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Abstract. The principal angles between binary collision subspaces in an N -billiard system
in d-dimensional Euclidean space are computed. These angles are computed for equal masses
and arbitrary masses. We then provide a bound on the number of collisions in the planar
3-billiard system problem. Comparison of this result with known billiard collision bounds
in lower dimensions is discussed.
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1 Introduction

Mathematical billiards is a well-studied example of a dynamical system, and its geometric and
dynamic properties are of interest to mathematicians and physicists alike [13, 19]. Boltzmann
first described the kinetic theory of a low-density gas as a system of interactions of small particles
(e.g., atoms, molecules), which can simply be modelled as a billiard system. In particular, Boltz-
mann studied the many-particle problem by considering subsets of particles of size 2, 3, . . . whose
motion was not affected by particles outside of these subsets. Boltzmann specifically studied
the case when these subsets each included a single binary collision. The natural next step is the
subcollection of three particles or spheres. This is addressed in [15, 16], and it is shown that the
maximum number of collisions amongst three hard spheres in Rd is four. The maximum number
of collisions is unknown in the case of four or more spheres in any dimension higher than 1.

Finding estimates for the maximum number of collisions of a billiard system is highly de-
pendent upon properties of the given system: the quantity of billiard balls, the underlying
space, their respective masses and radii all affect the total number of collisions. For example,
the configuration space of two equal-radii billiard balls on the same side of a fixed wall in 1-
dimensional space is isomorphic to the motion of a single point-billiard inside a wedge of angle
measure α < π [10, 19]. In such a setting, the maximum number of collisions of the single billiard
in the wedge is dπ/αe. Higher-dimensional analogues for estimates on the number of collisions
in a polyhedral angle similarly depend upon geometric properties of the bounding hyperplanes,
see, e.g., [17, 18]. Further, alternate formulations of billiards (e.g., [1, 2]) may produce different
bounds on the number of collisions in a multi-billiard system.

In [6, 7] a uniform bound for the number of collisions in semi-dispersing billiards in terms
of the minimum and maximum masses and radii of a collection of N billiard balls is computed.
We provide an alternate approach to bounding the number of collisions in the N -billiard system
introduced in [9], focusing on the planar N = 3 case.

This paper is constructed as follows. Section 2 outlines the construction of N -body billiards,
an alternate construction of the configuration space, and defines the geometric properties of
angles linear subspaces of a vector space. We prove the main theorem regarding angles between
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collision subspaces in Section 3. In Section 4 we apply this concept to billiards in the plane and
make a comparison to existing billiard collision theorems. Section 5 provides a brief commentary
on the limitations of N -body billiards and the techniques used in this paper, while also providing
suggestions for further directions in the study of this problem.

2 Billiards, collisions, and linear subspaces

2.1 N -body billiards

Motivated by the high-energy limit of the N -body problem, [9] constructs N-body billiards,
a formulation of an N -billiard dynamical system. We provide an outline of this system below.
Consider an N massive point particle system in d-dimensional Euclidean space Rd by its confi-
guration space

E =
(
Rd
)N ≈ RN ⊗ Rd.

Within E there are
(
N
2

)
binary collision subspaces

∆ij =
{
q = (q1, . . . , qN ) ∈

(
Rd
)N

: qi = qj
}
⊂ E

for some i 6= j. A billiard trajectory will be a polygonal curve ` : R→ E, all of whose vertices are
collisions (i.e., vertices of ` lie in ∆ij for some i, j). When ` intersects a collision subspace ∆ij

it instantaneously changes direction by the law “angle of incidence equals angle of reflection,”
given by equations (2.1) and (2.2) below. We call a collision point a time t∗ for which `(t∗) ∈ ∆ij

for some distinct 1 ≤ i, j ≤ N . We assume collision points are discrete and that no edge of `
lies within a collision subspace. The velocities v−, v+ of ` immediately before and after collision
with ∆ij are locally constant and well-defined. These velocities undergo a jump v− 7→ v+ at
collision. Define

π∆ij : E → ∆ij

to be the orthogonal projection onto ∆ij . We require that each velocity jump follow the rules

‖v−‖ = ‖v+‖, (2.1)

π∆ij (v−) = π∆ij (v+), (2.2)

which we consider as conservation of energy and conservation of linear momentum, respectively.
Without loss of generality, we assume the billiard trajectory ` has unit speed.

An astute reader will notice that equation (2.2) is ambiguous if the collision point t∗ is a time
at which multiple collisions occur (e.g., triple collision or simultaneous binary collisions). This
is analogous to trying to define standard billiard dynamics at a vertex of a polygonal billiard
table. However, we only explore the case with N = 3 point-billiards, and hence triple collision
is the only scenario in which t∗ could be in more than one collision subspace. In [9] the issue is
addressed by agreeing to choose one of the collision subspaces to which t∗ will belong and use
only that subspace in implementing the conservation of momentum rule (2.2). In particular,
billiard trajectories with multiple collisions include extra structure of labelling of collision points
(see Section 2.1 of [9] for additional details).

This construction also leads to non-deterministic dynamics. For a given v− ∈ E \ 0 and
t∗ ∈ ∆ij , if the binary collision subspaces are codimension d, d ≥ 1, there is a (d−1)-dimensional
sphere’s worth of choices for outgoing velocities v+. Even if d = 1, the dynamics are non-
deterministic, as the 0-sphere consists of two choices. It is standard to turn this case into
a deterministic process by requiring transversality: v+ 6= v− at each collision. This is exactly
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the case for N masses on a line. Similar degenerate billiard constructions have been studied [4, 5]
along with their connections to celestial mechanics.

Consider a simple nontrivial case, N = 1 and d = 2, and hence there are no binary collision
subspaces. Suppose the point-billiard is launched into a planar wedge of angle measure α. Can
such a particle be trapped inside the wedge for infinite time? The answer is negative, and
moreover through a simple geometric argument we can provide an upper bound on the total
number of collisions of the particle with the sides of the wedge.

Theorem 2.1. Consider a billiard trajectory inside a wedge with angle measure α. The maxi-
mum number of collisions within the angle is

⌈
π
α

⌉
where d·e is the least integer function.

This can clearly be seen as follows. Consider an incoming billiard trajectory into the wedge
of angle α. Reflect the angle itself α across the side of impact and consider the image of the
trajectory under those reflections. The billiard trajectory’s image is a straight line, which can be
seen to obey the rule “angle of incidence equals angle of reflection”. This argument is illustrated
in Fig. 1.

a b

c

Figure 1. (a) The billiard enters the wedge; (b) upon colliding with one wall, reflect the wedge across

the wall so the reflected trajectory is a straight line; (c) repeat until the straight-line trajectory leaves

the reflected wedge. The angle unfolds six times for a total of six collisions in the original wedge.

Our aim is to use this technique in higher dimensions to bound the total number of collisions
by using the collision subspaces as the “walls” of the wedge.

2.2 Tensor construction of the N -billiard system

A useful tool in the N -body problem is the mass metric on RN :

〈v,w〉M =
N∑

i=1

miviwi (2.3)

for vectors v,w ∈ RN and masses mi > 0. It follows from this definition that the squared norm
is twice the kinetic energy.
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In the configuration space RN⊗Rd, we use the mass metric on RN and the standard Euclidean
inner product on Rd. Let εi ∈ RN denote the ith standard basis vector. Define Ei := εi√

mi
so

that Ei is a unit vector in RN with respect to the mass metric.

It will be useful to translate the definition of the binary collision subspace into our tensor
product construction as the following span of orthonormal elements of RN ⊗ Rd:

∆ij =

{
E1 ⊗ q1, . . . ,

εi + εj√
mi +mj

⊗ qi, . . . , EN ⊗ qN : qk ∈ Rd, ‖qk‖ = 1

}
.

Remark 2.2. In the collision subspaces, we adopt the convention that the “location” index will
match that of the smaller of the two point mass indices, e.g., the element

εi+εj√
mi+mj

⊗qi will be used

instead of
εi+εj√
mi+mj

⊗ qj as a basis element in ∆ij . And we will continue to assume that each qk

is itself a unit vector in Rd. We omit the word “span” and write subspaces U = {u1, . . . , uN} to
mean the R-linear span of the listed basis vectors. We shall also write these subspaces in terms
of an orthonormal basis (even though an orthogonal basis is good enough).

2.3 Linear algebra and principal angles

Basic ideas from linear algebra provide a tool for computing the angle between linear subspaces
of a vector space.

Definition 2.3. Let F , G be subspaces of Rn with dim(F ) = p, dim(G) = q and let r :=
min{p, q}. The principal angles ∠(F,G) = [θ1, θ2, . . . , θr], are given by

cos(θ1) = max
u∈F
‖u‖=1

max
v∈G
‖v‖=1

〈u, v〉 = 〈u1, v1〉,

where 〈·, ·〉 is the standard Euclidean inner product. For each 1 < k ≤ r,

cos(θk) = max
u∈F
‖u‖=1
〈u,ui〉=0

max
v∈G
‖v‖=1
〈v,vi〉=0

〈u, v〉 = 〈uk, vk〉

for each 1 ≤ i ≤ k− 1. The vectors uk, vk which realize the angle θk are called principal vectors.

By construction, we have that 0 ≤ θ1 ≤ · · · ≤ θr ≤ π/2. An equivalent definition in terms
of cosines of the principal angles can be found using the singular value decomposition of the
matrix F>G where F , G are matrices whose columns are orthonormal bases for the subspaces F
and G, respectively. See [3] for details.

The next lemma and example demonstrate that the angles between linear subspaces follow
similar properties to what one would expect in the standard Euclidean geometry.

Lemma 2.4 ([11, 12]). Let F , G be subspaces of Rn with dim(F ) = p, dim(G) = q. Furthermore
let ∠(F,G) and ∠∗(F,G) denote the vector of principal angles between F and G in increasing
order and decreasing order, respectively.

1. ∠(F,G) = ∠(G,F ).

2. [0, . . . , 0,∠(F,G)] =
[
0, . . . , 0,∠

(
F⊥, G⊥

)]
, with max{n − p − q, 0} zeros on the left and

max{p+ q − n, 0} zeros on the right.

3.
[
0, . . . , 0,∠

(
F,G⊥

)]
=
[
0, . . . , 0,∠

(
F⊥, G

)]
, with max{q − p, 0} zeros on the left and

max{p− q, 0} zeros on the right.
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4.
[
∠(F,G), π2 , . . . ,

π
2

]
=
[
0, . . . , 0, π2 − ∠∗

(
F,G⊥

)]
, with max{p − q, 0} π

2 ’s on the left and
max{p+ q − n, 0} zeros on the right.

The first property follows from Definition 2.3, and we do not provide proofs for the rest of the
properties. Proofs can be found as Theorem 2.7 in [11] or as Theorems 2.6 and 2.7 in [12].

Example 2.5. Consider subspaces L and M in R6.

� Suppose dim(L) = dim(M) = 2 and ∠(L,M) =
[
π
3 ,

π
2

]
. Then ∠

(
L⊥,M⊥

)
=
[
0, 0, π3 ,

π
2

]
,

and ∠
(
L,M⊥

)
= ∠

(
L⊥,M

)
=
[
0, π6

]
.

� Suppose dim(L) = dim(M) = 4 and ∠(L,M) =
[
0, 0, π4 ,

π
3

]
. We conclude ∠

(
L⊥,M⊥

)
=[

π
4 ,

π
3

]
and ∠

(
L,M⊥

)
= ∠

(
L,M⊥

)
=
[
π
6 ,

π
4

]
.

Though a subtlety that isn’t obvious in the two examples above is that, given ∠(L,M),
the angles that appear in the vector ∠

(
L⊥,M⊥

)
are taken from the list ∠(L,M) from largest

to smallest. We illustrate this point in the next example.

Example 2.6. If dim(L) = dim(M) = 8 in R13 and

∠(L,M) =

[
0,
π

6
,
π

6
,
π

4
,
π

3
,
π

3
,
π

3
,
π

2

]
,

then

∠(L⊥,M⊥) =

[
π

4
,
π

3
,
π

3
,
π

3
,
π

2

]
,

which are the five largest angles in the vector ∠(L,M).

Corollary 2.7. If U, V ⊂ Rn are codimension 1 subspaces, then the nonzero angle between U
and V is ∠

(
U⊥, V ⊥

)
. That is, the nonzero angle between these subspaces is precisely the angle

between their normal vectors.

Our first goal is to compute the angles between the collision subspaces ∆ij and ∆kl for some
positive integers i, j, k, l and 1 ≤ i, j, k, l ≤ N . By our definitions of principal angles, there will
be d(N − 1) principal angles between the codimension d collision subspaces.

3 Angles between collision subspaces

Suppose the masses in each of the N point billiards are mi, mj , mk, ml for positive integers i,
j, k, l. We can compute the principal angles between the binary collision subspaces in terms
of their respective masses.

Theorem 3.1. Let i, j, k, l be distinct integers satisfying 1 ≤ i, j, k, l ≤ N .

a) The first d(N−2) principal angles between ∆ij and ∆kl are 0 and the remaining d principal
angles are π/2.

b) The first d(N − 2) principal angles between ∆ij and ∆jk are 0 and the last d principal
angles are

θ = arccos

(
2(mi +mk)−mj√

(mi +mj + 4mk)(4mi +mj +mk)

)
.
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�ij

�kl

(�ij \�kl)
? \�ij

(�ij \�kl)
? \�kl

✓
�ij \�kl

Figure 2. The geometric angle ✓ computed between colli-
sion subspaces.

(a)
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q2

q1

q3

Figure 2. Jacobi vectors

3.2. The Main Collision Bound Theorems. Consider equal masses M in the
plane. This changes our linear projection into

⇡tr : C3 ! C2, (q1, q2, q3) 7!
p

M

 
1p
2
(q1 � q2),

r
2

3

✓
q3 �

1

2
(q1 + q2)

◆!
.

The mass M is clearly a dilation factor, so we assume the mass to be unit henceforth.

Recall our codimension 2 collision subspaces are defined as follows:

�12 = {(q1, q2, q3) 2 C3 : q1 = q2}
�23 = {(q1, q2, q3) 2 C3 : q2 = q3}
�13 = {(q1, q2, q3) 2 C3 : q1 = q3}.

Example 2. Using our previous results, we can see that, for instance, \(�12,�23) =
[0, 0, �

3 , �
3 ]. In this case the principal vectors are

✓1 = 0 :
1p
3
(1, 1, 1) and itself

✓2 = 0 :
1p
3
(i, i, i) and itself

✓3 =
⇡

3
:

1p
6
(�1,�1, 2) and

1p
6
(�2, 1, 1)

✓4 =
⇡

3
:

1p
6
(�i,�i, 2i) and

1p
6
(�2i, i, i).

The image of these subspaces under ⇡tr are

�0
12 = {(v, w) 2 C2

0 : v = 0} = {(0, w) 2 C2
0 : w 2 C} = spanC{(0, 1)}

�0
23 =

⇢
(v, w) 2 C2

0 : w = � 1p
3
v

�
=

⇢✓
v,� 1p

3
v

◆
2 C2

0 : v 2 C
�

= spanC

( p
3

2
,�1

2

!)

�0
13 =

⇢
(v, w) 2 C2

0 : w =
1p
3
v

�
=

⇢✓
v,

1p
3
v

◆
2 C2

0 : v 2 C
�

= spanC

( p
3

2
,
1

2

!)
.

(b)
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Each of these codimension 2 (and dimension 2) subspaces are planes in C2
0.

C

C

�0
12

�0
13

�0
23

Figure 3. An “overhead” view of C2
0 and the collision subspaces.

Through this reduction via Jacobi coordinates, the angles between these subspaces
are \(�0

12,�
0
23) = \(�0

12,�
0
13) = \(�0

23,�
0
13) = [�3 , �

3 ].

And to further our previous example, we can observe that the principal vectors for

\(�0
12,�

0
23) are (0, 1) and

⇣
�

�
3

2 , 1
2

⌘
for the first angle, and (0, i) and

⇣
�

�
3

2 i, 1
2 i
⌘

for the second angle. But in fact one can check that indeed

⇡tr

✓✓
� 1p

6
,� 1p

6
,

2p
6

◆◆
= (0, 1)

and

⇡tr

✓✓
� 2p

6
,

1p
6
,

1p
6

◆◆
=

 
�
p

3

2
,
1

2

!
.

Since ⇡tr is linear, we know that the image of the other pair of principal vectors
between �12 and �23 will also be the principal vectors between �0

12 and �0
23. That

is, the image of a nonzero principal vector under ⇡tr is still a principal vector!

Theorem 4. In the equal mass planar 3-billiard problem, there can be at most 3
collisions.

To prove the theorem, we need to following lemma.

Figure 3. (a) Jacobi vectors; (b) An “overhead” view of C2
0

and the collision subspaces.

Figure 2. The geometric angle θ computed between collision subspaces.

Proof. First, by Definition 2.3 we note that the number of principal angles which are 0 bet-
ween ∆ij and ∆kl is exactly the dimension of their intersection. In both cases (a) and (b), the
dimension of the intersection is d(N − 2).

Writing the collision subspaces as the span of basis elements in tensor product form, we see
that

∆ij =

{
E1 ⊗ q1, . . . ,

εi + εj√
mi +mj

⊗ qi, . . . , EN ⊗ qN
}

and

∆kl =

{
E1 ⊗ q1, . . . ,

εk + εl√
mk +ml

⊗ qk, . . . , EN ⊗ qN
}
.

Geometrically the desired angle between the subspaces can be found by computing the angle
between (∆ij ∩∆kl)

⊥ ∩∆ij and (∆ij ∩∆kl)
⊥ ∩∆kl. See Fig. 2. First, we find that

∆ij ∩∆kl =

{
E1 ⊗ q1, . . . ,

εi + εj√
mi +mj

⊗ qi, . . . ,
εk + εl√
mk +ml

⊗ qk, . . . , EN ⊗ qN
}
,

and hence

(∆ij ∩∆kl)
⊥ =

{
mjεi −miεj√
mimj(mi +mj)

⊗ β1,
mlεk −mkεl√
mkml(mk +ml)

⊗ β2

}

for some arbitrary unit vectors β1, β2 ∈ Rd. Then

(∆ij ∩∆kl)
⊥ ∩∆ij =

{
mlεk −mkεl√
mkml(mk +ml)

⊗ β2

}

and

(∆ij ∩∆kl)
⊥ ∩∆kl =

{
mjεi −miεj√
mimj(mi +mj)

⊗ β1

}
.

Thus

[
(∆ij ∩∆kl)

⊥ ∩∆ij

]
⊥
[
(∆ij ∩∆kl)

⊥ ∩∆kl

]
.
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Therefore regardless of the individual masses, ∆ij and ∆kl are orthogonal to one another when
i, j, k, l are distinct.

We now turn our attention to the case where one of the indices is the same across the two
collision subspaces. Repeating the same calculations as above, we find that

∆ij ∩∆jk =

{
E1 ⊗ q1, . . . ,

εi + εj + εk√
mi +mj +mk

⊗ qi, . . . , EN ⊗ qN
}

and

(∆ij ∩∆jk)
⊥ =

{
mjεi −miεj√
mi +mj

⊗ β1,
εi + εj − 2εk√
mi +mj + 4mk

⊗ β3

}

for an arbitrary unit vector β3 ∈ Rd. Then

(∆ij ∩∆jk)
⊥ ∩∆ij =

{
εi + εj − 2εk√
mi +mj + 4mk

⊗ β3

}

and

(∆ij ∩∆jk)
⊥ ∩∆jk =

{
2εi − εj − εk√
4mi +mj +mk

⊗ β3

}
.

Therefore by Definition 2.3, the nonzero angle between these two subspaces is given by

cos(θ) =
2(mi +mk)−mj√

(mi +mj + 4mk)(4mi +mj +mk)
. �

If the masses are all equal, the result is easy to state.

Corollary 3.2. Let i, j, k, l be distinct integers satisfying 1 ≤ i, j, k, l ≤ N . Suppose mi =
mj = mk = ml > 0.

a) The first d(N−2) principal angles between ∆ij and ∆kl are 0 and the remaining d principal
angles are π/2.

b) The first d(N−2) principal angles between ∆ij and ∆jk are 0 and the remaining d principal
angles are π/3.

4 Billiard trajectories and collision bounds in the plane

4.1 A primer on Jacobi coordinates and the mass metric

We follow the approach of Sections 3 and 7 of [14]. We consider the planar 3-billiard ball problem
whose configuration space is C3. A vector q = (q1, q2, q3) ∈ C3 represents a located triangle
with each of its components representing the vertices of the triangle.

The mass metric on the configuration space C3 is the Hermitian inner product

〈v,w〉M = m1v1w1 +m2v2w2 +m3v3w3.

This is consistent with equation (2.3) used in the tensor construction.
A translation of this located triangle q by c ∈ C is given by the located triangle q+ c1 where

1 = (1, 1, 1). Define

C2
0 := 1⊥ =

{
q ∈ C3 : m1q1 +m2q2 +m3q3 = 0

}

to be the set of planar three-body configurations whose center of mass qcm is at the origin. This
two-dimensional complex space represents the quotient space of C3 by translations.
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Definition 4.1. The Jacobi coordinates for C2
0 :=

{
q ∈ C3 : qcm = 0

}
are given by

v = µ1(q1 − q2), w = µ2

(
q3 −

m1q1 +m2q2

m1 +m2

)
,

where 1
µ21

= 1
m1

+ 1
m2

and 1
µ22

= 1
m3

+ 1
m1+m2

.

These are normalized coordinates which diagonalize the restriction of the mass metric to C2
0,

see Fig. 3(a). From this we can define the complex linear projection

πtr : C3 → C2, (q1, q2, q3) 7→ (v, w),

which realizes the metric quotient of C3 by translations.
It is worthwhile to note that using Jacobi coordinates and our map πtr, all of the triple

collision triangles (q, q, q) ∈ C3 are mapped to the origin.

4.2 Collision bounds in the plane

Consider equal masses M in the plane. This changes the linear projection into

πtr : C3 → C2, (q1, q2, q3) 7→
√
M

(
1√
2

(q1 − q2),

√
2

3

(
q3 −

1

2
(q1 + q2)

))
.

The mass M acts as a dilation factor, so we assume the mass to be unit henceforth.
The codimension 2 binary collision subspaces can be defined in terms of the complex coordi-

nates as follows:

∆12 =
{

(q1, q2, q3) ∈ C3 : q1 = q2

}
,

∆23 =
{

(q1, q2, q3) ∈ C3 : q2 = q3

}
,

∆13 =
{

(q1, q2, q3) ∈ C3 : q1 = q3

}
.

Example 4.2. Using Theorem 3.1, we can see that ∠(∆12,∆23) =
[
0, 0, π3 ,

π
3

]
. In this case the

principal vectors are

θ1 = 0:
1√
3

(1, 1, 1) and itself,

θ2 = 0:
1√
3

(i, i, i) and itself,

θ3 =
π

3
:

1√
6

(−1,−1, 2) and
1√
6

(−2, 1, 1),

θ4 =
π

3
:

1√
6

(−i,−i, 2i) and
1√
6

(−2i, i, i).

The image of these subspaces under πtr are

∆0
12 =

{
(v, w) ∈ C2

0 : v = 0
}

= spanC{(0, 1)},

∆0
23 =

{
(v, w) ∈ C2

0 : w = − 1√
3
v

}
= spanC

{(√
3

2
,−1

2

)}
,

∆0
13 =

{
(v, w) ∈ C2

0 : w =
1√
3
v

}
= spanC

{(√
3

2
,
1

2

)}
.

Each of these codimension 2 subspaces are planes in C2
0, as pictured in Fig. 3(b).
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C

C

∆0
12

∆0
23

∆0
23

q3

q2

q1

a b

Figure 3. (a) Jacobi vectors; (b) an “overhead” view of C2
0 and the collision subspaces.

Through this reduction via Jacobi coordinates, the angles between these subspaces are
∠
(
∆0

12,∆
0
23

)
= ∠

(
∆0

12,∆
0
13

)
= ∠

(
∆0

23,∆
0
13

)
=
[
π
3 ,

π
3

]
.

And to further our previous example, we can observe that the principal vectors for ∠
(
∆0

12,∆
0
23

)

are (0, 1) and
(
−
√

3
2 ,

1
2

)
for the first angle, and (0, i) and

(
−
√

3
2 i,

1
2 i
)

for the second angle. But
in fact one can check that indeed

πtr

((
− 1√

6
,− 1√

6
,

2√
6

))
= (0, 1)

and

πtr

((
− 2√

6
,

1√
6
,

1√
6

))
=

(
−
√

3

2
,
1

2

)
.

Since πtr is linear, we know that the image of the other pair of principal vectors between ∆12

and ∆23 will also be the principal vectors between ∆0
12 and ∆0

23. That is, the image of a nonzero
principal vector under πtr is still a principal vector.

Theorem 4.3. In the equal mass planar 3-body billiard problem there can be at most 3 collisions.

To prove the theorem, we need to following lemma.

Lemma 4.4. Let V1 and V2 be arbitrary vectors in two collision subspaces in C2
0 and let θ̂ denote

the angle between the vectors V1 and V2. Then π
3 ≤ θ̂ ≤ π

2 .

Proof. Without loss of generality we consider two of our three collision subspaces, namely ∆0
12

and ∆0
23 and consider two arbitrary vectors V1 and V2 in ∆0

12 and ∆0
23, respectively (see Fig. 4).

Recall the definition of principal angles:

cos(θ1) = max
u∈∆0

12
‖u‖=1

max
v∈∆0

23
‖v‖=1

〈u, v〉 := 〈u1, v1〉,

where u1 and v1 are the principal vectors which realize this principal angle.
From our earlier calculations, we know that cos(θ1) = π

3 and that our principal angles always
satisfy 0 ≤ θi ≤ π

2 . Because cos(θ) is a decreasing function on the interval 0 ≤ θ ≤ π
2 , we see

that

cos(θ1) = 〈u1, v1〉 ≥ 〈V1, V2〉 = cos
(
θ̂
)
,

because the inner product is maximized. Hence the possible angles between the vectors V1

and V2 must satisfy π
3 ≤ θ̂ ≤ π

2 . The argument and calculation is the same if we choose any pair
of these collision subspaces. This proves the lemma.

In fact, the angle θ̂ = π
2 can be realized if we let V1 =

(
0,
√

3
2 −1

2 i
)

and V2 =
(√

3+3i
4 , 1+

√
3i

4

)
. �
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∆0
12

∆0
12

V1

(0, i)

(0, 1)

V2

(√
3

2 i,−1
2 i
)

(√
3

2 ,−1
2

)
0

Figure 4. The two subspaces ∆0
12 and ∆0

23 along with their orthonormal basis vectors. In our proof we

look to measure the angle between arbitrary vectors V1 ∈ ∆0
12 and V2 ∈ ∆0

23.

Using the preceding lemma, the proof of the theorem is short and follows from the “unfolding
the angle” argument. We also refer to a sequence of collisions by the order in which the binary
collisions occur. For example, the collision sequence (12)(23) indicates that `(t) has a collision
point in ∆12 first and then ∆23 second.

Proof. Consider an arbitrary piecewise linear trajectory `(t) in C2
0, we aim to maximize the

number of collisions. Without loss of generality, assume `(t) intersects ∆0
12 first. Suppose `(t)

intersects ∆0
12 at time t = t1 and let V1 be a vector in ∆0

12 whose endpoint is this point
of intersection, `(t1). The next subspace `(t) intersects can be either ∆0

23 or ∆0
13. Assume `(t)

next visits ∆0
23 at time t = t2, and let the vector V2 ∈ ∆0

23 be a vector whose endpoint is
this second point of intersection, `(t2). We know from the preceding lemma that the angle θ̂1

between V1 and V2 satisfies π
3 ≤ θ̂1 ≤ π

2 .
16 SEAN GASIOREK

0

�0
12

�0
23

�0
13

`(t)

�0
12

0

�0
23

�0
13

✓̂1 ✓̂2

`(t)

Figure 5. The unfolding of the (12)(23)(13) trajectory.

Theorem 5. For three arbitrary point-masses mi, mj , mk, the maximum number
of collisions is

2
6666666

⇡

arccos

 
2(mi + mk) � mjp

(mi + mj + 4mk)(4mi + mj + mk)

!

3
7777777

.

This expression can be simplified slightly. Notice the expression above is symmetric
in mi and mk, so write mi = ↵mj and mk = �mj . The expression then is not
directly dependent upon the masses but on the relative ratios of the masses, ↵ and
�:

2
6666666

⇡

arccos

 
2(↵+ �) � 1p

(↵+ 1 + 4�)(4↵+ 1 + �)

!

3
7777777

.

This expression also provides an interesting bound on the number of collisions. As
seen in figure 6, the number of collisions only seems to change when � is large with
↵⌧ � or vice-versa. This could be seen as accommodating for the

Figure 5. The unfolding of the (12)(23)(13) trajectory.
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We now repeat this process again. From `(t2), the trajectory `(t) can now travel to either ∆0
23

or ∆0
13. Without loss of generality, assume ∆0

13 is the next subspace. Let `(t) intersect ∆0
13

at `(t3) for some time t = t3 and let V3 be a vector in ∆0
13 whose endpoint is at the point

of intersection `(t3). Applying our lemma again, the angle θ̂2 between V2 and V3 satisfies
π
3 ≤ θ̂2 ≤ π

2 . However, after time t3, `(t) cannot intersect any more collision subspaces. At best,

θ̂1 + θ̂2 = 2π
3 , and any third angle will add at least π

3 by the previous lemma. So if we glue
together the sectors spanned by V1 and V2, and V2 and V3 and flatten this angle, by “unfolding
the angle” the trajectory `(t) can intersect no more subspaces (see Fig. 5). This leaves us with
a collision bound of at most

⌈
π

(π/3)

⌉
= 3 possible collisions. �

4.3 An arbitrary mass collision bound theorem

Considering arbitrary masses and reusing the proof of Theorem 4.3, we state the following:

Theorem 4.5. For three arbitrary point-masses mi, mj, mk, the maximum number of collisi-
ons is

⌈
π/ arccos

(
2(mi +mk)−mj√

(mi +mj + 4mk)(4mi +mj +mk)

)⌉
.

This expression can be simplified slightly. The expression above is symmetric in mi and mk,
so write mi = αmj and mk = βmj . The expression then is not directly dependent upon the
masses but on the relative ratios of the masses, α and β:

⌈
π/ arccos

(
2(α+ β)− 1√

(α+ 1 + 4β)(4α+ 1 + β)

)⌉
.

This expression also provides an interesting bound on the number of collisions. As seen in
Fig. 6, the number of collisions only seems to change when β is large with α� β or vice-versa.

4

0

6

8

10

2

2 6 100 4 8

α

β

Figure 6. A contour plot for the maximum number of collisions when (α, β) ∈ (0, 10] × (0, 10] and

mj = 1.
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4.4 A detour: the Foch sequence

A result by Murphy and Cohen [15, 16] states that the bound of the 3-billiard ball (seen as
spheres) problem in Rd is four. The four-collision sequence (12)(23)(12)(13) is called the Foch
sequence, see Fig. 7. Their proof is geometric and makes conditions on the locations of one of
the balls in terms of the radii of the other billiard balls. However, it is interesting to note that
despite how it may look at an initial glance, this Foch sequence does not contradict Theorem 4.3.
In N -body billiards, the billiard balls are seen as point masses, and so no such considerations
are necessary. In fact, if the radii shrink to zero and follow the details of the Murphy and Cohen
proof, the Foch sequence is no longer possible, and the collision bound jumps from 4 to 3 when
the radii reach zero.18 SEAN GASIOREK

2

1A

1

2

3

2

3

1

A

B

C
D

Figure 7. The Foch Sequence (12)(23)(12)(13). After the (23)
collision at B, particle 3 has to “get around” particle 2 in order to
collide with particle 1 in the fourth collision. The distance particle
2 moves between B and C has been exaggerated in the figure.
(partial caption from [MC2])

4. Lines Intersection Collision Subspaces

4.1. Results in RN . Motivated by the results in section 2, we aim to bound the
number of times a billiard trajectory can intersect a collision subspace more gener-
ally. In this section, we treat the billiard trajectory as a line in E, not a piecewise
linear trajectory. To start, we bound the number of times a line can intersect arbi-
trary subspaces of codimension d. We also make the assumption that the line does
not lie within any of the codimension d subspaces.

Lemma 4. In RN there are N mutually orthogonal hyperplanes. The N � 1 prin-
cipal angles between any two such (distinct) hyperplanes are all 0 except the last
angle which is ⇡

2 .

Note: We use the word “orthogonal” throughout to mean that the only nonzero
principal angles are ⇡

2 (which is di↵erent than the orthogonal complement of the
subspaces).

Figure 7. The Foch Sequence (12)(23)(12)(13). After the (23) collision at B, particle 3 has to “maneuver

around” particle 2 to collide with particle 1 in the fourth collision. See [8] for an alternate viewpoint on

this sequence.

5 Future work and next steps

The work in this paper is the result of attempts to solve the original problem: bounding the
number of collisions in an N -billiard system using the computed angles between collision sub-
spaces. The main collision theorems were possible due to the symplectic reduction using Jacobi
coordinates, which reduced the angles between the reduced collision subspaces to all be nonzero.
When N > 3 and d > 2, the above reduction techniques do not completely eliminate all nonzero
angles. Further reductions should be considered, e.g., reducing by rotations. This model is
also inherently simplistic. Geometric and physical considerations are easily ignored (e.g., when
considering hard rods on a line which cannot pass one another), but the bounds may still exist.
Is there another interpretation of the system that more closely matches a physical system?
A more rigorous study of this model to include such constraints is a logical next step.
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