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Abstract. We interprete results of Markman on monodromy operators as a universality
statement for descendent integrals over moduli spaces of stable sheaves on K3 surfaces. This
yields effective methods to reduce these descendent integrals to integrals over the punctual
Hilbert scheme of the K3 surface. As an application we establish the higher rank Segre–
Verlinde correspondence for K3 surfaces as conjectured by Göttsche and Kool.
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1 Introduction

1.1 Descendent integrals

Let M be a proper and fine1 moduli space of Gieseker stable sheaves F on a K3 surface S with
Mukai vector

v(F ) := ch(F )
√

tdS = v ∈ H∗(S,Z).

Let πM , πS be the projections of M × S to the factors and let F ∈ Coh(M × S) be a universal
family. We define the k-th descendent of a class γ ∈ H∗(S,Q) by

τk(γ) = πM∗(π
∗
S(γ)chk(F)) ∈ H∗(M). (1.1)

Let P (c1, c2, c3, . . . ) be a polynomial and consider an arbitrary integral of descendents and
Chern classes of the tangent bundle over the moduli space:∫

M
τk1(γ1) · · · τkℓ(γℓ)P (cr(TM )). (1.2)

The goal of this paper is to explain the following application of Markman’s work [13] on mon-
odromy operators:

Theorem 1.1. Any integral of the form (1.2) can be effectively reconstructed from the set of
all integrals (1.2), where M is replaced by the Hilbert scheme of n points of a K3 surface, with
n = dimM/2.

We refer to Section 2 for the precise form the reconstruction of the theorem takes. In partic-
ular, Theorem 2.9 is a universality statement for descendent integrals over M , that immediately
implies Theorem 1.1.

This paper is a contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants
in honor of Lothar Göttsche on the occasion of his 60th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Gottsche.html

1See Remark 2.1 for the extension to the case where only a quasi-universal family exists.

mailto:georgo@math.uni-bonn.de
https://doi.org/10.3842/SIGMA.2022.076
https://www.emis.de/journals/SIGMA/Gottsche.html
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1.2 Segre numbers

As a concrete application of Theorem 1.1 we prove a conjecture of Göttsche and Kool which was
made in [3, Conjecture 5.1]: Consider the decomposition of v ∈ H∗(S,Z) according to degree

v = (rk(v), c1(v), v2) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z),

and assume that

rk(v) > 0.

For any topological K-theory class α ∈ K(S) define

αM = ch
(
−πM∗

(
π∗
S(α)⊗F ⊗ det(F)−1/ rk(v)

))
whenever a rk(v)-th root of det(F) exists. Otherwise we define αM by a formal application of
the Grothendieck–Riemann–Roch formula. Let c(αM ) be the Chern class corresponding to αM ,
see Remark 2.5.

For σ ∈ H∗(S) consider, with the same convention if the root does not exist, the class

µM (σ) = −πM∗
(
ch2
(
F ⊗ det(F)−1/ rk(v)

)
π∗
S(σ)

)
.

We will usually drop the subscript M from the notation.

Theorem 1.2. Let n = 1
2 dimM and let p ∈ H4(S,Z) be the class of a point. For any α ∈ K(S),

class L ∈ H2(S) and u ∈ C we have∫
M

c(αM )eµ(L)+uµ(p) =

∫
S[n]

c(βS[n])eµ(L)+u rk(v)µ(p),

where β ∈ K(S) is any K-theory class such that

rk(β) =
rk(α)

rk(v)
, c1(α)

2 = c1(β)
2, c1(α) · L = c1(β) · L, v2(β) = rk(v)v2(α). (1.3)

As explained in [3, Corollary 5.2] this implies the following closed evaluation of the Segre
numbers of M :

Corollary 1.3. Let ρ = rk(v), s = rk(α), n = 1
2 dimM . Then we have∫

M
c(αM ) = Coeffzn

(
V c2(α)
s W c1(α)2

s X2
s

)
,

where

Vs(z) =

(
1 +

(
1− s

ρ

)
t

)1−s(
1 +

(
2− s

ρ

)
t

)s(
1 +

(
1− s

ρ

)
t

)ρ−1

,

Ws(z) =

(
1 +

(
1− s

ρ

)
t

) 1
2
s−1(

1 +

(
2− s

ρ

)
t

) 1
2
(1−s)(

1 +

(
1− s

ρ

)
t

) 1
2
− 1

2
ρ

,

Xs(z) =

(
1 +

(
1− s

ρ

)
t

) 1
2
s2−s(

1 +

(
2− s

ρ

)
t

)− 1
2
s2+ 1

2

×
(
1 +

(
1− s

ρ

)(
2− s

ρ

)
t

)− 1
2
(
1 +

(
1− s

ρ

)
t

)− (ρ−1)2

2ρ
s

under the variable change z = t
(
1 +

(
1− s

ρ

)
t
)1− s

ρ .

The Segre numbers of the Hilbert scheme of n points on the K3 surface S were determined
by Marian, Oprea and Pandharipande [11]. In particular, they found the series Vs, Ws, Xs.
All that Theorem 1.2 does here is move their result from Hilbert schemes to moduli spaces of
sheaves of arbitrary rank. Earlier work on Segre numbers can be found in [1, 8, 9, 10, 14].
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1.3 Segre/Verlinde correspondence

Göttsche and Kool conjectured that the Segre numbers of moduli spaces of stable sheaves on
surfaces are related by an explicit correspondence to the Verlinde numbers of these moduli
spaces. For K3 surfaces the Verlinde numbers are known explicitly by

χ
(
M,µ(L)⊗ E⊗r

)
= Coeffwn

(
Gχ(L)

r F
1
2
χ(OS)

r

)
,

where

Fr(w) = (1 + v)
r2

ρ2

(
1 +

r2

ρ2
v

)−1

, Gr(w) = 1 + v

under the variable change w = v(1+v)r
2/ρ2−1, and we refer to [3, equation (4)] for the definition

of the class µ(L) ⊗ E⊗r ∈ Pic(M)Q. The Verlinde numbers of the Hilbert schemes of points
of K3 surfaces (and in particular the series Fr, Gr) were first computed in [1]. The computation
for moduli spaces of higher rank sheaves reduces to the Hilbert scheme case as shown in [4] using
hyperkähler geometry, parallel to Theorem 1.2.

The functions Fr, Gr and Vs, Ws, Xs are related by the following variable change [3]:

Fr(w) = Vs(z)
s
ρ
(ρ

1
2−ρ−

1
2 )2

Ws(z)
− 4s

ρ Xs(z)
2,

Gr(w) = Vs(z)Ws(z)
2,

where s = ρ+ r and v = t
(
1− r

ρ t
)−1

.
Hence with Corollary 1.3 we have proven that the Segre and Verlinde numbers of moduli

spaces of stable sheaves on K3 surfaces are related by this variable change. This is the K3
surface case of the higher-rank Segre–Verlinde correspondence conjectured by Göttsche–Kool [3,
Conjecture 1.7].

Corollary 1.4. The higher-rank Segre–Verlinde correspondence holds for K3 surfaces.

1.4 Plan

In Section 2, we use results from Markman’s beautiful article [13] to formulate a universality
result for descendent integrals of moduli spaces of stable sheaves onK3 surfaces, see Theorem 2.9.
This immediately yields Theorem 1.1. In Section 3, we prove Theorem 1.2.

2 Markman’s universality

2.1 Basic definitions

Let S be a K3 surface and consider the lattice Λ = H∗(S,Z) endowed with the Mukai pairing

(x, y) := −
∫
S
x∨y,

where, if we decompose an element x ∈ Λ according to degree as (r,D, n), we have written
x∨ = (r,−D,n). We will also write

rk(x) = r, c1(x) = D, v2(x) = n.

Given a sheaf or complex E on S the Mukai vector of E is defined by

v(E) =
√
tdS · ch(E) ∈ Λ.
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Let v ∈ Λ be an effective2 vector, H be an ample divisor on S and let

M := MH(v)

be the moduli space of H-stable sheaves with Mukai vector v. The moduli space is smooth and
holomorphic-symplectic of dimension 2 + (v, v). We further assume that the Mukai vector v
is primitive, and the polarization H is v-generic (see [7, Theorem 6.2.5]), so that M is also
proper (in particular, semistability is equivalent to stability). We also assume that there exists
a universal sheaf F on MH(v)× S.

Remark 2.1. The results we state below also hold in the case where there exists only a twisted
universal sheaf. More precisely, all statements below can be formulated in terms of the Chern
character ch(F) alone and this class can be defined in the twisted case as well, see [12, Section 3].
The proofs carry over likewise since all ingredients hold in the twisted case as well.

Remark 2.2. More generally, one can also work with σ-stable objects for a Bridgeland stability
condition in the distinguished component.

Assume from now on that3

dimM = (v, v) + 2 > 2.

Consider the morphism θF : Λ → H2(MH(v),Z) defined by

θF (x) =
[
πM∗

(
ch(F)π∗

S

(√
tdS · x∨

))]
2
, (2.1)

where [−]k stands for taking the degree k component of a cohomology class. Then θF restricts
to an isomorphism

θ = θF |v⊥ : v⊥
∼=−→ H2(MH(v),Z) (2.2)

which does not depend on the choice of universal family (use that the degree 0 component
of the pushforward in (2.1) vanishes) and for which we hence have dropped the subscript F .
The isomorphism θ is an isometry with respect to the Mukai pairing on the left, and the pairing
given by the Beauville–Bogomolov–Fujiki form on the right. We will identify v⊥ ⊂ Λ with
H2(MH(v),Z) under this isomorphism.

The universal sheaf F and hence its Chern character ch(F) is uniquely determined only up
to tensoring by the pullback of a line bundle from M . Following [13], we can pick a canonical
normalization as follows:

uv := exp

(
θF (v)

(v, v)

)
· ch(F) ·

√
tdS ∈ H∗(M × S),

where we have suppressed the pullback by the projections to M and S in the first and last term
on the right. We will follow similar conventions throughout. It is immediate to check that uv is
independent from the choice of universal family (replace F by F ⊗ π∗

ML and calculate, see [13,
Lemma 3.1]).

Example 2.3. Let M = S[n] be the Hilbert scheme of n points on S. We have v = 1− (n−1)p,
and we always take F = IZ , the ideal sheaf of the universal subscheme. If α ∈ H2(S) is the
class of an effective divisor A ⊂ S, then

θ(α) = πS[n]∗
(
ch2(OZ)π

∗
S(α)

)
2Following [13, Definition 1.1], this means that v · v ≥ −2 and rk(v) ≥ 0, and if rk(v) = 0 then c1(v) is effective

or zero, and if rk(v) = c1(v) = 0 then v2 > 0.
3We return to the case dimM = 2 in Section 2.4.
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is the class of the locus of subschemes incident to A. If we denote

δ := −1

2
∆S[n] = c1(πS[n]∗OZ) = πS[n]∗ch3(OZ),

where ∆S[n] is the class of the locus of non-reduced subschemes, then under the identifica-
tion (2.2) we have δ = −

(
1 + (n − 1)p

)
. Because θF (v) = −δ the canonical normalization

of ch(F) takes the form

uv = exp

(
−δ

2n− 2

)
ch(IZ)

√
tdS .

2.2 Markman’s operator

For i = 1, 2 let (Si, Hi, vi) be the data defining proper fine moduli space of stable sheaves
Mi = MHi(Si, vi), and let Fi be the universal family on Mi×Si. Consider an isometry of Mukai
lattices

g : H∗(S1,Z) → H∗(S2,Z)

such that g(v1) = v2. Let K(S) be the topological K-group of S endowed with the Euler pairing
(E,F ) = −χ(E∨ ⊗ F ). We identify g with an isometry

g : K(S1) → K(S2)

through the lattice isometryK(S)
∼=−→ H∗(S,Z) given by E 7→ v(E). Hence the following diagram

commutes

Ktop(S1) Ktop(S2)

H∗(S1,Z) H∗(S2,Z).

g

v v

g

Similar identification will apply to morphisms g defined over C. The Markman operator associ-
ated to g is given by the following result:

Theorem 2.4 (Markman). For any isometry g : H∗(S1,C) → H∗(S2,C) such that g(v1) = v2
there exists a unique operator

γ(g) : H∗(M1,C) → H∗(M2,C)

such that

(a) γ(g) is a degree-preserving isometric4 ring-isomorphism,

(b) (γ(g)⊗ g)(uv1) = uv2.

The operator is called the Markman operator and given by

γ(g) = cdim(M)

[
−π13∗

(
π∗
12((1⊗ g)uv1)

∨ · π∗
23uv2

)]
, (2.3)

where πij is the projection of M1 × S2 ×M2 to the (i, j)-th factor. Moreover, we have

(c) γ(g1) ◦ γ(g2) = γ(g1g2) and γ(g)−1 = γ
(
g−1
)
if it makes sense.

(d) γ(g)ck(TM1) = ck(TM2).
4We endow H∗(M) with the Poincaré pairing: ⟨x, y⟩ =

∫
M

xy for all x, y ∈ H∗(M).
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Remark 2.5. Here the Chern class cm in (2.3) has the following definition: Let

ℓ : ⊕i H
2i(M,Q) → ⊕iH

2i(M,Q)

be the universal map that takes the exponential Chern character to Chern classes, so in particular
c(E) = ℓ(ch(E)) for any vector bundle. Then given α ∈ H∗(M) we write cm(α) for [ℓ(α)]2m.

Remark 2.6. In Theorem 2.4, since the morphism γ(g) is a ring isomorphism we have γ(g)1 = 1.
Since γ(g) preserves degree and is isometric, it hence sends the class of a point on M1 to the
class of a point on M2. For any σ ∈ H∗(M1) we thus observe hat∫

M1

σ =

∫
M2

γ(g)(σ).

Proof of Theorem 2.4. If g is an integral isometry, then the statement of the theorem is
a combination of Theorems 1.2 and 3.10 of [13]. The proof is involved: Markman establishes
that operators γ(g) satisfying (a) and (b) exists by considering arbitrary compositions of parallel
transport operators and pushforwards by isomorphisms induced by auto-equivalences. Then
a small computation starting from an expression for the diagonal class of M1 in terms of the
universal sheaf F in [12], shows that conditions (a) and (b) for any homomorphism forces the
expression (2.3). Hence those homomorphisms are uniquely determined. This last step holds
even for homomorphisms defined over C which satisfy (a) and (b).

In the general case, one defines the operator γ(g) by (2.3). Then (a) and (b) holds for a Zariski
dense subset of all operators g (i.e., for the integral isometries). Hence it holds for all g. Then
by the uniqueness statement one observes (c). Again (d) follows by the Zariski density argument
from the integral case (which is [13, Theorem 1.2(6)]). We also refer to [2, Proposition 5.1] for
more details on extending the Markman operator from integral isometries to isometries defined
over more general coefficient rings. ■

One can reinterpret the condition (f ⊗ g)(uv1) = uv2 in terms of generators of the cohomology
ring. Following [13, equation (3.23)], consider the canonical morphism

B : H∗(S,Q) → H∗(M,Q)

defined by

B(x) = πM∗
(
uv · x∨

)
.

We write Bk(x) for its component in degree 2k. In particular, B0(x) = −(x, v) and B1(x) =
θF (x) for all x ∈ v⊥.

Lemma 2.7. Let f : H∗(M1,Q) → H∗(M2,Q) be a degree-preserving isometric ring isomor-
phism. Then the following are equivalent:

(a) (f ⊗ g)(uv1) = uv2,

(b) f(B(x)) = B(gx) for all x ∈ H∗(S1,Q).

Proof. Since g is an isometry of the Mukai lattice we have for x ∈ H∗(S1) the following equality
in H∗(M2):

πM2∗(uv2 · (gx)∨) = πM2∗
((
1⊗ g−1

)
uv2 · x∨

)
.
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Indeed, if we write uv2 =
∑

i ai ⊗ bi under the Künneth decomposition, then

πM2∗
((
1⊗ g−1

)
(uv2) · x∨

)
=
∑
i

ai

∫
S1

g−1(bi)x
∨ =

∑
i

−ai ·
(
g−1(bi) · x

)
=
∑
i

−ai · (bi · g(x)) =
∑
i

ai

∫
S2

big(x)
∨

= πM2∗
(
uv2 · g(x)∨

)
.

Hence we see that:

(b) ⇐⇒ ∀x ∈ H∗(S1,Z) : fπM1∗
(
uv1 · x∨

)
= πM2∗

(
uv2 · (gx)∨

)
⇐⇒ ∀x ∈ H∗(S1,Z) : πM2∗

(
(f ⊗ 1)uv1 · x∨

)
= πM2∗

((
1⊗ g−1

)
uv2 · x∨

)
⇐⇒ (f ⊗ 1)(uv1) =

(
1⊗ g−1

)
(uv2)

⇐⇒ (a). ■

Corollary 2.8. In the setting of Theorem 2.4, γ(g)B(x) = B(gx).

2.3 Universality

We apply Theorem 2.4 to study descendent integrals over M . Let k ≥ 0 and let P (tij , ur) be
a polynomial depending on the variables

tj,i, j = 1, . . . , k, i ≥ 1, and ur, r ≥ 1.

Let also A = (aij)
k
i,j=0 be a (k + 1)× (k + 1)-matrix.

Our main result is the following.

Theorem 2.9 (universality). There exists I(P,A) ∈ Q (depending only on P and A) such that
for any M = MH(v) with dim(M) > 2 and for any x1, . . . , xk ∈ Λ with(

v · v (v · xi)ki=1

(xi · v)ki=1 (xi · xj)ki,j=1

)
= A (2.4)

we have∫
M

P (Bi(xj), cr(TM )) = I(P,A).

In other words, the integral∫
M

P (Bi(xj), cr(TM ))

depends upon the above data only through P , the dimension dimM = 2n, and the pairings v ·xi
and xi · xj for all i, j.

The proof of Theorem 2.9 will proceed in several steps. We begin with a general vanishing
result.

Proposition 2.10. Let M = MH(v) be a moduli space of stable sheaves on S of dimension
2n > 2, and let x1, . . . , xk, w ∈ ΛC be given with w · y = 0 for all y ∈ {v, x1, . . . , xk, w}. Then
any integral of the form∫

M

ℓ∏
i=1

Bsi(w) · (monomial in Bi(xj) and cr(TM )) (2.5)

for some si ∈ Z vanishes unless ℓ = 0.
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Proof. We give two proofs of this fact. For the first proof, choose an isometry g : ΛC → ΛC
such that

g(v) = 1− (n− 1)p, w′ := g(w) ∈ H2(S,C),

where v · v = 2n − 2. Such an isometry exists since v · v > 0 and SO(ΛC) acts transitively on
vectors of the same square. By Theorem 2.4(a) for the first and Corollary 2.8 and Theorem 2.4(d)
for the second equation, we find that∫

M

ℓ∏
i=1

Bsi(w) ·
(
monomial in Bi(xj) and cr(TM )

)
=

∫
S[n]

γ(g)

( ℓ∏
i=1

Bsi(w) ·
(
monomial in Bi(xj) and cr(TS[n])

))

=

∫
S[n]

ℓ∏
i=1

Bsi(w
′) ·
(
monomial in Bi(gxj) and cr(TS[n])

)
.

By [1, Theorem 4.1] (or more precisely, the induction method used in the proof), this last integral
depends upon w′ only through its intersection numbers against products of Chern classes of S
and degree-components of gxj .

5 Since these intersections numbers are all zero, we may replace w′

by 0, in which case the claimed vanishing follows immediately. ■

Alternative proof. If w = 0 there is nothing to prove, so let w ̸= 0. Choose w′ ∈ ΛC such
that w · w′ = 1 and w′ · w′ = w′ · v = 0. Extend v, w, w′ to a basis {v, w,w′} ∪ {ei}24i=4 of ΛC.
For any j, expand xj in this basis:

xj = a1v + a2w + a3w
′ + a4e4 + · · ·+ a24e24.

Because xj · w = 0, we must have a3 = 0. By an induction on the number of classes xj , we
know the claim of Proposition 2.10 if xj is a multiple of w.6 Moreover, if we know the claim for
xj ∈ {u1, u2} for some u1, u2 ∈ ΛC then we know it for xj = u1+u2 by expanding the monomial
in (2.5). Hence we may replace xj by xj − a2w. In other words, we may assume that a2 = 0.
Doing so for all j, we hence see that w′ ∈ ΛC satisfies

w′ · w = 1, w′ ⊥ Span(w′, v, x1, . . . , xk).

Consider the Lie algebra g = so
(
v⊥
) ∼= ∧2

(
v⊥
)
. Theorem 2.4 induces a Lie algebra action

γ : g → EndH∗(M). By Theorem 2.4(a) γ(g) acts by derivations on H∗(M) and acts trivially
on H4n(M). (This Lie algebra action is part of the Looijenga–Lunts–Verbistky Lie algebra
action, see [13, Lemma 4.13].) Take w ∧ w′ ∈ g. Since the Lie algebra acts trivial on H4n(M)
we have∫

M
γ(w ∧ w′)

( ℓ∏
i=1

Bsi(w) ·
(
monomial in Bi(xj) and cr(TM )

))
= 0.

On the other hand, by Corollary 2.8 we have γ(w∧w′)Bsi(w) = Bsi(w) and γ(w∧w′)Bi(xj) = 0,
and by Theorem 2.4(d) we have γ(w ∧ w′)cr(TM ) = 0. Since γ(w ∧ w′) acts by derivations,
we also get

5Since w′ ∈ H2(S) we always have (w′ · [gxj ]k) = 0 for k = 0, 4. The vanishing in case k = 2 follows from
(w′ · gxj) = 0.

6Because the term Bi(xj) can be moved to the product
∏ℓ

i=1 Bsi(w) in (2.5).
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∫
M

γ(w ∧ w′)

( ℓ∏
i=1

Bsi(w) ·
(
monomial in Bi(xj) and cr(TM )

))

= ℓ ·
∫
M

ℓ∏
i=1

Bsi(w) ·
(
monomial in Bi(xj) and cr(TM )

)
. ■

Lemma 2.11. In the situation of Theorem 2.9, there exists yi ∈ ΛC which have the same
intersection matrix as in (2.4), satisfy∫

M
P (Bi(xj), cr(TM )) =

∫
M

P (Bi(yj), cr(TM ))

and such that the span L = Span(v, y1, . . . , yk) ⊂ ΛC is non-degenerate (i.e., the restriction of
the inner product of ΛC onto L is non-degenerate).

Proof. Let L = Span(v, x1, . . . , xk). Assume that L is degenerate, i.e., there exists a non-zero
w ∈ L such that w · xi = 0 for all i and w · v = 0. Since v · v ≥ 2, we have that v, w are linearly
independent. Hence they can be extended to a basis u0, . . . , ud of L with u0 = w and u1 = v.
For every i let λi ∈ C be the unique scalar such that

xi − λiw ∈ Span(u1, . . . , ud).

We hence obtain∫
M

P (Bi(xj), cr(TM )) =

∫
M

P (Bi(xj − λjw) +Bi(w), cr(TM ))

Proposition 2.10
=

∫
M

P (Bi(xj − λjw), cr(TM )).

Set yj = xj − λjw. If Span(v, y1, . . . , yk) is non-degenerate, we are done, otherwise repeat the
above process. This process has to stop, since the dimension of the span drops by one in each
step. ■

We also require two basic linear algebra lemmata:

Lemma 2.12. Let V be a finite-dimensional C-vectorspace with a C-linear inner product. Let
v1, . . . , vk ∈ V be a list of vectors with Gram matrix

g =
(
gij
)k
i,j=1

, gij = ⟨vi, vj⟩.

Then rank(g) ≤ dim(Span(v1, . . . , vk)). If moreover Span(v1, . . . , vk) is a non-degenerate sub-
vectorspace of V , then rank(g) = dim(Span(v1, . . . , vk)).

Proof. Let w1, . . . , wℓ ∈ V be a list of vectors such that hij = ⟨wi, wj⟩ is invertible. Pairing
any linear relation between the wi’s with wj for j = 1, . . . , ℓ, and multiplying this system of
equations by the inverse of h shows that the w1, . . . , wℓ are linearly independent. This proves
the first claim. For the second claim, we can choose a subset {w1, . . . , wd} ⊂ {v1, . . . , vk} which
forms a basis of L = Span(v1, . . . , vk) and observe that the matrix of the isomorphism L → L∨

induced by the inner product with respect to the basis {wi} and the dual basis {w∗
i } is the Gram

matrix of the wi. This shows that rank(g) ≥ dimL. ■

Lemma 2.13. Let V be a finite-dimensional C-vectorspace with a C-linear inner product. Let
v1, . . . , vk ∈ V and w1, . . . , wk ∈ V be lists of vectors such that
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(i) L = Span(v1, . . . , vk) is non-degenerate,

(ii) M = Span(w1, . . . , wk) is non-degenerate,

(iii) ⟨vi, vj⟩ = ⟨wi, wj⟩ for all i, j.

Then there exists an isometry φ : V → V such that φ(vi) = wi for all i.

Proof. By Lemma 2.12 and assumptions (i) and (ii) we know that

dimL = rank(⟨vi, vj⟩)ki,j=1 = rank(⟨wi, wj⟩)ki,j=1 = dimM.

Choose a basis of L from the v1, . . . , vk, which we can assume is of the form v1, . . . , vd, where
d = dim(L). By assumption (i) and Lemma 2.12 the grammatrixG := (⟨vi, vj⟩)di,j=1 is invertible.
But G is also the Gram matrix of w1, . . . , wd by assumption (iii), so the same lemma implies
that w1, . . . , wd is linearly independent and hence a basis of M . Define an isometry

φ : V → V

by setting φ(vi) = wi for i = 1, . . . , d, and by letting φL⊥ : L⊥ → M⊥ be an arbitrary isometry. It
remains to show that φ(vi) = wi for i = d+1, . . . , k. For this observe that for any v ∈ L we have

v =
d∑

a=1

⟨v, va⟩
(
G−1

)
ab
vb

and similarly for any w ∈ M . The claim hence follows by writing every vi in this form, applying φ
and using assumption (iii). ■

We are ready to prove Theorem 2.9.

Proof. Let (M(v), xi) and (M(v′), x′i) be two pairs with the same intersection matrix A.
By Lemma 2.11, we may assume that v, x1, . . . , xk and v′, x′1, . . . , x

′
k span a non-degenerate

subspace of ΛC. Hence, by Lemma 2.13, there exists an isometry

g : H∗(S,C) → H∗(S′,C)

which takes (v, x1, . . . , xk) to (v′, x′1, . . . , x
′
k). We find that∫

M(v)
P (Bi(xj), cr(TM(v)))

(Theorem 2.4)
=

∫
M(v′)

γ(g)P (Bi(xj), cr(TM(v′)))

(Corollary 2.8)
=

∫
M(v′)

P (Bi(gxj), cr(TM(v′)))

=

∫
M(v′)

P (Bi(x
′
j), cr(TM(v′))). ■

2.4 Case of dimension 2

We discuss how to evaluate integrals∫
M

τk1(γ1) · · · τkℓ(γℓ)P (cr(TM )), (2.6)

wheneverM = MH(v) is a 2-dimensional moduli space of stable sheaves, and hence aK3 surface.
The universal family7 F in this case induces a derived auto-equivalence

Φ: Db(S) → Db(M), E 7→ πM∗(π
∗
S(E)⊗F).

7If only a twisted universal family exists, then we have an equivalence to the derived category of twisted sheaves
on M with the corresponding twist, see [6].
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The induced action on cohomology

Φ∗ : H∗(S,Z) → H∗(M,Z), γ 7→ πM∗(v(F) · π∗
S(γ))

defines an isometry of Mukai lattices (in fact, a Hodge isometry), see [6, Chapter 16] for references
for these well-known facts.

We specialize to the case where rk(v) > 0, which is the only one we consider in the applica-
tions. Consider the normalized action

Φ̃ : H∗(S,Q) → H∗(M,Q), γ 7→ πM∗
(
e−c1(F)/ rk(v)v(F) · π∗

S(γ)
)
.

Let us write ch(F) = rk(v)+π∗
M (ℓ)+π∗

S(c1(v))+(. . .), where . . . stands for terms of degree ≥ 4.

Then we have Φ̃ = e−ℓ/ rk(v)Φ∗(e
−c1(v)/ rk(v) ∪ (−)) which shows that Φ̃ is still a Hodge isometry.

Using the fact that Φ̃ is a Hodge isometry implies8

Φ̃(p) = rk(v), Φ̃(L) = φ(L), Φ̃(1) =
1

rk(v)
p, (2.7)

where φ : H2(S,Q) → H2(S,Q) is a Hodge isometry.

2.5 Proof of Theorem 1.1

If dimM > 2, the claim follows by Theorem 2.9 since (a) any descendent τk(γ) defined as in (1.1)
can been written as a polynomial in classes Bj(x), and (b) for any list of vectors v, x1, . . . , xk ∈ ΛC
after an isometry of ΛC we may assume that v is the Mukai vector which defines the Hilbert
scheme of n points on a K3 surface.9

If dimM = 2 and rk(v) > 0, as discussed in Section 2.4 any descendent τki(γ) can be written

in terms of polynomials in classes Φ̃(α), where α is effectively determined by γ. Since any
integral (2.6) can involve at most two classes of positive degree, this integral can be written
as linear combination of the Mukai pairing between classes Φ̃(α) and Φ̃(α′) for various α, α′.
Since Φ̃ is a Hodge isometry, these are just the Mukai pairings between α and α′. This effectively
determines the integrals (1.2). We also refer to Section 3.1 for a concrete implementation of this
algorithm.

The case where dim(M) = 2 and rk(v) = 0 is similar to the dimM = 2, rk(v) > 0 case, and
left to the reader. ■

3 The Göttsche–Kool conjecture

Let S be a K3 surface and let M be a proper fine 2n-dimensional moduli space of stable sheaves
on S of Mukai vector v. Let F be a universal family. We assume that rk(v) > 0. Our goal is to
show that for any α ∈ K(S), class L ∈ H2(S) and u ∈ C we have∫

M
c(αM )eµ(L)+uµ(p) =

∫
S[n]

c(βS[n])eµ(L)+u rk(v)µ(p),

where β ∈ K(S) is as specified in Theorem 1.2.

In Section 3.1, we first tackle the case dimM = 2 separately, and then afterwards prove the
dimM > 2 case.

8By direct computation, the degree zero component of Φ̃(γ) is rk(v)
∫
S
γ. Then observe the degree 1 term

of Φ̃(p) vanishes by construction of Φ̃. Hence,
(
Φ̃(p), Φ̃(p)

)
= 0 shows the first line. The others follow similarly.

9By Eichler’s criterion [5, Lemma 7.5], this isometry can be defined over the integers.
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3.1 Proof of Theorem 1.2 in case dim(M) = 2

Observe that S[1] ∼= S, and for β ∈ K(S) and L ∈ H2(S) we have

βS[1] = ch(β)− χ(β), µS[1](L) = L ∈ H2(S), µS[1](p) = p.

Hence we need to prove∫
M

c(αM )eµ(L)+uµ(p) =

∫
S
c(β)eL+u rk(v)p. (3.1)

Recall from Section 2.4 the Hodge isometry Φ̃ : H∗(S,Q) → H∗(M,Q) defined by the universal
family F . By comparing the definition of αM and µ(σ) with the correspondence defining Φ̃ we
find

αM = − 1√
tdM

Φ̃(v(α)),

µM (σ) =

[
− 1√

tdM
Φ̃
(
σ/
√
tdS
)]

deg(σ)

.

In particular, by (2.7) we have µM (L) = −Φ̃(L). Using (2.7) we obtain∫
M

µM (p) =

∫
M

−(1− p) rk(v) · 1 = rk(v),∫
M

µM (L)2 =

∫
M

(
−Φ̃(L)

)2
=
(
Φ̃(L), Φ̃(L)

)
= (L,L) =

∫
S
L2,∫

M
c1(αM )µM (L) =

∫
M

αM ∪
(
−Φ̃(L)

)
=

∫
M

Φ̃(v(α)) · Φ̃(L) =
(
Φ̃(v(α)), Φ̃(L)

)
= (v(α), L) =

∫
S
c1(α) · L.

Using (2.7) again we moreover have

αM = −(1− p)Φ̃(rk(v) + c1(α) + v2(α))

= − rk(v)

∫
S
v2(α)− φ(c1(α)) +

(
− rk(α)

rk(v)
+ rk(v)

∫
S
v2(α)

)
p,

and hence (with αM,k be the degree 2k component of αM ) we get∫
M

c2(αM ) =

∫
M

−αM,2 +
α2
M,1

2
=

rk(α)

rk(v)
− rk(v)

∫
S
v2(α) +

c1(α)
2

2
.

By inspection one sees now that if β satisfies (1.3), then equation (3.1) holds. This completes
the proof. ■

3.2 Comparing normalizations

From now on assume that

dimM > 2.

Let α ∈ K(S) and consider the definition of αM using the Grothendieck–Riemann–Roch formula:

αM = −πM∗

(
v(α)ch(F)

√
tdS exp

(
−c1(F)

rk(v)

))
.

The class αM is easily expressed in terms of Markman’s normalization:
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Lemma 3.1. We have

αM = −B

(
v
(
α∨) exp(c1(v)

rk(v)

))
exp

(
B1

(
−p

rk(v)
− v

v · v

))
.

Proof. Using that Pic(M × S) = Pic(M)⊕ Pic(S) we can write

c1(F) = πM∗(ℓ) + π∗
S(c1(v))

for some ℓ ∈ H2(M). By calculating θF (p) one finds ℓ = θF (p). Hence

αM = −πM∗

(
v(α)ch(F)

√
tdS exp

(
−c1(v)

rk(v)

))
exp(θF (p)/(p · v))

= −B

(
v
(
α∨) exp(c1(v)

rk(v)

))
exp

(
B1

(
−p

rk(v)
− v

v · v

))
. ■

For σ ∈ H∗(S) recall also the class

µ(σ) = −πM∗
(
ch2
(
F ⊗ det(F)−1/ rk(v)

)
π∗
S(σ)

)
(defined by the GRR expression if only a semi-universal family exists).

Lemma 3.2. If σ ∈ H∗(S) is homogeneous, then µ(σ) is the component of degree deg(σ) of

− exp

(
B1

(
p

p · v
− v

v · v

))
B

(
σ∨ exp

(
c1(v)

rk(v)

)√
tdS

−1
)
.

Proof. We have that µ(σ) is the degree deg(σ) component of

−πM∗
(
ch
(
F ⊗ det(F)−1/ rk(v)

)
π∗
S(σ)

)
= −πM∗

(
ch(F) exp(−c1(F)/ rk(v))π∗

S(σ)
)

= − exp

(
θF (p)

p · v
− θF (v)

v · v

)
exp

(
θF (v)

v · v

)
πM∗

(
ch(F)π∗

S

(
σ∨ec1(v)/ rk(v)

√
tdS

−1)∨√
tdS
)

= − exp

(
B1

(
p

p · v
− v

v · v

))
B

(
σ∨ exp

(
c1(v)

rk(v)

)√
tdS

−1
)
,

where we used again c1(F) = π∗
MθF (p) + π∗

Sc1(V ). ■

In particular, for L ∈ H2(S) we have that

µ(L) = B1

(
L exp

(
c1(v)

rk(v)

))
−B1

(
p

p · v
− v

v · v

)
and that µ(p) is a polynomial in B1

( p
p·v − v

v·v
)
and Bi(p).

3.3 Dependence

By Theorem 2.9 we conclude that any integral∫
M

P (αM,k, µ(L), µ(up)) (3.2)

(such as the Segre number) only depends upon P and the intersection pairings in the Mukai
lattice of the classes

v, p/ rk(v), v(α)∨ exp

(
c1(v)

rk(v)

)
, L exp

(
c1(v)

rk(v)

)
, up. (3.3)
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Explicitly, the interesting pairings for the first three classes are

(i) v · v(α)∨ exp

(
c1(v)

rk(v)

)
= −v2(α) · rk(v) +

1

2

rk(α)

rk(v)
(v · v),

(ii) p/ rk(v) · v(α)∨ exp

(
c1(v)

rk(v)

)
= − rk(α)

rk(v)
,

(iii)

(
v(α)∨ exp

(
c1(v)

rk(v)

))2

= v(α) · v(α).

The interesting intersections involving L are

(iv) v · L exp

(
c1(v)

rk(v)

)
= L · c1(v)− L · c1(v) = 0,

v(α)∨ exp

(
c1(v)

rk(v)

)
· L exp

(
c1(v)

rk(v)

)
= v(α)∨ · L = −c1(α) · L,(

L exp

(
c1(v)

rk(v)

))2

= L2.

The pairings with up are u rk(v) times the pairings with p/ rk(v).

3.4 Moving to the Hilbert scheme

Since (3.2) only depends on the intersection pairings of (3.3) we have that∫
M

P (αM,k, µ(L), µ(up)) =

∫
S[n]

P (βS[n],k, µ(L), µ(u
′p))

for any K-theory class β ∈ K(S) and u′ ∈ C such that the list

1− (n− 1)p, p, v(β)∨, L, u′p (3.4)

has the same intersection numbers as the list (3.3). (The list (3.4) is obtained from (3.3) by
specializing to v = 1− (n− 1)p, the Mukai vector of S[n].)

The interesting parts of the intersections of (3.4) are

(i) v · v(β)∨ = −v2(β) +
1

2
rk(β)(2n− 2),

(ii) p · v(β)∨ = − rk(β),

(iii) v(β)∨ · v(β)∨ = v(β) · v(β),
(iv) v(β)∨ · L = −c1(β) · L.

Equating (i)–(iv) for M and S[n] we hence get the system

−v2(α) · rk(v) +
1

2

rk(α)

rk(v)
(v · v) = −v2(β) +

1

2
rk(β)(2n− 2),

− rk(α)

rk(v)
= − rk(β), v(α) · v(α) = v(β) · v(β), −c1(α) · L = −c1(β) · L.

Since v(α)2 = c1(α)
2 − 2 rk(α)v2(α), this is equivalent to the system:

rk(β) =
rk(α)

rk(v)
, v2(β) = rk(v)v2(α), c1(α)

2 = c1(β)
2, c1(α) · L = c1(β) · L. (3.5)

Moreover, we must have

−u′ = u′p · (1− (n− 1)p) = up · v = − rk(v)u.

We have proven the following (which immediately implies Theorem 1.2):
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Theorem 3.3. For any polynomial P , we have∫
M

P (αM,k, µ(L), µ(up)) =

∫
S[n]

P (βS[n],k, µ(L), µ(u rk(v)p))

for any K-theory class β ∈ K(S) such that (3.5) is satisfied.
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