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1 Introduction

Categorification of link invariants has been a source of fruitful interactions between physics and
low dimensional topology over the past decades (see [10, 22, 30] for reviews). Since the ad-
vent of the Khovanov homology [17], which categorifies the Jones polynomials of links, there
has been constructions of other homological theories, for example, knot Floer homology [23, 26],
Khovanov–Rozansky homology [18] and HOMFLY homology [19] that categorify the well-known
link polynomials: Alexander, sl(N)-invariants and HOMFLY polynomial, respectively. Not only
has the categorification deepened the conceptual aspects of links, but it has also provided a more
powerful machinery to compute higher structural invariants beyond polynomial invariants. Fur-
thermore, these advancements have inspired new directions in physics, which resulted in physical
realizations of the link homologies. Beginning from knot Floer homology, its physical interpre-
tation was found in [4]. A physical realization of Khovanov homology and Khovanov–Rozansky
homology was first provided using topological string theory in [15]; additionally, through the
conifold transition, existence of the HOMFLY homology was predicted as well. In the case of
Khovanov homology, a different physical system involving D-branes was achieved in [33]. For
Kauffman homology, its physical construction exemplified the role of orientifolds [16]. Even knot
homology based on an exceptional Lie algebra admits a physical description [6] (see Table 1 for
summary).

In recent years, a physical approach to categorification of the Witten–Reshetikhin–Tureav
(WRT)-invariant of 3-manifold [27, 28, 32], namely, homological blocks Ẑ(q) [13, 14] inspired
a new kind of invariant for a complement of a knot [12]. This knot invariant denoted as FK is
a two-variable series that emerges from Ẑ(q):

FK(x, q) := Ẑ0

(
M3
K ;x1/2, n, q

)
, |q| < 1,

where M3
K is a complement of a knot K in a closed oriented 3-manifold M3, n ∈ Z, c ∈ Z+

and ∆ ∈ Q.1 Physical interpretation of FK is that it counts BPS states of a 3d N = 2

1The r.h.s. of the definition of FK is a two-variable version of Ẑb(q).
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Polynomial Homology Physical realization

Alexander sl(1|1) knot Floer homology M5-M2 branes on the deformed
conifold

Jones sl(2) Khovanov homology M5-M2 branes on the deformed
conifold or D3-NS5 brane system

sl(N)-invariants sl(N) Khovanov–Rozansky
homology

M5-M2 branes on the deformed
conifold

HOMFLY HOMFLY homology M5-M2 branes on the resolved
conifold

so(n)/sp(n)-invariants
& Kauffman

Kauffman homology D4-brane & orientifold system
on the resolved conifold

hyperpolynomial e6 homology M5-M2 branes on the resolved
conifold

Table 1. A summary of link invariants and their physical realizations. Choice of an orientifold type

determines so(n) or sp(n) Lie algebra. Applications of S- and T -dualities are necessary to the latter

brane system in the case of Khovanov homology (for details see [33]).

supersymmetric theory T
[
M3
K

]
on the knot complement, which arises from the integrality of

the coefficients of FK-series. This in turn originates from the appearance of dimension of BPS
Hilbert space of T [Y ] in the q-series Ẑ(Y, q) for a generic 3-manifold Y . Furthermore, this
Hilbert space is identified with a conjectured triply graded three manifold homology Hi,jBPS(Y ; b)
whose (graded) Euler characteristic is

Ẑb[Y ; q] =
∑
i,j

(−1)iqj dimHi,jBPS(Y ; b) ∈ 2−cq∆Z[[q]], |q| < 1.

The WRT-invariant of Y is recovered from Ẑb[Y ; q] as q goes to a root of unity (for details see
[13, Section 2]).

Among mathematical developments of FK [20, 24, 25], evidence for a relationship between FK
and the ADO link invariant [1] have been discovered in [11]. This relation is conjectured to hold
for all knots and for any roots of unity:

Conjecture 1 ([11, Conjecture 3]). For any knot K in S3,

FK(x, q)|q=ζp =
(
x1/2 − x−1/2

)ADOp(K;x, ζp)

∆K(xp)
, ζp = ei2π/p, p ∈ Z+.

This conjecture was verified for specific values of p for the right-handed trefoil and the figure
eight knots [11]. Another advancement was an introduction of a refinement of FK(x, q) [5]. It
was shown that FK(x, q) admits two parameter deformations through the superpolynomial [4, 7].
This led to a generalization of the above conjecture.

Conjecture 2 ([5, Conjecture 4]). For any knot K in S3, there exists a t-deformation of the
symmetric ADOp-polynomial of K for SU(N),

ADOSU(N)
p [K;x, t] :=

(
∆K

(
xp,−(−t)p

))N−1
lim

q→ei2π/p
FK(x, q, a = −qN/t, t), p ∈ Z+,

and t = −1 specialization reduces to the original ADOp[K;x] (up to rescaling of x).

The rest of the paper is organized as follows. In Section 2 we briefly review the series invariant
for a knot complement and the ADO invariants. In Section 3 we present the explicit formulas
and/or an algorithm for the ADO3 and ADO4 polynomials for a particular class of torus knots.
Furthermore, one parameter deformation of ADO3 invariants for torus knots is discussed.
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2 Background

2.1 Two-variable series knot complement

A series invariant FK for a complement of a knot M3
K was introduced in [12]. It has various

properties such as the gluing formula and the (Dehn) surgery formula. This knot invariant FK
takes the form2

FK(x, q) =
1

2

∞∑
m≥1
m odd

(
xm/2 − x−m/2

)
fm(q) ∈ 1

2c
q∆Z

[
x±1/2

][[
q±1
]]
,

where fm(q) are Laurent series with integer coefficients, c ∈ Z+ and ∆ ∈ Q. Moreover, x-
variable is associated to the relative Spinc

(
M3
K , T

2
)
-structures, which is affinely isomorphic to

H2
(
M3
K , T

2;Z
) ∼= H1

(
M3
K ;Z

)
; it has an infinite order, which is reflected as a series in FK . For

applications, some classes of knots have been analyzed [12, 24]. One of them is a class of torus
knots, which is relevant for our purpose. Hence we display FK for the right-handed torus knots
T (s, t), s, t > 1 with gcd(s, t) = 1 [12].

FT (s,t)(x, q) =
1

2
q(s−1)(t−1)/2

∞∑
m≥1
m odd

ε(s, t)m
(
xm/2 − x−m/2

)
q
m2−(st−s−t)2

4st ,

ε(s, t)m =


−1, m ≡ st+ s+ t or st− s− t (mod 2st),

1, m ≡ st+ s− t or st− s+ t (mod 2st),

0, otherwise.

Prior to FK ’s potential relation to the (original) ADO invariant, it was proposed that FK
possess similar characteristics of sl(2)-colored Jones polynomial through the Melvin–Morton–
Rozansky conjecture [21, 29] (proven in [2]), and the quantum volume conjecture [8, 9]:

Conjecture 3 ([12, Conjecture 1.5]). For a knot K ⊂ S3, the asymptotic expansion of the knot
invariant FK

(
x, q = e~

)
about ~ = 0 coincides with the Melvin–Morton–Rozansky expansion of

the colored Jones polynomial in the large color limit:

FK
(
x, q = e~

)
x1/2 − x−1/2

=
∞∑
r=0

Pr(x)

∆K(x)2r+1
~r,

where x = qn~ is fixed, n is the color of K, Pr(x) ∈ Q
[
x±1

]
, P0(x) = 1 and ∆K(x) is the

Alexander polynomial of K.

Conjecture 4 ([12, Conjecture 1.6]). For any knot K ⊂ S3, the normalized series fK(x, q)
satisfies a linear recursion relation generated by the quantum A-polynomial of K:

ÂK(x̂, ŷ, q)fK(x, q) = 0,

where fK := FK(x, q)/
(
x1/2 − x−1/2

)
.

2.2 The ADO invariants of knots

Colored generalization of the Alexander polynomial for framed colored and oriented knot (link)
was introduced in [1]. This knot invariant(ADO invariant) is based on (1, 1)-colored tangle

2Implicitly, there is a choice of group; originally, the group used is SU(2).
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diagram obtained by cutting the knot (or a component of a link). From this colored and
oriented tangle diagram, the ADO invariant is constructed from a non-semisimple category
of module over the unrolled quantum group UHζ2r(sl2(C)) together with the modified quantum
dimension (r ∈ Z≥2). We will employ the quantum algebra construction of the ADO invariants
for verification of our results; the computational ingredients are summarized in Appendix B. We
give a concise review of the conceptual features of the construction [1, 3, 31].

The first ingredient is the unrolled quantum group UHζ2r(sl2(C)), which is a C-algebra spe-
cialized at q = ζ2r; its generators and relations are

� generators: E, F , K, K−1, H,

� relations:

KK−1 = K−1K = 1, KE = ζ2
2rEK, KF = ζ−2

2r FK, [E,F ] =
K −K−1

ζ2r − ζ−1
2r

,

KH = HK, [H,E] = 2E, [H,F ] = −2F, Er = F r = 0.

This algebra possess a Hopf algebra structure:

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,
∆(H) = 1⊗H +H ⊗ 1, ε(H) = 0, S(H) = −H,
∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆
(
K−1

)
= K−1 ⊗K−1, ε

(
K−1

)
= 1, S

(
K−1

)
= K.

The second element of the construction of the ADO invariant is a functor RT between a category
of colored oriented tangle diagrams COD and a category Rep of representations of UHζ2r(sl2(C)):

RT: COD −→ Rep.

The objects of COD are framed colored oriented (1, 1)-tangle diagrams and morphisms are
equivalence classes of the tangle diagrams whose equivalence relations are generated by the tangle
moves (see [1, Section 2]). For the target category, its objects are vector spaces V and morphisms
are linear maps between them. The image of the RT functor is RT(T ) = 〈T 〉 IdV ∈ EndC(V ),
which enables to define

ADO(K)r := d(Vα; r)〈T 〉,

where Vα is a vector space assigned to K (or to an open component of a link3) and d(Vα; r) is
the modified quantum dimension,

d(Vα; r) = −ζ
1
2
r(1−r)

2r

ζα+1
2r − ζ−α−1

2r

ζrα2r − ζ
−rα
2r

, α ∈ (C\Z) ∪ (rZ− 1).

This modified dimension replaces the usual quantum trace, which vanishes in this context.
Moreover, it makes ADO(K) an isotopy invariant.

3ADO invariant is independent of choice of a component of a link that is cut (for details see [1, Section 5]).
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3 The ADO invariants of torus knots

Recently, evidence for a relation between FK at specific values of roots of unity and the ADO
invariants were discovered for the (right-handed) trefoil, the figure eight and 52 knots [11].
Furthermore, this relation is conjectured to hold for any roots of unity and for all knots (Conjec-
ture 1). Using the formula in Section 2.1 and Conjecture 1, close examination of torus knots
T (2, 2s+1) at various values of s yields an explicit formula or an algorithm for ADO3 and ADO4

invariants of T (2, 2s+ 1), s ∈ Z+.

3.1 The ADO3 invariants of T (2, 2s + 1)

The ADO3 invariants of T (2, 2s + 1) are divided in three types depending on their coefficient
pattern:

1) for K = T (2, 2s+ 1) = T (2, 3), T (2, 9), T (2, 15), T (2, 21), . . .

ADO3(x) = ζ3x
2s + ζ3x

2s−1 +
(
ζ3 − ζ−1

3

)
x2s−2 − ζ−1

3 x2s−3 − ζ−1
3 x2s−4

+ ζ3x
2s−6 + ζ3x

2s−7 +
(
ζ3 − ζ−1

3

)
x2s−8 − ζ−1

3 x2s−9 − ζ−1
3 x2s−10 + · · ·

+
(
ζ3 − ζ−1

3

)
+ (x→ 1/x),

2) for K = T (2, 2s+ 1) = T (2, 5), T (2, 11), T (2, 17), T (2, 23), . . .

ADO3(x) = ζ−1
3 x2s + ζ−1

3 x2s−1 +
(
ζ−1

3 − 1
)
x2s−2 − x2s−3 − x2s−4 + ζ−1

3 x2s−6

+ ζ−1
3 x2s−7 +

(
ζ−1

3 − 1
)
x2s−8 − x2s−9 − x2s−10 + · · · − 1 + (x→ 1/x),

3) for K = T (2, 2s+ 1) = T (2, 7), T (2, 13), T (2, 19), T (2, 25), . . .

ADO3(x) = x2s + x2s−1 + (1− ζ3)x2s−2 − ζ3x
2s−3 − ζ3x

2s−4 + x2s−6 + x2s−7

+ (1− ζ3)x2s−8 − ζ3x
2s−9 − ζ3x

2s−10 + · · ·+ 1 + (x→ 1/x).

All the explicit x terms are polynomials and power of x decreases by two after one cycle of
a coefficient combination. We next move onto ADO4 invariants, whose explicit formula can be
obtained algorithmically.

3.2 The algorithm for ADO4 invariants of T (2, 2s + 1)

Explicit formulas for ADO4 invariants of T (2, 2s + 1) for s ∈ Z≥7 are constructed induc-
tively. This subclass of torus knots are divided into four sets and each set has its own seed
ADO4[T (2, 2s+1)] together with a pattern of coefficients that generates the invariant for higher
values of 2s+ 1. We present an algorithm for obtaining explicit expressions.

The algorithm:

1. Beginning with x3s, write a polynomial with coefficients ci following one of the four patterns
(shown below) that T (2, 2s+ 1) belong to

c3sx
3s+ c3s−1x

3s−1+ c3s−2x
3s−2+ c3s−3x

3s−3+ c3s−4x
3s−4+ c3s−5x

3s−5, cn ∈ C.

2. Add a polynomial starting with x3s−8 with exponent pattern and coefficients given by
ADO4[T (2, 2s− 7)].
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3. Remaining polynomials are determined by a mirror reflection of coefficients across the last
term in the previous step beginning from the second last term. Furthermore, adjust of
the exponents of the variable x following the pattern of Step 2 until a constant term is
reached.

4. Use the Weyl symmetry to obtain 1/x terms.

As a consequence of the normalization factor
(
x1/2 − x−1/2

)
in Conjecture 1, we obtain the

symmetric version of ADO invariants. Their coefficients cn are divided into four types:

1) −i, −i, −i− 1, −i− 1, −1, −1 for {T (2, 7), T (2, 15), T (2, 23), . . . },

2) 1, 1, 1− i, 1− i, −i, −i for {T (2, 9), T (2, 17), T (2, 25), . . . },

3) i, i, i + 1, i + 1, 1, 1 for {T (2, 11), T (2, 19), . . . },

4) −1, −1, −1 + i, −1 + i, i, i for {T (2, 13), T (2, 21), . . . },

where the semicolon means that the next term has a power of x lowered by three. The coefficients
of the first and the third sets differ by signs as well as the second and the fourth sets. ADO4

polynomial of the first knot in each set is a seed for the next knot in the set. This pattern
continues for all the subsequent knots in each set. The fundamental seed invariants can be
easily computed using the torus knot formula FT (s,t) in Section 2.1

ADO4[T (2, 7)] = −ix9 − ix8 + (−1− i)x7 + (−1− i)x6 − x5 − x4 − ix2 − i2x

+ 1− i2 + (x→ 1/x),

ADO4[T (2, 9)] = x12 + x11 + (1− i)x10 + (1− i)x9 − ix8 − ix7 + x4 − ix2 − i2x

− 1− i2 + (x→ 1/x),

ADO4[T (2, 11)] = ix15 + ix14 + (1 + i)x13 + (1 + i)x12 + x11 + x10 + ix7 + ix6

+ (1 + i)x5 + (1 + i2)x4 + (1 + i)x3 + ix2 + (i− 1)x− 1 + (x→ 1/x),

ADO4[T (2, 13)] = −x18 − x17 + (−1 + i)x16 + (−1 + i)x15 + ix14 + ix13 − x10 − x9

+ (−1 + i)x8 + (−1 + i)x7 + ix6 + (1 + i)x5 + x4 + (1 + i)x3 + ix2

+ (i− 1)x− 1 + i2 + (x→ 1/x).

For completeness, we display the ADO4 polynomials of T (2, 3) [11] and T (2, 5)

ADO4[T (2, 3)] = ix3 + ix2 + (1 + i)x+ 1 + i2 + (x→ 1/x),

ADO4[T (2, 5)] = −x6 − x5 + (−1 + i)x4 + (−1 + i)x3 + ix2 + (1 + i)x+ 1 + (x→ 1/x).

3.3 Examples

Let us demonstrate the algorithm through examples. For T (2, 15) in the first set, the first step
of the algorithm yields

Step 1 = −ix21 − ix20 + (−1− i)x19 + (−1− i)x18 − x17 − x16.

Next step is to use the coefficients from the seed ADO4[T (2, 7)] but its powers of x are adjusted
appropriately

Step 2 = −ix21 − ix20 + (−1− i)x19 + (−1− i)x18 − x17 − x16

− ix13 − ix12 + (−1− i)x11 + (−1− i)x10 − x9 − x8 − ix6 − i2x5 + (1− i2)x4.
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Since the above expression ends in (1− i2)x4, we need to reflect the coefficients about this term
until a constant term is reached. This results in

Step 3 = −ix21 − ix20 + (−1− i)x19 + (−1− i)x18 − x17 − x16 − ix13 − ix12 + (−1− i)x11

+ (−1− i)x10 − x9 − x8 − ix6 − i2x5 + (1− i2)x4 − i2x3 − ix2 − 1.

The application of the last step leads to

ADO4[T (2, 15)] = −ix21 − ix20 + (−1− i)x19 + (−1− i)x18 − x17 − x16 − ix13 − ix12

+ (−1− i)x11 + (−1− i)x10 − x9 − x8 − ix6 − i2x5 + (1− i2)x4

− i2x3 − ix2 − 1 + (x→ 1/x).

As a consistency check, FT (2,15)(x, q = ζ4) obtained from the ADO4[T (2, 15)] using Conjecture 1
agrees with the direct computation of FT (2,15)(x, q = ζ4) from Section 2.1.

For T (2, 17) in the second set, the seed invariant is ADO4[T (2, 9)] and application of the first
and second steps produce

Step 1 = x24 + x23 + (1− i)x22 + (1− i)x21 − ix20 − ix19,

Step 2 = x24 + x23 + (1− i)x22 + (1− i)x21 − ix20 − ix19 + x16 + x15

+ (1− i)x14 + (1− i)x13 − ix12 − ix11 + x8 − ix6 − i2x5 + (−1− i2)x4.

After the reflection about x4-term

Step 3 = x24 + x23 + (1− i)x22 + (1− i)x21 − ix20 − ix19 + x16 + x15 + (1− i)x14

+ (1− i)x13 − ix12 − ix11 + x8 − ix6 − i2x5 + (−1− i2)x4 − i2x3 − ix2 + 1.

The last step results in

ADO4[T (2, 17)] = x24 + x23 + (1− i)x22 + (1− i)x21 − ix20 − ix19 + x16 + x15

+ (1− i)x14 + (1− i)x13 − ix12 − ix11 + x8 − ix6 − i2x5 + (−1− i2)x4

− i2x3 − ix2 + 1 + (x→ 1/x).

One can verify that FT (2,17)(x, q = ζ4) obtained from ADO4[T (2, 17)] matches with the result
(at q = ζ4) of the direct method from Section 2.1.

In the third set, the seed for T (2, 19) is ADO4[T (2, 11)]. Applying the first two steps yields

ix27 + ix26 + (1 + i)x25 + (1 + i)x24 + x23 + x22 + ix19 + ix18 + (1 + i)x17 + (1 + i)x16

+ x15 + x14 + ix11 + ix10 + (1 + i)x9 + (1 + i2)x8 + (1 + i)x7 + ix6 + (−1 + i)x5 − x4.

The last two steps produce

ADO4[T (2, 19)] = ix27 + ix26 + (1 + i)x25 + (1 + i)x24 + x23 + x22 + ix19 + ix18

+ (1 + i)x17 + (1 + i)x16 + x15 + x14 + ix11 + ix10 + (1 + i)x9

+ (1 + i2)x8 + (1 + i)x7 + ix6 + (−1 + i)x5 − x4 + (−1 + i)x3 + ix2

+ (1 + i)x+ 1 + i2 + (x→ 1/x).

Similarly, ADO4[T (2, 21)] can be obtained using ADO4[T (2, 13)]

ADO4[T (2, 21)] = −x30 − x29 + (−1 + i)x28 + (−1 + i)x27 + ix26 + ix25 − x22 − x21

+ (−1 + i)x20 + (−1 + i)x19 + ix18 + ix17 − x14 − x13 + (−1 + i)x12

+ (−1 + i)x11 + ix10 + (1 + i)x9 + x8 + (1 + i)x7 + ix6 + (−1 + i)x5

+ (−1 + i2)x4 + (−1 + i)x3 + ix2 + (1 + i)x+ 1 + (x→ 1/x).

Formulas for ADO4 invariants become lengthy as the winding number along the longitude of
a torus increases so their expressions are recorded in Appendix A. We move onto the deformation
of the ADO polynomial.



8 J. Chae

3.4 Deformed ADO3 invariants of T (2, 2s + 1)

A link between superpolynomial defined in [4] and FK was discovered in [5]. Specifically,
two parameter refinement FK(x, q, a, t) was introduced, which motivated to define t-deformed
ADO polynomial. This deformation introduces one more variable to the original ADO poly-
nomial ADO(x, t); as a consequence, it is a colored version of the t-deformed Alexander poly-
nomial ∆(x, t) that can distinguish chirality of torus knots. In this Subsection we present
t-deformed version of ADO3 polynomials for T (2, 2s+ 1) knots.

Reduced superpolynomial for the right-handed torus knots carrying symmetric representa-
tion Sr of SU(N) is stated in [7]:

PSr [T (2,−(2s+ 1)); q, a, t] =

(
a

q

)pr r∑
k1=0

k1∑
k2=0

· · ·
ks−1∑
ks=0

q
(2r+1)(k1+···+ks)−

s∑
i=1

ki−1ki
t2(k1+···+ks)

×
(
qr; q−1

)
k1

(−at/q; q)k1
(q; q)k1

[
k1

k2

]
q

· · ·
[
ks−1

ks

]
q

,

(w; q)m :=
m∏
i=1

(
1− wqi−1

)
,

[
w
n

]
q

:=
(q; q)w

(q; q)n(q; q)w−n
,

where s ∈ Z+, r is the dimension of Sr and k0 ≡ r. Note that the convention for the left-handed
torus knot in [5] is T (2, 2s + 1) for s ∈ Z+, which is opposite of the convention used in this
article. In [5], it was shown that PSr can be converted into a two parameter deformation of FK
by replacing qr by x and dropping the overall factor (a/q)pr:

FT (2,−(2s+1))(x, q, a, t) =

∞∑
k1=0

k1∑
k2=0

· · ·
ks−1∑
ks=0

x2(k1+···+ks)−k1q
(k1+···+ks)−

s∑
i=2

ki−1ki
t2(k1+···+ks)

×
(
x; q−1

)
k1

(−at/q; q)k1
(q; q)k1

[
k1

k2

]
q

· · ·
[
ks−1

ks

]
q

.

Fixing a = qN and t = −1, FK(x, q, a, t) becomes the original FK(x, q) for torus knots.4 Different
specialization of a, namely, a = −t−1 yields a refined Alexander polynomial [5],

FK
(
x, q,−t−1, t

)
= ∆K(x, t).

Using Conjecture 2, a refined ADO3 polynomial for T (2, 2s+ 1), s ∈ Z+ is

ADO3[T (2, 2s+ 1);x, t] = (tx)2s +
ζ−1

3

t
(tx)2s−1 +

(
ζ3

t2
− ζ−1

3

)
(tx)2s−2 − ζ3

t
(tx)2s−3

− 1

t2
(tx)2s−4 + (tx)2s−6 +

ζ−1
3

t
(tx)2s−7 +

(
ζ3

t2
− ζ−1

3

)
(tx)2s−8

− ζ3

t
(tx)2s−9 − 1

t2
(tx)2s−10 + · · ·+O

(
1

tx

)
,

where O(1/tx)-terms are determined by the t-deformed Weyl symmetry of the ADOp invariant,

ADOSU(2)
p (1/x, t) = ADOSU(2)

p

(
ζ−2
p t−2x, t

)
.

The suppressed polynomial terms follow the same power and coefficient patterns of the previous
terms. The three formulas for the original ADO3[T (2, 2s + 1);x] coalesce into one formula
through the t-deformation. We next present a few examples.

4Specifically, additional manipulations are needed to arrive at FK(x, q) for torus knots [5, Section 5.2].
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K = T (2, 5). We start from FK(x, q, a, t) for T (2,−5),

FT (2,−5)(x, q, a, t) =
∞∑
k1=0

k1∑
k2=0

x2(k1+k2)−k1qk1+k2−k1k2t2(k1+k2)

(
x; q−1

)
k1

(
−at

q ; q
)
k1

(q; q)k1

[
k1

k2

]
q

.

We next apply the mirror map to reverse the orientation of K,

x 7→ 1/x, q 7→ 1/q, a 7→ 1/a, t 7→ 1/t.

Setting a = −1/t, we get a refined Alexander polynomial of K (upon multiplication by an overall
monomial),

∆K(x, t) = t2x2 +
1

t2x2
− 1

t2x
− x+ 1.

Further fixing t = −1, it reduces to the Alexander polynomial of K. Moreover, this refined
polynomial possess the t-deformed Weyl symmetry for the refined Alexander polynomial,

∆K(1/x, t) = ∆K

(
x/t2, t

)
.

A refined ADO3 polynomial of K is computed via Conjecture 2 as

ADO3[T (2, 5);x, t] = (tx)4 +
ζ−1

3

t
(tx)3 +

(
ζ3

t2
− ζ−1

3

)
(tx)2 − ζ3

t
(tx)− 1

t2
− ζ−1

3

t

1

(tx)

+

(
1

t2
− ζ3

)
1

(tx)2
+
ζ−1

3

t

1

(tx)3
+ ζ3

1

(tx)4
.

This formula carries the t-deformed Weyl symmetry of the ADO3 invariant. Moreover, fixing
t = −1 and rescaling x 7→ ζ2

3x, the refined polynomial becomes the original ADO3 polynomial,

ζ−1
3 x4 + ζ−1

3 x3 +
(
ζ−1

3 − 1
)
x2 − x− 1 + (x→ 1/x).

K = T (2, 7). Two parameter deformation of FK for T (2,−7) is

FT (2,−7)(x, q, a, t) =
∞∑
k1=0

k1∑
k2=0

k2∑
k3=0

x2(k1+k2+k3)−k1qk1+k2+k3−k1k2−k2k3t2(k1+k2+k3)

×
(
x; q−1

)
k1

(
−at

q ; q
)
k1

(q; q)k1

[
k1

k2

]
q

[
k2

k3

]
q

.

A refined Alexander polynomial of K having the refined Weyl symmetry is

∆T (2,7)(x, t) = −t3x3 − 1

t3x3
+

1

t3x2
+ tx2 − tx− 1

tx
+

1

t
.

A refined ADO3 polynomial of K is

ADO3[T (2, 7);x, t] = (tx)6 +
ζ−1

3

t
(tx)5 +

(
ζ3

t2
− ζ−1

3

)
(tx)4 − ζ3

t
(tx)3 − 1

t2
(tx)2 + 1

− ζ−1

t2
1

(tx)2
− ζ

t

1

(tx)3
+

(
ζ−1

t2
− 1

)
1

(tx)4
+
ζ

t

1

(tx)5
+

1

(tx)6
.

This polynomial possess the t-deformed Weyl symmetry of the ADO3 invariant and after spe-
cializing t = −1 and rescaling x 7→ ζ2

3x, it becomes

x6 + x5 + (1− ζ3)x4 − ζ3x
3 − ζ3x

2 + 1 + (x→ 1/x),

which is the original ADO3 polynomial for K.
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K = T (2, 9). A refined Alexander polynomial of K carrying the refined Weyl symmetry is

∆T (2,9)(x, t) = t4x4 +
1

t4x4
− 1

t4x3
− t2x3 + t2x2 +

1

t2x2
− 1

t2x
− x+ 1.

A refined ADO3 polynomial of K is

ADO3[T (2, 9);x, t] = (tx)8 +
ζ−1

3

t
(tx)7 +

(
ζ3

t2
− ζ−1

3

)
(tx)6 − ζ3

t
(tx)5 − 1

t2
(tx)4

+ (tx)2 +
ζ−1

3

t
(tx) +

(
ζ3

t2
− ζ−1

3

)
+

1

t

1

tx
+ ζ2

3

1

(tx)2
− ζ3

t2
1

(tx)4

− 1

t

1

(tx)5
+

(
ζ3

t2
− ζ−1

3

)
1

(tx)6
+

1

t

1

(tx)7
+ ζ2

3

1

(tx)8
.

This polynomial is invariant under the refined Weyl symmetry of the ADO3 invariant and
becomes the original ADO3 polynomial after setting t = −1 and rescaling x 7→ ζ2

3x,

ζ3x
8 + ζ3x

7 +
(
ζ3 − ζ−1

3

)
x6 − ζ−1

3 x5 − ζ−1
3 x4 + ζ3x

2 + ζ3x+
(
ζ3 − ζ−1

3

)
+ (x→ 1/x).

A Further examples

We record ADO4 polynomials of torus knots obtained from the algorithm together with the
results in Section 3.3:

ADO4[T (2, 23)] = −ix33 − ix32 − (1 + i)x31 − (1 + i)x30 − x29 − x28 − ix25 − ix24

− (1 + i)x23 − (1 + i)x22 − x21 − x20 − ix17 − ix16 − (1 + i)x15

− (1 + i)x14 − x13 − x12 − ix10 − 2ix9 + (1− 2i)x8 − 2ix7 − ix6 − x4

− ix2 − 2ix+ (1− 2i) + (x→ 1/x),

ADO4[T (2, 25)] = x36 + x35 + (1− i)x34 + (1− i)x33 − ix32 − ix31 + x28 + x27

+ (1− i)x26 + (1− i)x25 − ix24 − ix23 + x20 + x19 + (1− i)x18

+ (1− i)x17 − ix16 − ix15 + x12 − ix10 − 2ix9 − (1 + 2i)x8 − 2ix7 − ix6

+ x4 − ix2 − 2ix− (1 + 2i) + (x→ 1/x),

ADO4[T (2, 27)] = ix39 + ix38 + (1 + i)x37 + (1 + i)x36 + x35 + x34 + ix31 + ix30

+ (1 + i)x29 + (1 + i)x28 + x27 + x26 + ix23 + ix22 + (1 + i)x21

+ (1 + i)x20 + x19 + x18 + ix15 + ix14 + (1 + i)x13 + (1 + i2)x12

+ (1 + i)x11 + ix10 + (−1 + i)x9 − x8 + (−1 + i)x7 + ix6 + (1 + i)x5

+ (1 + i2)x4 + (1 + i)x3 + ix2 + (−1 + i)x− 1 + (x→ 1/x),

ADO4[T (2, 29)] = −x42 − x41 + (−1 + i)x40 + (−1 + i)x39 + ix38 + ix37 − x34 − x33

+ (−1 + i)x32 + (−1 + i)x31 + ix30 + ix29 − x26 − x25 + (−1 + i)x24

+ (−1 + i)x23 + ix22 + ix21 − x18 − x17 + (−1 + i)x16 + (−1 + i)x15

+ ix14 + (1 + i)x13 + x12 + (1 + i)x11 + ix10 + (−1 + i)x9 + (−1 + i2)x8

+ (−1 + i)x7 + ix6 + (1 + i)x5 + x4 + (1 + i)x3 + ix2 + (−1 + i)x

− 1 + i2 + (x→ 1/x),

ADO4[T (2, 31)] = −ix45 − ix44 − (1 + i)x43 − (1 + i)x42 − x41 − x40 − ix37 − ix36

− (1 + i)x35 − (1 + i)x34 − x33 − x32 − ix29 − ix28 − (1 + i)x27
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− (1 + i)x26 − x25 − x24 − ix21 − ix20 − (1 + i)x19 − (1 + i)x18 − x17

− x16 − ix14 − 2ix13 + (1− 2i)x12 − 2ix11 − ix10 − x8 − ix6 − 2ix5

+ (1− 2i)x4 − 2ix3 − ix2 − 1 + (x→ 1/x),

ADO4[T (2, 33)] = x48 + x47 + (1− i)x46 + (1− i)x45 − ix44 − ix43 + x40 + x39

+ (1− i)x38 + (1− i)x37 − ix36 − ix35 + x32 + x31 + (1− i)x30

+ (1− i)x29 − ix28 − ix27 + x24 + x23 + (1− i)x22 + (1− i)x21 − ix20

− ix19 + x16 − ix14 − i2x13 + (−1− i2)x12 − i2x11 − ix10 + x8 − ix6

− i2x5 + (−1− i2)x4 − i2x3 − ix2 + 1 + (x→ 1/x),

ADO4[T (2, 35)] = ix51 + ix50 + (1 + i)x49 + (1 + i)x48 + x47 + x46 + ix43 + ix42

+ (1 + i)x41 + (1 + i)x40 + x39 + x38 + ix35 + ix34 + (1 + i)x33

+ (1 + i)x32 + x31 + x30 + ix27 + ix26 + (1 + i)x25 + (1 + i)x24 + x23

+ x22 + ix19 + ix18 + (1 + i)x17 + (1 + 2i)x16 + (1 + i)x15 + ix14

− (1− i)x13 − x12 − (1− i)x11 + ix10 + (1 + i)x9 + (1 + 2i)x8

+ (1 + i)x7 + ix6 − (1− i)x5 − x4 − (1− i)x3 + ix2 + (1 + i)x

+ (1 + 2i) + (x→ 1/x),

ADO4[T (2, 37)] = −x54 − x53 − (1− i)x52 − (1− i)x51 + ix50 + ix49 − x46 − x45

− (1− i)x44 − (1− i)x43 + ix42 + ix41 − x38 − x37 − (1− i)x36

− (1− i)x35 + ix34 + ix33 − x30 − x29 − (1− i)x28 − (1− i)x27 + ix26

+ ix25 − x22 − x21 − (1− i)x20 − (1− i)x19 + ix18 + (1 + i)x17 + x16

+ (1 + i)x15 + ix14 − (1− i)x13 − (1− 2i)x12 − (1− i)x11 + ix10

+ (1 + i)x9 + x8 + (1 + i)x7 + ix6 − (1− i)x5 − (1− 2i)x4 − (1− i)x3

+ ix2 + (1 + i)x+ 1 + (x→ 1/x),

ADO4[T (2, 39)] = −ix57 − ix56 − (1 + i)x55 − (1 + i)x54 − x53 − x52 − ix49 − ix48

− (1 + i)x47 − (1 + i)x46 − x45 − x44 − ix41 − ix40 − (1 + i)x39

− (1 + i)x38 − x37 − x36 − ix33 − ix32 − (1 + i)x31 − (1 + i)x30 − x29

− x28 − ix25 − ix24 − (1 + i)x23 − (1 + i)x22 − x21 − x20 − ix18 − 2ix17

+ (1− 2i)x16 − 2ix15 − ix14 − x12 − ix10 − 2ix9 + (1− 2i)x8 − 2ix7

− ix6 − x4 − ix2 − 2ix+ (1− 2i) + (x→ 1/x).

B Comparison with the R-matrix approach

We perform an independent computation of the ADO polynomial using its R-matrix formula-
tion [1, 3] to strengthen the Conjecture 1. We summarize the ingredients for the computation [3].
A (1, 1)-tangle diagram of T (2, 2s+ 1) consists of three kinds of building blocks: oriented caps,
cups, and crossings, respectively,

a a

y

aa

y a a

y

aa

y

b

d

a

y y

c

a

c

b

yy

d

εa[y] = 1, ε∗a[y] = q2a(r−1)y1−r, ηa[y] = 1, η∗a[y] = q2a(1−r)yr−1,
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Ra,bc,d[y] = δa−c,d−bθa≥cθd≥b(−y)a−cq(c−a)(a+b+1)+2cdzy−d−c

×
(
q2(a−1)/y2; q−2

)
a−c
(
q2(b+1); q2

)
a−c(

q−2; q−2
)
a−c

,(
R−1

)a,b
c,d

[y] = δa−c,d−bθa≥cθd≥b(−y)a−cq(c−a)(a+b+1)−2abzyb+a

×
(
q2(a−1)/y2; q−2

)
a−c
(
q2(b+1); q2

)
a−c(

q2; q2
)
a−c

,

δa,b =

{
1, a = b,

0, otherwise,
θa≥b =

{
1, a ≥ b,
0, otherwise,

where a, b, c, d are subset of variables a1, . . . , am in the tangle diagram and (w; q)t is the
q-Pochhammer symbol (see Section 3.4). The above formulas are in the same order as the
diagrams. From these ingredients, a function that gives rise to the ADO polynomial can be
defined as

G×D(q, y, z, r; a1, . . . , am) := d[y]δa1,0δam,0
∏

crossings

R
∏

crossings

R−1
∏
caps

ε
∏
caps

ε∗
∏
cups

η
∏
cups

η∗,

d[y] =
r∏
j=2

1

qjy − q−jy−1
= (−y)r−1q

1
2
r(r+1)−1 1(

q4y2; q2
)
r−1

.

At q = ζ2r, y = ζα2r, z = ζα
2

2r , an (unnormalized) ADO polynomial N r
K(α) is

N r
K(α) = G×D

(
ζ2r, ζ

α
2r, ζ

α2

2r , r; a1, . . . , am
)
.

The quantity computed in [3] is a normalized version

N̂ r
K(α) := i1−r

(
yr − y−r

)
N r
K(α− 1).

The change of normalization between N̂ r
K(α) and our ADOp for zero framed knots is

ADOp(x) ∼=
N̂ r=p
K (α; y)

y − y−1

∣∣∣∣
y→x1/2, x→cx

∼= num[N r
K(α− 1; y)]

∣∣∣∣
y→x1/2, x→cx

, c ∈ C∗,

where ∼= denotes equivalence up to an overall monomial and an overall constant. The r.h.s.
is due to the structure of G×D(r) such that N r

K(α − 1) always contains
(
y − y−1

)
/
(
yr − y−r

)
for any knot (for details see [3, Section 2.4]). We denote the numerator of N r

K(α − 1; y) as
num

[
N r
K(α− 1; y)

]
.

A (1, 1)-tangle diagram of T (2, 2s+ 1), which consists of (2s+ 1)-crossings is

a1

am

y
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The vertical dots represent the same type of crossings. Applying the formula to the diagram,
we have schematically

G×D(q, y, z, r; a1, . . . , am) = d[y]δa1,0δam,0

(
2s+1∏
i=1

Ri

)
ηε∗,

where m = m(s). The ADO polynomials for T (2, 3) are listed in [3, Appendix B]. Using the
above relation (c = 1), we find an agreement that

N̂3
T (2,3)(α; y) = q2

(
y5 − y−5

)
+ q
(
y − y−1

)
⇒

N̂3
K(α; y)

y − y−1

∣∣∣∣
y→x1/2

∼= ADO3[T (2, 3)](x),

N̂4
T (2,3)(α; y) = q2

(
y7 − y−7

)
+
(
y3 − y−3

)
+ q2

(
y − y−1

)
⇒

N̂4
K(α; y)

y − y−1

∣∣∣∣
y→x1/2

∼= ADO4[T (2, 3)](x).

We next check T (2, 5) case. The computation of G×D yields

num
[
N3
T (2,5)(α− 1)

]
= − 3
√
−1y8 − 3

√
−1y6 − 1

2
3
√
−1
(
3− i
√

3
)
y4 − 1

2
3
√
−1
(
1− i
√

3
)
y2

− 1

2
3
√
−1
(
1− i
√

3
)

+

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 5)](x).

We now list several more verifications of the ADO3 formula in Section 3.1:

num
[
N3
T (2,7)(α− 1)

]
= − 3
√
−1y12 − 3

√
−1y10 − 1

2
3
√
−1
(
3− i
√

3
)
y8 − 1

2
3
√
−1
(
1− i
√

3
)
y6

− 1

2
3
√
−1
(
1− i
√

3
)
y4 − 3

√
−1 +

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 7)](x),

num
[
N3
T (2,9)(α− 1)

]
= −1

2
6
√
−1
(√

3 + i
)
y16 − 1

2
6
√
−1
(√

3 + i
)
y14 − 6

√
−1
√

3y12

− 1

2
6
√
−1
(√

3− i
)
y10 − 1

2
6
√
−1
(√

3− i
)
y8 − 1

2
6
√
−1
(√

3 + i
)
y4

− 1

2
6
√
−1
(√

3 + i
)
y2 − 6

√
−1
√

3 +

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 9)](x),

num
[
N3
T (2,11)(α− 1)

]
= −(−1)2/3y20 − (−1)2/3y18 − 1

2
(−1)2/3

(
3− i
√

3
)
y16

− 1

2
(−1)2/3

(
1− i
√

3
)
y14 − 1

2
(−1)2/3

(
1− i
√

3
)
y12

− (−1)2/3y8 − (−1)2/3y6 − 1

2
(−1)2/3

(
3− i
√

3
)
y4

− 1

2
(−1)2/3

(
1− i
√

3
)
y2 − 1

2
(−1)2/3

(
1− i
√

3
)

+

(
y → 1

y

)∣∣∣∣
y→x1/2

∼= ADO3[T (2, 11)](x),

num
[
N3
T (2,13)(α− 1)

]
=

1

2

(
− 1− i

√
3
)
y24 +

1

2

(
−1− i

√
3
)
y22 +

1

2

(
−3− i

√
3
)
y20 − y18

− y16 +
1

2

(
−1− i

√
3
)
y12 +

1

2

(
−1− i

√
3
)
y10 +

1

2

(
−3− i

√
3
)
y8
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− y6 − y4 +
1

2

(
−1− i

√
3
)

+

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 13)](x),

num
[
N3
T (2,15)(α− 1)

]
=

1

2

(
1− i

√
3
)
y28 +

1

2

(
1− i
√

3
)
y26 − i

√
3y24 +

1

2

(
−1− i

√
3
)
y22

+
1

2

(
−1− i

√
3
)
y20 +

1

2

(
1− i
√

3
)
y16 +

1

2

(
1− i
√

3
)
y14 − i

√
3y12

+
1

2

(
−1− i

√
3
)
y10 +

1

2

(
−1− i

√
3
)
y8 +

1

2

(
1− i
√

3
)
y4

+
1

2

(
1− i
√

3
)
y2 − i

√
3 +

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 15)](x),

num
[
N3
T (2,17)(α− 1)

]
=

1

2
i
(√

3 + i
)
y32 +

1

2
i
(√

3 + i
)
y30 + i

√
3y28 +

1

2

(
1 + i
√

3
)
y26

+
1

2

(
1 + i
√

3
)
y24 +

1

2
i
(√

3 + i
)
y20 +

1

2
i
(√

3 + i
)
y18 + i

√
3y16

+
1

2

(
1 + i
√

3
)
y14 +

1

2

(
1 + i
√

3
)
y12 +

1

2
i
(√

3 + i
)
y8

+
1

2
i
(√

3 + i
)
y6 + i

√
3y4 +

i
√

3

y4
+

1

2

(
1 + i
√

3
)
y2

+
1

2

(
1 + i
√

3
)

+

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO3[T (2, 17)](x).

We next verify ADO4 polynomials:

num
[
N4
T (2,7)(α− 1)

]
= − 3
√
−1y12 − 3

√
−1y10 − 1

2
3
√
−1
(
3− i
√

3
)
y8 − 1

2
3
√
−1
(
1− i
√

3
)
y6

− 1

2
3
√
−1
(
1− i
√

3
)
y4 − 3

√
−1 +

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO4[T (2, 7)](x),

num
[
N4
T (2,9)(α− 1)

]
= − 4
√
−1y24 − 4

√
−1y22 − (1− i) 4

√
−1y20 − (1− i) 4

√
−1y18

+ (−1)3/4y16 + (−1)3/4y14 − 4
√
−1y8 + (−1)3/4y4 + 2(−1)3/4y2

+ (1 + 2i) 4
√
−1 +

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO4[T (2, 9)](x),

num
[
N4
T (2,11)(α− 1)

]
= iy30 + iy28 + (1 + i)y26 + (1 + i)y24 + y22 + y20 + iy14 + iy12

+ (1 + i)y10 + (1 + 2i)y8 + (1 + i)y6 + iy4 − (1− i)y2 − 1

+

(
y → 1

y

) ∣∣∣∣
y→x1/2

∼= ADO4[T (2, 11)](x),

num
[
N4
T (2,13)(α− 1)

]
= (−1 + i)y36 − (1− i)y34 + 2iy32 + 2iy30 + (1 + i)y28 + (1 + i)y26

− (1− i)y20 − (1− i)y18 + 2iy16 + 2iy14 + (1 + i)y12 + 2y10

+ (1− i)y8 + 2y6 + (1 + i)y4 + 2iy2 + (1 + 3i) +

(
y → 1

y

)∣∣∣∣
y→x1/2

∼= ADO4[T (2, 13)](x).
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