, 27], an integrable system is
defined as a Lagrangian submanifold in which n parameters are considered as functions on
2n-dimensional symplectic manifold. In a generic case, the Lagrangian submanifold depends on
m > n parameters and gives rise to a family of Cn

m integrable systems with common trajectories.
In traditional Hamiltonian mechanics, there are several coordinate-dependent descriptions of

the integrable system with common trajectories [4], and the Maupertuis principle is the oldest of
them. Roughly speaking, the Maupertuis or Jacobi–Maupertuis principle says that trajectories
of the natural Hamiltonian systems are geodesics for the suitable metrics on configuration space,
see [5, 6, 13, 14] and references within.

Below we present known technical construction of the geodesic Hamiltonians in a suitable to
our purpose form. Let us take the Hamilton function in the so-called natural form

H = T + V (q), T =
∑
i,j

gij(q)pipj ,

where potential V (q) is a function on coordinates q and c. Suppose that H commutes with
a sum of the homogeneous polynomials of m-order in momenta

K =

N∑
m=0

Km,

where N is an arbitrary integer number, all terms in the polynomial K have the same parity.
From {H,K} = 0 follows that geodesic Hamiltonian

T̃ =
∑
i,j

g̃ij(q)pipj =
T

h− V
, g̃(q) =

g(q)

h− V
,

where h is a constant, commutes
{
T̃ , K̃

}
= 0 with a sum of the homogeneous polynomials of

m-order in momenta

K̃ = Km + T̃Km−2 + T̃ 2Km−4 + · · · .
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Indeed, we can rewrite equation {H,K} = 0 as a set of equations

{T,Kj}+ {V,Kj+2} = 0, j = m,m− 2, . . . , Km+2 = K−1 = K−2 = 0

by using Euler’s homogeneous function theorem. Substituting these equations into{
T̃ , K̃

}
=
{
T̃ ,Km

}
+ T̃

{
T̃ ,Km−2

}
+ T̃ 2

{
T̃ ,Km−4

}
+ · · ·

=
{T,Km}
h− V

+

(
T

(h− V )2
{V,Km}+ T̃

h− V
{T,Km−2}

)
+ · · ·

= 0 +
T

(h− V )2
(
{V,Km}+ {T,Km−2}

)
+ · · · = 0,

and grouping terms of the same order in momenta we directly verify that T̃ commutes with K̃.
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