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1 Introduction

The notion of the Voros coefficients is one of the keys in the exact WKB analysis of differential
equations with a large parameter. It has been introduced mainly for second-order ordinary dif-
ferential equations and used effectively in the descriptions of the parametric Stokes phenomena,
of calculation of the monodromies and of the relations between Borel resummed WKB solutions
and classical special functions [4, 5, 6, 7, 8, 11, 17, 22, 25, 27, 28]. Recently, new insights into the
relationship between cluster algebra and Voros coefficients have been obtained in [19]. Further-
more, it is known that Voros coefficient of the Gauss hypergeometric differential equation can be
described using the free energy in the topological recursion [18]. Besides, the Voros coefficients
have also appeared in the physics literature as the spectral coordinates [15].

Our purpose is to define the Voros coefficients at the origin and at the infinity for the gen-
eralized hypergeometric differential equation with a large parameter and to give the explicit
forms of them. Here the generalized hypergeometric differential equation means the differential
equation which characterizes the generalized hypergeometric series (or function) NFN−1. It is
well known [12] that this equation is of order N and obtained as a natural generalization of
the Gauss hypergeometric differential equation. The monodromy group of the generalized hy-
pergeometric differential equation plays a role in studying the solution of the equation. The
classification of the finite hypergeometric groups [23] and the differential Galois group of the
generalized hypergeometric equation have been obtained in [10].

Basic notions and tools in the exact WKB analysis of higher-order or of infinite-order dif-
ferential equations with a large parameter are established in [3]. Our discussions are based on
the theory developed in this paper. For example, WKB solutions of a higher-order differential
equation are defined by using the characteristic roots of the equation, which are branches of an
algebraic function. Once WKB solutions are introduced, one can define the Voros coefficients in
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a similar manner to the second-order case. Fortunately, our equation has ladder operators for
parameters as in the case of the Gauss hypergeometric differential equation. Therefore the basic
idea of computation of the explicit forms of the Voros coefficients is the same as the second-order
case [7, 8, 22, 27]. But in our case, we have to consider the integral of the algebraic function.
Although this fact causes some difficulties, some of them can be overcomed by using an idea
invented by Iwaki and Koike [17]. There is another difficulty, or complexity, coming from the
number of parameters. Our equation contains (2N − 1) parameters and we have to manage
some combinations of them. Thus our descriptions become somewhat complicated.

The plan of this article is as follows. In Section 2, we define WKB solutions of the generalized
hypergeometric differential equation with a large parameter and investigate the local behavior
of the solutions at the singularities of the equation. In Section 3, we define the Voros coefficients
at the origin and at the infinity for our equation. The explicit forms of the Voros coefficients
are given (Theorem 3.9).

2 WKB solutions

2.1 The generalized hypergeometric differential equation
with a large parameter

Let N be an integer greater than 1, let a denote an N -tuple of parameters ai ∈ C, i =
1, 2, . . . , N ,) and let b denote an (N − 1)-tuple of parameters bj ∈ C \ {0,−1,−2, . . . }, j =
1, 2, . . . , N − 1. We set

NFN−1

(
a
b
;x

)
=

∞∑
k=0

(a1)k(a2)k · · · (aN )k
(b1)k(b2)k · · · (bN−1)kk!

xk (2.1)

and call this the generalized hypergeometric series [12]. Here (α)k denotes the Pochhammer
symbol (= Γ(α+ k)/Γ(α)). As is well known, the radius of convergence of (2.1) equals 1 and
the right-hand side of (2.1) defines a holomorphic function on the universal covering of C\{0, 1},
which is also denoted by NFN−1. This series or function satisfy the following N -th order ordinary
differential equation:N−1∏

j=1

(ϑx + bj)

 ∂x −

(
N∏
i=1

(ϑx + ai)

)w = 0. (2.2)

Here we set ∂x = d
dx and ϑx = x d

dx . We call (2.2) the generalized hypergeometric differential

equation. This equation has regular singular points at x = 0, 1,∞. We set bN = 1, b̃ =
(b1, b2, . . . , bN−1, 1) and 1 = (1, 1, 1, . . . , 1). We suppose that ai − aj , bi − bj ̸∈ Z, 1 ≤ i, j ≤ N ,

i ̸= j, and
∑N

i=1 (bi − ai) ̸∈ Z. Then there exists a fundamental system of solutions around the

singular point
{
w

[ϱ]
1 , . . . , w

[ϱ]
N

}
of (2.2). If ϱ = 0,∞, they are given by

w
[0]
1 = NFN−1

(
a
b
;x

)
,

w
[0]
j+1 = x1−bj

NFN−1

(
a+ (1− bj)1(
b̃+ (1− bj)1

)∨;x) ,
w

[∞]
i = (−x)−ai

NFN−1

(
(1 + ai)1− b̃

((1− ai)1+ a)∨
;
1

x

)
for j = 1, . . . , N − 1, i = 1, . . . , N , where ∗∨ indicates that the entry 1 + bj − bj or 1 − ai + ai
omitted in ∗ [24]. Connection problem of (2.2) between x = 0 and x = ∞ had already been
studied well [9, 21, 26].



Voros Coefficients at the Origin and at the Infinity 3

We introduce a positive large parameter η in a and b by setting

ai = ai,0 + ai,1η, i = 1, 2, . . . , N,

bj = bj,0 + bj,1η, j = 1, 2, . . . , N − 1,

where ai,k, bj,k ∈ C for k = 0, 1. We consider the following equation which contains the large
parameter:

NPN−1ψ = 0, (2.3)

where we set

NPN−1 = η−N

N−1∏
j=1

(ϑx + bj)

 ∂x −

(
N∏
i=1

(ϑx + ai)

) . (2.4)

We call (2.4) the generalized hypergeometric differential equation with the large parameter. The
singular points of the equation (2.3) (or (2.2)) are 0, 1 and ∞.

The differential operator (2.4) is a WKB type operator defined on C in the sense of [3,
Definition 2.1]. Let ξ denote the dual variable of x. Then ξ is regarded as the symbol of the
differential operator ∂x (cf. [1, 2, 3]). We introduce a new variable ζ by setting ζ = η−1ξ. Since
the large parameter η is regarded as the dual variable of the variable y of the Borel plane [20],
η indicates the symbol of ∂y = ∂/∂y. Hence ζ designates the symbol of the microdifferential
operator ∂−1

y ∂x. Then the total symbol σ(NPN−1)(x, ζ, η) in the sense of [3] can be considered as

a function x, ζ and η−1. We write σk(NPN−1)(x, ζ) the coefficient of η−k of σ(NPN−1)(x, ζ, η).
Then the total symbol can be expressed in the form

σ(NPN−1)(x, ζ, η) =
N∑
k=0

η−kσk(NPN−1)(x, ζ). (2.5)

We call the leading term σ0(NPN−1)(x, ζ) of (2.5) the principal symbol of NPN−1. For anm-tuple
c = (c1, c2, . . . , cm) of parameters, we denote by sℓ(c) the elementary symmetric polynomial of
degree ℓ of c1, c2, . . . , cm. If ℓ > m or ℓ ≤ −1, we set sℓ(c) = 0.

Lemma 2.1. The total symbol σ(NPN−1)(x, ζ, η) is written in the form:

σ(NPN−1)(x, ζ, η)

=

N∑
k=1

 N∑
j=k

({
j − 1

k − 1

}
sN−j(b)−

{
j

k

}
sN−j(a)x

)xk−1η−N+kζk − η−NsN (a).(2.6)

Here
{

j
k

}
denotes the Stirling number of the second kind [14, 24].

Proof. By the definition of the Stirling number of the second kind, the j-th power of the Euler
operator ϑx becomes

ϑjx =

j∑
k=0

{
j

k

}
xk∂kx , j ≥ 0. (2.7)

Expanding the right-hand side of (2.4) and using (2.7), we have

ηNNPN−1 =
∑

0≤j≤N−1
0≤k≤j

{
j

k

}
sN−1−j(b)x

k∂k+1
x −

∑
0≤j≤N
0≤k≤j

{
j

k

}
sN−j(a)x

k∂kx .

Hence, we obtain (2.6). ■
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Remark 2.2. The principal symbol σ0(NPN−1)(x, ζ) is written in the form:

σ0(NPN−1)(x, ζ) = ζ

N−1∏
j=1

(xζ + bj,1)−
N∏
i=1

(xζ + ai,1)

=
N∑
k=1

(
sN−k(b1)− sN−k(a1)x

)
xk−1ζk − sN (a1). (2.8)

Here we set a1 = (a1,1, a2,1, . . . , aN,1) and b1 = (b1,1, b2,1, . . . , bN−1,1).

2.2 Turning points and WKB solutions

A point x∗ ∈ C is called a turning point of NPN−1 with the characteristic value ζ∗ if

σ0(NPN−1)(x∗, ζ∗) = ∂ζσ0(NPN−1)(x∗, ζ∗) = 0

and σ0(NPN−1)(x, ζ) does not vanish identically as a function ζ (see [3, Definition 3.3]). The
turning point x∗ with the characteristic value ζ∗ is said to be simple if

∂xσ0(NPN−1)(x∗, ζ∗) ̸= 0, ∂2ζσ0(NPN−1)(x∗, ζ∗) ̸= 0

(see [3, Definition 3.6]).

Let P(NPN−1) denote the set

{(x∗, ζ∗) |σ0(NPN−1)(x∗, ζ∗) = ∂ζσ0(NPN−1)(x∗, ζ∗) = 0}.

This set can be regarded as a subset of P2
C. Let Ptp(NPN−1) be the projection of P(NPN−1) to

the x-space. Note that the singular points 0, 1, ∞ do not belong to Ptp(NPN−1) for generic a1

and b1. By the definition, the turning points of (2.3) should satisfy the following equation:

resζ (σ0(NPN−1)(x, ζ), ∂ζσ0(NPN−1)(x, ζ)) = 0. (2.9)

Here resζ(F,G) denotes the resultant of F and G with respect to ζ.

Lemma 2.3. The resultant (2.9) is rewritten in the form

resζ
(
σ0(NPN−1)(x, ζ), ∂ζσ0(NPN−1)(x, ζ)

)
=

(−1)N−1

NN−2
x(N−1)2(1− x) resζ

(
f(x, ζ), g(x, ζ)

)
. (2.10)

Here we set

f(x, ζ) =
N−1∑
k=0

(k + 1)(sN−k−1(b1)− sN−k−1(a1)x)ζ
k, (2.11)

g(x, ζ) =

N−1∑
k=1

(N − k)(sN−k(b1)− sN−k(a1)x)ζ
k −NsN (a1)x. (2.12)

Proof. For the sake of simplicity, we show (2.10) for the case N = 3. General case can be
proved in a similar way. For N = 3, the principal symbol is written in the form

σ0(3P2)(x, ζ) = x2q3ζ
3 + xq2ζ

2 + q1ζ + q0,
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Hence the left-hand side of (2.10) has the form∣∣∣∣∣∣∣∣∣∣
q3x

2 q2x q1 q0 0
0 q3x

2 q2x q1 q0
3q3x

2 2q2x q1 0 0
0 3q3x

2 2q2x q1 0
0 0 3q3x

2 2q2x q1

∣∣∣∣∣∣∣∣∣∣
. (2.13)

Firstly we eliminate the (3, 1)-element by using the first row. Next we eliminate the (4, 2)-
element by the second row. Then, expanding the determinant by the first column, we have

(−1)2q3x
2

∣∣∣∣∣∣∣∣
q3x

2 q2x q1 q0
q2x 2q1 3q0 0
0 q2x 2q1 3q0
0 3q3x

2 2q2x q1

∣∣∣∣∣∣∣∣ .
We eliminate the (1, 4)-element by using the third row and multiply the first row by 3. Then,
factoring x out from the first column, multiplying the third and the fourth columns by x and x2,
respectively, exchanging the second row and the fourth row and finally, exchanging the third
row and the fourth row, we have

(−1)2

3
q3

∣∣∣∣∣∣∣∣
3q3x 2q2x q1x 0
0 3q3x

2 2q2x
2 q1x

2

q2 2q1 3q0x 0
0 q2x 2q1x 3q0x

2

∣∣∣∣∣∣∣∣ .
We factor x, x2 and x out from the first, the second and the fourth row, respectively. Then we
obtain the expression of (2.13) of the form

(−1)2

3
q3x

4

∣∣∣∣∣∣∣∣
3q3 2q2 q1 0
0 3q3 2q2 q1
q2 2q1 3q0x 0
0 q2 2q1 3q0x

∣∣∣∣∣∣∣∣ .
Thus we have

resζ(σ0(3P2)(x, ζ), ∂ζσ0(3P2)(x, ζ)) =
(−1)2

3
(1− x)x4 resζ (f(x, ζ), g(x, ζ))

with

f(x, ζ) = 3q3ζ
2 + 2q2ζ + q1,

g(x, ζ) = q2ζ
2 + 2q1ζ + 3q0x.

This proves Lemma 2.3 for N = 3. ■

We assume that the following conditions are satisfied.

Assumption 2.4.

(i) All turning points of the equation (2.3) are simple.

(ii) s1(a1) ̸= s1(b1).

(iii) The leading coefficient of resζ (f(x, ζ), g(x, ζ)) with respect to x does not vanish.
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(iv) Disx (resζ (f(x, ζ), g(x, ζ))) ̸= 0. Here Disx(F ) denotes the discriminant of F with respect
to x.

Lemma 2.5. The number of elements in the set P(NPN−1) equals 2(N − 1).

Proof. From Lemma 2.3, a point (x, ζ) belongs to P(NPN−1) if and only if (x, ζ) satisfies
f(x, ζ) = 0 and g(x, ζ) = 0. Here f(x, ζ) and g(x, ζ) denote (2.11) and (2.12), respectively.
Eliminating x from f(x, ζ) = 0 and g(x, ζ) = 0, we get the equation h(ζ) = 0 for ζ, where

h(ζ) =

2(N−1)∑
k=N

(
2N−k∑
j=1

j(N − k − j + 1)
(
sj−1(b1)s2N−k−j(a1)− sj−1(a1)s2N−k−j(b1)

))
ζk

+
N−1∑
k=0

(
k+1∑
j=0

N(k + j + 1)
(
sN−k+j−1(a1)sN−j(b1)− sN−k+j−1(b1)sN−j(a1)

))
ζk.

We can see that the coefficient of the highest degree part of h(ζ) does not vanish if s1(a1) ̸=
s1(b1). The coefficient of ζk of h(ζ) is a homogeneous polynomial of degree 2N − k − 1 of a1

and b1 which does not vanish identically. Thus, we can show that there are distinct 2(N − 1)
roots of h(ζ) = 0 by using Assumption 2.4. ■

Remark 2.6. If N = 3,

Disx (resζ (f(x, ζ), g(x, ζ))) = 256
∏

i=1,2,3

ai,1
∏

i=1,2,3
j=1,2

(ai,1 − bj,1)h
′(a1, b1)

3

holds. Here h′(a1, b1) is a homogeneous polynomial of degree 9 with respect to a1, b1. From
h′(a1, b1) = 0, we have the following conditions:

(i) bj,1 ̸= 0 for any j, 1 ≤ j ≤ 2.

(ii) bj,1 ̸= bj′,1 for j ̸= j′, 1 ≤ j, j′ ≤ 2.

The leading coefficient of resζ(f(x, ζ), g(x, ζ)) with respect to x does not vanish. Then we have∏
i ̸=i′

(ai,1 − ai′,1) ̸= 0.

Outside the turning points, there are N distinct roots of the algebraic equation

σ0(NPN−1)(x, ζ) = 0

in ζ of degree N . We call these roots the characteristic roots of NPN−1. We consider the Laurent
expansion at the singular point of each characteristic root. For the case of ϱ = 0, we substitute
ζ =

∑∞
k=m ckx

k for (2.8). Taking note of the degree of the leading term of (2.8) with respect
to x, we find m = −1 or m = 0. If m = −1, there are N − 1 choices for the leading coefficient:

c−1 = −bℓ,1, ℓ = 1, 2, . . . , N − 1.

If m = 0, we can see

c0 =
a1,1a2,1 · · · aN,1

b1,1b2,1 · · · bN−1,1
.

The coefficients of higher-order terms cm+ℓ, ℓ > 0, are determined recursively. Similarly, we can
find the Laurent expansions of the characteristic roots at x = ∞.
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Definition 2.7. We take local numbering of the characteristic roots of NPN−1 as follows:

(i) For ϱ = 0, the roots are denoted by ζ
(0)
m , m = 1, 2, . . . , N , so that

ζ
(0)
ℓ = −

bℓ,1
x

+O(1), ℓ = 1, 2, . . . , N − 1,

ζ
(0)
N =

a1,1a2,1 · · · aN,1

b1,1 · · · bN−1,1
+O(x)

hold.

(ii) For ϱ = ∞, the roots are denoted by ζ
(∞)
m , m = 1, 2, . . . , N , so that

ζ(∞)
m = −am,1

x
+O

(
1

x2

)
hold.

Taking suitable branch cuts connecting simple turning points, we can regard this numbering
is defined globally. For a simple turning point x∗ and a singular point ϱ, there are two numbers

j, k ∈ {1, 2, . . . , N}, j ̸= k such that ζ
(ϱ)
j (x∗) = ζ

(ϱ)
k (x∗) holds. We consider mainly the case where

ϱ = 0. Then we say that x∗ is a simple turning point of type (j, k) (see [16, Definition 1.2.1]).
The characteristic variety Ch(NPN−1) of NPN−1 is, by definition, an algebraic curve

Ch(NPN−1) = {(x, ζ) |σ0(NPN−1)(x, ζ) = 0}.

This can be regarded as a compact Riemann surface Σ. There is a natural projection

π : Σ → P1
C,

which is an N -covering map.

Lemma 2.8. The genus of Σ equals 0.

Proof. By using the Riemann–Hurwitz formula [13, Section 17], we have the following relation:

2− 2g(Σ) = N
(
2− 2g

(
P1
C
))

−
2(N−1)∑
i=1

(2− 1).

Here g(X) denotes the genus of the compact Riemann surface X. Hence we get g(Σ) = 0. ■

A WKB solution ψ of (2.3) is a formal solution of the form

ψ = exp

(∫
S dx

)
,

S = ηS−1 + S0 + η−1S1 + · · · =
∞∑

ℓ=−1

η−ℓSℓ

(see [3, Definition 3.2]). By inserting ψ = exp
( ∫

S dx
)
into (2.3), we have the following nonlinear

differential equation for S:

Ri(NPN−1)(S) = 0. (2.14)

Here we set

Ri(NPN−1)(S) = exp

(
−
∫
S dx

)
NPN−1 exp

(∫
S dx

)
.
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The leading term of the equation (2.14) with respect to η−1 determines S−1. Therefore S−1

should satisfy σ0(NPN−1)(x, S−1) = 0. Hence we can take one of the characteristic roots as S−1.
The higher-order terms Sj , j = 0, 1, 2, . . . , can be determined recursively and uniquely outside
the turning points if S−1 is chosen. The following Lemma is obtained by the same way as [13,
Proposition 3.6]:

Lemma 2.9. Let S(ϱ,m), m = 1, 2, . . . , N , be the formal solutions of (2.3) such that the num-
bering are consistent with that of the leading terms given in Definition 2.7. Then the formal
solutions S(ϱ,m), m = 1, 2, . . . , N , have the following local behaviors near x = ϱ, ϱ = 0,∞:

S(0,ℓ) =
1− bℓ
x

+

N∏
m=1

(1 + am − bℓ)

(bℓ − 2)
N−1∏
m=1
m ̸=ℓ

(bℓ − bm − 1)

+O(x), ℓ = 1, 2, . . . , N − 1, (2.15)

S(0,N) =
a1a2 · · · aN
b1b2 · · · bN−1

+O(x), (2.16)

S(∞,ℓ) = −aℓ
x

−
aℓ

N−1∏
m=1

(1 + aℓ − bm)

N∏
m=1
m̸=ℓ

(1 + aℓ − am)

1

x2
+O

(
1

x3

)
, ℓ = 1, 2, . . . , N. (2.17)

Here we use the notation O(x) in (2.15) and (2.16) in the sense that these parts can be written
as

x
∞∑

j=−1

η−jfj(x)

with some holomorphic functions fj(x), j = −1, 0, 1, . . . , near x = 0. The notation O
(
1/x3

)
in (2.17) should be understood similarly.

2.3 Factorization

We assume that there is a simple turning point x∗ of NPN−1 with the characteristic value ζ∗.
Then σ0(NPN−1)(x, ζ) is uniquely decomposed holomorphically in a neighborhood of (x∗, ζ∗) in
the form

σ0(NPN−1)(x, ζ) = l(x, ζ)r(x, ζ),

where r(x, ζ) is a Weierstrass polynomial of degree 2 in ζ with the center at (x∗, ζ∗) and l(x∗, ζ∗)
̸= 0. By the definition, r(x, ζ) has the form

r(x, ζ) = (ζ − ζ∗)
2 + f1(x)(ζ − ζ∗) + f2(x),

where fj(x) vanishes at x = x∗ for j = 1, 2. We may assume ζ
(ϱ)
j and ζ

(ϱ)
k are the roots of

r(x, ζ) = 0. We set

N P̃N−1 =
1

xN−1(1− x)
NPN−1.

Then σ
(
N P̃N−1

)
(x, ζ, η) becomes a monic polynomial with respect to ζ:

σ
(
N P̃N−1

)
(x, ζ, η) = ζN +

N−1∑
k=0

p̃k(x, η)ζ
k.
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It follows from [3, Theorem 5.1] that there uniquely exist differential operators L and R of WKB
type near x∗ which satisfy

N P̃N−1 = LR (2.18)

and

(i) The principal symbol σ0(R)(x, ζ) of R coincides with r(x, ζ).

(ii) For each j > 0, the coefficient σj(R)(x, ζ) of η
−j of the symbol of R is of degree at most

one in ζ.

(iii) The principal symbol σ0(L)(x, ζ) of L does not vanish at (x∗, ζ∗).

Thus constructed operator R has the form

R =
(
η−1∂x

)2
+A(x, η)η−1∂x +B(x, η)

with

A(x, η) = A0(x) +A1(x)η
−1 +A2(x)η

−2 + · · · ,
B(x, η) = B0(x) +B1(x)η

−1 +B2(x)η
−2 + · · ·

and L is an (N − 2)-th order operator

L =
(
η−1∂x

)N−2
+

N−3∑
k=0

Lk(x, η)
(
η−1∂x

)k
with

Lk(x, η) = Lk,0(x) + Lk,1(x)η
−1 + Lk,2(x)η

−2 + · · · .

The operators L and R are constructed as follows. Relation (2.18) yields

p̃2 = A+ L0, p̃1 = B +AL0 + η−1A′, p̃0 = BL0 + η−1B′

for N = 3 and

p̃N−1(x, η) = A+ LN−3,

p̃k(x, η) = η−N+k+2

((
N − 2

k − 1

)
η−1A(N−k−1) +

(
N − 2

k

)
B(N−k−2)

)
+

N−3∑
j=k

η−j+k

((
j

k − 1

)
η−1A(j−k+1) +

(
j

k

)
B(j−k)

)
Lj

+ Lk−2 +ALk−1, 2 ≤ k ≤ N − 2,

p̃1(x, η) = η−N+3
(
η−1A(N−2) + (N − 2)B(N−3)

)
+

N−3∑
j=1

η−j+1
(
η−1A(j) + jB(j−1)

)
Lj +AL0,

p̃0(x, η) = η−N+2B(N−2) +
N−3∑
j=0

η−jB(j)Lj
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for N ≥ 4. These relations determine A, B and Lk, 0 ≤ k ≤ N − 3, if we choose the leading
terms of them, which solve a system of algebraic equations. For example, if N = 3, we obtain A
by solving the following equation:

A3 − 2p̃2A
2 −

(
3η−1A′ − η−1p̃2 − p̃1 − p̃22

)
A

+ 2η−1p̃2A
′ + η−1A′′ + p̃0 − p̃1p̃2 − η−1p̃′1 = 0.

We consider a WKB solution

ϕ = exp

(∫
T dx

)
,

T = ηT−1 + T0 + η−1T1 + · · · =
∞∑

ℓ=−1

η−ℓTℓ

of Rϕ = 0. Here T is determined by the Riccati equation associated with this equation:

Ri(R)(T ) = η−2
(
T 2 + T ′)+Aη−1T +B = 0. (2.19)

Since we have (2.18), ϕ is a formal solution of (2.18). The following lemma shows that we may
regard it as a WKB solution of (2.18).

Lemma 2.10. We have the following relation for N ≥ 3:

Ri
(
N P̃N−1

)
(S) =

N−2∑
k=0

η−k

k!
Ri
(
:∂kζ σ(L)(x, ζ, η):

)
(S)∂kx Ri(R)(S).

Here :σ(P )(x, ζ, η): designates the differential operator defined by the total symbol σ(P )(x, ζ, η)
(see [1, Definition 4.6] and [3]). Hence Ri(R)(T ) = 0 implies Ri

(
N P̃N−1

)
(T ) = 0.

Remark 2.11. The differential operator :∂kζ σ(L)(x, ζ, η): is recovered from the total symbol

∂kζ σ(L)(x, ζ, η) by replacing ζ by η−1∂x after moving all powers of ζ in each term in the symbol
to the rightmost part.

Proof. Since we have (2.18), Ri
(
N P̃N−1

)
(S) is computed in the following form

Ri
(
N P̃N−1

)
(S) = e−

∫
S dxLRe

∫
S dx

= e−
∫
S dxLe

∫
S dxe−

∫
S dxRe

∫
S dx.

By the definition of Ri(R)(S), this equals

e−
∫
S dxLe

∫
S dxRi(R)(S),

which can be written as

e−
∫
S dxLRi(R)(S)e

∫
S dx.

The product of the differential operator L of order N−2 and the multiplying operator Ri(R)(S)
has the symbol

N−2∑
k=0

η−k

k!
∂kζ σ(L)(x, ζ, η)∂

k
x Ri(R)(S).
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Since ∂kx Ri(R)(S) does not contain ζ for each k, we can write

LRi(R)(S) = :
N−2∑
k=0

η−k

k!
∂kζ σ(L)(x, ζ, η)∂

k
x Ri(R)(S):

=

N−2∑
k=0

η−k

k!
∂kx Ri(R)(S):∂

k
ζ σ(L)(x, ζ, η):.

Thus we have

e−
∫
S dxLRi(R)(S)e

∫
S dx =

N−2∑
k=0

η−k

k!
Ri
(
:∂kζ σ(L)(x, ζ, η):

)
(S)∂kx Ri(R)(S).

This proves the lemma. ■

2.4 Definition of Voros coefficients

Recall that the characteristic roots ζ
(ϱ)
j and ζ

(ϱ)
k introduced in the preceding section satisfy the

quadratic equation

ζ2 +A0ζ +B0 = 0.

We may assume

S
(ϱ,j)
−1 = ζj =

−A0 +
√
A2

0 − 4B0

2
, S

(ϱ,k)
−1 = ζk =

−A0 −
√
A2

0 − 4B0

2

for suitable choice of the branch of the square root. We set

S(ϱ,j,k)
even =

1

2

(
S(ϱ,j) + S(ϱ,k)

)
, S

(ϱ,j,k)
odd =

1

2

(
S(ϱ,j) − S(ϱ,k)

)
. (2.20)

Then we have

S(ϱ,j,k)
even +

1

2
ηA = −1

2

∂xS
(ϱ,j,k)
odd

S
(ϱ,j,k)
odd

= −1

2

d

dx
logS

(ϱ,j,k)
odd

by using (2.19). Thus we can take the following normalization of integration:∫
S(ϱ,j,k)
even dx = −1

2
logS

(ϱ,j,k)
odd − 1

2
η

∫
Adx.

Here we choose a primitive function
∫
Adx.

Definition 2.12. The WKB solutions ψ
(τ)
± of (2.3) normalized at the turning point τ of type

(j, k) are defined by

ψ
(τ)
± =

1√
S
(ϱ,j,k)
odd

exp

(
−1

2
η

∫
Adx

)
exp

(
±
∫ x

τ
S
(ϱ,j,k)
odd dx

)
.

Here the integration of S
(ϱ,j,k)
odd from τ to x is understood as a half of the contour integral of it

on the path starting from x on the k-th sheet, going around τ counterclockwise and back to x
on the j-th sheet.
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We denote by S
(ϱ,j,k)
odd,ℓ the coefficient of η−ℓ of S

(ϱ,j,k)
odd and set S

(ϱ,j,k)
odd,≤0 = ηS

(ϱ,j,k)
odd,−1 + S

(ϱ,j,k)
odd,0 . It

follows from Lemma 2.9 and (2.20) that

Res
x=ϱ

S
(ϱ,j,k)
odd dx = Res

x=ϱ
S
(ϱ,j,k)
odd,≤0 dx

holds.

Definition 2.13. The WKB solutions ψ
(ϱ)
± of (2.3) normalized at the singular point ϱ are defined

by

ψ
(ϱ)
± =

1√
S
(ϱ,j,k)
odd

exp

(
−1

2
η

∫
Adx

)
exp

(
±
∫ x

ϱ

(
S
(ϱ,j,k)
odd − S

(ϱ,j,k)
odd,≤0

)
dx±

∫ x

τ
S
(ϱ,j,k)
odd,≤0 dx

)
.

Definition 2.14. The Voros coefficient V
(j,k)
ϱ at x = ϱ of type (j, k) is defined by

V (j,k)
ϱ =

∫ τ

ϱ

(
S
(ϱ,j,k)
odd − S

(ϱ,j,k)
odd,≤0

)
dx.

The Voros coefficient relates two kinds of the normalization of WKB solutions defined in the
preceding subsection. We have the following formal relations:

ψ
(ϱ)
± = exp

(
V (j,k)
ϱ

)
ψ
(τ)
± .

The Voros coefficient is rewritten as

V (j,k)
ϱ =

1

2

∫
γj,k

(S − ηS−1 − S0) dx.

Here we consider that S is defined on the Riemann surface Σ of S−1 and γj,k is a path on Σ
starting from the singular point ϱ on the j-th sheet, going to and detouring τ counterclockwise
on the base space and back to the singular point ϱ on the k-th sheet.

k-th sheet

j-th sheet

τ

ϱ

γj,k

Figure 1. The path γj,k.

Remark 2.15. For any 1 ≤ j, k, ℓ ≤ N , the following relation holds from Lemma 2.8:

V (j,k)
ϱ + V (k,ℓ)

ϱ = V (j,ℓ)
ϱ .

Especially, V
(j,k)
ϱ = −V (k,j)

ϱ holds.
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3 Explicit forms of the Voros coefficients

3.1 Ladder operators

Lemma 3.1. Let S ( ab ) be the linear space of all solutions of NPN−1ψ = 0. The operators

H(ai) = ϑx + ai, i = 1, 2, . . . , N,

B(bj) = ϑx + bj , j = 1, 2, . . . , N − 1

induce homomorphisms

H(ai) : S
(
a
b

)
→ S

(
a+ ei

b

)
, i = 1, 2, . . . , N,

B(bj) : S
(

a
b+ ej

)
→ S

(
a
b

)
, j = 1, 2, . . . , N − 1, (3.1)

respectively. Here em denotes the m-th unit vector.

Proof. We set

N P̂N−1 = NPN−1

∣∣
ai,1 7→ai,1+η−1 (3.2)

for 1 ≤ i ≤ N . Then we have the following relation for 1 ≤ i ≤ N :

H(ai)xNPN−1 = xN P̂N−1H(ai). (3.3)

Hence ψ ∈ S ( ab ) implies H(ai)ψ ∈ S
(
a+ei
b

)
. Similarly, (3.1) can be proved. ■

Lemma 3.2. Let S be a formal solution of Ri(NPN−1)(S) = 0. Then

Ri
(
N P̂N−1

)(
∂x log(xS + ai) + S

)
= 0, i = 1, 2, . . . , N, (3.4)

Ri(NPN−1)
(
∂x log

(
xŜ + bj

)
+ Ŝ

)
= 0, j = 1, 2, . . . , N − 1 (3.5)

hold. Here we set (3.2) and

Ŝ = S
∣∣
bj,1 7→bj,1+η−1 (3.6)

for j = 1, 2, . . . , N − 1.

Proof. We fix the index i, 1 ≤ i ≤ N . By the definition of Ri(∗)(⋆), we have the following
relations:

Ri
(
N P̂N−1

)(
∂x log(xS + ai) + S

)
=

1

xS + ai
e−

∫
S dx

N P̂N−1(xS + ai)e
∫
S dx, (3.7)

Ri
(
N P̂N−1H(ai)

)
(S) = e−

∫
S dx

N P̂N−1(xS + ai)e
∫
S dx. (3.8)

Combining (3.7) and (3.8), we have

Ri
(
N P̂N−1

)(
∂x log(xS + ai) + S

)
=

1

xS + ai
Ri
(
N P̂N−1H(ai)

)
(S). (3.9)

From (3.3), we get

Ri(H(ai)xNPN−1)(S) = Ri
(
xN P̂N−1H(ai)

)
(S). (3.10)
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By using a similar argument employed in the proof of Lemma 2.10, the left-hand side of (3.10)
can be written in the form:

Ri(H(ai)xNPN−1)(S) =
∑
k≥0

η−k

k!
Ri
(
:∂kζ (xηζ + ai):

)
(S)∂kx Ri(xNPN−1)(S). (3.11)

Then the right-hand side of (3.11) is equal to

(xS + ai)xRi(NPN−1)(S) + x
(
Ri(NPN−1)(S) + x∂xRi(NPN−1)(S)

)
.

Here we used the relation

Ri(xNPN−1)(S) = xRi(NPN−1)(S).

Since Ri(NPN−1)(S) = 0, the right-hand side of (3.11) vanishes. Combining (3.9), (3.10)
and (3.11), we obtain (3.4). The relation (3.5) can be proved as well. ■

Lemma 3.3. The formal solution S satisfies the following relations:

∆ai,1S = ∂x log(xS + ai), i = 1, 2, . . . , N,

∆bj,1S = −∂x log
(
xŜ + bj

)
, j = 1, 2, . . . , N − 1,

where we set (3.6) and

∆ρS = S
∣∣
ρ 7→ρ+η−1 − S

for ρ = a1,1, a2,1, . . . , aN,1, b1,1, b2,1, . . . , bN−1,1.

Remark 3.4. Note that we distinguish ρ from ϱ.

Remark 3.5. The difference operator ∆ρ in ρ by η−1can be written in the following form by
using a formal differential operator of infinite order:

∆ρ = eη
−1∂ρ − 1.

Proof. We denote ψ̂ = H(ai)ψ, which belongs to S
(
a+ei
b

)
. Then

∂x log ψ̂ = ∂x log(xS + ai) + S

holds. It follows from Lemma 3.2 that Ŝ satisfies the equation obtained from Ri(NPN−1)(S) = 0
by replacing ai by ai + 1. Hence we have

∂x log(xS + ai) + S =
(ηS−1 + S0 + · · · ) + ∂x(ηS−1 + S0 + · · · )

x(ηS−1 + S0 + · · · ) + ai

+ (ηS−1 + S0 + · · · ). (3.12)

The leading term with respect to η−1 of the right-hand side of (3.12) equals S−1. We can
choose the leading term of Ŝ as S−1

∣∣
ai,1 7→ai,1+η−1 . Thus, we conclude that Ŝ = S

∣∣
ai,1 7→ai,1+η−1 .

Similarly, Lemma 3.3 can be proved for b1,1, b2,1, . . . , bN−1,1. ■

Lemma 3.6. Let (ρ, ρ0) denote one of (a1,1, a1,0), . . . , (bN−1,1, bN−1,0). The Voros coefficient

V
(j,k)
ϱ , j < k, satisfies the following differential-difference equations:

∂ρ∆ρV
(j,k)
ϱ = f (j,k)ρ +∆ρg

(j,k)
ρ . (3.13)

Here f
(j,k)
ρ are given as follows and here g

(j,k)
ρ is a linear function of η:
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(i) If ϱ = 0,

2f (j,k)ai,1 =
η

1 + ai − bk
− η

1 + ai − bj
, k ̸= N,

2f (j,N)
ai,1 =

η

ai
− η

1 + ai − bj
,

2f
(j,k)
bm,1

=
η

1 + bm − bj
− η

1 + bm − bk
, k ̸= N,m ̸= j, k,

2f
(j,k)
bj,1

= − η

1 + bj − bk
− η

bj − 1
−

N−1∑
ℓ=1
ℓ̸=j

η

bj − bℓ
−

N∑
ℓ=1

η

aℓ − bj
, k ̸= N,

2f
(j,k)
bk,1

=
η

1 + bk − bj
+

η

bk − 1
+

N−1∑
ℓ=1
ℓ ̸=k

η

bk − bℓ
+

N∑
ℓ=1

η

aℓ − bk
, k ̸= N,

2f
(j,N)
bm,1

=
η

1 + bm − bj
− η

bm
, m ̸= j,

2f
(j,N)
bj,1

=
N∑
ℓ=1

η

bj − aℓ
− η

bj
− η

bj − 1
−

N−1∑
ℓ=1
ℓ̸=j

η

bj − bℓ
,

i = 1, 2, . . . , N and m = 1, 2, . . . , N − 1.

(ii) If ϱ = ∞,

2f (j,k)ai,1 =
η

ai − ak
− η

ai − aj
, i ̸= j, k,

2f (j,k)aj,1 = − η

ak − aj
− η

aj
+

N∑
ℓ=1
ℓ̸=j

η

1 + aj − aℓ
−

N−1∑
ℓ=1

η

1 + aj − bℓ
,

2f (j,k)ak,1
=

η

aj − ak
+

η

ak
−

N∑
ℓ=1
ℓ̸=k

η

1 + ak − aℓ
+

N−1∑
ℓ=1

η

1 + ak − bℓ
,

2f
(j,k)
bm,1

=
η

bm − aj
− η

bm − ak
,

i = 1, 2, . . . , N and m = 1, 2, . . . , N − 1.

The system of differential-difference equations (3.13) satisfy the compatibility conditions:

∂τ∆τ∂ρ∆ρV
(j,k)
ϱ = ∂ρ∆ρ∂τ∆τV

(j,k)
ϱ , ∀ρ, τ ∈ {a1,1, . . . , aN,1, b1,1, . . . , bN−1,1}.

Proof. We consider the integral∫
γ̃j,k

∆ρS dx

for ρ ∈ {a1,1, . . . , aN,1, b1,1, . . . , bN−1,1}. Here the path γ̃j,k of integration is taken as follows:
Let x be a point near the origin and x(m) the point on the m-th sheet of Riemann surface Σ
such that π(x(m)) = x. We take a path on Σ starting from x(j), going to and detouring τ
counterclockwise on the base space and back to x(k) and denote this by γ̃j,k. It follows from
Lemma 2.9 that this integral can be written in the form

c
(j,k)
−1 log x+ c

(j,k)
0 +O(x)
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k-th sheet

j-th sheet

τ

x

γ̃j,k

Figure 2. The path γ̃j,k.

with some constant series c
(j,k)
−1 and c

(j,k)
0 of η−1. Here we use the notation O(x) in the same

sense as in Lemma 2.9. Let d
(j,k)
m denote the coefficient of η−m of c

(j,k)
0 :

c
(j,k)
0 =

∞∑
m=0

d(j,k)m η−m. (3.14)

On the other hand, by using Lemma 3.3, we have

∫
γ̃j,k

∆ρS dx =


log

(
xS(0,k) + ai

xS(0,j) + ai

)
, ρ = ai,1, 1 ≤ i ≤ N,

− log

(
xŜ(0,k) + bm

xŜ(0,j) + bm

)
, ρ = bm,1, 1 ≤ m ≤ N − 1.

(3.15)

Expanding the right-hand side of (3.15) with respect to x, we obtain the coefficient c
(j,k)
0 . More-

over, Lemma 2.9 implies that c
(j,k)
0 is written as the logarithm of a product of several linear

functions in ρ, whose coefficients of ρ are −1 or 1.

Let F
(m)
ℓ be a primitive function of S

(0,m)
ℓ with respect to x and let

∫ x
dx denote the termwise

integration in x of the Laurent expansion of the integrand at x = 0, i.e.,∫ x (p−1

x
+ p0 + p1x+ · · ·

)
dx = p−1 log x+ p0x+

1

2
p1x

2 + · · · .

We set

r
(j,k)
ℓ = F

(k)
ℓ (x)− F

(j)
ℓ (x)−

(∫ x

S
(0,k)
ℓ dx−

∫ x

S
(0,j)
ℓ dx

)
. (3.16)

Note that r
(j,k)
ℓ does not depend on x and η. We let apply ∆ρ on both sides of (3.16). Then we

have ∫
γ̃j,k

∆ρSℓ dx =

∫ x

∆ρS
(0,k)
ℓ dx−

∫ x

∆ρS
(0,j)
ℓ dx+∆ρr

(j,k)
ℓ . (3.17)

Since ∆ρ = eη
−1∂ρ − 1, the right most term of (3.17) can be written in the form

∆ρr
(j,k)
ℓ =

(
η−1∂ρ +

1

2
η−2∂2ρ + · · ·

)
r
(j,k)
ℓ .
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Multiplying both members of (3.17) by η−ℓ and summing them up in ℓ, we have∫
γ̃j,k

∆ρS dx =
∞∑

ℓ=−1

η−ℓ

(∫ x

∆ρS
(0,k)
ℓ dx−

∫ x

∆ρS
(0,j)
ℓ dx+∆ρr

(j,k)
ℓ

)
. (3.18)

The constant term of the right-hand side of (3.18) at x = 0 is equal to

η

(
η−1∂ρ +

1

2
η−2∂2ρ + · · ·

)
r
(j,k)
−1 +

(
η−1∂ρ +

1

2
η−2∂2ρ + · · ·

)
r
(j,k)
0 + · · ·

= ∂ρr
(j,k)
−1 +

(
1

2
∂2ρr

(j,k)
−1 + ∂ρr

(j,k)
0

)
η−1 + · · · . (3.19)

Comparing the coefficients of η−m, m = 0, 1, of (3.14) and the right-hand side of (3.19), we have

d
(j,k)
0 = ∂ρr

(j,k)
−1 ,

d
(j,k)
1 =

1

2
∂2ρr

(j,k)
−1 + ∂ρr

(j,k)
0 . (3.20)

By the definition of V
(j,k)
0 , we have

∆ρV
(j,k)
0 =

1

2
lim
x→0

(∫
γ̃j,k

∆ρS dx− η

∫
γ̃j,k

∆ρS−1 dx−
∫
γ̃j,k

∆ρS0 dx

)
. (3.21)

By the definition of c
(j,k)
0 and r

(j,k)
ℓ , ℓ = −1, 0, the right-hand side of (3.21) is written in the

form:

∆ρV
(j,k)
0 =

1

2

(
c
(j,k)
0 − η∆ρr

(j,k)
−1 −∆ρr

(j,k)
0

)
. (3.22)

Differentiating (3.22) with respect to ρ and using (3.20), we have

∂ρ∆ρV
(j,k)
0 =

1

2

(
∂ρc

(j,k)
0 −∆ρ

(
ηd

(j,k)
0 + d

(j,k)
1 − 1

2
∂ρd

(j,k)
0

))
.

As we remarked above, c
(j,k)
0 is written as the logarithm of a product of several linear functions

in ρ. Setting

g(j,k)ρ = −1

2

(
ηd

(j,k)
0 + d

(j,k)
1 − 1

2
∂ρd

(j,k)
0

)
,

we have the lemma for ϱ = 0. Similarly, we get the differential-difference equations for Voros
coefficients at the infinity. ■

Remark 3.7. If N = 3, we have

2∂ai,1∆ai,1V
(1,2)
0 = − η

ai − b1 + 1
+

η

ai − b2 + 1

+∆ai,1

(
−η log

(
ai,1 − b2,1
ai,1 − b1,1

)
+

2ai,0 − 2b1,0 + 1

2ai,1 − 2b1,1
− 2ai,0 − 2b2,0 + 1

2ai,1 − 2b2,1

)
,

2∂ai,1∆ai,1V
(j,3)
0 =

η

ai − bj + 1
+
η

ai

+∆ai,1

(
−η log

(
ai,1

ai,1 − bj,1

)
− bj,0 − 1

ai,1 − bj,1
+

(1− 2ai,0) bj,1
2ai,1(ai,1 − bj,1)

)
,
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2∂bm,1∆bm,1V
(1,2)
0

= (−1)m−1

 3∑
i=1

η

bm − ai
−

∑
ℓ∈{1,2}\{m}

(
η

bm − 1
− η

bm − bℓ
− η

bm − bℓ + 1

)
+∆bm,1(−1)m−1

(
−η log

(
(a1,1 − bm,1) (a2,1 − bm,1) (a3,1 − bm,1)

bm,1 (b1,1 − b2,1) 2

)

− 1

2

(
3∑

i=1

2(ai,0 − bm,0) + 1

ai,1 − bm,1
+

3− 2bm,0

bm,1
− 4 (b1,0 − b2,0)

b1,1 − b2,1

))
,

2∂bm,1∆bm,1V
(j,3)
0 =

η

bm − bj + 1
− η

bm

+∆bm,1(−1)m−1

(
−η log

(
1− bj,1

bm,1

)
− bj,0 − 1

bj,1 − bm,1
+

(2bm,0 − 1)bj,1
2bm,1 (bj,1 − bm,1)

)
,

2∂bm,1∆bm,1V
(m,3)
0 =

3∑
i=1

η

bm − ai
− η

bm − 1
− η

bm
− η

bm − bj

+∆bm,1

(
−η log

(
(a1,1 − bm,1) (a2,1 − bm,1) (a3,1 − bm,1)

b2m,1 (bm,1 − bj,1)

)

− 1

2

(
3∑

i=1

2(ai,0 − bm,0) + 1

ai,1 − bm,1
+

4(1− bm,0)

bm,1
+

2(bj,0 − bm,0) + 1

bm,1 − bj,1

))

for i = 1, 2, 3, m = 1, 2 and j ∈ {1, 2} \ {m}.

The system of differential-difference equations given in Lemma 3.6 characterizes V
(j,k)
ϱ , for

we have the following lemma:

Lemma 3.8. Let W =
∑∞

n=−1wnη
−n be a formal solution of the differential-difference equation

∂ρ∆ρW = 0 (3.23)

for ρ = a1,1, . . . , aN,1, b1,1, . . . , bN−1,1 and suppose that wn is a homogeneous function of deg-
ree (−n) with respect to a1,1, . . . , aN,1, b1,1, . . . , bN−1,1 and w−1 = w0 = 0. Then, we have

W = 0.

Proof. By the definition of ∆ρ, we have

∂ρ∆ρW =

∞∑
ℓ=0

(
ℓ−1∑

n=−1

1

(ℓ− n)!
∂ℓ−n+1
ρ wn

)
η−ℓ

for all ρ ∈ {a1,1, . . . , aN,1, b1,1, . . . , bN−1,1}. Comparing the coefficients for both sides of (3.23)
with respect to the powers of η, we have

ℓ−1∑
n=−1

1

(ℓ− n)!
∂ℓ−n+1
ρ wn = 0, n = 0, 1, 2, . . . .

Since w−1 = w0 = 0, we have ∂2ρwn = 0 for n = 1, 2, . . . recursively. By the assumption, wn is
a homogeneous function of degree (−n) with respect to a1,1, . . . , aN,1, b1,1, . . . , bN−1,1. Therefore
we obtain

wn = 0, n = 1, 2, . . . . ■



Voros Coefficients at the Origin and at the Infinity 19

3.2 Voros coefficients

We have the explicit forms of the Voros coefficients V
(j,k)
ϱ at ϱ, ϱ = 0,∞.

Theorem 3.9. Let ϱ be 0 or ∞. If there exists a simple turning point of type (j, k), j < k,

of (2.3), then the Voros coefficients V
(j,k)
ϱ are written in the form:

1

2

∞∑
ℓ=2

(−1)ℓ+1η1−ℓ

ℓ(ℓ− 1)
V

(j,k)
ϱ,ℓ ,

where

V
(j,k)
0,ℓ =

Bℓ(bj,0 − 1)

bℓ−1
j,1

−
Bℓ(bk,0 − 1)

bℓ−1
k,1

+
N∑
i=1

Bℓ(bk,0 − ai,0)

(bk,1 − ai,1)ℓ−1

−
N∑
i=1

Bℓ(bj,0 − ai,0)

(bj,1 − ai,1)ℓ−1
+

N−1∑
m=1
m̸=j

Bℓ(bj,0 − bm,0)

(bj,1 − bm,1)ℓ−1
−

N−1∑
m=1
m̸=k

Bℓ(bk,0 − bm,0)

(bk,1 − bm,1)ℓ−1
, k ̸= N,

V
(j,N)
0,ℓ =

Bℓ(bj,0 − 1)

bℓ−1
j,1

−
N∑
i=1

Bℓ(ai,0)

aℓ−1
i,1

−
N∑
i=1

Bℓ(bj,0 − ai,0)

(bj,1 − ai,1)ℓ−1

+
N−1∑
m=1
m ̸=j

Bℓ(bj,0 − bm,0)

(bj,1 − bm,1)ℓ−1
+

N−1∑
m=1

Bℓ(bm,0)

bℓ−1
m,1

,

V
(j,k)
∞,ℓ =

N−1∑
m=1

(
Bℓ(bm,0 − ak,0)

(bm,1 − ak,1)ℓ−1
− Bℓ(bm,0 − aj,0)

(bm,1 − aj,1)ℓ−1

)

+

Bℓ(aj,0)

aℓ−1
j,1

+
N−1∑
m=1
m̸=j

Bℓ(ai,0 − aj,0)

(ai,1 − aj,1)ℓ−1

−

Bℓ(ak,0)

aℓ−1
k,1

+
N−1∑
m=1
m ̸=k

Bℓ(ai,0 − ak,0)

(ai,1 − ak,1)ℓ−1

 .

Here Bℓ(t) denotes the ℓ-th Bernoulli polynomial defined by

xext

ex − 1
=

∞∑
ℓ=0

Bℓ(t)

ℓ!
xℓ.

Proof. To obtain the explicit forms of V
(j,k)
ϱ , we will solve (3.13). We may write f

(j,k)
ρ in the

form

f (j,k)ρ =
1

2

∑
m

1

u
(j,k)
ρ,m + v

(j,k)
ρ,m η−1

, (3.24)

where u
(j,k)
ρ,m and v

(j,k)
ρ,m being linear functions of ρ and ρ0, respectively, which are independent

of η. The explicit forms of u
(j,k)
ρ,m and v

(j,k)
ρ,m are given by Lemma 3.6. The coefficient of ρ of u

(j,k)
ρ,m

is equal to 1 or −1, which denotes ϵ
(j,k)
ρ,m (= ±1). The right-hand side of (3.24) is obtained

from u
(j,k)
ρ,m by the shift:

1

2

∑
m

1

u
(j,k)
ρ,m + v

(j,k)
ρ,m η−1

=
1

2

∑
m

1

u
(j,k)
ρ,m

∣∣∣∣
ρ7→ρ+ϵ

(j,k)
ρ,m v

(j,k)
ρ,m η−1

.
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Thus (3.13) is written in the following form:

∂ρ∆ρV
(j,k)
ϱ =

1

2

∑
m

eϵ
(j,k)
ρ,m v

(j,k)
ρ,m η−1∂ρ 1

u
(j,k)
ρ,m

+∆ρg
(j,k)
ρ .

Hence (3.13) can be solved by using a formal differential operator of infinite order:

V (j,k)
ϱ =

1

2

∑
m

eϵ
(j,k)
ρ,m v

(j,k)
ρ,m η−1∂ρ(

eη
−1∂ρ − 1

) ∂−1
ρ

1

u
(j,k)
ρ,m

+ ∂−1
ρ g(j,k)ρ

=
1

2

∞∑
ℓ=0

∑
m

Bℓ

(
ϵ
(j,k)
ρ,m v

(j,k)
ρ,m

)
ℓ!

η1−ℓ∂ℓ−2
ρ

1

u
(j,k)
ρ,m

+ ∂−1
ρ g(j,k)ρ .

Using Lemma 3.8, we have

V (j,k)
ϱ =

1

2

∞∑
ℓ=2

∑
m

Bℓ

(
ϵ
(j,k)
ρ,m v

(j,k)
ρ,m

)
ℓ!

η1−ℓ∂ℓ−2
ρ

1

u
(j,k)
ρ,m

+ Cρ(ρ̌),

where Cρ(ρ̌) is an arbitrary function of {a1,1, . . . , aN,1, b1,1, . . . , bN−1,1} \ {ρ}. We repeat the
above discussion for every ρ ∈ {a1,1, . . . , aN,1, b1,1, . . . , bN−1,1}. Then we can determine Cρ(ρ̌)
by adjustment. Thus we have the theorem. ■

Remark 3.10. If N = 3, we have

V
(1,2)
0,ℓ =

∑
i=1,2,3
j=1,2

(−1)j
Bℓ(bj,0 − ai,0)

(bj,1 − ai,1)ℓ−1

+
Bℓ(b1,0 − 1)

bℓ−1
1,1

− Bℓ(b2,0 − 1)

bℓ−1
2,1

+
Bℓ(b1,0 − b2,0 + 1) +Bℓ(b1,0 − b2,0)

(b1,1 − b2,1)ℓ−1
,

V
(1,3)
0,ℓ = −

∑
i=1,2,3

Bℓ(b1,0 − ai,0)

(b1,1 − ai,1)ℓ−1
−
∑

i=1,2,3

Bℓ(ai,0)

aℓ−1
i,1

+
Bℓ(b1,0) +Bℓ(b1,0 − 1)

bℓ−1
1,1

+
Bℓ(b2,0)

bℓ−1
2,1

+
Bℓ(b1,0 − b2,0)

(b1,1 − b2,1)ℓ−1
,

V
(2,3)
0,ℓ = −

∑
i=1,2,3

Bℓ(b2,0 − ai,0)

(b2,1 − ai,1)ℓ−1
−
∑

i=1,2,3

Bℓ(ai,0)

aℓ−1
i,1

+
Bℓ(b2,0) +Bℓ(b2,0 − 1)

bℓ−1
2,1

+
Bℓ(b1,0)

bℓ−1
1,1

+
Bℓ(b2,0 − b1,0)

(b2,1 − b1,1)ℓ−1
,

V
(j,k)
∞,ℓ =

∑
m=1,2

(
Bℓ(bm,0 − ak,0)

(bm,1 − ak,1)ℓ−1
− Bℓ(bm,0 − aj,0)

(bm,1 − aj,1)ℓ−1

)

+

Bℓ(aj,0)

aℓ−1
j,1

+
3∑

i=1
i ̸=j

Bℓ(ai,0 − aj,0)

(ai,1 − aj,1)ℓ−1

−

Bℓ(ak,0)

aℓ−1
k,1

+
3∑

i=1
i ̸=k

Bℓ(ai,0 − ak,0)

(ai,1 − ak,1)ℓ−1

 .

We consider the Borel summability of V
(j,k)
ϱ . We set

Ṽ (κ, κ0) =
1

2

∞∑
ℓ=2

(−1)ℓ+1η1−ℓ

ℓ(ℓ− 1)

Bℓ(κ0)

κℓ−1
.
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As we saw in the preceding theorem, V
(j,k)
ϱ are expressed as a finite sum of the formal series

of the form Ṽ (κ, κ0) for suitable choice of κ, κ0. Hence it is sufficient to consider the Borel
summability of Ṽ (κ, κ0). Its summability is well known: the formal series Ṽ (κ, κ0) of η−1 is
Borel summable if Re(κ) ̸= 0 and the Borel sum of Ṽ (κ, κ0) equals

1

2
log

(√
2π(κη)κ0+κη− 1

2

eκηΓ(κ0 + κη)

)
, Re(κ) > 0,

1

2
log

(
(−κη)κ0+κη− 1

2Γ (1− (κ0 + κη))√
2πeκη

)
, Re(κ) < 0,

(see [6, Lemma 4.6]). This expression is obtained by the Binet formula [12]. Thus, we have

Corollary 3.11. Let ϱ be 0 or ∞. Also let

D(κ) = {(a1,1, . . . , aN,1, b1,1, . . . , bN−1,1) | Re(κ) ̸= 0},

where κ is a linear homogeneous function of a1,1, . . . , aN,1, b1,1, . . . , bN−1,1. The Voros coeffi-

cient V
(j,k)
ϱ of type (j, k), j < k, is Borel summable if (a1,1, . . . , aN,1, b1,1, . . . , bN−1,1) belongs

to D
(j,k)
ϱ . Here we set

D
(j,k)
0 = D(bj,1) ∩D(bk,1) ∩

N⋂
i=1

D(bj,1 − ai,1) ∩
N−1⋂
m=1
m ̸=j

D(bj,1 − bm,1)

∩
N⋂
i=1

D(bk,1 − ai,1) ∩
N−1⋂
m=1
m ̸=k

D(bk,1 − bm,1), k ̸= N,

D
(j,N)
0 =

N⋂
i=1

D(ai,1) ∩
N−1⋂
m=1

D(bm,1) ∩
N⋂
i=1

D(bj,1 − ai,1) ∩
N−1⋂
m=1
m ̸=j

D(bj,1 − bm,1),

D(j,k)
∞ = D(aj,1) ∩D(ak,1) ∩

N−1⋂
m=1

D(bm,1 − ak,1) ∩
N−1⋂
m=1

D(bm,1 − aj,1)

∩
N⋂
i=1
i ̸=j

D(ai,1 − aj,1) ∩
N⋂
i=1
i ̸=k

D(ai,1 − ak,1).

4 Concluding remarks and future problems

We have obtained explicit forms of the Voros coefficients at the origin and at the infinity (Theo-
rem 3.9). To give an explicit form of the Voros coefficient at x = 1 is our future problem. The
difficulty of the problem comes from the multiplicity of the characteristic exponents at x = 1.

As in the case of the Gauss hypergeometric differential equation [8] and of its confluent
families [22, 27], we may get the formulas describing the parametric Stokes phenomena for WKB
solutions of (2.3) by using Corollary 3.11 under the assumption that their formal solutions are
Borel summable in some region. The Borel summability of WKB solutions of our equation is
also a future problem.
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Math. Sci. (RIMS), Kyoto, 2014, 55–70.

[18] Iwaki K., Koike T., Takei Y., Voros coefficients for the hypergeometric differential equations and Eynard–
Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations, J. Integrable
Syst. 4 (2019), xyz004, 46 pages, arXiv:1810.02946.

[19] Iwaki K., Nakanishi T., Exact WKB analysis and cluster algebras, J. Phys. A: Math. Theor. 47 (2014),
474009, 98 pages, arXiv:1401.7094.

[20] Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Mono-
graphs, Vol. 227, Amer. Math. Soc., Providence, RI, 2005.

[21] Kishioka H., Noumi M., Mellin transform and connection problem, RIMS Kôkyûroku, Vol. 1662, Res. Inst.
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(N.S.) 39 (1983), 211–338.

https://doi.org/10.1007/978-4-431-73240-2_20
https://doi.org/10.1090/S0002-9904-1938-06776-6

	1 Introduction
	2 WKB solutions
	2.1 The generalized hypergeometric differential equation with a large parameter
	2.2 Turning points and WKB solutions
	2.3 Factorization
	2.4 Definition of Voros coefficients

	3 Explicit forms of the Voros coefficients
	3.1 Ladder operators
	3.2 Voros coefficients

	4 Concluding remarks and future problems
	References

