Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 063, 42 pages      arXiv:2106.07129      https://doi.org/10.3842/SIGMA.2022.063

A Path-Counting Analysis of Phase Shifts in Box-Ball Systems

Nicholas M. Ercolani and Jonathan Ramalheira-Tsu
Department of Mathematics, University of Arizona, USA

Received April 08, 2022, in final form August 20, 2022; Published online August 25, 2022

Abstract
In this paper, we perform a detailed analysis of the phase shift phenomenon of the classical soliton cellular automaton known as the box-ball system, ultimately resulting in a statement and proof of a formula describing this phase shift. This phenomenon has been observed since the nineties, when the system was first introduced by Takahashi and Satsuma, but no explicit global description was made beyond its observation. By using the Gessel-Viennot-Lindström lemma and path-counting arguments, we present here a novel proof of the classical phase shift formula for the continuous-time Toda lattice, as discovered by Moser, and use this proof to derive a discrete-time Toda lattice analogue of the phase shift phenomenon. By carefully analysing the connection between the box-ball system and the discrete-time Toda lattice, through the mechanism of tropicalisation/dequantisation, we translate this discrete-time Toda lattice phase shift formula into our new formula for the box-ball system phase shift.

Key words: soliton phase shifts; box-ball system; ultradiscretization; Gessel-Viennot-Lindström lemma.

pdf (677 kb)   tex (86 kb)  

References

  1. Adler M., On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math. 50 (1978), 219-248.
  2. Aigner M., A course in enumeration, Graduate Texts in Mathematics, Vol. 238, Springer, Berlin, 2007.
  3. Arnold V.I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, New York - Heidelberg, 1978.
  4. Berenstein A., Fomin S., Zelevinsky A., Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
  5. Deift P., Li L.C., Tomei C., Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 42 (1989), 443-521.
  6. Drazin P.G., Johnson R.S., Solitons: an introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989.
  7. Ercolani N.M., Flaschka H., Haine L., Painlevé balances and dressing transformations, in Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B: Phys., Vol. 278, Plenum, New York, 1992, 249-260.
  8. Ercolani N.M., Flaschka H., Singer S., The geometry of the full Kostant-Toda lattice, in Integrable Systems (Luminy, 1991), Progr. Math., Vol. 115, Birkhäuser Boston, Boston, MA, 1993, 181-225.
  9. Ercolani N.M., Ramalheira-Tsu J., The ghost-box-ball system: a unified perspective on soliton cellular automata, the RSK algorithm and phase shifts, Phys. D 426 (2021), 132986, 22 pages, arXiv:2101.07896.
  10. Flaschka H., The Toda lattice. II. Existence of integrals, Phys. Rev. B 9 (1974), 1924-1925.
  11. Flaschka H., Haine L., Variétés de drapeaux et réseaux de Toda, Math. Z. 208 (1991), 545-556.
  12. Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
  13. Kostant B., On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
  14. Kostant B., The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195-338.
  15. Kuniba A., Okado M., Sakamoto R., Takagi T., Yamada Y., Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection, Nuclear Phys. B 740 (2006), 299-327, arXiv:math.QA/0601630.
  16. Litvinov G.L., Maslov dequantization, idempotent and tropical mathematics: A brief introduction, J. Math. Sci. 140 (2007), 426-444, arXiv:math.GM/0507014.
  17. Litvinov G.L., Maslov V.P., Rodionov A.Ya., Sobolevski A.N., Universal algorithms, mathematics of semirings and parallel computations, in Coping with Complexity: Model Reduction and Data Analysis, Lect. Notes Comput. Sci. Eng., Vol. 75, Springer, Berlin, 2011, 63-89, arXiv:1005.1252.
  18. Lusztig G., Total positivity in reductive groups, in Lie Theory and Geometry, Progr. Math., Vol. 123, Birkhäuser Boston, Boston, MA, 1994, 531-568.
  19. Marsh R.J., Rietsch K., Parametrizations of flag varieties, Represent. Theory 8 (2004), 212-242, arXiv:math.RT/0307017.
  20. Moser J., Finitely many mass points on the line under the influence of an exponential potential - an integrable system, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, 467-497.
  21. O'Connell N., Geometric RSK and the Toda lattice, Illinois J. Math. 57 (2013), 883-918, arXiv:1308.4631.
  22. Strang G., Essays in linear algebra, Wellesley-Cambridge Press, Wellesley, MA, 2012.
  23. Symes W.W., Hamiltonian group actions and integrable systems, Phys. D 1 (1980), 339-374.
  24. Symes W.W., Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math. 59 (1980), 13-51.
  25. Takagi T., Inverse scattering method for a soliton cellular automaton, Nuclear Phys. B 707 (2005), 577-601, arXiv:math-ph/0406038.
  26. Takahashi D., Satsuma J., A soliton cellular automaton, J. Phys. Soc. Japan 59 (1990), 3514-3519.
  27. Toda M., Vibration of a chain with a non-linear interaction, J. Phys. Soc. Japan 22 (1967), 431-436.
  28. Tokihiro T., Ultradiscrete systems (cellular automata), in Discrete integrable systems, Lecture Notes in Phys., Vol. 644, Springer, Berlin, 2004, 383-424.
  29. Tokihiro T., Nagai A., Satsuma J., Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization, Inverse Problems 15 (1999), 1639-1662.
  30. Viro O., Dequantization of real algebraic geometry on logarithmic paper, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., Vol. 201, Birkhäuser, Basel, 2001, 135-146, arXiv:math.AG/0005163.
  31. Watkins D.S., Isospectral flows, SIAM Rev. 26 (1984), 379-391.

Previous article  Next article  Contents of Volume 18 (2022)