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Abstract. We study the holomorphic Euler characteristics of tautological sheaves on Hilbert
schemes of points on surfaces. In particular, we establish the rationality of K-theoretic
descendent series. Our approach is to control equivariant holomorphic Euler characteristics
over the Hilbert scheme of points on the affine plane. To do so, we slightly modify a Mac-
donald polynomial identity of Mellit.
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1 Introduction

1.1 K-theoretic descendent series

Let S be a nonsingular projective algebraic surface. For n ≥ 0, let S[n] denote the Hilbert
scheme of n points on S.

The Hilbert schemes carry natural K-theory classes induced from classes on S. Let Σn ⊂
S[n] × S denote the universal family and πS[n] and πS denote the projections from S[n] × S onto
the corresponding factors. A class α ∈ K(S) induces a tautological class α[n] ∈ K(S[n]) given by

α[n] = πS[n]∗(OΣn ⊗ π∗
Sα). (1.1)

In this paper, we study the structure of holomorphic Euler characteristics of tautological
classes. Namely, we consider the following K-theoretic descendent series: for classes α1, . . . , αl ∈
K(S) and integers k1, . . . , kl ≥ 0, set

ZS(α1, . . . , αl | k1, . . . , kl) =
∑
n≥0

qnχ
(
S[n],∧k1α

[n]
1 ⊗ · · · ⊗ ∧klα

[n]
l

)
∈ Q[[q]]. (1.2)

Our first result is a positive answer to Question 5 of [2].

Theorem 1.1. The series ZS(α1, . . . , αl | k1, . . . , kl) is the Laurent expansion of a rational
function F (q)/(1− q)χ(OS), where F (q) is a polynomial of degree at most k1 + · · ·+ kl.

In anticipation of applications to descendent series for Quot schemes on simply-connected
surfaces of geometric genus 0 (see [2, Section 3.4]), we also record the following partial general-
ization in the case where one of the αi is the class of a line bundle.

This paper is a contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants
in honor of Lothar Göttsche on the occasion of his 60th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Gottsche.html
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Theorem 1.2. If α1 is the class of a line bundle and k2, . . . , kl ∈ Z are fixed, then

∞∑
k1=0

(−m)k1ZS(α1, . . . , αl | k1, . . . , kl) (1.3)

is the Laurent expansion of a rational function G(q,m) · (1− qm)r/(1− q)χ(OS), where G(q,m)
is a polynomial and r ∈ Z.

1.2 Examples

The simplest example

ZS(∅ | ∅) =
∑
n≥0

qnχ
(
S[n],OS[n]

)
=

1

(1− q)χ(OS)

of Theorem 1.1 is computed in [12, Proposition 3.3(b)]. Let α ∈ K(S). The second simplest
instance of Theorem 1.1 is the identity

ZS(α | 1) =
∑
n≥0

qnχ
(
S[n], α[n]

)
=

χ(α)q

(1− q)χ(OS)
,

which is a consequence of [7, Corollary 1.3] when S is Fano and α is the class of an ample or
trivial line bundle. The identity for arbitrary S and α then follows from [8, Theorem 4.2].

The complexity of the numerators of the rational functions (1.2) can grow as l, ki and the
ranks of αi increase. For example, if L ∈ K(S) is a line bundle, then by [22, Theorem 5.25],

ZS(−L | 3) = −
∑
n≥0

qnχ
(
S[n], Sym3L[n]

)
=

(
χ
(
L⊗2

)
χ(L)− χ

(
T ∗S ⊗ L⊗3

))(
q3 − q2

)
+ χ

(
L⊗3

)(
q2 − q

)
−
(
χ(L)+2

3

)
q3

(1− q)χ(OS)
.

Other computations of examples of K-theoretic descendent series (1.2) can be found in [1, Sec-
tion 6], [15, Corollary 8.11], [23, Section 5], [22, Theorem 5.25] and [27, Section 7].

This paper’s approach can be used to produce new formulas for descendent series. For
example, we compute the following in Section 3.4.2.

Proposition 1.3. If V ∈ K(S) is a rank 3 vector bundle, then

ZS(V|3) =
1

(1− q)χ(OS)

((
χ
(
T ∗S ⊗ ∧3V

)
+ χ

(
∧2V ⊗ V

)
− χ

(
∧2V

)
χ(V)

)(
q3 − q2

)
+ χ

(
∧3V

)(
q − q3

)
+

(
χ(V)
3

)
q3
)
.

We now present examples of the form (1.3). Let L be a line bundle on S. The simplest
example

∞∑
k=0

(−m)kZS(L | k) =
∑
k,n≥0

qn(−m)kχ
(
S[n],∧kL[n]

)
=

(1− qm)χ(L)

(1− q)χ(OS)
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of Theorem 1.2 is a consequence of [23, Theorem 5.2.1]. The next simplest example

∞∑
k=0

(−m)kZS(L, α | k, 1) =
∑
n,k≥0

qn(−m)kχ
(
S[n], (∧kL[n])⊗ α[n]

)
=

(1− qm)χ(L)

(1− q)χ(OS)

∞∑
n=0

qn+1mnχ
(
L⊗n ⊗ α

)
− qn+1mn+1χ

(
L⊗(n+1) ⊗ α

)
(1.4)

is computed in [2, Proposition 20]. Hirzebruch–Riemann–Roch implies that the series (1.4) is of
the form predicted by Theorem 1.2.

1.3 Comparison with cohomological descendents and other geometries

1.3.1 Cohomological descendent series

The rationality of (1.2) contrasts with the expected behavior of descendent series in cohomology.
Cohomological descendent integrals are often packaged as follows: for classes α1, . . . , αl ∈ K(S)
and integers k1, . . . , kl ≥ 0, form the series∑

n≥0

qn
∫
S[n]

chk1
(
α
[n]
1

)
· · · chkl

(
α
[n]
l

)
c
(
T S[n]

)
. (1.5)

The series (1.5) have a different flavor than their K-theoretic counterparts (1.2). For example,
by Göttsche’s formula [12, Theorem 0.1],

∑
n≥0

qn
∫
S[n]

c2n
(
T S[n]

)
=

∏
m>0

1

(1− qm)
,

and by [6, Corollary 3],

∑
n≥0

qn
∫
S[n]

ch1
(
O[n]

)
c2n−1

(
T S[n]

)
=

c1(S)
2

2

E2(q)− E3(q)∏
m>0(1− qm)

;

here,

Ek(q) =
∑
n>0

nk−1 qn

1− qn
.

Instead, [19, Conjecture 2] conjectures that a suitably normalized version of the series (1.5)
belongs to a distinguished algebra of q-series called q-multiple zeta values. One result in this
direction is [5, Theorem 2], in which a C∗-equivariant version of (1.5) for the affine plane C2 is
proved to be a quasimodular form.

1.3.2 Curves

Analogs of series (1.2) and (1.5) can be studied for integrals over Hilbert schemes of points
on curves. Given a nonsingular projective curve C, classes β1, . . . , βl ∈ K(C) and integers
k1, . . . , kl ≥ 0, both the K-theoretic descendent series∑

n≥0

qnχ
(
C [n],∧k1β

[n]
1 ⊗ · · · ⊗ ∧klβ

[n]
l

)
(1.6)



4 N. Arbesfeld

and the cohomological descendent series∑
n≥0

qn
∫
C[n]

chk1
(
β
[n]
1

)
· · · chkl

(
β
[n]
l

)
c
(
T C [n]

)
(1.7)

are Laurent expansions of rational functions. This rationality follows from the methods of [21,
Section 2.3]. Namely, the induction scheme of [8] (whose consequences we recall for Hilbert
schemes on surfaces in Section 1.4) reduces the problem to cases where C is P1. The series (1.6)
and (1.7) can be explicitly computed for this geometry using the relation

O(d)[n] = (d+ 1)O − (d+ 1− n)O(−1) ∈ K
((
P1

)[n]) ∼= K(Pn)

from the proof of [16, Theorem 2].

1.3.3 Quot schemes

Tautological integrals over Quot schemes parametrizing quotients (of dimension at most 1)
of vector bundles on surfaces have been studied in [2, 3, 4, 14, 24, 25]. Such Quot schemes
are typically singular but carry perfect obstruction theories; see, for example, [25, Section 4].
Descendent series of Quot schemes can therefore be defined through virtual structures.

Hilbert schemes of points on surfaces, in particular, can be regarded as Quot schemes
parametrizing finite length quotients

OS ↠ Z.

The associated virtual structure sheaves and virtual fundamental classes differ from the ordinary
structure sheaves and fundamental classes of Hilbert schemes, and in fact give rise to more easily
understood invariants. The virtual structures have explicit descriptions:

[
S[n]

]vir
= (−1)ne

(
K[n]

S

)
∩
[
S[n]

]
, Ovir

S[n] =
n∑

k=0

(−1)k ∧k K[n]
S ,

T virS[n] = TS[n] −
(
K[n]

S

)∗
.

Given classes α1, . . . , αl ∈ K(S) and integers k1, . . . , kl ≥ 0, one can form the virtual coho-
mological descendent series∑

n≥0

qn
∫
[S[n]]vir

chk1
(
α
[n]
1

)
· · · chkl

(
α
[n]
l

)
c
(
T virS[n]

)
(1.8)

and the virtual K-theoretic descendent series∑
n≥0

qnχ
(
S[n],∧k1α

[n]
1 ⊗ · · · ⊗ ∧klα

[n]
l ⊗Ovir

)
. (1.9)

In contrast to (1.5), the series (1.8) is proved in [14, Theorem 2] to be the Laurent expansion
of a rational function. The series (1.9) is proved in [2, Theorem 1] to be the Laurent expansion
of a rational function; it is a consequence of [2, Theorem 4] that this rational function can be
written with denominator (1− q)2(k1+···+kl).

We remark that the rationality of (1.9) also follows from Theorem 1.2; in (1.3), one specializes
α1 = KS and m = 1. Unlike in (1.2), the order of the pole of (1.9) at q = 1 need not depend
on S. For example, by [2, Example 7] or by substituting m = 1 and L = KS in (1.4),∑

n≥0

qnχ
(
S[n], α[n] ⊗Ovir

)
= −c1(α) · KS · q

1− q
− rk(α) · K2

S · q2

(1− q)2
.
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The following observation accounts for the similarity in the behavior of descendent series for
Hilbert schemes on curves and virtual descendent series for Hilbert schemes on surfaces: if S
is a smooth projective surface admitting a smooth canonical curve C ∈ |KS |, then the virtual

structures Ovir
S[n] and

[
S[n]

]vir
localize onto C [n]. Namely, if ι : C [n] ⊂ S[n] is the inclusion induced

by the inclusion C ⊂ S of a canonical curve, then by [21, equation (33)],[
S[n]

]vir
= (−1)nι∗

[
C [n]

]
.

Similarly, if Θ ∈ K(C) is a theta characteristic, then by [2, Theorem 15],

Ovir
S[n] = (−1)nι∗ detΘ

[n].

Virtual descendent integrals on S[n] can therefore be written in terms of tautological integrals
on C [n].

1.4 Universal series

For fixed α1, . . . , αl ∈ K(S), important structure emerges when the ki are allowed to vary and
all series ZS(α1, . . . , αl | k1, . . . , kl) are considered together.

Set

ẐS(α1, . . . , αl) =
∑
n≥0

k1,...,kl≥0

qn(−m1)
k1 · · · (−ml)

klχ
(
S[n],∧k1α

[n]
1 ⊗ · · · ⊗ ∧klα

[n]
l

)
. (1.10)

Now, fix an r-tuple r = (r1, . . . , rl) of integers. By [8, Theorem 4.2], there exist universal
series

Ar,Br,Cr
i ,D

r
i ,E

r
i,j ∈ Q[q,m1, . . . ,ml] (1.11)

for which, given any surface S and any collection α1, . . . , αl of classes in K(S) such that
rank(αi) = ri on each component of S, one has

ẐS(α1, . . . , αl) = (Ar)χ(OS)(Br)K
2
S

l∏
i=1

(Cr
i )

KS ·c1(αi)(Dr
i )

c2(αi)
∏

1≤i≤j≤l

(Er
i,j)

c1(αi)·c1(αj). (1.12)

More generally, such a factorization into universal series exists for generating series formed
from integrals of multiplicative characteristic classes of tautological bundles and the tangent
bundle. See [8, Theorem 4.2] for a precise statement.

One such series of interest is the Verlinde series

VS(α) =
∑
n

qnχ
(
S[n],det

(
α[n]

))
.

The series VS(α) is formed from a subset of terms of (1.10) when α has positive rank. For α
of negative rank, Serre duality implies a close relationship between VS(α) and VS(−α); see [8,
Theorem 5.3]. The series VS(α) for α of rank −1, 0 or 1 are explicitly computed in [8, Theo-
rem 5.3]. A relationship between the universal series appearing in a factorization of VS(α) and
those appearing in a factorization of the Segre series∑

n

qn
∫
S[n]

s2n
(
α′[n])



6 N. Arbesfeld

for α′ of rank −rk(α) − 1 was proposed by Johnson in [13] and further explicated in [16, Con-
jecture 1]. This relationship is used in [16, 17] to obtain conjectural formulas for VS(α) for α of
rank −3, −2, 2 or 3. It is expected that VS(α) is an algebraic function of q for any α.

For general αi, not much is known or conjectured about ẐS(α1, . . . , αl) and their constituent
universal series (1.11); one framework using vertex operators is presented in [27]. Our approach
yields a new combinatorial expression for the series ẐS(α1, . . . , αl). However, it seems challenging
to extract concisely stated consequences for the entire series, or even the Verlinde series. The
individual coefficients in the m-variables ZS(α1, . . . , αl | k1, . . . , kl) studied in Theorem 1.1 seem
more tractable from this perspective.

1.5 Outline

In Section 2, we introduce an equivariant affine analog ẐC2 of the series ẐS and demonstrate
that Theorems 1.1 and 1.2 follow from their equivariant analogs, Propositions 2.2 and 2.4.
In Section 3.1, we obtain Propositions 2.2 and 2.4 via the combinatorial identity Proposition 3.1.
This identity is a slight modification of a formula obtained in [18] from a result of [11]. We also
use this identity to prove Proposition 1.3.

2 Descendent series from equivariant descendents

2.1 Equivariant descendents

The following notation will be useful. For a variable or constant m and a K-theory class α set

∧•
mα =

∞∑
k=0

(−m)k ∧k α.

Consider C2 equipped with the action of a torus T = diag(t1, t2) scaling the coordinate axes

with weights t−1
1 and t−1

2 . The action of T on C2 lifts to an action on the Hilbert schemes
(
C2

)[n]
.

The definition (1.1) is also valid in the equivariant setting; in this way, a class γ ∈ KT

(
C2

)
induces a tautological class γ[n] ∈ KT

((
C2

)[n])
.

Definition (1.10) can be extended to the equivariant setting. Given γ1, . . . , γl ∈ KT

(
C2

)
,

define

ẐC2(γ1, . . . , γl)(t1, t2)

=
∑
n≥0

qnχ
((
C2

)[n]
,∧•

m1
γ
[n]
1 ⊗ · · · ⊗ ∧•

ml
γ
[n]
l

)
∈ Q(t1, t2)[[q,m1, . . . ,ml]].

Here, each term on the right-hand side is an equivariant Euler characteristic and can be regarded
as a rational function on T .

2.2 Localization on the Hilbert scheme

We recall the following special case of K-theoretic equivariant localization. Let M be a smooth
complex variety equipped with an action of a complex torus T such that the fixed locus MT is
a nonempty finite set of points and let F ∈ KT(M).

Proposition 2.1 ([26, Theorem 3.5]). There is an equality of T-equivariant Euler characteristics

χ(M,F ) =
∑
p∈MT

χ

(
p,

F |p
∧•
1T ∗M |p

)
∈ Q(T). (2.1)
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When applied to the Hilbert scheme of points, (2.1) yields a combinatorial description of
ẐC2(γ1, . . . , γl). We record this description.

A Young diagram λ is a finite subset of Z2
≥0 satisfying the following property: if (c1, c2) ∈ λ,

then for any (c′1, c
′
2) ∈ Z2

≥0 such that c′1 ≤ c1 and c′2 ≤ c2, one also has (c′1, c
′
2) ∈ λ.

We can associate to a Young diagram λ the point pλ ∈
(
C2

)[|λ|]
cut out by the monomial

ideal

Span
{
xb11 xb22 | (b1, b2) ̸∈ λ

}
⊂ C[x1, x2] = H0(OC2).

The T -fixed locus of
(
C2

)[n]
consists of the points pλ with λ of size n.

For γ ∈ KT

(
C2

)
, let χ(γ|0) ∈ Z

[
t±1 , t

±
2

]
denote the T -character of the fiber of γ over the

origin. For λ of size n, the fiber γ[n]|pλ has T -character

χ(γ|0)
∑

(c1,c2)∈λ

tc11 tc22 .

In particular, if

χ(γ|0) =
∑
i

vi −
∑
j

wj ,

where each vi and wj is a T -weight (a Laurent monomial in t1 and t2,) then the fiber ∧•
mγ[n]|pλ

has T -character

Exp

[
−mχ(γ|0)

∑
(c1,c2)∈λ

tc11 tc22

]
=

∏
(c1,c2)∈λ

∏
i

(
1−mvit

c1
1 tc22

)∏
j

(
1−mwjt

c1
1 tc22

) ;
the definition of the plethystic exponential Exp is recalled in (3.1).

Let λ be a Young diagram. Given (c1, c2) ∈ λ, define the leg length l((c1, c2)) to be the largest
integer k for which (c1 + k, c2) ∈ λ and the arm length a((c1, c2)) to be the largest integer k for
which (c1, c2 + k) ∈ λ.

For λ of size n, the T -character of the fiber of the cotangent bundle T ∗(C2
)[n]

at pλ is
computed in [9, Lemma 3.2] to be∑

□∈λ
t
l(□)+1
1 t

−a(□)
2 + t

−l(□)
1 t

a(□)+1
2 .

Set Cλ to be the T -character of ∧•
1T ∗(C2

)[n]|pλ ; explicitly,
Cλ = Exp

[
−χ

(
pλ, T ∗(C2

)[n]|pλ)] = ∏
□∈λ

(
1− t

l(□)+1
1 t

−a(□)
2

)(
1− t

−l(□)
1 t

a(□)+1
2

)
. (2.2)

By (2.1), we conclude that

ẐC2(γ1, . . . , γl)(t1, t2) =
∑
λ

q|λ|

Cλ
Exp

[
−
( l∑

j=1

mj · χ(γj |0)
) ∑

(c1,c2)∈λ

tc11 tc22

]
. (2.3)

In mathematical physics, series of the form (2.3) arise as rank 1 Nekrasov partition functions
of 5-dimensional supersymmetric gauge theories with fundamental matter.
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2.3 From C2 to a general surface

2.3.1 Arbitrary descendents

Fix γ1, . . . , γl ∈ KT

(
C2

)
. As a = (a1, . . . , al) ranges over Zl

≥0, let

ga(q) ∈ Q(t1, t2)[[q]]

be the collection of series for which

ẐC2(γ1, . . . , γl)(t1, t2) = Exp

[
q

(1− t1)(1− t2)

]∑
a

ma1
1 · · ·mal

l ga(q). (2.4)

We remark that

Exp

[
q

(1− t1)(1− t2)

]
= ẐC2(∅)(t1, t2),

which can be seen by Proposition 3.1 or otherwise.
We formulate the following equivariant analog of Theorem 1.1.

Proposition 2.2. The series ga(q) are polynomials in q. Moreover,

degq ga ≤ a1 + · · ·+ al.

Proposition 2.2 is a consequence of (3.9), whose proof is the subject of Section 3.4.1.
Returning to our original problem, let S be a projective surface and let α1, . . . , αl be classes

in K(S). Without loss of generality, assume that αj is of rank rj on all components of S.
Define fa(q) ∈ Q[[q]] to be the collection of series for which

ẐS(α1, . . . , αl) =
1

(1− q)χ(OS)

∑
a

ma1
1 · · ·mal

l fa(q). (2.5)

Proposition 2.2 implies the following rephrasing of Theorem 1.1.

Corollary 2.3. The series fa(q) appearing in (2.5) are polynomials in q. Moreover,

degq fa ≤ a1 + · · ·+ al.

Proof. The first step is to use the argument of [8, Sections 4 and 5] to reduce to the case
when S is toric and α1, . . . , αl ∈ K(S) are torus-equivariant. By the factorization (1.12), each
coefficient of each fa is a universal polynomial in the Chern numbers

χ(OS), K2
S , KS · c1(αj), c2(αj), c1(αj′) · c1(αj′′), 1 ≤ j ≤ l, 1 ≤ j′, j′′ ≤ l. (2.6)

Any polynomial that vanishes at all values of the form (2.6) when (for example) S is toric and
α1, . . . , αl are torus-equivariant must be identically zero.

So, let S be toric, let T = diag(t1, t2) act on S with finitely many fixed points si and let
α1, . . . , αl ∈ KT (S). For each si, let wi1 and wi2 denote the cotangent weights at si, let Ui

denote the toric chart centered at si, and set

(αj)i = αj |Ui ∈ KT (Ui) ∼= KT

(
C2

)
.

The action of T on S lifts to an action on S[n]. By (2.1), there is the following equality of
T -equivariant Euler characteristics∑

n≥0

qnχ
(
S[n],∧•

m1
α
[n]
1 ⊗ · · · ⊗ ∧•

ml
α
[n]
l

)
=

∏
i

ẐC2((α1)i, . . . , (αl)i)(wi1 , wi2).



K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces 9

So, the (nonequivariant) series ẐS can be recovered from ẐC2 as follows:

ẐS(α1, . . . , αl) =

(∏
i

ẐC2((α1)i, . . . , (αl)i)(wi1 , wi2))

)∣∣∣∣
t1=1,t2=1

. (2.7)

Moreover, by T -equivariant localization on S, one has

χ(OS) =

(∑
i

1

(1− wi1)(1− wi2)

)∣∣∣∣
t1=1,t2=1

,

so that(∏
i

Exp

[
q

(1− wi1)(1− wi2)

])∣∣∣∣
t1=1,t2=1

= Exp

[(∑
i

q

(1− wi1)(1− wi2)

)∣∣∣∣
t1=1,t2=1

]
= Exp[qχ(OS)] =

1

(1− q)χ(OS)
. (2.8)

By (2.8), the specialization at t1 = 1, t2 = 1 of the product of prefactors of each term on
the right-hand side of (2.7) matches the denominator of the right-hand side of (2.5). Applying
Proposition 2.2 to each factor in (2.7), we obtain the corollary. ■

2.3.2 Descendents with α1 a line bundle

We now turn to Theorem 1.2, which we will also deduce from an equivariant analog, Proposi-
tion 2.4. The argument is a slightly more intricate version of that of Section 2.3.1.

Fix γ1, . . . , γl ∈ KT

(
C2

)
such that γ1 is the class of a equivariant line bundle. Set

u = χ(γ1|0).

Note that u is a monomial (with coefficient 1) in t±1 and t±2 . As ã = (a2, . . . , al) ranges over
Zl−1
≥0 , let

g̃ã(q,m1) ∈ Q(t1, t2)[[q,m1]]

be the series such that

ẐC2(γ1, . . . , γl) = Exp

[
q − qm1u

(1− t1)(1− t2)

]∑
ã

ma2
2 · · ·mal

l g̃ã. (2.9)

Proposition 2.4. The series g̃ã(q,m1) are Laurent expansions of rational functions in q and m1

of the form

s
(
t±1 , t

±
2 , q,m1

)∏
w(1− w)

∏
w′(1−m1w′)

,

where s is a polynomial and w and w′ range over finitely many T -weights.

Proposition 2.4 is a consequence of (3.15), whose proof is the subject of Section 3.4.3.
Now, let S be a projective surface and fix α1, . . . , αl ∈ K(S) such that α1 is the class of a line

bundle. Again, assume that αj is of rank rj on all components of S.
Let f̃ã(q,m1) ∈ Q[[q,m1]] be the collection of series for which

ẐS(α1, . . . , αl) =
(1− qm1)

χ(α1)

(1− q)χ(OS)

∑
ã

ma2
2 · · ·mal

l f̃ã(q,m1).
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Corollary 2.5. The series f̃ã(q) is the expansion in q and m1 of a rational function whose
denominator is a power of (1− qm1).

Proof. Again, it suffices to prove the corollary for toric S and torus equivariant α1, . . . , αl ∈
K(S). Let si, wi1 , wi2 , Ui and (αj)|i be as in the proof of Corollary 2.3. By equivariant
localization on S, we have(∏

i

Exp

[
q − qm1(α1)|i

(1− wi1)(1− wi2)

])∣∣∣∣
t1=1,t2=1

= Exp

[(∑
i

q − qm1(α1)|i
(1− wi1)(1− wi2)

)∣∣∣∣
t1=1,t2=1

]
= Exp[qχ(OS)− qm1χ(α1)]

=
(1− qm1)

χ(α1)

(1− q)χ(OS)
. (2.10)

Now, plug equation (2.9) into (2.7) and use (2.10) to combine prefactors. Putting the re-
maining expressions over a common denominator as needed, given some ã we may write

f̃ã =
r
(
t±1 , t

±
2 , q,m1

)∏
v(1− v)

∏
v′(1− qm1v′)

∣∣∣∣
t1=1,t2=1

,

where r is a polynomial and v and v′ range over finitely many T -weights. In particular, if the
rational function

r
(
t±1 , t

±
2 , q,m1

)∏
v(1− v)

∏
v′(1− qm1v′)

(2.11)

is expanded in positive powers of m1 and q, then each qkmk′
1 -coefficient of the resulting series

is well defined under the specialization t1 = 1, t2 = 1. We conclude that each qkmk′
1 -coefficient

of (2.11) has no poles of the form 1− v. By induction on the degree k + k′, it follows that each
qkmk′

1 -coefficient of the quotient

r
(
t±1 , t

±
2 , q,m1

)∏
v(1− v)

also has no poles of the form 1− v and is therefore a Laurent polynomial in t1 and t2. It follows
that

f̃ã =
r
(
t±1 , t

±
2 , q,m1

)∏
v(1− v)

∣∣∣
t1=1,t2=1

· 1∏
v′(1− qm1v′)

∣∣∣
t1=1,t2=1

=
r
(
t±1 , t

±
2 , q,m1

)∏
v(1− v)

∣∣∣
t1=1,t2=1

· 1∏
v′(1− qm1)

. ■

3 A Macdonald identity

3.1 Plethystic notation

Proposition 2.2 follows from a slight modification of a Macdonald polynomial identity obtained
in [18, Section 7], where the identity is applied to find symmetries among conjectural expressions
for mixed Hodge polynomials of certain character varieties. We recall this identity following the
presentation in [18].

Let pn denote the n-th power sum and let Sym denote the completion of the ring

Q(t1, t2)[p1, p2, . . .]
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of symmetric functions over Q(t1, t2) with respect to degree. We use the following “plethystic
notation”. Let

X =
∑
k

ckx
k

denote a Laurent series where each ck ∈ Q and each xk is a Laurent monomial with coefficient 1
in t1, t2 and the additional variables q,m1,m2, . . . . Then, we set

pn[X] =
∑
k

ck
(
xk

)n
.

For arbitrary F ∈ Sym, the value of the expression F [X] is defined by stipulating that the
assignment F 7→ F [X] is a ring homomorphism. The plethystic exponential Exp is defined as

Exp[X] = exp

( ∞∑
n=0

pn
n
[X]

)
= 1 + p1[X] +

p2 + p21
2

[X] + · · · . (3.1)

Note that

Exp[X + Y ] = Exp[X] · Exp[Y ].

In particular, if xi and yj are Laurent monomials with coefficient 1, then

Exp

[∑
i

xi −
∑
j

yj

]
=

∏
j(1− yj)∏
i(1− xi)

,

where infinite products are taken in a suitable completion.

3.2 Macdonald polynomials

For a Young diagram λ, let Hλ ∈ Sym denote the corresponding Macdonald polynomial as
normalized, for example, in [10, equation (11)]. Equivalent definitions may be found in [10,
Theorem 2.2] and [18, Definition 4.1]; note that the Macdonald polynomials are denoted H̃λ

in [10, 11].
We summarize the relevant properties of the symmetric polynomials Hλ.

� The polynomial Hλ is homogeneous of degree |λ|.
� The polynomials Hλ form a Q(t1, t2)-basis of the space of symmetric functions.

� If x is a Laurent monomial with coefficient 1, then by [10, Corollary 2.1],

Hλ[1− x] = Exp

[
−x

∑
(c1,c2)∈λ

tc11 tc22

]
=

∏
(c1,c2)∈λ

(
1− xtc11 tc22

)
. (3.2)

In particular,

Hλ[1] = 1, Hλ[−1] = (−1)|λ|
∏

(c1,c2)∈λ

tc11 tc22 . (3.3)

� The ring Sym carries the Macdonald scalar product ⟨ , ⟩∗ satisfying

⟨Hλ, Hµ⟩∗ = δλ,µ ·Hλ[−1] · Cλ,
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where

Cλ =
∏
□∈λ

(
1− t

l(□)+1
1 t

−a(□)
2

)(
1− t

−l(□)
1 t

a(□)+1
2

)
denotes the Laurent polynomial (2.2). In particular, the scalar product ⟨ , ⟩∗ has repro-
ducing kernel∑

λ

Hλ[X]Hλ[Y ]

Hλ[−1] · Cλ
. (3.4)

3.3 A plethystic symmetry

We will deduce Proposition 2.2 from a special case of the following symmetry.

Proposition 3.1 (cf. [18, Section 7]). For Laurent series X and Y , the expression

Exp

[
Y

(1− t1)(1− t2)

]∑
λ

Hλ[X]

Cλ
Exp

[
−Y

∑
(c1,c2)∈λ

tc11 tc22

]
(3.5)

is symmetric under exchange of X and Y .

Proof. We slightly modify the proof from [18], which uses the Macdonald polynomial iden-
tity [11, Theorem I.3]. Denote by U , U∗ and ∇ : Sym → Sym the operators

(UF )[X] = F [1 +X], (U∗F )[X] = Exp

[
− X

(1− t1)(1− t2)

]
F [X],

∇Hλ = Hλ[−1] ·Hλ.

Then, [11, Theorem I.3] states that

(∇U∗U)Hλ[X] = Exp

[
X

(1− t1)(1− t2)

]
Exp

[
−X

∑
(c1,c2)∈λ

tc11 tc22

]
. (3.6)

In other words, the composition ∇U∗U sends Macdonald polynomials to normalized T -weights
of tautological bundles at fixed points on the Hilbert scheme.

By [11, Proposition 1.11b], the operators U and U∗ are adjoint with respect to ⟨ , ⟩∗. More-
over, the operator ∇ is self-adjoint. So, the operator ∇U∗U∇ is self-adjoint. As (3.4) is the
reproducing kernel for ⟨ , ⟩∗, we have

(∇U∗U∇)Y

[∑
λ

Hλ[X]Hλ[Y ]

Hλ[−1]Cλ

]
= (∇U∗U∇)X

[∑
λ

Hλ[X]Hλ[Y ]

Hλ[−1]Cλ

]
, (3.7)

where the subscript X or Y denotes action on symmetric functions taking that argument.

By (3.6), the left-hand side of (3.7) equals

Exp

[
Y

(1− t1)(1− t2)

]∑
λ

Hλ[X]

Cλ
Exp

[
−Y

∑
(c1,c2)∈λ

tc11 tc22

]
.

As (3.4) is symmetric under exchange of X and Y , the proposition follows. ■

It would be interesting to have a geometric interpretation of Proposition 3.1.
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3.4 Specialization

To prove Propositions 2.2 and 2.4, we apply Proposition 3.1 to control the series ẐC2(γ1, . . . , γl).
With (2.3) in mind, for j = 1, . . . , l, we set

uj = χ(γj |0) ∈ Z
[
t±1 , t

±
2

]
to be the T -character of the fiber of γj at the origin 0 ∈ C2.

3.4.1 Arbitrary descendents

Apply the specialization

X = q, Y =
l∑

j=1

mjuj

to expression (3.5). By (3.3), (3.2) and (2.3), this specialization equals

Exp

[ ∑l
j=1mjuj

(1− t1)(1− t2)

]∑
λ

q|λ|

Cλ
Exp

[
−
( l∑

j=1

mjuj

) ∑
(c1,c2)∈λ

tc11 tc22

]

= Exp

[ ∑l
j=1mjuj

(1− t1)(1− t2)

]
ẐC2(γ1, . . . , γl)(t1, t2). (3.8)

Applying Proposition 3.1, we find that the series (3.8) equals

Exp

[
q

(1− t1)(1− t2)

]∑
λ

Hλ

(∑l
j=1mjuj

)
Cλ

∏
(c1,c2)∈λ

(
1− qtc11 tc22

)
.

Recall the definition of ga from (2.4). We conclude that∑
a

ma1
1 · · ·mal

l ga(q)

= Exp

[
−

∑l
j=1mjuj

(1− t1)(1− t2)

]∑
λ

Hλ

(∑l
j=1mjuj

)
Cλ

∏
(c1,c2)∈λ

(
1− qtc11 tc22

)
. (3.9)

As Hλ is homogeneous of degree |λ|, only partitions λ of size at most a1 + · · · + al can
contribute ma1

1 · · ·mal
l -terms to the right-hand side of (3.9). As the largest power of q that can

appear in the λ-summand of (3.9) is |λ|, Proposition 2.2 follows.

3.4.2 Computation of descendent series

For any fixed a, equation (3.9) yields an expression for ga as a finite sum in terms of Macdonald
polynomials. This expression can be used to obtain new formulas for descendent series.

For example, we prove Proposition 1.3. Let γ ∈ KT

(
C2

)
be a rank 3 vector bundle. We may

write

χ(γ|0) = v1 + v2 + v3,

where v1, v2 and v3 are monomials with coefficient 1 in t±1 and t±2 . For this section, set m = m1.
Equation (3.9) implies

ZC2(γ) = Exp

[
q −m(v1 + v2 + v3)

(1− t1)(1− t2)

]∑
λ

Hλ(m(v1 + v2 + v3))

Cλ

∏
(c1,c2)∈λ

(
1− qtc11 tc22

)
. (3.10)
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Set

v(1) = χ(γ|0) = v1 + v2 + v3,

v(2) = χ
(
∧2γ|0

)
= v1v2 + v1v3 + v2v3,

v(3) = χ
(
∧3γ|0

)
= v1v2v3.

We explicitly compute the right-hand side of (3.10) to order 3 in m using formulas for Hλ as
listed in [20, Section 7.12], for example. After writing the result in terms of the plethystic
exponential, we obtain

ZC2(γ)=Exp

[
q−mqv(1)+m2(q−q2)v(2)+m3(q−q2)

(
qv(2)v(1)+q(t1+t2)v

(3)−(1+q)v(3)
)

(1−t1)(1−t2)

]
+O

(
m4

)
. (3.11)

We rewrite (3.11) as

ZC2(γ) = Exp
[
qχ

(
OC2

)
−mqχ(γ) +m2

(
q − q2

)
χ
(
∧2γ

)
+m3

(
q − q2

)(
qχ

(
∧2γ ⊗ γ

)
+ qχ

(
T ∗C2 ⊗ ∧3γ

)
− (1 + q)χ

(
∧3γ

))]
+O

(
m4

)
. (3.12)

Now, let S be a toric projective surface and V be a torus-equivariant rank 3 vector bundle
on S. As explained in Section 2.3.1, it suffices to prove Proposition 1.3 for such S and V.
Equations (3.12), and (2.7) and equivariant localization imply that

ZS(V) = Exp
[
qχ(OS)−mqχ(V) +m2

(
q − q2

)
χ
(
∧2V

)
+m3

(
q − q2

)(
qχ

(
∧2V ⊗ V

)
+ qχ

(
T ∗S ⊗ ∧3V

)
− (1 + q)χ

(
∧3V

))]
+O

(
m4

)
=

(1−mq)χ(V)

(1− q)χ(OS)

(
1−m2q2

1−m2q

)χ(∧2V)(1−m3q3

1−m3q2

)χ(∧2V⊗V)

·
(
1−m3q3

1−m3q2

)χ(T ∗S⊗∧3V)( 1−m3q

1−m3q3

)χ(∧3V)
+O

(
m4

)
. (3.13)

Extracting the m3 term of both sides of (3.13) yields Proposition 1.3.

3.4.3 Descendents with γ1 a line bundle

When γ1 is the class of a line bundle, Proposition 3.1 yields extra information about the structure
of ẐC2(γ1, . . . , γl).

By the homogeneity of Hλ and (3.2), we have

Hλ[q − qm1] = q|λ|Hλ[1−m1] = q|λ| Exp

[
−m1

∑
(c1,c2)∈λ

tc11 tc22

]
.

As γ1 is a line bundle, the T -character u1 = χ(γ1|0) is a monomial (with coefficient 1) in t±1
and t±2 . So, applying the specialization

X = q − qm1u1, Y =
l∑

j=2

mjuj
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to expression (3.5), we obtain

Exp

[ ∑l
j=2mjuj

(1− t1)(1− t2)

]∑
λ

q|λ|

Cλ
Exp

[
−
( l∑

j=1

mjuj

) ∑
(c1,c2)∈λ

tc11 tc22

]

= Exp

[ ∑l
j=2mjuj

(1− t1)(1− t2)

]
ẐC2(γ1, . . . , γl)(t1, t2). (3.14)

By Proposition 3.1, the series (3.14) equals

Exp

[
q − qm1u1

(1− t1)(1− t2)

]∑
λ

Hλ

(∑l
j=2mjuj

)
Cλ

∏
(c1,c2)∈λ

1− qtc11 tc22
1− qm1u1t

c1
1 tc22

.

Recall the definition of g̃ã from (2.9). We conclude that

∑
ã

ma2
2 · · ·mal

l g̃ã(q,m1) = Exp

[
−

∑l
j=2mjuj

(1− t1)(1− t2)

]

·
∑
λ

Hλ

(∑l
j=2mjuj

)
Cλ

∏
(c1,c2)∈λ

1− qtc11 tc22
1− qm1u1t

c1
1 tc22

. (3.15)

Only partitions of size at most a2 + · · · + al can contribute ma2
2 · · ·mal

l -terms to the left-hand
side of (3.15). Proposition 2.4 follows.
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Geom. 10 (2001), 247–280, arXiv:math.AG/9904004.
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[12] Göttsche L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann.
286 (1990), 193–207.

[13] Johnson D., Universal series for Hilbert schemes and strange duality, Int. Math. Res. Not. 2020 (2020),
3130–3152, arXiv:1708.05743.

[14] Johnson D., Oprea D., Pandharipande R., Rationality of descendent series for Hilbert and Quot schemes of
surfaces, Selecta Math. (N.S.) 27 (2021), paper no. 23, 52 pages, arXiv:2002.05861.

[15] Krug A., Tensor products of tautological bundles under the Bridgeland–King–Reid–Haiman equivalence,
Geom. Dedicata 172 (2014), 245–291, arXiv:1211.1640.

[16] Marian A., Oprea D., Pandharipande R., The combinatorics of Lehn’s conjecture, J. Math. Soc. Japan 71
(2019), 299–308, arXiv:1708.08129.

[17] Marian A., Oprea D., Pandharipande R., Higher rank Segre integrals over the Hilbert scheme of points,
J. Eur. Math. Soc. (JEMS) 24 (2022), 2979–3015, arXiv:1712.02382.

[18] Mellit A., Plethystic identities and mixed Hodge structures of character varieties, arXiv:1603.00193.

[19] Okounkov A., Hilbert schemes and multiple q-zeta values, Funct. Anal. Appl. 48 (2014), 138–144,
arXiv:1404.3873.

[20] Okounkov A., Smirnov A., Quantum difference equation for Nakajima varieties, Invent. Math. 229 (2022),
1203–1299, arXiv:1602.09007.

[21] Oprea D., Pandharipande R., Quot schemes of curves and surfaces: virtual classes, integrals, Euler charac-
teristics, Geom. Topol. 25 (2021), 3425–3505, arXiv:1903.08787.

[22] Scala L., Higher symmetric powers of tautological bundles on Hilbert schemes of points on a surface,
arXiv:1502.07595.

[23] Scala L., Cohomology of the Hilbert scheme of points on a surface with values in representations of tauto-
logical bundles, Duke Math. J. 150 (2009), 211–267, arXiv:0710.3072.

[24] Stark S., On the Quot scheme Quotl(E ), arXiv:2107.03991.

[25] Stark S., Cosection localization and the Quot scheme Quotl(E ), arXiv:2107.08025.

[26] Thomason R.W., Une formule de Lefschetz en K-théorie équivariante algébrique, Duke Math. J. 68 (1992),
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