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Abstract. The branching rule is one of the most fundamental properties of the Macdon-
ald symmetric polynomials. It expresses a Macdonald polynomial as a nonnegative linear
combination of Macdonald polynomials with smaller number of variables. Taking a limit of
the branching rule under the principal specialization when the number of variables goes to
infinity, we obtain a Markov chain of m noncolliding particles with negative drift and an
absorbing wall at zero. The chain depends on the Macdonald parameters (q, t) and may
be viewed as a discrete deformation of the Dyson Brownian motion. The trajectory of the
Markov chain is equivalent to a certain Gibbs ensemble of plane partitions with an arbitrary
cascade front wall. In the Jack limit t = qβ/2 → 1 the absorbing wall disappears, and
the Macdonald noncolliding walks turn into the β-noncolliding random walks studied by
Huang [Int. Math. Res. Not. 2021 (2021), 5898–5942, arXiv:1708.07115]. Taking q = 0
(Hall–Littlewood degeneration) and further sending t → 1, we obtain a continuous time
particle system on Z≥0 with inhomogeneous jump rates and absorbing wall at zero.
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1 Introduction

1.1 Overview

The Dyson Brownian motion [8] is a continuous stochastic dynamics of N particles on the one-
dimensional line R. The particles evolve according to independent Brownian motions which
are conditioned to never collide. The noncolliding property may be also modeled as Coulomb
repelling. The Dyson Brownian motion arises as the dynamics of eigenvalues from the standard
Brownian motion on the space of complex Hermitian matrices. As such, it has been heavily
utilized towards universality results for random matrix spectra [1, 9, 14].

Within integrable probability, a number of discrete deformations of the Dyson Brownian
motion were introduced, starting from noncolliding Poisson and Bernoulli random walks [19]
(based on a classical formula of [16]) and followed by their Macdonald deformation depending
on two parameters (q, t) which is defined in [3]. A notable special case of the latter considered
in [12] is the Jack limit t = qβ/2 → 1, where β > 0 is the beta parameter from random matrix
theory. In the Jack limit, one obtains β-noncolliding Poisson random walks (further studied
in [13]), and also their multilevel versions. A scaling limit of the latter leads to the multilevel
Dyson Brownian motion with the general β parameter.

Each of the known discrete deformations of the Dyson Brownian motion is powered by the
Cauchy summation identity for some family of symmetric polynomials {Pλ} such as Schur (for
noncolliding Poisson and Bernoulli walks), Jack, or Macdonald polynomials. Here {Pλ} is one
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of these families of polynomials in N variables. The Pλ’s form a linear basis in the space of
symmetric polynomials in N variables as λ runs over partitions λ = (λ1 ≥ · · · ≥ λN ≥ 0),
λi ∈ Z, with N parts.

The Cauchy identity is a fundamental property of many families of symmetric polynomials,
and is closely tied to their orthogonality with respect to a suitable inner product. It provides
a product-form expression for the sum

∑
λ bλPλ(x1, . . . , xN )Pλ(y1, . . . , yN ), where bλ are certain

explicit coefficients. In stochastic dynamics of N noncolliding particles, this Cauchy identity
implies the normalization to one property of the transition probability, which also involves an
N -fold summation over partitions λ.

Along with the Cauchy identity, most families of symmetric polynomials satisfy a branching
rule. This identity expresses Pλ(x1, . . . , xN ) in N variables as a nonnegative linear combination
of polynomials Pµ(x1, . . . , xN−1) with N − 1 variables, where the sum runs over µ. For par-
ticular symmetric polynomials, such an expansion has clear representation-theoretic meaning.
For example, for Schur polynomials the branching rule is behind the decomposition of a given
irreducible representation of the unitary group U(N) when restricted to the subgroup U(N−1).

Note that the branching rule is often dual to the Pieri rule expressing the product f Pλ (for
a special choice of f like x1 + · · · + xN ) as a linear combination of Pν ’s in the same number of
variables. In the present paper we do not explicitly use this duality, and keep the branching rule
perspective.

The goal of the present work is to construct and explore noncolliding random walks arising
from the branching rule instead of the Cauchy identity. We start at the level of Macdonald poly-
nomials with parameters (q, t) ∈ (0, 1)2, and take a limit of the branching rule under the principal
specialization (x1, . . . , xN ) =

(
1, t, . . . , tN−1

)
as the number of variables N goes to infinity. Using

the resulting summation identity (formulated in Theorem 1.1 later in the introduction), we de-
fine a new discrete-time Markov process Υm of m distinct ordered particles in Z≥0 with negative
drift and absorbing wall at zero (where m ∈ Z≥1 is assumed fixed). The presence of the wall
means that the process almost surely reaches its only absorbing state (m− 1,m− 2, . . . , 2, 1, 0).

Trajectories of Υm may be identified with lozenge tilings or plane partitions with certain
explicit boundary conditions depending on the initial configuration in Υm. We show that the
probability measure on plane partitions coming from Υm has a Gibbs characterization via the
so-called Boltzmann factors which are ratios of probability weights of two configurations differing
by an elementary transformation. We explicitly compute these Boltzmann factors in the general
Macdonald case. In the particular case t = q, the Gibbs probability weight of a plane partition
is proportional simply to qvol, where vol is the sum of the entries of the plane partition. See
Section 5 in the text for details.

We consider a number of degenerations of our process Υm leading to known deformations of
the Dyson Brownian motion mentioned above. All these degenerations correspond to specializing
the parameters (q, t) in such a way that the Macdonald polynomials turn into another well-known
family of symmetric polynomials:

� (Schur polynomials) Setting t = q, we get a simpler Markov process ΥSchur
m of m noncollid-

ing particles on Z≥0 with an absorbing wall at 0. To the best of the author’s knowledge,
this process and the underlying normalization identity (stating that the quantities in (4.1)
below sum to 1) are also new. The process ΥSchur

m looks similar to the translation invariant
q-noncolliding random walks on Z introduced and studied in [5]. The normalization of
transition probabilities in the latter process can be traced back to the Cauchy identity.
However, it does not seem that our process ΥSchur

m can be scaled to that of [5].

� (Jack polynomials) Take t = qβ/2 → 1 (where β > 0 is the parameter coming from random
matrix theory), and simultaneously scale the coordinates of the process Υm away from 0. In
this way we get a dynamics of m particles on Z which is invariant under space translations
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of the particles. This dynamics is closely related to the β-noncolliding Poisson random
walks studied in [12, 13]. Thus, we see that our new Macdonald noncolliding walks Υm

generalize all known noncolliding processes at the Jack level (with general random matrix β
parameter). In the particular case β = 2, we recover the Bernoulli and Poisson walks
conditioned to never collide which were studied in [19]. Under Brownian scaling, it is
known that the latter random walks turn into the classical Dyson Brownian motion coming
from Hermitian random matrices.

� (Hall–Littlewood polynomials) Setting q = 0, further sending t→ 1 and taking a Poisson-
type limit from discrete time to continuous, we arrive at a new particle system Υcont

m on Z≥0

with an absorbing wall at zero which evolves as follows. To each particle x1 > · · · > xm ≥ 0
we assign an independent exponential clock of rate i(xi − xi+1 − 1), where, by agreement,
xm+1 = −1. When the clock of xi rings, we additionally select an index j ∈ {1, . . . , i}
uniformly at random, and all the particles xi, xi−1, . . . , xj simultaneously jump to the left
by 1. The process Υcont

m almost surely reaches its absorbing state (m−1, . . . , 1, 0). A more
detailed investigation of this particle system will be performed elsewhere.

In the next Section 1.2 we describe in detail our most general Markov processes Υm arising
at the Macdonald level.

1.2 Macdonald noncolliding walks

Throughout the paper we assume that (q, t) are real numbers belonging to (0, 1). We need some
notation. Recall that the q-Pochhammer symbols are given by

(z; q)k := (1− z)(1− zq) · · ·
(
1− zqk−1

)
, k ∈ Z≥0,

and (z; q)∞ :=
∏∞

i=0(1− zqi) is a convergent infinite product because |q| < 1.

For x⃗ = (x1 > · · · > xm ≥ 0), denote the (t, q)-deformed Vandermonde product by

Vt,q (⃗x) :=
∏

1≤i<j≤m

(
qj−i−1txi−xj−j+i+1; t

)
∞

(qj−itxi−xj−j+i+1; t)∞
. (1.1)

When t = q → 1, Vt,q turns (after rescaling by a suitable power of log q) into the usual Vander-
monde V (⃗x) =

∏
1≤i<j≤m(xi − xj). Moreover, when xi = xi+1 for some i, one readily sees that

Vt,q (⃗x) vanishes.

Let y = (y1 > · · · > ym ≥ 0) be such that

yi − xi ∈ {−1, 0} for all 1 ≤ i ≤ m. (1.2)

Now we can define the main object of the present paper:

Υm(⃗x, y⃗) := t−(
m
2 )
Vt,q (⃗y)

Vt,q (⃗x)

∏
1≤i<j≤m

yi=xi, yj=xj−1

(
1− ti−j+xi−xj+1qj−i−1

)(
1− ti−j+xi−xjqj−i+1

)(
1− ti−j+xi−xj+1qj−i

)(
1− ti−j+xi−xjqj−i

)
×

∏
i : yi=xi

txi
∏

i : yi=xi−1

(
tm−i − qm−itxi

)
. (1.3)

From (1.2) one readily sees that the infinite products in Vt,q (⃗y)/Vt,q (⃗x) cancel out in such a way
that (1.3) is always a rational function of q, t. Moreover, for 0 < q, t < 1 the quantities (1.3)
are nonnegative. One of our main results is the sum-to-one identity for the Υm’s:
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Theorem 1.1. With the above notation, for any x⃗ = (x1 > · · · > xm ≥ 0) we have∑
y⃗=(y1>···>ym≥0)

yi−xi∈{−1,0} for all 1 ≤ i ≤ m

Υm(⃗x, y⃗) = 1.

Theorem 1.1 implies that the quantities Υm(⃗x, y⃗) may be viewed as transition probabilities of
a discrete time Markov chain of m ordered distinct particles on Z≥0 in which at each step, each
particle either stays, or moves to the left by 1. Eventually with probability 1 the chain reaches
the absorbing state (m − 1,m − 2, . . . , 2, 1, 0), see Proposition 3.3 below. We call the Markov
chain Υm the Macdonald noncolliding walks with an absorbing wall at zero.

We prove Theorem 1.1 in Section 3 by obtaining the transition probabilities Υm(⃗x, y⃗) as
a limit of certain ratios of Macdonald polynomials evaluated at the principal specializations(
1, t, t2, . . . , tN−1

)
, as the number of variables goes to infinity. The fact that before the limit

these ratios sum to one is equivalent to the branching rule for the Macdonald polynomials.

1.3 Outline

In Section 2 we review the definition of Macdonald symmetric polynomials together with all the
required formulas. In Section 3 we perform the main limit transition, and obtain the Macdonald
noncolliding walks Υm. In Section 4 we consider various degenerations of our dynamics when
the Macdonald parameters (q, t) are specialized in a certain way. More precisely, we look at
the dynamics at t = q (when the Macdonald polynomials reduce to the Schur polynomials), as
q = tα → 1 (reduction to the Jack polynomials), and as q = 0 (when Macdonald polynomials
become the Hall–Littlewood polynomials). Moreover, in the latter case we see that sending
t → 1 leads to a new continuous time Markov chain on m particles with inhomogeneous jump
rates. In Section 5 we give a Gibbs characterization of the probability measure on the space
of trajectories of our noncolliding walks by means of the so-called Boltzmann factors which are
ratios of probability weights of two trajectories differing by an elementary transformation.

2 Review of Macdonald polynomials

Here we collect the necessary notation and results around Macdonald symmetric polynomials.
We follow [20, Chapter VI].

2.1 Definition

Let N ≥ 1. Macdonald symmetric polynomials Pλ in N variables x1, . . . , xN are indexed by
partitions λ = (λ1 ≥ · · · ≥ λN ≥ 0), λi ∈ Z, with N parts. Denote the set of these partitions
by Y(N). The Pλ’s depend on two parameters q, t ∈ [0, 1). For each fixed (q, t), they form a basis
in the space of symmetric polynomials in N variables when λ runs over Y(N). The shortest
definition of the Pλ’s is through the first Macdonald q-difference operator acting in the xi’s:

D1 :=

N∑
i=1

( ∏
1≤j≤N : j ̸=i

xj − txi
xj − xi

)
Tq;i,

Tq;if(x1, . . . , xN ) := f(x1, . . . , xi−1, qxi, xi+1, . . . , xN ).

The operator D1 preserves the space of symmetric polynomials in x1, . . . , xN , and its eigenfunc-
tions are the Macdonald polynomials

D1Pλ(x1, . . . , xN | q, t) =
(
qλ1tN−1 + qλ2tN−2 + · · ·+ qλN

)
Pλ(x1, . . . , xN | q, t), (2.1)
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with λ ∈ Y(N). For generic (q, t), the eigenvalues in (2.1) for different λ are distinct, so the Pλ’s
are determined uniquely up to normalization. The normalization is specified by

Pλ(x1, . . . , xN | q, t) = xλ1
1 x

λ2
2 · · ·xλN

N + lexicographically lower terms,

where the lower terms depend on q, t.
In the case q = t, the polynomials Pλ reduce to the well-known Schur symmetric polynomi-

als sλ, which admit the following explicit determinantal formula (which does not depend on the
choice of q):

Pλ(x1, . . . , xN | q, q) = sλ(x1, . . . , xN ) =
det

[
x
λj+N−j
i

]N
i,j=1

det
[
xN−j
i

]N
i,j=1

. (2.2)

For generic (q, t), there are no known formulas for Macdonald polynomials which are as compact
as (2.2).

2.2 Principal specialization

(3, 2)

j

i

λ1

λ2

λ3
...

λ′1 λ′2 λ′3 . . .

Figure 1. Young diagram λ = (5, 5, 5, 2, 1, 1). Highlighted are the arm, leg, coarm, and coleg of the box

□ = (3, 2). We have |λ| = 19 and a(□) = 3, l(□) = 1, a′(□) = 1, l′(□) = 2.

When the variables xi are specialized to a finite geometric progression with the ratio t (the
second Macdonald parameter), the polynomials Pλ admit an explicit product formula in terms
of the Young diagram corresponding to the partition λ. Recall that the Young diagram λ is
a collection of 1 × 1 boxes in the plane with λi boxes in row i, see Figure 1 for an illustration.
The principal specialization takes the form [20, formulas (VI.6.11) and (VI.6.11′)]:

Pλ

(
1, t, . . . , tN−1 | q, t

)
= tn(λ)

∏
□∈λ

1− qa
′(□)tN−l′(□)

1− qa(□)tl(□)+1
, (2.3)

where the product is over all boxes of the Young diagram λ,

n(λ) :=
∑
i

(i− 1)λi, (2.4)

and the arms, legs, coarms, colegs of the box □ = (i, j) are defined, respectively, as

a(□) = λi − j, l(□) = λ′j − i, a′(□) = j − 1, l′(□) = i− 1. (2.5)

Here λ′j are the column lengths in the Young diagram, see Figure 1.
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2.3 Branching

Let us first recall the Pieri coefficients for Macdonald polynomials [20, formula (VI.6.24.ii)], [3,
formula (2.11)]. They depend on a pair of partitions µ, λ which interlace, namely,

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · ·

(notation µ ≺ λ), and are defined as

ψλ/µ = ψλ/µ(q, t) :=
∏

1≤i<j≤ℓ(µ)

f
(
qµi−µj tj−i

)
f
(
qλi−λj+1tj−i

)
f
(
qλi−µj tj−i

)
f
(
qµi−λj+1tj−i

) , f(u) :=
(tu; q)∞
(qu; q)∞

. (2.6)

Here and below by ℓ(µ) we denote the number of parts in µ which are strictly positive, that is,
µℓ(µ) > 0, µℓ(µ)+1 = 0 (when µ = (0, 0, . . . ), we set ℓ(µ) = 0). Let also |λ| = λ1 + · · · + λℓ(λ)
denote the number of boxes in the Young diagram λ.

Proposition 2.1 ([20, formula (VI.7.13′)]). Let λ ∈ Y(N). We have

Pλ(x1, . . . , xN | q, t) =
∑

µ : µ≺λ

ψλ/µ(q, t)Pµ(x1, . . . , xN−1 | q, t)x|λ|−|µ|
N , (2.7)

where the sum is over µ ∈ Y(N − 1) which interlace with λ.

Note that for q, t ∈ [0, 1) the coefficients ψλ/µ (2.6) are all nonnegative. Together with
Proposition 2.1 this implies:

Corollary 2.2. Let q, t ∈ [0, 1). Specializing the variables x1, . . . , xN into nonnegative real
numbers makes the Macdonald polynomial Pλ(x1, . . . , xN | q, t) nonnegative.

More generally, for N ≥ K ≥ 1 define the skew Macdonald polynomials Pλ/µ as the coeffi-
cients in the expansion:

Pλ(x1, . . . , xN | q, t) =
∑

µ∈Y(K)

Pµ(x1, . . . , xK | q, t)Pλ/µ(xK+1, . . . , xN−1, xN | q, t).

Here we use the fact that the polynomials Pµ(x1, . . . , xK) form a basis in the space of symmetric
functions in K variables, and expand Pλ(x1, . . . , xN ) in this basis. The Pieri coefficient is related
to the skew Macdonald polynomial in one variable as follows:

Pλ/µ(x1 | q, t) =
{
ψλ/µ(q, t)x

|λ|−|µ|
1 , µ ≺ λ,

0, otherwise.

Later we will also use the dual Pieri coefficients ψ′
λ/µ which are defined as (see [20, for-

mula (VI.6.24.iv)] and [3, formula (2.12)])

ψ′
λ/µ = ψ′

λ/µ(q, t) :=
∏
i<j

λi=µi, λj=µj+1

(
1− qµi−µj tj−i−1

)(
1− qλi−λj tj−i+1

)(
1− qµi−µj tj−i

)(
1− qλi−λj tj−i

) . (2.8)

for partitions λ, µ whose column lengths interlace, that is, λ′1 ≥ µ′1 ≥ λ′2 ≥ µ′2 ≥ · · · . We have

Pλ′/µ′(x1 | t, q) =
{
ψ′
λ/µ(q, t)x

|λ|−|µ|
1 , µ′ ≺ λ′,

0, otherwise.
(2.9)
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2.4 Cauchy identity

Along with the branching rule, another fundamental identity for Macdonald polynomials is the
Cauchy identity. Here we present its dual version, see [20, Chapter VI.4] for the usual version.

Proposition 2.3 ([20, formula (VI.5.4) and Chapter VI.7]). Let N,M ≥ 1 be fixed. We have

∑
λ∈Y(N) : λ1≤M

Pλ(x1, . . . , xN | q, t)Pλ′(y1, . . . , yM | t, q) =
N∏
i=1

M∏
j=1

(1 + xiyj).

Moreover, for any µ ∈ Y(N) we have the following particular case of the skew Cauchy identity:

Pµ(x1, . . . , xN | q, t)
N∏
i=1

(1 + xiy) =
∑

λ∈Y(N) : µ′≺λ′

Pλ′/µ′(y | t, q)Pλ(x1, . . . , xN | q, t). (2.10)

Identities (2.7) and (2.10) look very similar, but note that in the former we sum over the
smaller partition, while in the latter one we sum over the larger partition.

2.5 Markov kernels from Macdonald polynomials

Let us first recall a general definition from [6, Chapter 7]. Let X, Y be finite or countable
sets. By a Markov kernel (or a link) from X to Y, we mean a function P on X ×Y such that
P (x, y) ∈ [0, 1] for all x ∈ X, y ∈ Y, and∑

y∈Y
P (x, y) = 1 for all x ∈ X.

We adopt the notation P : X 99K Y.

Normalizing identities (2.7) and (2.10) with nonnegative variables xi and y (following [2, 4]
in the Schur case and [3] in the general Macdonald case) leads to the following two families of
links:

ΛN
N−1 : Y(N) 99K Y(N − 1),

ΛN
N−1(λ, µ) := ψλ/µ(q, t)x

|λ|−|µ|
N

Pµ(x1, . . . , xN−1 | q, t)
Pλ(x1, . . . , xN | q, t) 1µ≺λ, (2.11)

QN : Y(N) 99K Y(N),

QN (λ, ν) :=
ψ′
ν/λ(q, t)y

|ν|−|λ|∏N
i=1(1 + xiy)

Pν(x1, . . . , xN | q, t)
Pλ(x1, . . . , xN | q, t) 1λ′≺ν′ . (2.12)

Here and throughout the paper by 1A we denote the indicator of the event (or condition) A.
For the link (2.12) we also used (2.9).

The links (2.11)–(2.12) satisfy the following intertwining relation:

QNΛN
N−1 = ΛN

N−1QN−1,∑
ν∈Y(N)

QN (λ, ν)ΛN
N−1(ν,κ) =

∑
µ∈Y(N−1)

ΛN
N−1(λ, µ)QN−1(µ,κ), (2.13)

where the second identity holds for all λ ∈ Y(N), κ ∈ Y(N − 1), and is simply a more detailed
rewriting of the first one. Intertwining relation (2.13) follows from the skew Cauchy identity, for
example, see [3, Proposition 2.3.1].
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The Markov chain on Y(N) defined by the operator QN is traditionally viewed as the Mac-
donald deformation of the Dyson Brownian motion, see, for example, [4, 11] for the Schur q = t
case, and also [12] for the general β version based on Jack symmetric polynomials. For the
classical β = 2 Dyson Brownian motion (coming from the Gaussian unitary ensemble of random
matrices), intertwining relations were investigated in [25].

In this paper we take a limit of the links ΛN
N−1 as N → ∞ to construct a new Markov

process Υm of m noncolliding particles depending on the Macdonald parameters (q, t). This
process, too, may be viewed as another Macdonald deformation of the Dyson Brownian motion
(in particular, our process admits a diffusive scaling to the Dyson Brownian motion). We also
note that in the limit we consider, the matrix elements of the operators QN corresponding to our
scaling tend to zero. Thus, it is not clear whether the limiting Markov chains coming from ΛN

N−1

admit any intertwining relation like (2.13). In contrast, they are going to be consistent for
different numbers of particles, see Proposition 3.4 below.

3 Limit transition to noncolliding walks

In this section we perform the limit transition as N → +∞ in the Markov kernels ΛN
N−1 (2.11)

under the principal specialization (2.3), and prove Theorem 1.1.

3.1 Setup

Denote by Wm the space of m-particle configurations in Z≥0, that is,

Wm := {⃗x = (x1 > x2 > · · · > xm ≥ 0)} ⊂ Zm
≥0. (3.1)

By Wm(N) denote the finite subset of Wm determined by the condition x1 ≤ N +m− 2. Define
the injective maps

π : Wm(N) → Y(N), π : Wm(N) → Y(N − 1), (3.2)

as follows. If λ = π(⃗x) ∈ Y(N) and µ = π(⃗y) ∈ Y(N − 1), then

{λ1 − 1, λ2 − 2, . . . , λN −N} = {0, 1, 2, . . . , N +m− 1} \ {x1, . . . , xm},
{µ1 − 1, µ2 − 2, . . . , µN−1 − (N − 1)} = {1, 2, . . . , N +m− 1} \ {y1 + 1, . . . , ym + 1}. (3.3)

For fixed x⃗ and growing N , almost all parts of λ = π(⃗x) are equal to N+m, and there is a defect
in a few last parts of λ. The columns of this defect are encoded through x⃗. A similar description
holds for µ = π(⃗y). In multiplicative notation for partitions, we have

λ = π(⃗x) = (N +m)N−x1+m−1(N +m− 1)x1−x2−1 · · · (N + 1)xm−1−xm−1N xm ,

µ = π(⃗y) = (N +m)N−y1+m−2(N +m− 1)y1−y2−1 · · · (N + 1)ym−1−ym−1N ym . (3.4)

See Figure 2 for an illustration.

Lemma 3.1. For any x⃗, y⃗ ∈ Wm(N), we have π(⃗y) ≺ π(⃗x) if and only if yi = xi or yi = xi − 1
for all i = 1, . . . ,m.

Proof. Straightforward verification. ■

In the rest of this section we fix arbitrary x⃗, y⃗ ∈ Wm and compute the limit of ΛN
N−1(π(⃗x), π(⃗y))

(2.11) under principal specialization xj = tj−1 as N → +∞. Clearly, for sufficiently large N the
partitions π(⃗x), π(⃗y) are well-defined. We will show that this limit is equal to the Markov kernel
Υm(⃗x, y⃗) defined by (1.3).

Throughout the computation we adopt the convention that λ = π(⃗x), µ = π(⃗y).
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λ = π(⃗x)

N +m

N

xm . . .

x1 − (m− 1)

µ = π(⃗y)

N +m

N − 1

ym . . .

y1 − (m− 1)

Figure 2. Left: Young diagram of π(⃗x) defined by (3.2)–(3.3). The column lengths of the defect are

xj − (m− j). Right: Young diagram of π(⃗y). Observe that λ = π(⃗x) and π(⃗y) differ only by adding the

first row.

3.2 Initial Markov kernel

Our starting point is the formula for ΛN
N−1(π(⃗x), π(⃗y)), see (2.11), under the principal special-

ization xj = tj−1, which takes the form (where µ ≺ λ):

ΛN
N−1(λ, µ) = ψλ/µ(q, t)x

|λ|−|µ|
N

Pµ(x1, . . . , xN−1 | q, t)
Pλ(x1, . . . , xN | q, t)

= ψλ/µ(q, t)t
(N−1)(|λ|−|µ|) Pµ

(
1, t, . . . , tN−2 | q, t

)
Pλ

(
1, t, . . . , tN−2, tN−1 | q, t

)
= t(N−1)(|λ|−|µ|)

∏
1≤i<j≤N−1

f
(
qµi−µj tj−i

)
f(qλi−λj+1tj−i)

f
(
qλi−µj tj−i

)
f
(
qµi−λj+1tj−i

)
× tn(µ)

∏
□∈µ

1− qa
′(□)tN−1−l′(□)

1− qa(□)tl(□)+1
t−n(λ)

∏
□∈λ

1− qa(□)tl(□)+1

1− qa′(□)tN−l′(□)
. (3.5)

Here we used (2.3) and (2.6). Our next steps are devoted to taking the limit as N → +∞ in
various parts of the product (3.5).

3.3 Power of t

Let us first consider the overall power of t in (3.5) which is equal to t(N−1)(|λ|−|µ|)+n(µ)−n(λ). Our
aim is to express quantities depending on λ, µ through x⃗, y⃗. Adopt the convention x0 = N +m,
y0 = N +m− 1, xm+1 = ym+1 = −1, so that

N +m− x1 − 1 = x0 − x1 − 1, N +m− y1 − 2 = y0 − y1 − 1.

We have from (3.4):

|λ| − |µ| =
m∑
i=0

(N + i)((xm−i − xm−i+1 − 1)− (ym−i − ym−i+1 − 1))

=
m∑
i=0

(N + i)((xm−i − xm−i+1)− (ym−i − ym−i+1))

= N

m∑
i=0

((xm−i − xm−i+1)− (ym−i − ym−i+1))
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+
m∑
i=0

i((xm−i − xm−i+1)− (ym−i − ym−i+1))

= N +m+ |⃗y| − |⃗x|.
Moreover, from (2.4) and (3.4) we have

n(µ)− n(λ) =

m∑
j=0

(N +m− j)

[(
y0 − yj+1 − (j + 1)

2

)
−
(
y0 − yj − j

2

)]

−
m∑
j=0

(N +m− j)

[(
x0 − xj+1 − (j + 1)

2

)
−
(
x0 − xj − j

2

)]

= −(N − 1)(N +m)−
(
m

2

)
+ |⃗x|

+
1

2

m∑
i=1

(yi − xi)(xi + yi + 3 + 2i− 2m− 2N). (3.6)

Indeed, the coefficients by xi, x
2
i , yi, y

2
i , 1 ≤ i ≤ m, in the right-hand side of (3.6) are, respectively,

N − i+m− 1

2
, −1

2
, −N + i−m+

3

2
,
1

2
,

which are the same as in the left-hand side. The free term in the left-hand side is −
(
m
2

)
+m−

N2 − (m − 2)N , which is readily matched to the free term in the right-hand side by virtue of
our conventions about x0, y0, xm+1, ym+1.

Let us further simplify the left-hand side of (3.6). The i-th term in this sum is rewritten as

1

2
(yi − xi)(xi + yi + 3 + 2i− 2m− 2N)

= −(N − 1)(yi − xi) +
1

2
(yi − xi)(−xi + yi + 1) + (yi − xi)(xi −m+ i).

Since yi − xi is equal to 0 or −1, the quantity (yi − xi)(−xi + yi + 1) is identically zero. Thus,
we have

n(µ)− n(λ) = −(N − 1)(N +m+ |⃗y| − |⃗x|) + |⃗x| −
(
m

2

)
+

m∑
i=1

(xi −m+ i)(yi − xi).

We see that the N -dependent terms in (N − 1)(|λ| − |µ|) + n(µ) − n(λ) cancel out, and the
overall factor containing the power of t in ΛN

N−1(π(⃗x), π(⃗y)) has the form

t−(
m
2 )+|⃗x|+

∑m
i=1(xi−m+i)(yi−xi).

3.4 Coarms and colegs

Addressing the factors in (3.5) containing coarms and colegs of λ and µ, we obtain using (2.5):∏
□∈λ

(
1− qa

′(□)tN−l′(□)
)
=

N∏
i=1

λi∏
j=1

(
1− qj−1tN−i+1

)
=

N∏
i=1

(
tN+1−i; q

)
λi
.

This product is in the denominator, and a similar factor
∏N−1

i=1

(
tN−i; q

)
µi

appears in the nu-
merator. Let us show that the contribution coming from coarms and colegs goes to one, that
is,

lim
N→+∞

∏N−1
i=1

(
tN−i; q

)
µi∏N

i=1

(
tN+1−i; q

)
λi

= 1. (3.7)



Noncolliding Macdonald Walks with an Absorbing Wall 11

To see this, observe that µi − λi+1 for all i = 1, . . . , N − 1 is a nonnegative integer which does
not grow with N as long as N − i is fixed, see (3.4). Therefore,(

tN−i; q
)
µi(

tN+1−(i+1); q
)
λi+1

=

(
tN−i; q

)
µi(

tN−i; q
)
λi+1

=
(
1− tN−iqλi+1

)(
1− tN−iqλi+1+1

)
· · ·

(
1− tN−iqµi−1

)
,

where the product in the right-hand side is finite. Since λi+1 and µi go to infinity as N → ∞,
this product converges to 1. There is one more factor in the denominator of (3.7), namely,

1(
tN ; q

)
λ1

=

(
tNqN+m; q

)
∞(

tN ; q
)
∞

.

This factor also goes to 1 as N → +∞, and so the limit (3.7) is established.

3.5 Arms and legs

We now consider the product in (3.5) involving arms and legs:∏
□∈µ

1

1− qa(□)tl(□)+1

∏
□∈λ

(
1− qa(□)tl(□)+1

)
. (3.8)

Recall the notation λ = π(⃗x), µ = π(⃗y), see (3.4). Observe that the Young diagrams λ = π(⃗x)
and π(⃗y) differ only by adding the first row (cf. Figure 2). For each box □ in the first row of λ,
the quantity l(□) is of order N , and so 1− qa(□)tl(□)+1 is close to 1 for large N . Therefore, the
product (3.8) has the same limit as∏

□∈π(⃗y)

1

1− qa(□)tl(□)+1

∏
□∈π(⃗x)

(
1− qa(□)tl(□)+1

)
. (3.9)

Proposition 3.2. As N → +∞, the product (3.9) converges to

Vt,q (⃗y)

Vt,q (⃗x)

m∏
i=1

(
1− qm−itxi−m+i1yi=xi−1

)
,

where Vt,q is the (t, q)-Vandermonde given by (1.1).

Proof. Recall the notation for the (q, t)-deformed hook polynomials [20, formulas (VI.8.1) and
(VI.8.1′)]:

cν(q, t) =
∏
□∈ν

(
1− qa(□)tl(□)+1

)
, c′ν(q, t) =

∏
□∈ν

(
1− qa(□)+1tl(□)

)
,

and observe that cν(q, t) = c′ν′(t, q), where ν
′ is the transposed Young diagram. Note that, in

multiplicative notation,

π(⃗x)′ = (N − 1)N (N − 1− xm)(N − 1− xm−1 + 1)(N − 1− xm−2 + 2) · · ·
× (N − 1− x1 +m− 1)

and similarly for π(⃗y)′, see Figure 2. Adopt the convention xm+j = ym+j = −j for j = 1, 2, . . . .
Then we may shift the indices j to encode the string π(⃗x)′ as π(⃗x)′j = N + j − 1− xm−j , where
−N ≤ j ≤ m−1, and similarly for y⃗. The arm and leg lengths do not change under this shifting.



12 L. Petrov

This shift allows to directly refer to a known identity, the first one in [15, Proposition 3.2], and
write

cπ(⃗x)(q, t) = c′π(⃗x)′(t, q)

=
(t; t)N+m

∞∏m−1
j=−N

(
tN+j−xm−jqm−1−j ; t

)
∞

∏
−N≤i<j≤m−1

(
qj−iti−j−xm−i+xm−j+1; t

)
∞(

qj−i−1ti−j−xm−i+xm−j+1; t
)
∞

=
(t; t)N+m

∞∏m−1
j=−N

(
tN+j−xm−jqm−1−j ; t

)
∞

∏
−N≤i<j≤−1

(
qj−it; t

)
∞(

qj−i−1t; t
)
∞

×
∏

−N≤i≤−1
0≤j≤m−1

(
qj−it−j+xm−j+1; t

)
∞(

qj−i−1t−j+xm−j+1; t
)
∞

∏
1≤i<j≤m

(
qj−iti−j−xj+xi+1; t

)
∞(

qj−i−1ti−j−xj+xi+1; t
)
∞︸ ︷︷ ︸

1/Vt,q (⃗x)

.

Therefore, the product (3.9) becomes

cπ(⃗x)(q, t)

cπ(⃗y)(q, t)
=
Vt,q (⃗y)

Vt,q (⃗x)

m∏
j=1

(
tN+m−j−yjqj−1; t

)
∞(

tN+m−j−xjqj−1; t
)
∞

×
m∏
j=1

−1∏
i=−N

(
qm−j−itj−m+xj+1; t

)
∞(

qm−j−i−1tj−m+xj+1; t
)
∞

(
qm−j−i−1tj−m+yj+1; t

)
∞(

qm−j−itj−m+yj+1; t
)
∞

.

The first product over 1 ≤ j ≤ m converges to 1 as N → +∞ thanks to the presence of tN .
In the second product over 1 ≤ j ≤ m, the terms where yj = xj are simply equal to 1. When
yj = xj − 1, we have

−1∏
i=−N

(
qm−j−itj−m+xj+1; t

)
∞(

qm−j−i−1tj−m+xj+1; t
)
∞

(
qm−j−i−1tj−m+xj ; t

)
∞(

qm−j−itj−m+xj ; t
)
∞

=

N∏
i=1

1− qm−j+i−1tj−m+xj

1− qm−j+itj−m+xj
=

1− qm−jtj−m+xj

1− qm−j+N tj−m+xj
,

and the N → +∞ limit of this expression is 1− qm−jtxj−m+j . This completes the proof. ■

3.6 Pieri coefficient

It remains to consider the N → +∞ limit of the Pieri coefficient ψλ/µ(q, t) entering (3.5). Recall
the convention xm+j = ym+j = −j for j = 1, 2, . . . , and encode (shifting the indices)

λ′i = π(⃗x)′i = N + i− xm−i, µ′j = π(⃗y)′j = N − 1 + j − ym−j .

We can now use the well-known duality [20, proof of formula (6.24)]

ψλ/µ(q, t) = ψ′
λ′/µ′(t, q),

and obtain from (2.8):

ψ′
λ′/µ′(t, q) =

∏
−N≤i<j≤m−1
λ′
i=µ′

i, λ
′
j=µ′

j+1

(
1− tµ

′
i−µ′

jqj−i−1
)(
1− tλ

′
i−λ′

jqj−i+1
)(

1− tµ
′
i−µ′

jqj−i
)(
1− tλ

′
i−λ′

jqj−i
)
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=
∏

−N≤i<j≤m−1
ym−i=xm−i−1,
ym−j=xm−j

(
1− ti−j+ym−j−ym−iqj−i−1

)(
1− ti−j+xm−j−xm−iqj−i+1

)(
1− ti−j+ym−j−ym−iqj−i

)(
1− ti−j+xm−j−xm−iqj−i

) .

Split the product over i < j into three parts. The first part with −N ≤ i < j ≤ −1 cancels
out and is equal to 1 since we have ym−i = xm−i for all −N ≤ i ≤ −1. The second part with
−N ≤ i ≤ −1 and 0 ≤ j ≤ m − 1 is also equal to 1 for the same reason. The third part with
0 ≤ i < j ≤ m− 1 equals∏

1≤i<j≤m
yi=xi, yj=xj−1

(
1− ti−j+yi−yjqj−i−1

)(
1− ti−j+xi−xjqj−i+1

)(
1− ti−j+yi−yjqj−i

)(
1− ti−j+xi−xjqj−i

) , (3.10)

which is independent of N . Note that (3.10) is equal to a Pieri coefficient ψ′
(⃗x−δm)/(⃗y−δm)(t, q),

where δm = (m− 1,m− 2, . . . , 2, 1, 0) is the staircase partition.

3.7 Final result

Putting together all the computations from this section, we see that the N → +∞ limit of the
Markov kernel ΛN

N−1(π(⃗x), π(⃗y)) is the Markov kernel (on Wm) of the Macdonald noncolliding
walks with the absorbing wall at zero:

Υm(⃗x, y⃗) = t−(
m
2 )+|⃗x|+

∑m
i=1(xi−m+i)(yi−xi) Vt,q (⃗y)

Vt,q (⃗x)
ψ′
(⃗x−δm)/(⃗y−δm)(t, q)

×
m∏
i=1

(
1− qm−itxi−m+i1yi=xi−1

)
= t−(

m
2 )

∏
1≤i<j≤m

(
qj−itxi−xj−j+i+1; t

)
∞
(
qj−i−1tyi−yj−j+i+1; t

)
∞(

qj−i−1txi−xj−j+i+1; t
)
∞
(
qj−ityi−yj−j+i+1; t

)
∞

×
∏

1≤i<j≤m
yi=xi, yj=xj−1

(
1− ti−j+xi−xj+1qj−i−1

)(
1− ti−j+xi−xjqj−i+1

)(
1− ti−j+xi−xj+1qj−i

)(
1− ti−j+xi−xjqj−i

)
×

∏
i : yi=xi

txi
∏

i : yi=xi−1

(
tm−i − qm−itxi

)
. (3.11)

The second expression is obtained by rewriting the powers of t, and expanding the notation
of Vt,q and ψ′. This completes the proof of Theorem 1.1.

3.8 Properties of Macdonald noncolliding walks

Let us show that Υm (3.11) indeed possesses an absorbing wall at zero:

Proposition 3.3. Started from any initial configuration, the process Υm eventually reaches the
absorbing state δm = (m− 1,m− 2, . . . , 1, 0).

Proof. First, observe that if xm = 0, then the term tm−i−qm−itxm (present in (3.11) if ym = −1)
vanishes. This means that once the leftmost particle xm reaches 0, it stays there forever. More-
over, this implies that δm is indeed an absorbing state.

Now, if the process does not eventually reach δm, then by the monotonicity it will stay an
infinite amount of time in some configuration x⃗ with |⃗x| > |δm| =

(
m
2

)
. However, this cannot

happen with positive probability because 0 < t < 1 and

Υm(⃗x, x⃗) = t|⃗x|−(
m
2 ) < 1.
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This completes the proof. ■

The walks Υm for different m satisfy the following consistency:

Proposition 3.4. If xm = ym = 0, then

Υm(⃗x, y⃗) = Υm−1(⃗x
′, y⃗ ′),

where x⃗′ ∈ Wm−1 is given by x′i = xi − 1, i = 1, . . . ,m− 1, and similarly for y⃗ ′.

Proof. Follows from the exact formula (3.11) after necessary simplifications. ■

Proposition 3.4 allows to view the Markov processes Υm for all m ≥ 1 as instances of one
and the same Markov process on configurations of infinitely many particles on Z. These config-
urations must be half-infinite, that is, there are finitely many particles in Z≥0 and finitely many
holes in Z<0. If there are m particles away from the packed group extending to −∞, then the
dynamics is governed by (a suitable shift of) the process Υm.

4 Degenerations and limits of Macdonald noncolliding walks

In this section we discuss various degenerations of the Macdonald noncolliding walks Υm.

4.1 Schur degeneration

When q = t, recall that the Macdonald polynomials turn into the Schur polynomials (2.2). This
degeneration simplifies our Markov chain, too:

Proposition 4.1. When t = q, the Macdonald noncolliding walks Υm (3.11) on Wm become

ΥSchur
m (⃗x, y⃗) = q−(

m
2 )+(m−1)(|⃗x|−|⃗y|)

∏
1≤i<j≤m

qyj − qyi

qxj − qxi

m∏
i=1

(
qxi1yi=xi +

(
1− qxi

)
1yi=xi−1

)
.(4.1)

Proof. The right-hand side of (4.1) is a straightforward simplification of (3.11) at q = t. ■

This Markov chain may be viewed as the Doob h-transform (cf. [18, 19]) of m independent
random walks on Z≥0 with transition probabilities

Prob(k → k) = qk, Prob(k → k − 1) = 1− qk, k ∈ Z≥0,

and absorbing wall at zero. The corresponding positive harmonic function for the Markov
transition matrix of m independent walks is

h(⃗x) = q−(m−1)|⃗x|
∏

1≤i<j≤m

(
qxi − qxj

)
, x⃗ ∈ Wm,

and it has the eigenvalue q(
m
2 ). The statement about the eigenvalue is equivalent to∑

y⃗∈Wm

ΥSchur
m (⃗x, y⃗) = 1,

which follows as a t = q specialization of Theorem 1.1.
The noncolliding walks ΥSchur

m are somewhat similar to the ones studied in [5]. Indeed,
the latter are obtained from m independent random walks on the whole line Z by means of the
Doob h-transform with the q-Vandermonde

∏
1≤i<j≤m

(
qxi−qxj

)
, and this harmonic function has
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eigenvalue 1. The resulting process studied in [5] is invariant with respect to space translations
x⃗ 7→ x⃗ + L (where L ∈ Z is arbitrary). In contrast, our walks are not translation invariant
and live on Wm ⊂ Zm

≥0. As time goes to infinity, our process ΥSchur
m is eventually absorbed at

δ = (m−1,m−2, . . . , 1, 0) ∈ Wm. It also seems that our noncolliding walks ΥSchur
m do not admit

a limit (while keeping q fixed) to the process of [5].

In [5] it was shown that the space-time distribution of the noncolliding q-dependent random
walks on the whole line Z is a determinantal point process. The determinantal structure of the
process ΥSchur

m (4.1) will be explored in a forthcoming work.

4.2 Jack limit

Fix α > 0. When q = tα and t→ 1, it is known [20, Chapter VI.10] that Macdonald polynomials
turn into Jack symmetric polynomials. The parameter α is sometimes denoted by 1/θ (in liter-
ature on asymptotic representation theory, for example, [17]), and is related to the parameter β
in random matrix theory as α = 2/β.

We aim to take the Jack limit of the Markov chain Υm (3.11). As the factors tm−i − qm−itxi

in Υm tend to 0 for fixed x⃗, we need to scale x⃗ with t. This scaling necessarily moves the process
away from the absorbing wall. More precisely, we take the limit as

t→ 1, L→ +∞, q = tα, tL → b ∈ (0, 1), (4.2)

and shift x⃗, y⃗ by L as

xi(L) = Xi + i(α− 1) + L, yi(L) = Yi + i(α− 1) + L, (4.3)

where

Xi,Yi ∈ Z− i(α− 1), i = 1, . . . ,m, Xi − Xi+1 ≥ α, Yi − Yi+1 ≥ α. (4.4)

The latter inequalities come from the strict ordering of x⃗, y⃗ ∈ Wm (3.1). We also have Yi = Xi

or Yi = Xi − 1 for all i = 1, . . . ,m.

Proposition 4.2. Under (4.2)–(4.3), the transition probabilities Υm(⃗x(L), y⃗(L)) converge to

ΥJack
m

(
X⃗, Y⃗

)
:= bm−|X⃗|+|Y⃗|(1− b)|X⃗|−|Y⃗|

∏
1≤i<j≤m

(Xi − α1Yi=Xi−1)− (Xj − α1Yj=Xj−1)

Xi − Xj
.(4.5)

Proof. We have from (3.11) for any fixed x⃗, y⃗ ∈ Wm:

Υm(⃗x+ L, y⃗ + L) = t−(
m
2 )

∏
1≤i<j≤m

(
qj−itxi−xj−j+i+1; t

)
∞
(
qj−i−1tyi−yj−j+i+1; t

)
∞(

qj−i−1txi−xj−j+i+1; t
)
∞
(
qj−ityi−yj−j+i+1; t

)
∞

×
∏

1≤i<j≤m
yi=xi, yj=xj−1

(
1− ti−j+xi−xj+1qj−i−1

)(
1− ti−j+xi−xjqj−i+1

)(
1− ti−j+xi−xj+1qj−i

)(
1− ti−j+xi−xjqj−i

)
×

∏
i : yi=xi

txi+L
∏

i : yi=xi−1

(
tm−i − qm−itxi+L

)
.

The third line is the only part involving L, and it turns into bm−|⃗x|+|⃗y|(1 − b)|⃗x|−|⃗y|. The limits
of the other factors are obtained in a standard way, for example, see [20, Chapter VI.10] (and
especially formula (VI.10.3) and its proof). Note that these remaining factors do not depend on
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the shift L, and we may thus assume that xi = Xi + i(α− 1) and yi = Yi + i(α− 1). With this
notation, we have(

qj−itxi−xj−j+i+1; t
)
∞
(
qj−i−1tyi−yj−j+i+1; t

)
∞(

qj−i−1txi−xj−j+i+1; t
)
∞
(
qj−ityi−yj−j+i+1; t

)
∞

→ Γ(α(j − i− 1) + xi − xj − j + i+ 1)Γ(α(j − i) + yi − yj − j + i+ 1)

Γ(α(j − i) + xi − xj − j + i+ 1)Γ(α(j − i− 1) + yi − yj − j + i+ 1)

=
Γ(Xi − Xj + 1− α)Γ(Yi − Yj + 1)

Γ(Xi − Xj + 1)Γ(Yi − Yj + 1− α)
,

and (
1− ti−j+xi−xj+1qj−i−1

)(
1− ti−j+xi−xjqj−i+1

)(
1− ti−j+xi−xj+1qj−i

)(
1− ti−j+xi−xjqj−i

)
→ (α(j − i− 1) + i− j + xi − xj + 1)(α(j − i+ 1) + i− j + xi − xj)

(α(j − i) + i− j + xi − xj + 1)(α(j − i) + i− j + xi − xj)

=
(Xi − Xj + 1− α)(Xi − Xj + α)

(Xi − Xj + 1)(Xi − Xj)
.

One can check by considering four cases depending on Yi−Xi ∈ {−1, 0}, Yj −Xj ∈ {−1, 0} that
the ratio of the gamma functions simplifies as∏

1≤i<j≤m

Γ(Xi − Xj + 1− α)Γ(Yi − Yj + 1)

Γ(Xi − Xj + 1)Γ(Yi − Yj + 1− α)

∏
1≤i<j≤m

Yi=Xi,Yj=Xj−1

(Xi − Xj + 1− α)(Xi − Xj + α)

(Xi − Xj + 1)(Xi − Xj)

=
∏

1≤i<j≤m

(Xi − α1Yi=Xi−1)− (Xj − α1Yj=Xj−1)

Xi − Xj
,

which completes the proof. ■

The m-particle Markov chain ΥJack
m (4.5), where each particle lives on its own shifted copy

of Z (see (4.4)), is a discrete time “Bernoulli” analogue of the β-nonintersecting Poisson random
walks considered in [13]. Indeed, sending b→ 1, rescaling time from discrete to continuous, and
reversing the direction of jumps from left to right turns ΥJack

m into the β-nonintersecting Poisson
walks.

When α = 1 (so the random matrix parameter is β = 2), the process ΥJack
m turns into

the process of noncolliding Bernoulli walks conditioned to never collide. The trajectory of this
Markov process started from an arbitrary fixed initial configuration is a determinantal point
process. This structure was utilized in [10] to establish local universality.

4.3 Hall–Littlewood degeneration and a continuous time limit

Let us now take q = 0. Under this degeneration, the Macdonald polynomials become the
Hall–Littlewood polynomials [20, Chapter III].

Proposition 4.3. When q = 0, the Macdonald noncolliding walks Υm (3.11) on Wm become

ΥHL
m (⃗x, y⃗) = t−(

m
2 )
(
txm1ym=xm +

(
1− txm

)
1ym=xm−1

)
×

m−1∏
i=1

(
txi1yi=xi + tm−i1yi=xi−1

)(
1− txi−xi+1−11yi=xi−11yi+1=xi+1

)
. (4.6)
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Proof. A straightforward simplification of (3.11) at q = 0. ■

In (4.6), let us send t = (1 − ε) ↗ 1 and scale discrete time by ε to continuous time. This
would amount to a Poisson-type limit transition in our Markov chain ΥHL

m .

We have

ΥHL
m (⃗x, x⃗) = t−(

m
2 )+|⃗x| ∼ 1−

(
|⃗x| −

(
m
2

))
ε+O

(
ε2
)
. (4.7)

This implies that as ε→ 0, a single step of the Markov chain ΥHL
m typically does not change x⃗.

However, occasionally, with probability proportional to ε, a change in x⃗ may occur. All proba-
bilities of order O

(
ε2
)
vanish in the scaling limit.

Therefore, a jump in continuous time can happen in the presence of only one factor in (4.6)
proportional to

(
1 − tk

)
for some k > 0. Such a factor is associated to a particle xi which

has jumped to the left by 1 while the particle xi+1 has stayed (if i = m, the latter condition
is replaced by xm > 0). This leads to the jump rate xi − xi+1 − 1, i = 1, . . . ,m, where, by
agreement, xm+1 = −1. Moreover, if one particle xi, i = 1, . . . ,m, jumps to the left by 1, then
any block of particles xi−1, xi−2, . . . , xi−r with adjacent indices can also jump to the left by 1,
at the same rate xi − xi+1 − 1. Indeed, this is because any such transition would include the
same factor 1 − txi−xi+1−1 ∼ (xi − xi+1 − 1)ε. We can combine these jump events and assign
to them the total rate i(xi − xi+1 − 1). When the jump of xi happens (at this rate), then we
can additionally select the size of the adjacent block uniformly at random. This leads to the
following definition of a continuous time process.

Definition 4.4. Let Υcont
m be a continuous time Markov process on Wm (3.1) with jump rates

defined as follows. Attach to each particle xi ∈ Z≥0, i = 1, . . . ,m, an independent exponential
clock of rate i(xi−xi+1−1), where, by agreement, xm+1 = −1. When the clock of xi rings, we ad-
ditionally select an index j ∈ {1, . . . , i} uniformly at random, and all the particles xi, xi−1, . . . , xj
simultaneously jump to the left by 1.

The total jump rate from x⃗ under the process from Definition 4.4 is equal to

mxm + (m− 1)(xm−1 − xm − 1) + · · ·+ (x1 − x2 − 1) = |⃗x| −
(
m
2

)
,

which agrees with (4.7).

Therefore, we have established the following Poisson-type limit transition:

Proposition 4.5. Let the Hall–Littlewood parameter t be scaled as t = 1−ε, where ε↘ 0. Let us
scale the discrete time as

⌊
ε−1τ

⌋
, where τ ∈ R≥0 is the new continuous time parameter. Under

this scaling, the Hall–Littlewood noncolliding walks ΥHL
m (4.6) on Wm turn into the continuous

time Markov process Υcont
m on Wm with jump rates given by Definition 4.4 above.

The dynamics Υcont
m is somewhat similar to the backwards, inhomogeneous version of the

Hammersley process introduced in [23] in that the jump rate attached to each particle xi is
equal to i times the size of the gap behind xi. However, the jumping mechanism in Υcont

m is very
different from the one in the backwards Hammersley process.

Another observation about Υcont
m is that it is not clear how to define the “bulk” version

of the dynamics living on the full line Z and preserving a translation invariant probability
distribution on {0, 1}Z. Indeed, the uniformly random selection of the number of particles which
simultaneously jump at each clock ring is not readily extendable to infinitely many particles on
the full line. This presents an obstacle to hydrodynamic analysis of Υcont

m , even at a heuristic
level.
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Figure 3. (a) A trajectory of the process Υm with m = 4 and initial configuration x⃗ = (7, 6, 3, 1);

(b) A bijective interpretation of the trajectory as a lozenge tiling (the shaded triangles correspond to

Z≥0 \ x⃗ and are removed from the strip); (c) The corresponding plane partition of shape (4, 4, 2, 1) =

(7, 6, 3, 1) − (3, 2, 1, 0); (d) Encoding the elements of the plane partition which must satisfy π41 ≥ 0,

π32 ≥ 1, π24 ≥ 3, and π14 ≥ 3.

5 Plane partitions

Here we present an interpretation of trajectories of our noncolliding walks as a certain ensemble
of plane partitions with an arbitrary cascade-like front wall.

5.1 Bijection to lozenge tilings and plane partitions

Let t ∈ Z≥0 denote the discrete time in Υm, and let x⃗(0) = x⃗ ∈ Wm be the initial configuration
of the process. Recall from Proposition 3.3 that the final configuration of the process Υm is
δm = (m−1,m−2, . . . , 1, 0). Via a suitable affine transform, let us bijectively map the trajectory
of Υm into a lozenge tiling of the vertical strip of width x1 + 1, see Figure 3 (a) and (b). The
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bottom boundary of the vertical strip is encoded by x⃗ in the following way. Viewing x⃗ as a particle
configuration in Z≥0, each particle xi corresponds to a straight piece in the boundary of slope(
−1/

√
3
)
, and each hole corresponds to cutting a small triangle out of the strip.

Due to the absorption (Proposition 3.3), the lozenge tiling is “frozen” far at the top, with
x1 + 1−m tiles of one type on the left followed by m tiles of the other type. Thus, the lozenge
tiling contains only finitely many horizontal lozenges. Therefore, we may view the tiling as
a graph of a function πi,j defined on cells of a Young diagram of size

λ = x⃗− δm = (x1 −m+ 1, x2 −m+ 2, . . . , xm−1 − 1, xm),

see Figure 3 (c) and (d). That is, in πi,j we have 1 ≤ i ≤ m and 1 ≤ j ≤ λi. Since the lozenge
tiling cannot have holes inside, this function must satisfy πi,j ≥ πi+1,j and πi,j ≥ πi,j+1. Such
functions are often called plane partitions, e.g., see [24, Chapter 7].

Moreover, due to the sloped bottom boundary of the lozenge tiling in Figure 3 (b), the plane
partition must also satisfy

πi,λi
≥ λi − xm = (xi + i)− (xm +m) for all 1 ≤ i ≤ m.

This last condition means that the plane partition (or rather the corresponding lozenge tiling)
has a cascade-like front wall. This front wall is encoded by the Υm’s initial configuration x⃗ which
may be an arbitrary element of the space Wm (3.1).

5.2 Boltzmann factors

Fixm ≥ 1. For a given fixed initial configuration, the space of possible trajectories of the Markov
process Υm is countable. Here we give a different characterization of the probability measure on
this space induced by the transition probabilities Υm (3.11). Namely, we compute the so-called
Boltzmann factors, that is, the ratios of the probability weights coming from trajectories related
by an elementary transformation. In this way, the probability of each given trajectory of Υm is
proportional to the product of the Boltzmann factors associated with this trajectory. Note that
such a product does not depend on the order of elementary transformations since the result is
proportional to the probability (the Gibbs weight) of a trajectory which we started with.

We need some notation. Fix time t ∈ Z≥1, and let x⃗ = x⃗(t − 1), y⃗ = x⃗(t), z⃗ = x⃗(t + 1) be
three consecutive states of our Markov chain Υm. Let us also change y⃗ in an elementary way to
w⃗ such that for some fixed 1 ≤ k ≤ m:

wi =

{
yi, i ̸= k,

yk − 1, i = k.

In the lozenge tiling interpretation of Figure 3 (b), the piece of the trajectory x⃗ → y⃗ → z⃗
differs from x⃗ → w⃗ → z⃗ by moving a horizontal lozenge down by 1. Note that yk = xk and
zk = wk = yk − 1. In the 3-dimensional interpretation of the lozenge tiling, this means removing
a 1× 1× 1 box from the stack of boxes. Let us also denote

ω(a, b) :=

(
1− ta−b+1qb−1

)(
1− ta−bqb+1

)(
1− ta−b+1qb

)(
1− ta−bqb

)
to shorten some of the formulas below.

Proposition 5.1. With the above notation, we have

Υm(⃗x, y⃗)Υm(⃗y, z⃗)

Υm(⃗x, w⃗)Υm(w⃗, z⃗)
= t

k−1∏
i=1

1zi=yi−1 + ω(yi − yk, k − i)1zi=yi

1yi=xi−1 + ω(xi − xk, k − i)1yi=xi

×
m∏

j=k+1

1yj=xj + ω(xk − xj , j − k)1yj=xj−1

1zj=yj + ω(yk − yj − 1, j − k)1zj=yj−1
. (5.1)
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Proof. We use the formula

Υm(⃗x, y⃗) = t−(
m
2 )+|⃗x|+

∑m
i=1(xi−m+i)(yi−xi)

× Vt,q (⃗y)

Vt,q (⃗x)
ψ′
(⃗x−δm)/(⃗y−δm)(t, q)

m∏
i=1

(
1− qm−itxi−m+i1yi=xi−1

)
for the transition probability. Clearly, in their combination in the left-hand side of (5.1) all
factors Vt,q cancel out. Next, recall that |⃗y| = |w⃗|+ 1, and this gives rise to the factor t in front
of the right-hand side of (5.1). Next, one can readily check that all the factors coming from

t−(
m
2 )+

∑m
i=1(xi−m+i)(yi−xi)

m∏
i=1

(
1− qm−itxi−m+i1yi=xi−1

)
in the left-hand side of (5.1) cancel out, too. Finally, we are left with the ratio

ψ′
(⃗x−δm)/(⃗y−δm)(t, q)ψ

′
(⃗y−δm)/(⃗z−δm)(t, q)

ψ′
(⃗x−δm)/(w⃗−δm)(t, q)ψ

′
(w⃗−δm)/(⃗z−δm)(t, q)

.

Recalling the definition of ψ′ (2.8), we may rewrite this ratio as∏
1≤i<j≤m

yi=xi, yj=xj−1

ω(xi − xj , j − i)
∏

1≤i<j≤m
zi=yi, zj=yj−1

ω(yi − yj , j − i)

×
∏

1≤i<j≤m
wi=xi,wj=xj−1

1

ω(xi − xj , j − i)

∏
1≤i<j≤m

zi=wi, zj=wj−1

1

ω(wi − wj, j − i)
.

Here all terms where neither i nor j is equal to k cancel out. When j = k, we may only get
nontrivial contributions from the second and the third products, and when i = k, nontrivial
contributions may only come from the first and the fourth products. In the fourth product, we
use wk − wj = yk − yj − 1. This completes the proof. ■

In the Schur case t = q, we have ω(a, b) = 1, so the expression (5.1) reduces simply to q.
In this way, adding a 1 × 1 × 1 box multiplies the probability weight of a lozenge tiling by q,
so the whole probability of a tiling is proportional to qvol, where vol is the volume under the
corresponding 3-dimensional surface. Note that this volume is the same as the sum of the entries
of the plane partition as in Figure 3 (c) and (d).

Gibbs measures on lozenge tilings of various infinite regions in which the probability weight of
a tiling is proportional to qvol have been widely studied, see, for example, [7, 21, 22]. Most well-
known ensembles of such lozenge tilings are solvable by means of Schur processes, and feature
an arbitrary back wall. Our ensemble of qvol weighted lozenge tilings possesses a different kind
of boundary conditions, namely, an arbitrary cascade front wall, as seen in Figure 3 (b).
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