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Abstract. We show that the Lipkin–Meshkov–Glick 2N -fermion model is a particular case
of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting
case of non-skew-symmetric elliptic r-matrix and to an external magnetic field directed
along one axis. We propose an exactly-solvable generalization of the Lipkin–Meshkov–Glick
fermion model based on the Gaudin-type model corresponding to the same r-matrix but
arbitrary external magnetic field. This model coincides with the quantization of the classical
Zhukovsky–Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by
means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-
type equations for the case of small fermion number N = 1, 2.
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1 Introduction

The Lipkin–Meshkov–Glick model was proposed in [10] in order to describe shape phase transi-
tions in nuclei. The corresponding 2N -fermion Hamiltonian is written as follows:

ĤLMG =
ϵ

2

∑
σ=±

N∑
j=1

σc†j,σcj,σ − W

2

N∑
i,j=1

(
c†i,+c

†
j,−cj,+ci,− + c†i,−c

†
j,+cj,−ci,+

)
− V

2

N∑
i,j=1

(
c†i,+c

†
j,+cj,−ci,− + c†i,−c

†
j,−cj,+ci,+

)
, (1.1)

where cj,σ′ , c†i,σ, i, j = 1, 2, . . . , N , σ, σ′ ∈ {+,−} are fermion creation-anihilation operators,

The exact solvability of the model was shown in [13] using a kind of Bethe ansatz tech-
nique. Later a connection of the Bethe ansatz for the Lipkin–Meshkov–Glick model with the
Bethe ansatz for the trigonometric Gaudin model [7] was established in [8]. The established
connection is very indirect. In more details, the Lipkin–Meshkov–Glick Hamiltonian in the
bosonic representation was connected [8] with the combination of bosonized two-spin trigono-
metric Gaudin Hamiltonians in an external magnetic field directed along the third axis [9, 12].
In such a way the Bethe ansatz existing for two-spin trigonometric Gaudin model was used to
construct the Bethe ansatz for the Lipkin–Meshkov–Glick model.

The described above construction of [8] seems to be somewhat artificial. Indeed, it is well-
known [13] the Hamiltonian (1.1) is rewritten in terms of gl(2) pseudo-spin operators Ŝij ,
i, j = 1, 2 as follows:

Ĥ =
ϵ

2

(
Ŝ11 − Ŝ22

)
− W

2

(
Ŝ12Ŝ21 + Ŝ21Ŝ12

)
− V

2

(
Ŝ2
12 + Ŝ2

21

)
, (1.2)
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where the commutation relations of the pseudo-spin operators Ŝij , i, j = 1, 2, are the following
ones: [

Ŝij , Ŝkl

]
= δkjŜil − δilŜkj . (1.3)

This Hamiltonian should be connected with the class of integrable one-spin (not two-spin!)
models.

In terms of the standard basis of so(3) ≃ sl(2) the Hamiltonian (1.2) is rewritten as follows:

Ĥ = iϵŜ3 + (W + V )Ŝ2
1 + (W − V )Ŝ2

2 , i =
√
−1, (1.4)

where Ŝα, α = 1, 2, 3, satisfy the standard commutation relations of so(3) pseudo-spin operators:[
Ŝα, Ŝβ

]
= ϵαβγŜγ . (1.5)

We remind that standard Gaudin integrable spin chain Hamiltonians [7], i.e., the ones based
on the classical skew-symmetric r-matrices [16], contain spin-spin interaction terms for different
spins of the chain and do not contain one spin self-interaction terms. That is why it is impossible
to obtain the Hamiltonian (1.4) using the standard Gaudin Hamiltonians [7] with one spin. On
the other hand, in the series of our previous papers [17, 19, 20] we have proposed a generalization
of the Gaudin Hamiltonians based on the non-skew-symmetric classical r-matrices r(u1, u2) =∑3

α,β=1 rαβ(u1, u2)Xα⊗Xβ, whereXα is a standard basis in so(3), satisfying generalized classical
Yang–Baxter equation [1, 2, 6] instead of the usual one. In one-spin-case our generalized Gaudin
Hamiltonian has the following form [17, 19, 20]:

Ĥ =
1

2

3∑
α,β=1

r0αβ(ν, ν)
(
ŜαŜβ + ŜβŜα

)
+

3∑
α=1

cα(ν)Ŝα,

where r0αβ(ν, ν) are the components of the regular part of the classical r-matrix r(u1, u2), ν is
a fixed non-singular [24] value of spectral parameter and cα(ν) are the components of the so-
called shift element playing the role of an external field [20, 23].

In the present short paper we show, that the Hamiltonian (1.4) is a one-spin generalized
Gaudin Hamiltonian connected with the following r-matrix:

r(u, v) =

√
u+ j2

√
v + j1

u− v
X1 ⊗X1 +

√
u+ j1

√
v + j2

u− v
X2 ⊗X2

+

√
u+ j1

√
u+ j2

u− v
X3 ⊗X3, (1.6)

which is a j3 → ∞ limit of the non-skew-symmetric elliptic r-matrix [17, 18, 19] defined on the
4 : 1 unramified covering of the Weierstrass cubic y2 = (u+ j1)(u+ j2)(u+ j3).

The r-matrix (1.6) possesses the following shift element defining integrable external magnetic
field:

c(u) =
2∑

α=1

ikα
2
√
u+ jα

Xα +
ik3
2
X3,

where the constants kα, α = 1, 2, 3, are arbitrary. It leads to the following quantum Hamiltonian:

Ĥ = ik1
√

j2Ŝ1 + ik2
√

j1Ŝ2 + ik3
√

j1
√
j2Ŝ3 − j2Ŝ

2
1 − j1Ŝ

2
2 . (1.7)

We call it generalized Lipkin–Meshkov–Glick Hamiltonian. In the case k1 = k2 = 0 it co-
incides – modulo the renaming of the constants – with the standard Lipkin–Meshkov–Glick
Hamiltonian (1.4).
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Note also that the Hamiltonian (1.7) coincide – up to the quadratic Casimir operator Ĉ2 =
Ŝ2
1 + Ŝ2

2 + Ŝ2
3 and renaming of the constants – with quantization of Zhukovsky–Volterra Hamil-

tonian [28] which is written explicitly as follows:

Ĥ = b1Ŝ1 + b2Ŝ2 + b3Ŝ3 + a1Ŝ
2
1 + a2Ŝ

2
2 + a3Ŝ

2
3 .

Here the constant ai, bi, i = 1, 2, 3, are arbitrary.
We use the discovered connection of the generalized Lipkin–Meshkov–Glick Hamiltonian with

the r-matrix (1.6) in order to find its spectrum by means of the modified algebraic Bethe ansatz
(mABA). Indeed in our paper [26] we have constructed the spectrum and Bethe vectors for
the generalized Gaudin models with N spins associated with the r-matrix (1.6) using modified
algebraic Bethe ansatz. In [26] we have applied the obtained results to find the spectrum of the
Richardson-type model which is N -spin case of the Gaudin-type model with the same simplest
fundamental representation of each one-spin sl(2) ≃ so(3) algebra in the chain of N spins. In
the present letter we apply the mABA to one-spin case of the Gaudin-type model and arbitrary
representation of the corresponding one-spin algebra and obtain the following spectrum of the
Hamiltonian (1.7):

h±(v1, v2, . . . , vN ) = 2N

(
(j1 + j2)N ± ik1j2 + k2j1√

j1 − j2
+ 2j1j2

N∑
k=1

1

vk

)
,

where the rapidities vk satisfy the following set of modified Bethe equations:

−N(vk + j1)(vk + j2)

vk
∓ ik1(vk + j2) + k2(vk + j1)√

j1 − j2

+ (2vk + j1 + j2) + 2
N∑

n=1, n ̸=k

(vk + j1)(vk + j2)

vk − vn

=
1

4

(
k+ ∓ (N + 1)

)(
k− ∓ (N + 1)

) vNk
N∏

n=1, n̸=k

(vk − vn)

, k = 1, . . . , N, (1.8)

corresponding to two sets of the modified Bethe vectors. Here k± = ik1+k2√
j1−j2

± k3 and the

number N is related with the representation space of sl(2) ≃ so(3) and coincide with the
fermion number.

It is necessary to notice that for generic values of ki both sets of modified Bethe equations (1.8)
seem to produce the same modified Bethe vectors and corresponding set of the eigenvalues
{h+(v1, v2, . . . , vN )} and {h−(v1, v2, . . . , vN )} coincide. For illustration purposes we solve the
modified Bethe equations (1.8) and explicitly find the spectrum of the Hamiltonian (1.7) in the
cases N = 1, 2.

In the end of the introduction we remark, that the modified Bethe ansatz in the context of
the rational Gaudin model in arbitrary magnetic field has appeared in the paper [5]. In the
context of the “shifted” trigonometric r-matrix and the corresponding Richardson-type models
interacting with the environment the mABA has appeared in the papers [3, 11]. We also remark
that integrable models associated with certain limits of the non-skew-symmetric elliptic r-matrix
have been considered also in the recent papers [4, 15].

The structure of the present paper is the following: in Section 2 we describe the j3 → ∞ limit
of the non-skew-symmetric elliptic r-matrix, in Section 3 we describe its Lax algebra and one-
spin Gaudin-type model. In Section 4 we consider its fermionization and obtain the generalized
LMG model. Section 5 is devoted to the modified Bethe ansatz. In Section 6 we conclude and
discuss the open problems.
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2 Elliptic r-matrix in the j3 → ∞ limit

2.1 Non-skew-symmetric elliptic r-matrix in so(3) basis

Let us consider the following tensor [17, 19, 25]:

r(u, v) =
3∑

α=1

u1u2u3
u− v

vα
uα

Xα ⊗Xα, (2.1)

where {Xα | α = 1, 2, 3} is a basis over C in sl(2) ≃ so(3) with the commutation relations
repeating the commutation relations (1.5) and the functions uα, vα, α = 1, 2, 3, are defined as
follows:

u2α = u+ jα, v2α = v + jα, α = 1, 2, 3.

It is possible to show that (2.1) satisfies generalized classical Yang–Baxter equation [1, 2, 6]:[
r12(u1, u2), r

13(u1, u3)
]
=
[
r23(u2, u3), r

12(u1, u2)
]
−
[
r32(u3, u2), r

13(u1, u3)
]
.

Here

r12(u1, u2) ≡
3∑

α,β=1

rαβ(u1, u2)Xα ⊗Xβ ⊗ 1,

r13(u1, u3) ≡
3∑

α,β=1

rαβ(u1, u3)Xα ⊗ 1⊗Xβ, etc.

The r-matrix (2.1) satisfies – up to the overall multiplier v1v2v3 – the following condition:

r(u, v) =
Ω

u− v
+ r0(u, v), (2.2)

where Ω =
∑3

α=1Xα ⊗Xα and r0(u, v) is a regular on the diagonal u = v function.

An important characteristic of the r-matrix is the existence of the “shift element”, i.e.,
c-valued function c(u) =

∑3
α=1 cα(u)Xα satisfying the “shift equation” [20]:

[
r12(u1, u2), c

(1)(u1)
]
−
[
r21(u2, u1), c

(2)(u2)
]
= 0,

where c(1)(u1) = c(u1)⊗ 1, c(2)(u2) = 1⊗ c(u2).

The following Proposition holds true [20, 23, 25]:

Proposition 2.1. The following sl(2) ≃ so(3)-valued function is a shift element for the r-mat-
rix (2.1):

c(u) =

3∑
α=1

ikα
2uα

Xα, (2.3)

where the constants kα, α = 1, 2, 3, are arbitrary.
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2.2 The j3 → ∞ limit

2.2.1 The so(3) basis

Let us consider the limit j3 → ∞ in the r-matrix (2.1) rescaled by 1√
j3
. We will have

r(u, v) =
u2v1
u− v

X1 ⊗X1 +
u1v2
u− v

X2 ⊗X2 +
u1u2
u− v

X3 ⊗X3. (2.4)

It is easy to show that this r-matrix satisfies – up to the factor v1v2 – the condition (2.2).

Let us now find what happens with the shift element (2.3) in this limit.

Proposition 2.2 ([25]). The following so(3)-valued function is a shift element for the r-mat-
rix (2.4):

c(u) =

2∑
α=1

ikα
2uα

Xα +
ik3
2
X3, (2.5)

where the constants kα, α = 1, 2, 3, are arbitrary.

Remark 2.3. Rigorously speaking, in the limit j3 → ∞ the curve y2 = (u+ j1)(u+ j2)(u+ j3)
stops to be elliptic. Nevertheless the r-matrix (2.4) and the corresponding integrable systems
are still completely anisotropic, since all anisotropy parameters jα, α = 1, 2, 3, are not equal in
the considered case.

2.2.2 The gl(2) basis

Let us now use the connection of the so(3) basis in sl(2) with the standard gl(2) basis {Xij |
i, j = 1, 2}:

X1 = − i

2
(X21 +X12), X2 = −1

2
(X12 −X21), X3 = − i

2
(X11 −X22), i =

√
−1,

where the commutation relations among Xij , Xkl repeat the commutation relations (1.3).

In the gl(2) basis the r-matrix (2.4) acquires – up to the coefficient 1
4 – the following explicit

form:

r(u, v) =
u1u2(X11 −X22)⊗ (X11 −X22)

(v − u)
+

(v1u2 + u1v2)(X12 ⊗X21 +X21 ⊗X12)

(v − u)

+
(v1u2 − u1v2)(X12 ⊗X12 +X21 ⊗X21)

(v − u)
. (2.6)

The r-matrix (2.6) satisfies – up to the multiplier (−2v1v2) – the condition (2.2) with

Ω =
1

2
(X11 −X22)⊗ (X11 −X22) +X12 ⊗X21 +X21 ⊗X12.

Instead of the sl(2)⊗sl(2)-valued r-matrix r(u, v) given by the formula (2.6) it will be convenient
to consider the following equivalent gl(2)⊗ gl(2)-valued r-matrix:

r(u, v) =
2u1u2(X11 ⊗X11 +X22 ⊗X22)

(v − u)
+

(v1u2 + u1v2)(X12 ⊗X21 +X21 ⊗X12)

(v − u)

+
(v1u2 − u1v2)(X12 ⊗X12 +X21 ⊗X21)

(v − u)
. (2.7)
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The r-matrix (2.7) satisfies – up to the multiplier (−2v1v2) – the condition (2.2) with

Ω = X11 ⊗X11 +X22 ⊗X22 +X12 ⊗X21 +X21 ⊗X12.

The shift element (2.5) is rewritten in terms of the gl(2) basis – up to the coefficient 1
4 – as

follows:

c(u) = k3(X11 −X22) +

(
k1
u1

− ik2
u2

)
X12 +

(
k1
u1

+
ik2
u2

)
X21. (2.8)

It satisfies the shift equation for both r-matrices (2.6) and (2.7).

3 Lax algebra, generating function and one-spin model

3.1 Lax algebra in the j3 → ∞ limit: the general case

3.1.1 The so(3) basis and generating function of the quantum integrals

Let us at first consider the Lax matrix corresponding to the r-matrix (2.4) in the natural so(3)-
basis:

L̂(u) =
3∑

α=1

L̂α(u)Xα.

The corresponding Lax algebra[
L̂(1)(u1), L̂

(2)(u2)
]
=
[
r12(u1, u2), L̂

(1)(u1)
]
−
[
r21(u2, u1), L̂

(2)(u2)
]
,

where L̂(1)(u1) = L̂(u1)⊗ 1, L̂(2)(u2) = 1⊗ L̂(u2), has very simple component form:[
L̂1(u), L̂2(v)

]
=

u1v2
(u− v)

(
L̂3(u)− L̂3(v)

)
,[

L̂1(u), L̂3(v)
]
= − u2u1

(u− v)
L̂2(u) +

u1v2
(u− v)

L̂2(v),[
L̂2(u), L̂3(v)

]
=

u2u1
(u− v)

L̂1(u)−
u2v1

(u− v)
L̂1(v),[

L̂1(u), L̂1(v)
]
=
[
L̂2(u), L̂2(v)

]
=
[
L̂3(u), L̂3(v)

]
= 0.

Let us consider the following quadratic functions in the elements of the Lax algebra:

τ̂ (2)(u) = −
(
L̂2
1(u) + L̂2

2(u) + L̂2
3(u)

)
. (3.1)

As it follows from the general results of [21] the generating function τ̂ (2)(u), τ̂ (2)(v) commute[
τ̂ (2)(u), τ̂ (2)(v)

]
= 0,

since the r-matrix – modulo the overall multiplier v1v2 – satisfy the condition (2.2).

3.1.2 The gl(2) basis and the generating function of quantum integrals

Let us consider the Lax matrix that correspond to the r-matrix (2.7) in the natural gl(2)-basis:

L̂(u) =
2∑

i,j=1

L̂ij(u)Xij . (3.2)
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The corresponding Lax algebra[
L̂(1)(u1), L̂

(2)(u2)
]
=
[
r12(u1, u2), L̂

(1)(u1)
]
−
[
r21(u2, u1), L̂

(2)(u2)
]
,

where L̂(1)(u1) = L̂(u1) ⊗ 1, L̂(2)(u2) = 1 ⊗ L̂(u2), has the following component form in this
basis:[

L̂11(u), L̂12(v)
]
=

(u2v1 + u1v2)

(u− v)
L̂12(u) +

(u1v2 − u2v1)

(u− v)
L̂21(u)−

2v1v2
(u− v)

L̂12(v), (3.3a)

[
L̂11(u), L̂21(v)

]
=

(u2v1 − u1v2)

(u− v)
L̂12(u)−

(u2v1 + u1v2)

(u− v)
L̂21(u) +

2v1v2
(u− v)

L̂21(v), (3.3b)

[
L̂12(u), L̂21(v)

]
=

(u2v1 + u1v2)

(u− v)

(
L̂11(u)− L̂22(u)− L̂11(v) + L̂22(v)

)
, (3.3c)

[
L̂12(u), L̂12(v)

]
=

(u2v1 − u1v2)

(u− v)

(
L̂11(u)− L̂22(u)− L̂11(v) + L̂22(v)

)
, (3.3d)

[
L̂21(u), L̂21(v)

]
= −(u2v1 − u1v2)

(u− v)

(
L̂11(u)− L̂22(u)− L̂11(v) + L̂22(v)

)
, (3.3e)[

L̂22(u), L̂12(v)
]
= −

[
L̂11(u), L̂12(v)

]
, (3.3f)[

L̂22(u), L̂21(v)
]
= −

[
L̂11(u), L̂21(v)

]
, (3.3g)[

L̂11(u), L̂11(v)
]
=
[
L̂11(u), L̂22(v)

]
=
[
L̂22(u), L̂22(v)

]
= 0. (3.3h)

From the commutation relations (3.3) immediately follows that

τ̂ (1)(u) = L̂11(u) + L̂22(u)

is a central element of the Lax algebra.

The generating function of the quadratic integrals is written in terms of gl(2) basis as follows:

τ̂ (2)(u) =
1

2

(
L̂2
11(u) + L̂2

22(u) + L̂12(u)L̂21(u) + L̂21(u)L̂12(u)
)
. (3.4)

Since the r-matrix – modulo the multiplier −2v1v2 – satisfies the condition (2.2) and τ̂ (1)(u)
is a central element of its Lax algebra, the generating functions τ̂ (2)(u), τ̂ (2)(v) commute [27]:[

τ̂ (2)(u), τ̂ (2)(v)
]
= 0.

The generating function τ̂ (2)(u) given by (3.4) coincide with the generating function τ̂ (2)(u) given

by (3.1) up to the square of the central element, namely, up to
( τ̂ (1)(u)

2

)2
= 1

4

(
L̂11(u)+ L̂22(u)

)2
.

Remark 3.1. In what follows we will, slightly abusing the algebro-geometric language, use the
explicit formulae for uα, vα in terms of square roots:

uα =
√

u+ jα, vα =
√

v + jα, α = 1, 2, 3.

3.2 Lax algebra and Hamiltonian: case of the one-spin model

3.2.1 The so(3) basis

Let us explicitly describe the Lax matrix of a quantum spin in the external magnetic field
corresponding to the considered r-matrix in the forms (2.4) and (2.6).
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We start with the form (2.4) corresponding to the so(3) basis. As it follows from the general
theory [17, 19, 20, 26], the Lax matrix with the first order pole in the point u = 0 is written as
follows:

L̂(u) = −
(√

j2
√
u+ j1
u

Ŝ1X1 +

√
j1
√
u+ j2
u

Ŝ2X2 +

√
j1
√
j2

u
Ŝ3X3

)
+ c(u),

where Ŝα is the α-th component of the spin operator with the commutation relations (1.5), the
shift element c(u) is given by the formula (2.5).

The corresponding integrable quantum Hamiltonian is obtained from the generating func-
tion τ̂ (2)(u):

τ̂ (2)(u) = −
(
L̂2
1(u) + L̂2

2(u) + L̂2
3(u)

)
.

In more details, we will consider the following Hamiltonian:

Ĥ = resu=0τ̂
(2)(u).

The direct calculation shows that it has the form (1.7).

3.2.2 The gl(2) basis

Let us now rewrite the Lax matrix and Gaudin-type Hamiltonians in an external magnetic field
in gl(2) basis corresponding to the r-matrix (2.6). It has the form (3.2) with the following
components:

L̂11(u) =
2
√
j1
√
j2Ŝ11

u
+ k3, (3.5a)

L̂22(u) =
2
√
j1
√
j2Ŝ22

u
− k3, (3.5b)

L̂12(u) =

√
u+ j1

√
j2
(
Ŝ21 + Ŝ12

)
+
√
j1
√
u+ j2

(
Ŝ21 − Ŝ12

)
u

+

(
k1√
u+ j1

− i
k2√
u+ j2

)
, (3.5c)

L̂21(u) =

√
u+ j1

√
j2
(
Ŝ21 + Ŝ12

)
−
√
j1
√
u+ j2

(
Ŝ21 − Ŝ12

)
u

+

(
k1√
u+ j1

+ i
k2√
u+ j2

)
, (3.5d)

where we have used that the components of the shift element c(u) are given by the formula (2.8).
The components of spins Ŝij , i, j = 1, 2, satisfy commutation relations (1.3). The correspond-

ing integrable Hamiltonian [22] is obtained from the generating function τ̂ (2)(u):

τ̂ (2)(u) =
1

2

(
L̂2
11(u) + L̂2

22(u) + L̂12(u)L̂21(u) + L̂21(u)L̂12(u)
)
.

More explicitly, we will have that one-spin Gaudin-type Hamiltonian Ĥ

Ĥ = resu=0τ̂
(2)(u),

has the following explicit form:

Ĥ = (j1 + j2)
(
Ŝ12Ŝ21 + Ŝ21Ŝ12

)
− (j1 − j2)

(
Ŝ2
12 + Ŝ2

21

)
+ 2
√
j1
√
j2k3

(
Ŝ11 − Ŝ22

)
+ 2
√

j2k1
(
Ŝ12 + Ŝ21

)
+ 2i

√
j1k2

(
Ŝ21 − Ŝ12

)
. (3.6)
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Remark 3.2. Observe that the Hamiltonian (3.6) is four times Hamiltonian (1.7). This differ-
ence is explained by the renormalisation of the corresponding r-matrix we have performed after
passing to gl(2) basis.

Remark 3.3. Observe also that in the case k1 = k2 = 0 the Hamiltonian Ĥ coincide with the
spin form of the Lipkin–Meshkov–Glick Hamiltonian and in the case partial case k1 = k2 it is
equivalent to the so-called “extended” Lipkin–Meshkov–Glick Hamiltonian [14].

4 Fermionization and the LMG model

4.1 Fermionization

Having obtained quantum integrable spin system it is possible to derive, using them, integrable
fermion systems. For this purpose it is necessary to consider a realization of the corresponding
spin operators in terms of fermion creation-anihilation operators.

Let cj,σ′ , c†i,σ, i, j = 1, 2, . . . , N , σ, σ′ ∈ {+,−} be fermion creation-anihilation operators, i.e.,

c†i,σcj,σ′ + cj,σ′c†i,σ = δσσ′δij , c†i,σc
†
j,σ′ + c†j,σ′c

†
i,σ = 0, ci,σcj,σ′ + cj,σ′ci,σ = 0.

By direct calculation it is possible to show that the following formulae:

Ŝ12 =

N∑
j=1

c†j,+cj,−, Ŝ21 =

N∑
j=1

c†j,−cj,+, Ŝ11 =

N∑
j=1

c†j,+cj,+, Ŝ22 =

N∑
j=1

c†j,−cj,− (4.1)

provide realization of the Lie algebra gl(2).

Remark 4.1. Note, that after the restriction to the subalgebra sl(2) we obtain, substituting
Ŝ12 = Ŝ+, Ŝ21 = Ŝ−, Ŝ11 − Ŝ22 = 2iŜ3, the fermionization of the Lie algebra sl(2) given by the
following formulae:

Ŝ+ =
N∑
j=1

c†j,+cj,−, Ŝ− =
N∑
j=1

c†j,−cj,+, Ŝ3 = − i

2

N∑
j=1

(
c†j,+cj,+ − c†j,−cj,−

)
.

4.2 The LMG Hamiltonian

In the partial case k1 = k2 = 0, applying to the Hamiltonian (3.6) the fermionization formu-
lae (4.1), we obtain the following integrable fermion Hamiltonian:

Ĥ = (j1 + j2)

 N∑
i,j=1

c†i,+ci,−c
†
j,−cj,+ +

N∑
i,j=1

c†i,−ci,+c
†
j,+cj,−


− (j1 − j2)

 N∑
i,j=1

c†i,+ci,−c
†
j,+cj,− +

N∑
i,j=1

c†i,−ci,+c
†
j,−cj,+


+ 2
√
j1
√
j2k3

N∑
j=1

(
c†j,+cj,+ − c†j,−cj,−

)
. (4.2)

This is the famous Lipkin–Meshkov–Glick Hamiltonian, which can – up to a multiple of Casimir
operator/ number of particle operator N̂ =

∑N
i,j=1

(
c†i,+ci,++ c†j,−cj,−

)
– be rewritten as follows:

ĤLMG =
ϵ

2

∑
σ=±

N∑
j=1

σc†j,σcj,σ − W

2

N∑
i,j=1

(
c†i,+c

†
j,−cj,+ci,− + c†i,−c

†
j,+cj,−ci,+

)
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− V

2

N∑
i,j=1

(
c†i,+c

†
j,+cj,−ci,− + c†i,−c

†
j,−cj,+ci,+

)
, (4.3)

where ϵ = 4
√
j1
√
j2k3, W = −2(j1 + j2), V = 2(j1 − j2).

The Hamiltonian (4.3) is a particular example of the following general fermion Hamiltonian:

Ĥ =
ϵ

2

∑
σ=±

N∑
j=1

σc†j,σcj,σ +
∑

σ1,σ2,σ3,σ4=±

N∑
i,j,k,l=1

Vi,j,σ1,σ2,σ3,σ4c
†
i,σ1

c†j,σ2
cj,σ3ci,σ4 .

Remark 4.2. The case V = 0 of the Hamiltonian (4.3), i.e., the case j1 = j2 of the Hamilto-
nian (4.2), is treated relatively simply due to the Cartan-invariance of the corresponding classical
r-matrix. The diagonalization of the Hamiltonian (4.2) in the case j1 ̸= j2 is more complicated.
It will be performed in the next section of this article. Our main tool will be the (modified)
algebraic Bethe ansatz.

5 Modified Bethe ansatz

5.1 The ABA basis in the Lax algebra and the gauge transformation

In order to proceed with the algebraic Bethe ansatz it is necessary to consider a special basis in
the Lax algebra (3.3). In more details, let us consider the following linear functions on the Lax
algebra [26]:

Â(u) =
1

2

(
L̂11(u) + L̂22(u)

)
− i

√
j1 − j2

2(
√
u+ j1 −

√
u+ j2)

L̂12(u)

+ i

√
u+ j1 −

√
u+ j2

2
√
j1 − j2

L̂21(u), (5.1a)

B̂(u) = − i

2

(
L̂11(u)− L̂22(u)

)
−

√
j1 − j2

2(
√
u+ j1 −

√
u+ j2)

L̂12(u)

−
√
u+ j1 −

√
u+ j2

2
√
j1 − j2

L̂21(u), (5.1b)

Ĉ(u) =
i

2

(
L̂11(u)− L̂22(u)

)
−

√
j1 − j2

2(
√
u+ j1 −

√
u+ j2)

L̂12(u)

−
√
u+ j1 −

√
u+ j2

2
√
j1 − j2

L̂21(u), (5.1c)

D̂(u) =
1

2

(
L̂11(u) + L̂22(u)

)
+

i
√
j1 − j2

2(
√
u+ j1 +

√
u+ j2)

L̂12(u)

− i

√
u+ j1 +

√
u+ j2

2
√
j1 − j2

L̂21(u). (5.1d)

In terms of these functions the generating function τ̂ (2)(u) given by (3.4) is written as follows:

τ̂ (2)(u) =
1

2

(
Â2(u) + D̂2(u) + B̂(u)Ĉ(u) + Ĉ(u)B̂(u)

)
.

The basis in the Lax algebra consisting of the above A−B−C−D functions is the basis suitable
for the algebraic Bethe ansatz. We will hereafter call it ABA basis. It is possible to show [26]
that

Â(u) = L̂g
11(u), D̂(u) = L̂g

22(u), B̂(u) = L̂g
21(u), Ĉ(u) = L̂g

12(u),
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where

L̂g(u) = g−1(u)L̂(u)g(u)

and g(u) is a two by two numerical matrix of the following explicit form:

g(u) =

−i

√
u+ j1 −

√
u+ j2√

j1 − j2

√
u+ j1 −

√
u+ j2√

j1 − j2

−1 i

 , i =
√
−1. (5.2)

The shift element (2.8) under the above similarity transformation acquires the following form:

c(u) = − 1√
j1 − j2

(
ik1

√
u+ j2√
u+ j1

+ k2

√
u+ j1√
u+ j2

)
(X11 −X22)

+

(
−k1 + ik2√

j1 − j2
+ ik3

)
X12 +

(
−k1 + ik2√

j1 − j2
− ik3

)
X21.

5.2 Lax matrix and spin Hamiltonian in the new basis

Using the formulae (5.1) and the explicit form of the components of one-spin Lax matrix (3.5) it
is easy to show that the components L̂g

ij(u) of the transformed one-spin Lax matrix are written
as follows:

Â(u) = L̂g
11(u) =

2
√
u+ j1

√
u+ j2T̂11

u
− 1√

j1 − j2

(
ik1

√
u+ j2√
u+ j1

+ k2

√
u+ j1√
u+ j2

)
, (5.3a)

D̂(u) = L̂g
22(u) =

2
√
u+ j1

√
u+ j2T̂22

u
+

1√
j1 − j2

(
ik1

√
u+ j2√
u+ j1

+ k2

√
u+ j1√
u+ j2

)
, (5.3b)

Ĉ(u) = L̂g
12(u) =

2
√
j1
√
j2T̂21

u
− i
(
T̂11 − T̂22

)
+ i

(
ik1 + k2√
j1 − j2

+ k3

)
, (5.3c)

B̂(u) = L̂g
21(u) =

2
√
j1
√
j2T̂12

u
− i
(
T̂11 − T̂22

)
+ i

(
ik1 + k2√
j1 − j2

− k3

)
. (5.3d)

The components of “T -spins” T̂ij , i, j = 1, 2, satisfy commutation relations of gl(2)[
T̂ij , T̂kl

]
= δkjT̂il − δilT̂kj .

They coincide with the components of the gauge-transformed “S-spin” Ŝ, where the transfor-
mation matrix is given by (5.2) with u = 0. In more details, we have

T̂11 =
1

2

(
Ŝ11 + Ŝ22

)
+

i

2

√
j1 −

√
j2√

j1 − j2
Ŝ12 −

i

2

√
j1 − j2√
j1 −

√
j2
Ŝ21, (5.4a)

T̂22 =
1

2

(
Ŝ11 + Ŝ22

)
− i

2

√
j1 −

√
j2√

j1 − j2
Ŝ12 +

i

2

√
j1 − j2√
j1 −

√
j2
Ŝ21, (5.4b)

T̂21 =
i

2

(
Ŝ11 − Ŝ22

)
− 1

2

√
j1 −

√
j2√

j1 − j2
Ŝ12 −

1

2

√
j1 − j2√
j1 −

√
j2
Ŝ21, (5.4c)

T̂12 = − i

2

(
Ŝ11 − Ŝ22

)
− 1

2

√
j1 −

√
j2√

j1 − j2
Ŝ12 −

1

2

√
j1 − j2√
j1 −

√
j2
Ŝ21. (5.4d)

The corresponding spin Hamiltonian in the external magnetic field

Ĥ = resu=0τ̂
(2)(u)
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is – up to Casimir operator Ĉ(2) = T̂ 2
11 + T̂ 2

22 + T̂12T̂21 + T̂21T̂12 – explicitly written as follows:

Ĥ = −i
√

j1
√

j2
((
T̂11 − T̂22

)(
T̂12 + T̂21

)
+
(
T̂12 + T̂21

)(
T̂11 − T̂22

))
+ 2(j1 + j2)

(
T̂ 2
11 + T̂ 2

22

)
− 2√

j1 − j2
(ik1j2 + k2j1)

(
T̂11 − T̂22

)
+ 2i

√
j1
√
j2

(
ik1 + k2√
j1 − j2

+ k3

)
T̂12 + 2i

√
j1
√
j2

(
ik1 + k2√
j1 − j2

− k3

)
T̂21. (5.5)

Applying the transform (5.4) to the Hamiltonian (5.5) we recover – modulo the square of the
linear Casimir operators Î = Ŝ11 + Ŝ22 – the spin Hamiltonian (3.6).

Observe that in the case k1 = k2 = 0 the Hamiltonian (5.5) acquires the following simple
form:

Ĥ = 2i
√

j1
√
j2(k3 + 1)

(
T̂12 − T̂21

)
− 2i

√
j1
√
j2
(
T̂11 − T̂22

)(
T̂12 + T̂21

)
+ 2(j1 + j2)

(
T̂ 2
11 + T̂ 2

22

)
. (5.6)

5.2.1 The representation space

In order to apply the results of the previous subsections to the considered spin model in an exter-
nal field we need to describe the space of representation of the corresponding Lax algebra (5.3).
For this purpose we consider an irreducible finite-dimensional irreducible representation of the
algebra gl(2) of “T -spins” in some space V . Each such the representation V contains the lowest
and highest weight vectors v+ and v− such that

T̂11v+ = λ1v+, T̂22v+ = λ2v+, T̂21v+ = 0,

T̂11v
− = λ2v

−, T̂22v
− = λ1v

−, T̂12v
− = 0.

The space V is spanned by the vectors

v
(m)
+ = (T̂12)

mv+, m = 0, . . . , (λ2 − λ1),

or by the vectors

v
(m)
− = (T̂21)

mv−, m = 0, . . . , (λ2 − λ1).

The dimension of the space V is hence equal to nλ = (λ2 − λ1) + 1.

Remark 5.1. We will hereafter put λ2 = N , λ1 = 0. This will correspond to the considered
below fermion representation, where the vector v+ is annulled by the fermion operators fj,+, f

†
j,−,

j = 1, . . . , N , and the vector v− is annulled by the fermion operators fj,−, f
†
j,+, j = 1, . . . , N .

5.3 The fermionic LMG model in the new basis

5.3.1 Second fermionization and the canonical transformation

Similar to the previous subsection, we will need to construct the fermionization of the Lie
algebra gl(2) in the new basis, i.e., to fermionize the operators T̂ij . The fermionization will

be written with the help of another group of fermion creation-anihilation operators fj,σ′ , f †
i,σ,

i, j = 1, . . . , N , σ, σ′ ∈ {+,−} satisfying the same Clifford algebra of anti-commutation relations:

f †
i,σfj,σ′ + fj,σ′f †

i,σ = δσσ′δij , f †
i,σf

†
j,σ′ + f †

j,σ′f
†
i,σ = 0, fi,σfj,σ′ + fj,σ′fi,σ = 0.
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The same type of formulae provide the realization of the Lie algebra gl(2):

T̂12 =
N∑
j=1

f †
j,+fj,−, T̂21 =

N∑
j=1

f †
j,−fj,+,

T̂11 =
N∑
j=1

f †
j,+fj,+, T̂22 =

N∑
j=1

f †
j,−fj,−. (5.7)

The following proposition holds true:

Proposition 5.2. Let the operators T̂ij and Ŝkl, m = 1, . . . , N , be connected by the trans-
formation (5.4). Then f - and c-types of fermions are connected by the following canonical
transformation:

fm,+ = − i

2

√
j1 − j2√
j1 −

√
j2
cm,+ +

1

2
cm,−, f †

m,+ = i

√
j1 −

√
j2√

j1 − j2
c†m,+ + c†m,−, (5.8a)

fm,− = −1

2

√
j1 − j2√
j1 −

√
j2
cm,+ +

i

2
cm,−, f †

m,− = −
√
j1 −

√
j2√

j1 − j2
c†m,+ − ic†m,−. (5.8b)

Proof. The proof is achieved by straightforward verification. ■

5.3.2 LMG Hamiltonian in the new basis

Using the fermionization formulae (5.7) and the explicit form of the Hamiltonian (5.6) we obtain
the following simple form of the LMG Hamiltonian (5.6) in the new fermion basis:

Ĥ = 2i
√
j1
√
j2(k3 + 1)

N∑
j=1

(
f †
j,+fj,− − f †

j,−fj,+
)
− 2i

√
j1
√
j2

N∑
j=1

(
f †
j,+fj,+ − f †

j,−fj,−
)

×
N∑
j=1

(
f †
j,+fj,− + f †

j,−fj,+
)
+ 2(j1 + j2)

((
N∑
j=1

f †
j,+fj,+

)2

+

(
N∑
j=1

f †
j,−fj,−

)2)
, (5.9)

Remark 5.3. Observe that the Hamiltonian (5.9) coincide – up to the transform (5.8) and
identity operators – with the Hamiltonian (4.2). That is why, diagonalizing the Hamiltonian (5.9)
we will automatically diagonalize also the Hamiltonian (4.2) and vice versa.

5.4 The spectrum and Bethe equations: the general case

The main ingredient of the algebraic Bethe ansatz are the Bethe vectors. For the definition of
the Bethe vectors we will use the following products [26]:

B̂(v1, v2, . . . , vN ) = B̂1(v1)B̂2(v2) · · · B̂N (vN ),

where

B̂k(v) = B̂(v)− i(2k − 1) Id, k ∈ Z, i =
√
−1,

and vi, i = 1, . . . , N , are “rapidities” – complex numbers to be determined from the Bethe-type
equations. Due to the symmetry of the structure of the Lax algebra we will also consider the
products

Ĉ(v1, v2, . . . , vN ) = Ĉ1(v1)Ĉ2(v2) · · · ĈN (vN ),
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where

Ĉk(v) = Ĉ(v) + i(2k − 1) Id, k ∈ Z, i =
√
−1,

and the values of rapidities vi, i = 1, . . . , N , have to be determined from the other Bethe-type
equations.

The following theorem is a consequence of the more general theorem of [26]:

Theorem 5.4.

(i) Let k± = ik1+k2√
j1−j2

±k3 and k− ̸= N+1, N+3, . . . , 3N+1. Let the rapidities vk, k = 1, . . . , N ,

satisfy Bethe-type equations

− N(vk + j1)(vk + j2)

vk
− ik1(vk + j2) + k2(vk + j1)√

j1 − j2

+ (2vk + j1 + j2) + 2
N∑

n=1, n ̸=k

(vk + j1)(vk + j2)

vk − vn

=
1

4
(k+ −N − 1)(k− −N − 1)

vNk
N∏

n=1, n ̸=k

(vk − vn)

, k = 1, . . . , N. (5.10)

Then the following vectors in the space V

V+(v1, v2, . . . , vN ) = B̂(v1, v2, . . . , vN )v+

are the eigen-vectors of quantum Hamiltonian Ĥ with eigenvalues

h+(v1, v2, . . . , vN ) = 2N

(
(j1 + j2)N +

ik1j2 + k2j1√
j1 − j2

+ 2j1j2

N∑
n=1

1

vn

)
.

(ii) Let k± = ik1+k2√
j1−j2

± k3 and k+ ̸= −(N +1),−(N +3), . . . ,−(3N +1). Let the rapidities vk,

k = 1, . . . , N , satisfy Bethe-type equations

− N(vk + j1)(vk + j2)

vk
+

ik1(vk + j2) + k2(vk + j1)√
j1 − j2

+ (2vk + j1 + j2) + 2
N∑

n=1, n ̸=k

(vk + j1)(vk + j2)

vk − vn

=
1

4
(k+ +N + 1)(k− +N + 1)

vNk
N∏

n=1, n ̸=k

(vk − vn)

, k = 1, . . . , N. (5.11)

Then the following vectors in the space V

V−(v1, v2, . . . , vN ) = Ĉ(v1, v2, . . . , vN )v−

are the eigen-vectors of quantum Hamiltonian Ĥ with eigenvalues

h−(v1, v2, . . . , vN ) = 2N

((
j1 + j2

)
N − ik1j2 + k2j1√

j1 − j2
+ 2j1j2

N∑
n=1

1

vn

)
. (5.12)
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Remark 5.5. Observe that the exclusion of certain values of k± in the theorem is due to our
way of proving it [26]. The statement of the theorem seem to be true for any values of k±, but
we have the proof in the cases k− ̸= N + 1, N + 3, . . . , 3N + 1 and k+ ̸= −(N + 1),−(N + 3),
. . . ,−(3N + 1) respectively.

Remark 5.6. Note that consideration of small N examples shows that for the generic values
of ki, i = 1, 2, 3, both systems of the eigenvectors {V+(v1, v2, . . . , vN )} and {V−(v1, v2, . . . , vN )}
are the same. The sets of the corresponding eigenvalues {h+(v1, v2, . . . , vN )} and {h−(v1, v2, . . . ,
vN )} also coincide.

5.5 Example: N = 1 case

Let us consider the simplest case N = 1 corresponding to two-dimensional representation of sl(2)
and gl(2). In this case there is only one rapidity v1 and the Bethe equation (5.10) acquires the
form

−(v1 + j1)(v1 + j2)

v1
− ik1(v1 + j2) + k2(v1 + j1)√

j1 − j2

+ (2v1 + j1 + j2)−
1

4
(k+ − 2)(k− − 2)v1 = 0, (5.13)

where, as previously, k± = ik1+k2√
j1−j2

± k3.

The eigenvalues of the Hamiltonian Ĥ given by (5.5) are written as follows:

h+(v1) = 2

(
(j1 + j2) +

ik1j2 + k2j1√
j1 − j2

+
2j1j2
v1

)
. (5.14)

Introducing the variable x = v−1
1 we rewrite the equation (5.13) as follows:

−j1j2x
2 − (ik1j2 + k2j1)x√

j1 − j2
+

1

4
k23 +

1

4

(−k1 + ik2)
2

(j1 − j2)
= 0. (5.15)

The equation (5.15) has two solutions

x1 = − 1

2j1j2

(
ik1j2 + k2j1√

j1 − j2
−
√
j2k21 + j1k22 + j1j2k23

)
,

x2 = − 1

2j1j2

(
ik1j2 + k2j1√

j1 − j2
+
√
j2k21 + j1k22 + j1j2k23

)
.

Substituting them into the formula (5.14) we obtain the following eigenvalues of Ĥ:

h1 = 2j1 + 2j2 + 2
√
j2k21 + j1k22 + j1j2k23, h2 = 2j1 + 2j2 − 2

√
j2k21 + j1k22 + j1j2k23.

We remark that the formula (5.12) and Bethe equations (5.11) produce in the generic case
the same spectrum, i.e., the vectors V+(v1) and V−(v1) for the generic values of ki, i = 1, 2, 3,
are proportional.

We also remark, that in the considered two by two matrix representation the eigenvalues
of (5.5) are easily calculated by the direct method and are shown to coincide with the h1, h2
written above.
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5.6 Example: N = 2 case

Let us consider the case N = 2 corresponding to three-dimensional representation of sl(2)
and gl(2). In this case there are two rapidities v1 and v2 and the Bethe equations (5.10) acquire
the form

−2(v1 + j1)(v1 + j2)

v1
− ik1(v1 + j2) + k2(v1 + j1)√

j1 − j2
+ (2v1 + j1 + j2) + 2

(v1 + j1)(v1 + j2)

v1 − v2

=
1

4
(k+ − 3)(k− − 3)

v21
(v1 − v2)

, (5.16a)

−2(v2 + j1)(v2 + j2)

v2
− ik1(v2 + j2) + k2(v2 + j1)√

j1 − j2
+ (2v2 + j1 + j2) + 2

(v2 + j1)(v2 + j2)

v2 − v1

=
1

4
(k+ − 3)(k− − 3)

v22
(v2 − v1)

, (5.16b)

where, as previously, k± = ik1+k2√
j1−j2

± k3.

The eigenvalues of the Hamiltonian Ĥ given by (5.5) are written as follows:

h+ = 4

(
2(j1 + j2) +

ik1j2 + k2j1√
j1 − j2

+ 2j1j2

(
1

v1
+

1

v2

))
.

In order to solve the equations (5.16) and to find the spectrum we at first make a change of
variables X =

(
v−1
1 + v−1

2

)
, Y =

(
v−1
1 − v−1

2

)
. Then we consider the sum and the difference of

the equations (5.16a), (5.16b) and obtain the following equations for X, Y :

2j1j2(j1 − j2)X
3 + 4(j1 − j2)(j1 + j2)X

2 +
(
6j1j2(j1 − j2)Y

2 + (j1 − j2)k
2
3 + (j2 − j1)

+ (k1 − ik2)
2 + 6(ik1 + k2)

√
j1 − j2

)
X + 4(ik1j2 + k2j1)

√
j1 − j2Y

2 = 0, (5.17a)

Y 2 + 3X2 +
(2
√
j1 − j2(ik1j2 + k2j1) + j21 − j22)

j1j2(j1 − j2)
X − k23

2j1j2

+
(2(ik1 + k2)

√
j1 − j2 + j1 − j2 − (k1 − ik2)

2)

2j1j2(j1 − j2)
= 0. (5.17b)

Resolving the equation (5.17b) with respect to Y 2, substituting it into (5.17a), taking into
account that

X =
h+
8j1j2

−
(
(j1 + j2)

j1j2
+

ik1j2 + k2j1
2j1j2

√
j1 − j2

)
,

we finally derive the following equation for the eigenvalues h+:

h3+ − 20(j2 + j1)h
2
+ +

(
128j21 − 16j1k

2
3j2 + 272j1j2 + 128j22 − 16j1k

2
2 − 16j2k

2
1

)
h+

+ 128(j1 + j2)j1j2k
2
3 + 64j2(2j1 + j2)k

2
1 + 64j1(j1 + 2j2)k

2
2

− 128(j1 + 2j2)(2j1 + j2)(j1 + j2) = 0. (5.18)

We remark, that in the considered three-dimensional representation the characteristic poly-
nomial of the Hamiltonian (5.5) is easily calculated by direct method and coincide with the
polynomial (5.18).

We also remark that the formula (5.12) and Bethe equations (5.11) produce in the generic case
the same spectrum, i.e., the vectors V+(v1, v2) and V−(v1, v2) for generic values of ki, i = 1, 2, 3,
are proportional.
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6 Conclusion and discussion

In the present paper we have shown that the Lipkin–Meshkov–Glick 2N -fermion model is a par-
ticular case of one-spin Gaudin-type model in an external magnetic field based on the non-skew-
symmetric classical elliptic r-matrix in the j3 → ∞ limit. We have also constructed a further
integrable generalization of the Lipkin–Meshkov–Glick model, which, written in the spin form,
coincides with the quantum Zhukovsky–Volterra gyrostat. We have diagonalized the correspond-
ing quantum Hamiltonian by means of the modified algebraic Bethe ansatz and explicitly solved
the corresponding Bethe-type equations for small number of fermions N = 1, 2.

It will be very useful to find – at least numerically – the solutions of the constructed Bethe-
type equations for the case of the arbitrary N . This problem is open. It will be also interesting
to compare the obtained Bethe ansatz with other variants of the Bethe ansatz, existing in the
literature for the (non-generalized) Lipkin–Meshkov–Glick model [8, 13].
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