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Abstract. For any variable number, a non-stationary Ruijsenaars function was recently
introduced as a natural generalization of an explicitly known asymptotically free solution
of the trigonometric Ruijsenaars model, and it was conjectured that this non-stationary Rui-
jsenaars function provides an explicit solution of the elliptic Ruijsenaars model. We present
alternative series representations of the non-stationary Ruijsenaars functions, and we prove
that these series converge. We also introduce novel difference operators called T which, as
we prove in the trigonometric limit and conjecture in the general case, act diagonally on the
non-stationary Ruijsenaars functions.
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1 Introduction

The celebrated quantum Calogero–Moser–Sutherland systems [16] have natural relativistic gene-
ralizations discovered by Ruijsenaars [17]. The Ruijsenaars systems come in four kinds: rational,
trigonometric, hyperbolic, and elliptic, with the latter case being the most general and reducing
to the others in certain limits [17]. While the explicit solution of the trigonometric Ruijsenaars
model is known since a long time: it is given by the celebrated Macdonald polynomials [13],
and a construction of eigenfunctions of the hyperbolic model was completed recently [10], only
partial results about the explicit solution in the general elliptic case exist [7, 18, 19]. Recen-
tly, one of us (S) conjectured an explicit solution of the elliptic Ruijsenaars model as a limit
of special functions defined by explicit formal power series and called non-stationary Ruijsenaars
functions [21]. In particular, it was shown in [21] that these functions reduce to the known
solutions of the trigonometric Ruijsenaars model in the trigonometric limit; they have several
remarkable symmetry properties; and they arise in a quantum field theory related to the elliptic
Ruijsenaars system in a way that is a natural generalization of how the known solutions of the
trigonometric Ruijsenaars model arise in a quantum field theory related to the trigonometric
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Ruijsenaars model (this is only a partial list of results in [21]). The validity of this conjecture
was also tested by symbolic computer computations.

In this paper we prove some properties of the non-stationary Ruijsenaars functions which,
we hope, will be useful to find proofs of the conjectures in [21]. In particular, we give alternative
representations of these functions which are simpler than the original definitions; we prove that
the series defining these functions are absolutely convergent in a suitable domain; and we present
novel difference operators, called T , which, we conjecture, acts diagonally on the non-stationary
Ruijsenaars functions (by this we mean that the latter are eigenfunctions of the former).

Notation: Throughout the paper, the symbols q, t, p, κ (complex parameters) and N (variable
number) have special significance. We use the following standard notation,

(z; q)∞ ≡
∞∏
n=0

(
1− zqn

)
(|q| < 1),

(z; q)k ≡
(z; q)∞

(qkz; q)∞
(k ∈ Z),

(z; q, p)∞ ≡
∞∏

n,m=0

(
1− qnpmz

)
(|q| < 1, |p| < 1),

θ(z; p) ≡ (z; p)∞(p/z; p)∞

for z ∈ C. Moreover, Tq,z = qz∂z , i.e.,

(Tq,zf)(z) = f(qz)

for functions f(z) of z ∈ C. For z ∈ C, Re(z) and Im(z) are the real- and imaginary parts
of z, and sin arg(z) = Im(z)/|z|. For x = (x1, . . . , xN ) and λ = (λ1, . . . , λN ), xλ is short
for xλ11 · · ·x

λN
N , x−1 is short for

(
x−1

1 , . . . , x−1
N

)
, and x+1 = x. We denote as C[[z1, . . . , zN ]] the

space of all formal power series f(z) =
∑

µ∈ZN≥0
cµz

µ1
1 · · · z

µ
N in formal variables z = (z1, . . . , zN )

with complex coefficients cµ.

2 Prerequisites

We recall some known facts about the Macdonald polynomials [13] and certain special functions
generalizing the Macdonald polynomials and constructed so as to solve the trigonometric Rui-
jsenaars model [15, 20] (Section 2.1). We also recall the eigenvalue problem defining the elliptic
Ruijsenaars model, and the definition of the non-stationary Ruijsenaars functions (Section 2.2).

2.1 Trigonometric Ruijsenaars model

For fixed N ∈ Z≥1, the Macdonald polynomials Pλ(x; q, t) = Pλ
(
x; q−1, t−1

)
are symmetric

polynomials in variables x = (x1, . . . , xN ) ∈ CN depending on two complex parameters q, t and
labeled by partitions λ of length less than or equal to N , i.e., λ = (λ1, . . . , λN ) with λi ∈ Z≥0

such that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. They can be defined as common eigenfunctions of the
following commuting Macdonald–Ruijsenaars operators,

D±N (x|q, t) ≡
N∑
i=1

N∏
j 6=i

(
1− t±1xi/xj

)
(1− xi/xj)

T±1
q,xi (2.1)

with corresponding eigenvalues
∑N

i=1 t
±(N−i)q±λi , together with a convenient normalization con-

dition [13].
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The operators D±N (x|q, t) are related by similarity transformations to the operators defining
the trigonometric Ruijsenaars model [17].

As conjectured by one of us (S) [20] and proved by two of us (NS) [15], these eigenfunctions
are naturally generalized to a special function fN (x|s|q, t) depending on another set of variables,
s = (s1, . . . , sN ) ∈ CN , and determined by the following requirement, up to normalization:
for λ ∈ CN , the function

xλfN (x|s|q, t), si = tN−iqλi (2.2)

is a common eigenfunction of D±N (x|q, t) with corresponding eigenvalue
∑N

j=1 s
±1
j ; if λ is a par-

tition, then the function in (2.2) is equal to the Macdonald polynomial Pλ(x; q, t) [15]. The
function fN (x|s|q, t) is called the asymptotically free solution of the trigonometric Ruijsenaars
model.

One remarkable property of this function is that it has a simple explicit series representation
which converges absolutely in a suitable domain [15]:1

fN (x|s|q, t) =
∑
θ∈MN

cN (θ|s|q, t)
∏

1≤i<k≤N
(xk/xi)

θik (2.3)

with MN the set of N ×N strictly upper triangular matrices with nonnegative integer entries:

MN ≡
{
θ = (θik)

N
i,k=1 | θik ∈ Z≥0 (∀ i, k), θik = 0 (1 ≤ k ≤ i ≤ N)

}
, (2.4)

and2

cN (θ|s|q, t) =

N∏
i=1

∏
i<j≤k≤N

(
q
∑
a>k(θia−θja)tsj/si; q

)
θik(

q
∑
a>k(θia−θja)qsj/si; q

)
θik

×
N∏
i=1

∏
i≤j<k≤N

(
q−θjk−

∑
a>k(θja−θia)qsj/tsi; q

)
θik(

q−θjk−
∑
a>k(θja−θia)sj/si; q

)
θik

(2.5)

(note that (2.3)–(2.5) is equivalent to (1.10)–(1.11) in [15]).
For later reference, we also define the function3

ϕN (x|s|q, t) ≡
∏

1≤i<j≤N

(qxj/txi; q)∞
(qxj/xi; q)∞

fN (x|s|q, t), (2.6)

which, as proved in [15], has the following remarkably symmetry properties:

ϕN (x|s|q, t) = ϕN (s|x|q, t) (bispectral duality),

ϕN (x|s|q, t) = ϕN (s|x|q, q/t) (Poincaré duality). (2.7)

2.2 Non-stationary Ruijsenaars functions

The analogue of the operators in (2.1) for the elliptic Ruijsenaars model depends on a further
complex parameter, p such that |p| < 1:

D±N (x|q, t, p) ≡
N∑
i=1

N∏
j 6=i

θ
(
t±1xi/xj ; p

)
θ(xi/xj ; p)

T±1
q,xi (2.8)

with the theta function θ(z; p) given in the introduction; note that D±N (x|q, t) = D±N (x|q, t, 0).

1Note that fN (x|s|q, t) here is pN (x; s|q, t) in [15].
2We write (2.5) in a way that emphasizes the similarity with (3.3) below, for reasons that will become clear

later on. Due to this, we include the empty factors for i = N .
3Note that ϕN (x|s|q, t) here is ψN (x; s|q, t) in [15].
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The non-stationary Ruijsenaars function f ĝlN (x, p|s, κ|q, t) is a conjectured eigenfunction
of a deformation of the operators in (2.8), depending on a further complex parameter, κ, and
reducing to the operators in (2.8) in the limit κ→ 1 [21].

Definition 2.1 (non-stationary Ruijsenaars functions). For N ∈ Z≥1, four parameters q, t, p, κ,
and two sets of variables x = (x1, . . . , xN ) and s = (s1, . . . , sN ), the non-stationary Ruijsenaars
function is defined as a formal power series in (px2/x1, . . . , pxN/xN−1, px1/xN ) as follows,

f ĝlN (x, p|s, κ|q, t) ≡
∑

λ(1),...,λ(N)∈P

N∏
i,j=1

N
(j−i|N)

λ(i),λ(j)
(tsj/si|q, κ)

N
(j−i|N)

λ(i),λ(j)
(sj/si|q, κ)

N∏
β=1

∏
α≥1

(pxα+β/txα+β−1)λ
(β)
α (2.9)

with xα+`N ≡ xα for all α = 1, . . . , N and ` ∈ Z≥1, P the set of all partitions λ of arbitrary
length, i.e., λ = (λ1, λ2, . . . ) with λi ∈ Z≥0 such that λ1 ≥ λ2 ≥ · · · and λi = 0 for i� 0, and

N
(k|N)
λ,µ (u|q, κ) ≡

∏
b≥a≥1

b−a≡k(modN)

(
uq−µa+λb+1κ−a+b; q

)
λb−λb+1

∏
β≥α≥1

β−α≡(−k−1)(modN)

(
uqλα−µβκα−β−1; q

)
µβ−µβ+1

(2.10)

for λ, µ ∈ P, k ∈ Z/NZ, and u ∈ C.

As discussed in [21], the expressions in (2.10) are Nekrasov factors [14]. Moreover, by chan-
ging (p, κ)→

(
p1/N , κ1/N

)
and scaling variables x→ pδ/Nx =

(
p(N−1)/Nx1, p

(N−2)/2x2, . . . , xN
)

and similarly for s, one obtains a function, f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
, that converges

to the asymptotically free solution of the Ruijsenaars model, fN (x|s|q, t), in the limit p→ 0 [21].

Remark 2.2. To explain the scaling just mentioned, we point out one important technical
point: in Definition 2.1, equations (2.11) and (2.12) below, and equations (4.10) and (4.11)
in Section 4, we use balanced coordinates xB, pB, sB, κB and tB (written without the subscript B
for simplicity), whereas elsewhere in the paper we use unbalanced coordinates xU , pU , sU , κU
and tU (also written without subscript U) related to the balanced coordinates as follows,

(xB)i = (pU )(N−i)/N (xU )i (i = 1, . . . , N), pB = (pU )N ,

(sB)i = (κU )(N−i)/N (sU )i (i = 1, . . . , N), κB = (κU )N , tB = q/tU .

Thus, the scaling just described can be understood as a transformation from balanced to unbal-
anced coordinates.

The main conjecture in [21] is that eigenfunction of the operator in (2.8) can be obtai-

ned by dividing this rescaled function f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
by a (known) factor

α
(
p1/N |κδ/Ns, κ1/N |q, t

)
and taking the limit κ → 1; see Conjecture 1.14 in [21]. One impor-

tant open problem is to find the operator depending on κ having these rescaled non-stationary
Ruijsenaars functions as eigenfunctions and reducing to the Macdonald–Ruijsenaars operator
in (2.8) in the limit κ → 1.4 At this point, this operator is only known in limiting cases: the
non-relativistic limit q → 1 where the Ruijsenaars systems reduce to the non-stationary elliptic
Calogero–Sutherland system [21], and the limit t, p → 0 with fixed p/t leading to the affine
Toda system [21]. We stress that the non-stationary T -operators introduced in this paper do
not reduce to the elliptic Macdonald–Ruijsenaars operators in the limit κ→ 1: the T -operators
are of a different kind, and they are new even in the trigonometric limit; only the affine Toda
limit of the non-stationary T -operator was known before [21].

4There is, however, a recent proposal mentioned in Section 5.
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A natural generalization of the function in (2.6) is

ϕĝlN (x, p|s, κ|q, t) ≡
∏

1≤i<j≤N

(
qpj−ixj/txi; q, p

N
)
∞(

qpj−ixj/xi; q, pN
)
∞

×
∏

1≤i≤j≤N

(
qpN−j+ixi/txj ; q, p

N
)
∞(

qpN−j+ixi/xj ; q, pN
)
∞
f ĝlN (x, p|s, κ|q, t) (2.11)

and, as conjectured in [21], it has the following symmetry properties generalizing the ones
in (2.7).

Conjecture 2.3. The functions in (2.11) satisfy

ϕĝlN (x, p|s, κ|q, t) = ϕĝlN (s, κ|x, p|q, t) (bispectral duality),

ϕĝlN (x, p|s, κ|q, t) = ϕĝlN (x, p|s, κ|q, q/t) (Poincaré duality). (2.12)

3 Results on the non-stationary Ruijsenaars function

We give alternative series representations of the non-stationary Ruijsenaars functions (Sec-
tion 3.1) and prove convergence of these series in a suitable domain (Section 3.2).

3.1 Alternative series representations

Our first result makes manifest that the non-stationary Ruijsenaars function in (2.9)–(2.10) is
a natural generalization of the asymptotically free solutions of the trigonometric Ruijsenaars
model in (2.3)–(2.5) . For that, we extend the variables x = (xi)

N
i=1 and s = (si)

N
i=1 to infinitely

many variables x̄ = (xi)
∞
i=1 and s̄ = (si)

∞
i=1; as we will see, the pertinent extension is provided

by the parameters p and κ, respectively — see (3.5).

We first introduce a natural generalization of the function in (2.3)–(2.5) to infinitely many
variables.

Definition 3.1. For N ∈ Z≥1, two parameters q, t, and two sets of infinitely many variables
x̄ = (x1, x2, . . . ) and s̄ = (s1, s2, . . . ), let the following define a formal power series in the
infinitely many variables (x2/x1, x3/x2, x4/x3, . . . ),

fN,∞(x̄|s̄|q, t) ≡
∑
θ∈M̂N

cN,∞(θ|s̄|q, t)
N∏
i=1

∏
k>i

(xk/xi)
θik (3.1)

with M̂N the set of infinite, N -periodic, strictly upper triangular matrices with nonnegative
integer entries which are non-zero only in a finite strip away from the diagonal:

M̂N ≡
{
θ = (θik)

∞
i,k=1 | θik = θi+N,k+N ∈ Z≥0 (i, k ≥ 1), θik = 0 (k ≤ i, k � i)

}
, (3.2)

and

cN,∞(θ|s̄|q, t) ≡
N∏
i=1

∏
i<j≤k<∞

(
q
∑
a>k(θia−θja)tsj/si; q

)
θik(

q
∑
a>k(θia−θja)qsj/si; q

)
θik

×
N∏
i=1

∏
i≤j<k<∞

(
q−θjk−

∑
a>k(θja−θia)qsj/tsi; q

)
θik(

q−θjk−
∑
a>k(θjb−θia)sj/si; q

)
θik

. (3.3)
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Note that the product in (3.3) always contains only a finite number of factors different from 1.
Moreover, by the condition θik = θi+N,k+N , a matrix θ ∈ M̂N is fully determined by the matrix
elements θik for 1 ≤ i ≤ N and 1 ≤ k < ∞. Furthermore, matrices in MN can be naturally
identified with matrices θ in M̂N by setting θik = 0 if i > N , or k > N , or both.

To state out result we use the N -vector δ ≡ (δ1, . . . , δN ) with δi = N − i, and the notation
pδ/Nx and κδ/Ns for the N -vectors with components

(
pδ/Nx

)
i

= p(N−i)/Nxi and
(
κδ/Ns

)
i

=

κ(N−i)/Nsi, respectively (i = 1, . . . , N). As explained in Remark 2.2, this can be understood as
a transformation going from balanced to unbalanced coordinates.

Theorem 3.2. The non-stationary Ruijsenaars function in (2.9)–(2.10) is related to the func-
tion in (3.1)–(3.3) as follows,

f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
= fN,∞(x̄|s̄|q, t) (3.4)

with the variables x = (xi)
N
i=1 and s = (si)

N
i=1 on the left-hand side extended to variables x̄ =

(xi)
∞
i=1 and s̄ = (si)

∞
i=1 on the right-hand side by the rules5

xi+N = pxi, si+N = κsi (i ≥ 1). (3.5)

(The proof is by straightforward computations given in Appendix A.)
In the following, it is sometimes convenient to use a notation for the functions fN,∞ that

emphasizes that the arguments x̄ and s̄ are fixed by x, s, p and κ:

Definition 3.3. We write

fN,∞(x, p|s, κ|q, t) ≡ fN,∞(x̄|s̄|q, t)

if x̄= (x1, x2, . . . ) and s̄= (s1, s2, . . . ) on the right-hand side are determined by x= (x1, . . . , xN ),
p, s = (s1, . . . , sN ), and κ as in (3.5). Thus

fN,∞(x, p|s, κ|q, t) =
∑
θ∈M̂N

cN,∞(θ|s, κ|q, t)eN,∞(θ|x, p)

with

cN,∞(θ|s, κ|q, t) ≡ cN,∞(θ|s̄|q, t), eN,∞(θ|x, p) ≡
N∏
i=1

∞∏
k=i+1

(xk/xi)
θik (3.6)

and the identifications in (3.5) on the right-hand side in (3.6).

Theorem 3.2 makes manifest the following important result in [21]: After suitably scaling
the variables, the non-stationary Ruijsenaars function reduces the asymptotically free solution
of the trigonometric Ruijsenaars model, fN (x|s|q, t) (2.3)–(2.5), in the limit p→ 0; in particular,
it becomes independent of κ in this limit:

Corollary 3.4. We have

lim
p→0

f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
= fN (x|s|q, t). (3.7)

Proof. By Theorem 3.2, (3.7) is equivalent to

lim
p→0

fN,∞(x, p|s, κ|q, t) = fN (x|s|q, t),

but this is obvious from definitions: by (3.5), (xk/xi) → 0 for k > N as p → 0; therefore, the
sum over θ ∈ M̂N on the right-hand side in (3.1) collapses to a sum over θ ∈ MN in this limit;
obviously, for θ ∈ MN , the coefficients cN,∞(θ|s̄|q, t) in (3.3) do not depend on si>N and are
identical with the coefficients cN (θ|s|q, t) in (2.5). �

5“xi+N = pxi (i ≥ 1)” is short for “xi+kN = pkxi (i = 1, . . . , N, k ∈ Z≥1)”.
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We prove Theorem 3.2 by a direct computation in Appendix A. This proof uses an alternative
representation of the function fN,∞(x̄|s̄|q, t) which is interesting in its own right:

Lemma 3.5. The formal power series in (3.1)–(3.3) can be written as

fN (x̄|s̄|q, t) =
∑
λ∈PN

CN,∞(λ|s̄|q, t)
N∏
i=1

∏
k≥1

(xi+k/xi+k−1)λ
(i)
k , (3.8)

with PN the set of all N -partitions λ =
(
λ(1), λ(2), . . . , λ(N)

)
, λ(i) a partition of arbitrary length

for i = 1, . . . , N , and

CN,∞(λ|s̄|q, t) =
N∏
i=1

∏
i<j≤k<∞

(
qλ

(i)
k−i+1−λ

(j)
k−j+1tsj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

qλ
(i)
k−i+1−λ

(j)
k−j+1qsj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

×
N∏
i=1

∏
i≤j<k<∞

(
q−λ

(j)
k−j+λ

(i)
k−i+1qsj/tsi; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

q−λ
(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

(3.9)

setting λ
(i+N)
j ≡ λ(i)

j .

Proof. Straightforward computations, using that θik = λ
(i)
k−i − λ

(i)
k−i+1 defines a one-to-one

correspondence between multi-partitions λ =
(
λ(1), . . . , λ(N)

)
in PN and matrices θ = (θik)

∞
i,k=1

in M̂N (the interested reader can find the details in Appendix A.1). �

It is interesting to note that

ϕN,∞(x̄|s̄|q, t) ≡
N∏
i=1

∏
j>i

(qxj/txi; q)∞
(qxj/xi; q)∞

fN,∞(x̄|s̄|q, t)

is a natural generalization of the function in (2.6) due to the following implication of Theorem 3.2.

Fact 3.6. The following holds,

ϕĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
= ϕN,∞(x̄|s̄|q, t)

with the variables x = (xi)
N
i=1 and s = (xi)

N
i=1 on the left-hand side extended to variables

x̄ = (xi)
∞
i=1 and s̄ = (si)

∞
i=1 on the right-hand side by the rules in (3.5). Moreover, the conjectures

in (2.12) are equivalent to

ϕN,∞(x̄|s̄|q, t) = ϕN,∞(s̄|x̄|q, t) (bispectral duality),

ϕN,∞(x̄|s̄|q, t) = ϕN,∞(x̄|s̄|q, q/t) (Poincaré duality), (3.10)

under the conditions in (3.5).

Proof. Since p(j−i)/N(pδ/Nx)
j
/
(
pδ/Nx

)
i

= xj/xi for all i, j = 1, . . . , N , we only need to show
that

N∏
i=1

∏
j>i

(qxj/txi; q)∞
(qxj/xi; q)∞

=
∏

1≤i<j≤N

(qxj/txi; q, p)∞
(qxj/xi; q, p)∞

∏
1≤i≤j≤N

(qpxi/txj ; q, p)∞
(qpxi/xj ; q, p)∞

.

This is proved in Appendix D, Lemma D.1. �

.



8 E. Langmann, M. Noumi and J. Shiraishi

3.2 Convergence

We prove that the non-stationary Ruijsenaars functions fN(x, p|s, κ|q, t) in Definitions 3.1 and 3.3
are absolutely convergent in a certain domain of variables and parameters.

Theorem 3.7. For fixed N ∈ Z≥1, assume that the variables s = (s1, . . . , sN ) ∈ CN and the
parameters q and κ satisfy the following conditions,

(i) for some σ > 0,

| sin arg(si/sj)| > σ (1 ≤ i < j ≤ N),

(ii) q and κ both are real, and either |q| < 1 and |κ| > 1, or |q| > 1 and |κ| < 1.

Then, there exists a constant ρ > 0 such that the formal power series

fN,∞(x, p; s, κ|q, t) ∈ C[[x2/x1, . . . , xN/xN−1, px1/xN ]]

in Definitions 3.1 and 3.3 is absolutely convergent in the domain

|p| < ρN , |x2/x1| < ρ, . . . , |xN/xN−1| < ρ, |px1/xN | < ρ. (3.11)

Remark 3.8. In our proof, we actually show convergence for any ρ < 1/C1C2 where

C1 = 1 + |1− t/q|max

(
1

σ
,
|κ|

|1− |κ||

)
,

C2 = 1 + |1− q/t|max

(
1

σ
,

1

|1− |q||

)
. (3.12)

Remark 3.9. We believe that it is possible to refine this convergence result. In particular,
we believe that there are regions of convergence where si/sj , 1 ≤ i < j ≤ N , are real and q
and κ have non-trivial imaginary parts.

Proof of Theorem 3.7. Our strategy of proof is to show that our assumptions imply simple
upper bounds on the terms appearing in the series in (3.8)–(3.9):∣∣∣∣∣

N∏
i=1

∏
k≥1

(xi+k/xi+k−1)λ
(i)
k

∣∣∣∣∣ ≤ ρ|λ|, |CN,∞(λ|s̄|q, t)| ≤ C |λ|1 C
|λ|
2 (3.13)

with |λ| ≡
∑N

i=1

∑
k≥1 λ

(i)
k and α = ρC1C2 < 1. With that, absolute convergence follows from

the comparison test: the series in (3.8)–(3.9) is of the form
∑

λ∈PN aλ with |aλ| ≤ α|λ| for all

λ ∈ PN , and the series
∑

λ∈PN α
|λ| converges absolutely for |α| < 1.

The first estimate in (3.13) is a simple consequence of the conditions in (3.11): since
xi+N = pxi for all i ≥ 1, these conditions are equivalent to

|xi+1/xi| < ρ (i ≥ 1),

which clearly implies the result.
The proof of the second estimate in (3.13) is more involved and, for this reason, we sup-

plement our somewhat descriptive arguments in the main text below by a detailed argument
in Appendix B.

We observe that CN,∞(λ|s̄|q, t) in (3.9) is a product of fractions
(
1 − qlau

)
/
(
1 − qlu

)
with

a = t/q in the first group of products and a = q/t in the second group, l ∈ Z, and u = sj/si
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for i = 1, . . . , N and j ≥ i; moreover, sj+`N = κ`sj for ` ∈ Z≥1. Such a fraction can be estimated
in a simple way:∣∣∣∣1− qlau1− qlu

∣∣∣∣ =

∣∣∣∣1 + (1− a)
qlu

1− qlu

∣∣∣∣ ≤ 1 + |1− a|
∣∣∣∣ qlu

1− qlu

∣∣∣∣.
If j − i is not an integer multiple of N , we can estimate this further using∣∣∣∣ z

1− z

∣∣∣∣ ≤ 1

| sin arg(z)|
(z ∈ C \ {R}) (3.14)

(to see that the latter inequality holds, write z = |z|eiϕ and note that (3.14) is equivalent to

|z|2 sin2 ϕ ≤ 1 + |z|2 − 2|z| cosϕ⇔ 0 ≤ (1− |z| cosϕ)2,

which is obvious). Since we assume that q and κ both are real,∣∣ sin arg
(
qlκ`sj/si

)∣∣ = | sin arg(sj/si)| ≥ σ > 0 (j − i 6= NZ≥0)

for all integers l, `, we get a simple universal bound for these fractions:∣∣∣∣1− qlasj/si1− qlsj/si

∣∣∣∣ ≤ 1 + |1− a| 1
σ

(j − i /∈ NZ≥0)

for all integers l. However, this bound does not work for j = i + `N with ` ∈ Z≥0 since, in
these cases, qlu = qlsj/si = qlκ` is real. However, one can check that, in all these latter cases,
either l ≤ 0 and ` > 0, or l < 0 and ` ≥ 0, and thus, by our assumptions, z ≡ qlu = qlκ` always
satisfies either |z| ≥ min

(
|q|−1, |κ|

)
> 1 (if |q| < 1 and |κ| > 1) or |z| ≤ max

(
|q|, |κ|−1

)
< 1

(if |q| > 1 and |κ| < 1); we therefore can use the inequality∣∣∣∣ z

1− z

∣∣∣∣ ≤ |z|
|1− |z||

(|z| 6= 1)

to get simple universal bounds for the cases j = i + `N with ` ∈ Z≥0 as well (we spell our the
details of this argument in Appendix B.2.2). We thus get estimates∣∣∣∣1− qlau1− qlu

∣∣∣∣ ≤ C1,2

with different upper bounds, C1 and C2, for all fractions in the first and second groups of pro-
ducts on the right-hand side in (3.9), respectively. The arguments above allow to compute the
constants C1 and C2 and give the results in (3.12); the interested reader can find the details
of this computation in Appendix B.

Inserting these bounds into (3.9) we obtain

|CN,∞(λ|s̄|q, t)| ≤
N∏
i=1

( ∏
i<j≤k<∞

C
λ
(i)
k−i−λ

(i)
k−i+1

1

)( ∏
i≤j<k<∞

C
λ
(i)
k−i−λ

(i)
k−i+1

2

)

=
N∏
i=1

( ∏
i<j<∞

C
λ
(i)
j−i

1

)( ∏
i≤j<∞

C
λ
(i)
j+1−i

2

)

=
N∏
i=1

(∏
k≥1

C
λ
(i)
k

1

)(∏
k≥1

C
λ
(i)
k

2

)
= C

|λ|
1 C

|λ|
2 , (3.15)
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computing telescoping products in the second step and using
∑N

i=1

∑
k≥1 λ

(i)
k = |λ| in the last

step. This proves the second estimate in (3.13).
To conclude, we prove that the series

∑
λ∈PN α

|λ| for |α| < 1 is absolutely convergent by the
following computation,

∑
λ∈PN

α|λ| =
∑

λ(1),...,λ(N)∈P

N∏
i=1

α|λ
(i)| =

N∏
i=1

∑
λ(i)∈P

α|λ
(i)| =

(∑
λ∈P

α|λ|

)N
=

1

(α;α)N∞
,

using the definition |λ| ≡
∑

k≥1 λk for partitions λ; for clarity, and for the convenience of the
reader, we give in Appendix D the well-known identity used in the last step, together with its
elementary proof making absolute convergence manifest; see (D.1)–(D.2). �

4 T -operators
For fixed N ∈ Z≥1, we define an operator T which acts diagonally on the asymptotically
free solution of the trigonometric Ruijsenaars model (Section 4.1). We also present a natural
non-stationary generalization of this operator which, as we conjecture, acts diagonally on the
corresponding non-stationary Ruijsenaars function (Section 4.2).

4.1 Trigonometric case

We find it convenient to work with formal power series.

Definition 4.1. For

∆ ≡
N∑
i=1

(xi∂xi + (N − i)β)2 (4.1)

with β = log(t)/ log(q), let

TN (x|q, t) ≡
∑
θ∈MN

∏
1≤i<j≤N

(xj/xi)
θijq

1
2

∆cN (θ|x|q, t)
∏

1≤i<j≤N

(xj/xi; q)∞
(txj/xi; q)∞

(4.2)

on xλC[[x2/x1, . . . , xN/xN−1]] for λ ∈ CN , with MN in (2.4) and cN (θ|s|q, t) in (2.5).

Clearly, the operator TN (x|q, t) is complicated: it has the same complexity as the func-
tion fN (x|s|q, t); cf. (2.3). Still, it is interesting since, different from the elliptic Macdonald–
Ruijsenaars operators in (2.8), we know its natural generalization to the non-stationary case;
see Section 4.2.

The following is our main result in this section.

Proposition 4.2. The T -operator in (4.2) is well-defined, it commutes with the trigonometric
Macdonald–Ruijsenaars operators in (2.1):[

TN (x|q, t), D±N (x|q, t)
]

= 0 (4.3)

on xλC[[x2/x1, . . . , xN/xN−1]] for all λ ∈ CN , and it acts diagonally on the asymptotically free
solutions of the trigonometric Ruijsenaars model in (2.3)–(2.5):

TN (x|q, t)xλfN (x|s|q, t) = εN (s|q)xλfN (x|s|q, t), si = tN−iqλi , (4.4)

εN (s|q) = q
1
2

∑N
i=1[log(si)/ log(q)]2 (4.5)

(note that log(si)/ log(q) = λi + β(N − i)).
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(A proof based on results in the rest of this section can be found in Appendix C.)
Our proof of Proposition 4.2 is based on the following convenient representation of the

T -operator.

Lemma 4.3. For f(x) ∈ C[[x2/x1, . . . , xN/xN−1]] and λ ∈ CN ,

TN (x|q, t)xλf(x) = ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)
∏

1≤i<j≤N
(1− yj/yi)f(y)

]
1,y

(4.6)

with

ε(λ) = q
1
2

∑N
i1

(λi+(N−i)β)2 ,

ϑ3(z|q) ≡
∑

n∈Z q
1
2
n2
zn the third Jacobi theta function,

χN (x|y|q, t) ≡ fN (x|y|q, t)
∏

1≤i<j≤N

(qyj/yi; q)∞
(tyj/yi; q)∞

, (4.7)

and [· · · ]1,y is the constant term in y, i.e., for formal Laurent series g(y) =
∑

µ∈ZN gµy
µ as

in (4.6), [g(y)]1,y = g0.

Remark 4.4. We use [· · · ]1,y only for g(y) ∈
∏N
i=1 ϑ3(sixi/yi|q)C[[y2/y1, . . . , yN/yN−1]], and

our definition of [· · · ]1,y is non-ambiguous for these.

Proof of Lemma 4.3. We use that C[[x2/x1, . . . , xN/xN−1]] is spanned by (a subset of) mono-

mials xµ with µ ∈ ZN . For fixed λ ∈ CN , we compute the action of q
1
2

∆ on xλxµ, µ ∈ ZN :

q
1
2

∆xλxµ = q
1
2

∑N
i=1(λi+µi+(N−i)β)2xλ+µ = ε(λ)xλ

N∏
i=1

(xisi)
µiq

1
2

∑N
i=1 µ

2
i

equal to

ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)yµ
]

1,y

,

and thus

q
1
2

∆xλf(x) = ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)f(y)

]
1,y

for all f(x) ∈ C[[x2/x1, . . . , xN/xN−1]]. This and the definition in (4.2) give

TN (x|q, t)xλf(x) = ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)

×
∑
θ∈MN

∏
1≤i<j≤N

(xj/xi)
θijcN (θ|y|q, t)

∏
1≤i<j≤N

(yj/yi; q)∞
(tyj/yi; q)∞

f(y)

]
1,y

,

and using (2.3) and the definition in (4.7) we obtained (4.6). �

We note that χN (x|y|q, t) = χN (y|x|q, q/t) (this is proved in Appendix C, Lemma C.1);
inserting this in (4.6) and backtracking, one obtains the following alternative representation
of the T -operator:

TN (x|q, t) ≡ (qxj/xi; q)∞
(qxj/txi; q)∞

∑
θ∈MN

cN (θ|x|q, q/t)q
1
2

∆
∏

1≤i<j≤N
(xj/xi)

θij
∏

1≤i<j≤N
(1− xj/xi). (4.8)
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4.2 Non-stationary case

We present a non-stationary generalization of the T -operator.

Definition 4.5. For ∆ in (4.1) with β = log(t)/ log(q), let

TN,∞(x, p|q, t, κ) =
∑
θ∈M̂N

N∏
i=1

∏
j>i

(xj/xi)
θijq

1
2

∆ Tκ,pcN,∞(θ|x̄|q, t)
N∏
i=1

∏
j>i

(xj/xi; q)∞
(txj/xi; q)∞

(4.9)

with xi+N = pxi for i ≥ 1 on xλC[[x2/x1, x3/x2, . . . , xN/xN−1, px1/xN ]] for λ ∈ CN , with M̂N

in (3.2) and cN,∞(θ|x̄|q, t) in (3.3).

Remark 4.6. To make the p-dependence of this operator manifest, one can write it as

TN,∞(x, p|q, t, κ) =
∑
θ∈M̂N

eN,∞(x, p)q
1
2

∆ Tκ,pcN,∞(θ|x, p|q, t)

×
∏

1≤i<j≤N

(xj/xi; q, p)∞
(txj/xi; q, p)∞

∏
1≤i≤j≤N

(pxi/xj ; q, p)∞
(ptxi/xj ; q, p)∞

using the definitions in (3.6) and Lemma D.1 in Appendix D.

By comparing with (3.1)–(3.3), it is clear that the operator in (4.9) is a natural non-stationary
generalization of the trigonometric T -operators in (4.2); however, there is one important new
feature: the shift operator Tκ,p acting on p.

We propose the following generalization to Proposition 4.2; this conjecture is a complement
to the ones in [21].

Conjecture 4.7. The non-stationary T -operator in (4.9) has a well-defined diagonal action on
the non-stationary Ruijsenaars function in Definitions 2.1 and 3.3:

TN,∞(x, p|q, t, κ)xλfN,∞(x, p|s, κ|q, t) = εN (s|q)xλfN,∞(x, p|s, κ|q, t), si = tN−iqλi

with εN (s|q) given in (4.5).

In the rest of this section, we present two generalizations of results about the trigonomet-
ric T -operators: (i) the constant-term representation of the T -operator in Lemma 4.3(ii) the
alternative representation in (4.8) obtained with the duality in (2.12). We also rephrase Con-
jecture 4.7 in terms of the non-stationary Ruijsenaars functions as defined in [21].

One can adapt the proof Lemma 4.3 to obtain the following constant-term representation
of the T -operator in (4.9):

Lemma 4.8. For f(x, p) ∈ C[[x2/x1, px3/x2, . . . , xN/xN−1, px1/xN ]] and λ ∈ CN ,

TN,∞(x, p|q, t, κ)xλf(x, p)

= ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)
1

1− κp/u
χN,∞(x, p|y, u|q, t)

N∏
i=1

∏
j>i

(1− yj/yi)f(y, u)

]
1,y,u

with

χN,∞(x, p|y, u|q, t) = fN,∞(x, p|y, u|q, t)
N∏
i=1

∏
j>i

(qyj/yi; q)∞
(tyj/yi; q)∞

setting yi+N = uyi for all i ≥ 1, fN,∞(x, p|y, u|q, t) in (3.1)–(3.3), and [· · · ]1;y,u, short for
[[· · · ]1,y]1,u, the constant term in y ∈ CN and u ∈ C.
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Proof. This is proved by a straightforward generalization of the arguments given in the proof
of Lemma 4.3; the only new ingredient is

Tκ,pp
n = (κp)n =

[
1

1− κp/u
un
]

1,u

(n ∈ Z≥0),

and therefore

q
1
2

∆Tκ,px
λf(x, p) = ε(λ)xλ

[
N∏
i=1

ϑ3(sixi/yi|q)
1

1− κp/u
f(y, u)

]
1,y,u

for all f(x, p) ∈ C[[x2/x1, px3/x2, . . . , xN/xN−1, px1/xN ]]. �

Moreover, by an argument similar to the one for the trigonometric T -operator above, the
conjectured duality in (3.10) implies

χN,∞(x, p|y, u|q, t) = χN,∞(y, u|x, p|q, q/t)

and the following alternative representation of this T -operator

TN,∞(x, p|q, t, κ) =
N∏
i=1

∏
j>i

(qxj/xi; q)∞
(qxj/txi; q)∞

∑
θ∈M̂N

cN,∞(θ|x̄|q, t)q
1
2

∆Tκ,p

×
N∏
i=1

∏
j>i

(xj/xi)
θij

N∏
i=1

∏
j>i

(1− xj/xi)

with xi+N = pxi for all i ≥ 1.
To conclude, we rephrase Conjecture 4.7 using balanced coordinates.

Definition 4.9. For ∆ as in (4.1) with β = log(q/t)/ log(q), let

T ĝlN (x, p|q, t, κ)

≡
∑

λ(1),...,λ(N)∈P

N∏
β=1

∏
α≥1

(pxα+β/txα+β−1)λ
(β)
α q

1
2

∆Tκ,p

N∏
i,j=1

N
(j−i|N)

λ(i),λ(j)
(txj/xi|q, p)

N
(j−i|N)

λ(i),λ(j)
(xj/xi|q, p)

×
∏

1≤i<j≤N

(
pj−ixj/xi; q, p

N
)
∞(

pj−iqxj/txi; q, pN
)
∞

∏
1≤i≤j≤N

(
pN−j+ixi/xj ; q, p

N
)
∞(

pN−j+iqxi/txj ; q, pN
)
∞

(4.10)

with xi+N = xi for i ≥ 1 on xλC[[px2/x1, px3/x2, . . . , pxN/xN−1, px1/xN ]] for λ ∈ CN , with P

the set of all partitions and N
(k|N)
λ,µ (u|q, κ) the Nekrasov factors given in (2.10).

Fact 4.10. Conjecture 4.7 is equivalent to the following diagonal action of the non-stationary
T -operator in (4.10) on the non-stationary Ruijsenaars function in (2.9)–(2.10),

T ĝlN (x, p|q, t)xλf ĝlN (x, p|s, κ|q, t) = εN (s|q)xλf ĝlN (x, p|s, κ|q, t), si = (q/t)N−iqλi . (4.11)

Proof. This is implied by Theorem 3.2, using that the shift operator Tκ,p commutes with the
following operator, Φ, switching from unbalanced to balanced coordinates:

(Φf)(x, p|s, κ|q, t) ≡ f
(
p−δx, pN |κ−δs, κN |q, t/q

)
,

and noting that Theorem 3.2 implies (ΦfN,∞)(x, p|s, κ|q, t) = f ĝlN (x, p|s, κ|q, t). �
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5 Final remarks

The main conjecture in [21, Conjecture 1.14] can be tested systematically using a perturbative
solution of the elliptic Ruijsenaars model that generalizes the perturbative solution of the elliptic
Calogero–Sutherland (eCS) model in [12]. We plan to present this elsewhere.

As already mentioned, one important outstanding problem is to find κ-deformations of the
elliptic Ruijsenaars operators in (2.8) that have the non-stationary Ruijsenaars functions as
eigenfunctions. As conjectured in [21], the limit q → 1 of this hypothetical non-stationary
Ruijsenaars model is a known non-stationary eCS model depending on parameters β, p and κ
related to the non-stationary Ruijsenaars parameters as follows, t = qβ and κ = q−κ.6 Recently,
a rigorous construction of integral representations of eigenfunctions of the non-stationary eCS
model for κ = β was presented [2]. We hope that, by combining the latter results with recent
results on the non-stationary Ruijsenaars functions for the corresponding special value of κ [9],
it will be possible to prove the main conjecture in [21] in the non-stationary eCS limit q → 1
and for κ = β. Another possible strategy to prove the conjecture in [21] for q → 1 and general
κ-values is to try to generalize the perturbative solution of the non-stationary Lamé equation
in [1] (note that the latter equation reduces to the non-stationary eCS model for N = 2 in special
cases).

The elliptic Ruijsenaars model is invariant under the exchange p ↔ q [17].7 The non-sta-
tionary Ruijsenaars functions do not have this property manifest; we plan to report elsewhere
on how this duality is recovered from the non-stationary Ruijsenaars function.

It was suggested more than 20 years ago that the elliptic Ruijsenaars model has a double-
elliptic generalization with remarkable duality properties [4, 8], and recently an explicit formula
for an operator defining such a model was conjectured [11]. It would be interesting to obtain
a better understanding of the relation between the non-stationary Ruijsenaars functions and
this double elliptic system recently proposed in [3].

Since the non-stationary T -operator proposed in this paper contains a factor q
1
2

∆Tκ,p, its
eigenvalue equation can be regarded as a q-deformed heat equation. We mention the work
of Felder and Varchenko on the q-deformed KZB heat equation [5, 6] which seems related;
it would be interesting to understand this relation in detail.

A Alternative series representation

We prove Theorem 3.2. We start with details complementing the concise proof of Lemma 3.5 in
the main text (Appendix A.1). The main part of the proof is in Appendix A.2.

A.1 Details on Lemma 3.5

One can check that the following two formulas provide a correspondence between multi-partitions
λ =

(
λ(1), . . . , λ(N)

)
in PN and matrices θ = (θik)

∞
i,k=1 in M̂N that is one-to-one:

θik = λ
(i)
k−i − λ

(i)
k−i+1

and

λ
(i)
k−i =

∑
a≥k

θia (A.1)

6The elliptic deformation parameter p is the same in both cases.
7We thank S. Ruijsenaars for pointing this out at the NORDITA workshop “Elliptic integrable systems, special

functions and quantum field theory” in June 2019.
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setting λ(i+N) = λ(i) for all i ≥ 1. With this identification, CN,∞(λ|s̄|q, t) in (3.9) is clearly
equal to cN,∞(θ|s̄|q, t) in (3.3), and

N∏
i=1

∞∏
k=i+1

(xk/xi)
θik =

N∏
i=1

∞∏
k=i+1

[(xk/xk−1)(xk−1/xk−2) · · · (xi+1/xi)]
θik

=

N∏
i=1

∏
i<j≤k<∞

(xj/xj−1)λ
(i)
k−i−λ

(i)
k−i+1 =

N∏
i=1

∏
j>i

(xj/xj−1)λ
(i)
j−i

=
N∏
i=1

∏
k≥1

(xi+k/xi+k−1)λ
(i)
k ,

inserting a telescoping product in the second step, using (A.1) in the third, and computing
a telescoping product in the fourth. This proves the result.

A.2 Proof of Theorem 3.2

We show by direct computations that the function on the left-hand side in (3.7) is equal to
the function fN,∞(x̄|s̄|q, t) in (3.8)–(3.9) with xi+N = pxi and si+N = κsi, for all i ≥ 1. This,
together with Lemma 3.5, proves the result.

We compute the function on the left-hand side in (3.7) using (2.9)–(2.10):

f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
=

∑
λ(1),...,λ(N)∈P

N∏
i,j=1

N
(j−i|N)

λ(i),λ(j)

(
(q/t)

(
κδ/Ns

)
j
/(κδ/Ns)i|q, κ1/N

)
N

(j−i|N)

λ(i),λ(j)

((
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ

)
×

N∏
β=1

∏
α≥1

(
p1/N

(
pδ/N

)
α+β

t/q
(
pδ/N

)
α+β−1

)λ(β)α .

By Definition 2.1 of the non-stationary Ruijsenaars functions, the variables
(
pδ/Nx

)
i

above are

extended from i = 1, . . . , N to all i ≥ 1 by the rule
(
pδ/Nx

)
i+N

=
(
pδ/Nx

)
i
, whereas xi+N = pxi

for all i ≥ 1 implies
(
pδ/Nx

)
i+kN

= p(N−i)/Nxi = p[N−(i+kN)]/Nxi+kN for all i = 1, . . . , N
and k ∈ Z≥1, and thus(

pδ/Nx
)
i

= p(N−i)/Nxi (i ≥ 1).

Therefore,

N∏
β=1

∏
α≥1

(
p1/N

(
pδ/Nx

)
α+β

t/q
(
pδ/Nx

)
α+β−1

)λ(β)α

=
N∏
β=1

∏
α≥1

(
p1/Np(N−α−β)/Nxα+βt/qp

(N−α−β+1)/Nxα+β−1

)λ(β)α

= (t/q)|λ|
N∏
β=1

∏
α≥1

(xα+β/xα+β−1)λ
(β)
α

using the abbreviation |λ| ≡
∑N

β=1

∑
α≥1 λ

(β)
α . Renaming indices (α, β) → (k, i), we thus can

write the function on the left-hand side in (3.7) as

f ĝlN
(
pδ/Nx, p1/N |κδ/Ns, κ1/N |q, q/t

)
=
∑
λ∈PN

C̃N (λ; s|q, t, κ)

N∏
i=1

∏
k≥1

(xi+k/xi+k−1)λ
(i)
k
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with xi+N = pxi for all i ≥ 1 and

C̃N (λ; s|q, t, κ) = (t/q)|λ|
N∏

i,j=1

N
(j−i|N)

λ(i),λ(j)

(
(q/t)

(
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ1/N

)
N

(j−i|N)

λ(i),λ(j)

((
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ1/N

) . (A.2)

To complete the proof, we have to show that C̃N (λ; s|q, t, κ) in (A.2) is equal to CN,∞(λ; s̄|q, t)
in (3.9) for si+N = κsi (i ≥ 1). For that, we compute the Nekrasov factors in (2.10), partially
specializing to the variables we need:

N
(j−i|N)

λ(i),λ(j)

(
u|q, κ1/N

)
=

∏
b≥a≥1

b−a≡(j−i)(modN)

(
uq−λ

(j)
a +λ

(i)
b+1κ(−a+b)/N ; q

)
λ
(i)
b −λ

(i)
b+1

×
∏

β≥α≥1
β−α≡(i−j−1)(modN)

(
uqλ

(i)
α −λ

(j)
β κ(α−β−1)/N ; q

)
λ
(j)
β −λ

(j)
β+1

.

We note that the constraints on b in the first product is solved by b = a + j + `N − i with `
an arbitrary integer ≥ χ(i > j), using the definition χ(i > j) = 1 for j < i and 0 otherwise;
similarly, the constraints on β in the second product is solved by β = α+ i+ `′N − j − 1 with
arbitrary integer `′ ≥ χ(j ≥ i). We thus can write these Nekrasov factors as

N
(j−i|N)

λ(i),λ(j)

(
u|q, κ1/N

)
=
∏
a≥1

∏
`≥χ(i>j)

(
uq−λ

(j)
a +λ

(i)
a+j+`N−i+1κ(j+`N−i)/N ; q

)
λ
(i)
a+j+`N−i−λ

(i)
a+j+`N−i+1

×
∏
α≥1

∏
`′≥χ(j≥i)

(
uq

λ
(i)
α −λ

(j)

α+i+`′N−j−1κ(j−i−`′N)/N ; q
)
λ
(j)

α+i+`′N−j−1
−λ(j)

α+i+`′N−j
.

We now specialize further to the arguments of interest to us:

u = c
(
κδ/Ns

)
j
/
(
κδ/Ns

)
i

= cκ(N−j)/Nsj/κ
(N−i)/Nsi = cκ(i−j)/Nsj/si, c ∈ {1, q/t}.

For these arguments, the manifest κ-dependence disappears:

N
(j−i|N)

λ(i),λ(j)

(
c
(
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ1/N

)
=
∏
a≥1

∏
`≥χ(i>j)

(
cq−λ

(j)
a +λ

(i)
a+j+`N−i+1sj+`N/si; q

)
λ
(i)
a+j+`N−i−λ

(i)
a+j+`N−i+1

×
∏
α≥1

∏
`′≥χ(j≥i)

(
cq
λ
(i)
α −λ

(j)

α+i+`′N−j−1sj/si+`′N ; q
)
λ
(j)

α+i+`′N−j−1
−λ(j)

α+i+`′N−j

using κ`sj/si = sj+`N/si and κ−`
′
sj/si = sj/si+`′N implied by si+N = κsi for i ≥ 1. We now

take the product of these Nekrasov factors over i, j = 1, . . . , N , change variables j + `N → j
in the first group of products and i+ `′N → i in the second group, and obtain

N∏
i,j=1

N
(j−i|N)

λ(i),λ(j)

(
c
(
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ1/N

)
=

N∏
i=1

∏
j≥i

∏
a≥1

(
cq−λ

(j)
a +λ

(i)
a+j−i+1sj/si; q

)
λ
(i)
a+j−i−λ

(i)
a+j−i+1

×
N∏
j=1

∏
i>j

∏
α≥1

(
cqλ

(i)
α −λ

(j)
α+i−j−1sj/si; q

)
λ
(j)
α+i−j−1−λ

(j)
α+i−j
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=

N∏
i=1

∏
j≥i

∏
k>j

(
cq−λ

(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

×
N∏
j=1

∏
i>j

∏
k≥i

(
cqλ

(i)
k−i+1−λ

(j)
k−jsj/si; q

)
λ
(j)
k−j−λ

(j)
k−j+1

,

where we changed variables a → k = a + j and α → k = α + i − 1 in the last step. We find
it convenient to write this result as

N∏
i,j=1

N
(j−i|N)

λ(i),λ(j)

(
c
(
κδ/Ns

)
j
/
(
κδ/Ns

)
i
|q, κ1/N

)
=

N∏
i=1

∏
i≤j<k<∞

(
cq−λ

(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

×
N∏
i=1

∏
i<j≤k<∞

(
cqλ

(j)
k−j+1−λ

(i)
k−isi/sj ; q

)
λ
(i)
k−i−λ

(i)
k−i+1

swapping variable names i ↔ j in the second group of products. We insert this into (A.2)
to obtain

C̃N (λ; s|q, t, κ) = (t/q)|λ|
N∏
i=1

∏
i≤j<k<∞

(
q−λ

(j)
k−j+λ

(i)
k−i+1qsj/tsi; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

q−λ
(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

×
N∏
i=1

∏
i<j≤k<∞

(
qλ

(j)
k−j+1−λ

(i)
k−iqsi/tsj ; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

qλ
(j)
k−j+1−λ

(i)
k−isi/sj ; q

)
λ
(i)
k−i−λ

(i)
k−i+1

.

To proceed, we use the well-known identity

(q−m/a; q)m
(q−m/b; q)m

= (b/a)m
(qa; q)m
(qb; q)m

(a, b ∈ C, m ∈ Z≥0).

Applying this to the factors in the second group of products for m = λ
(i)
k−i − λ

(i)
k−i+1, b =

qλ
(i)
k−i+1−λ

(j)
k−j+1sj/si, a = tb/q yields

C̃N (λ; s|q, t, κ) = (t/q)|λ|
N∏
i=1

∏
i≤j<k<∞

(
q−λ

(j)
k−j+λ

(i)
k−i+1qsj/tsi; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

q−λ
(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

×
N∏
i=1

∏
i<j≤k<∞

(q/t)λ
(i)
k−i−λ

(i)
k−i+1

(
qλ

(i)
k−i+1−λ

(j)
k−j+1tsj/si

)
λ
(i)
k−i−λ

(i)
k−i+1(

qλ
(i)
k−i+1−λ

(j)
k−j+1qsj/si

)
λ
(i)
k−i−λ

(i)
k−i+1

.

To complete the proof that C̃N (λ; s|q, t, κ) in (A.2) is identical with CN,∞(λ|s̄|q, t) in (3.9),
we swap the order of the two groups of products and compute the overall power of (q/t):

N∏
i=1

∏
i<j≤k<∞

(q/t)λ
(i)
k−i−λ

(i)
k−i+1 =

N∏
i=1

∞∏
j=i+1

∞∏
k=j

(q/t)λ
(i)
k−i−λ

(i)
k−i+1

=

N∏
i=1

∞∏
j=i+1

(q/t)λ
(i)
j−i =

N∏
i=1

∏
k≥1

(q/t)λ
(i)
k = (q/t)|λ|,

cancelling the factor (t/q)|λ|. This proves the identity in (3.4) with fN,∞(x̄|s̄|q, t) in (3.8)–(3.9)
and xi+N = pxi, si+N = κsi (i ≥ 1). This, together with Lemma 3.5, implies the result.
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B Estimates

We give a complementary proof of the second estimate in (3.13), to compute the upper
bounds C1,2 in Theorem 3.7.

B.1 Complementary proof of the second estimate in (3.13)

We prove that, under the assumptions in Theorem 3.7, the following estimates hold true for the
fractions appearing in the formula (3.9) for CN,∞(λ|s̄|q, t),∣∣∣∣∣∣∣

(
qλ

(i)
k−i+1−λ

(j)
k−j+1tsj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

qλ
(i)
k−i+1−λ

(j)
k−j+1qsj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

∣∣∣∣∣∣∣ ≤ C
λ
(i)
k−i−λ

(i)
k−i+1

1 (1 ≤ i ≤ N, i < j ≤ k <∞), (B.1)

∣∣∣∣∣∣∣
(
q−λ

(j)
k−j+λ

(i)
k−i+1qsj/tsi; q

)
λ
(i)
k−i−λ

(i)
k−i+1(

q−λ
(j)
k−j+λ

(i)
k−i+1sj/si; q

)
λ
(i)
k−i−λ

(i)
k−i+1

∣∣∣∣∣∣∣ ≤ C
λ
(i)
k−i−λ

(i)
k−i+1

2 (1 ≤ i ≤ N, i ≤ j < k <∞) (B.2)

for all N -partitions λ =
(
λ(1), . . . , λ(N)

)
∈ PN , with C1 and C2 in (3.12). This and (3.9) imply

the estimate in (3.15) which, by the computation in (3.15), is equivalent to the second estimate
in (3.13).

We observe all estimates in (B.1)–(B.2) are of the form∣∣∣∣∣
(
qlasi/sj ; q

)
θ(

qlsi/sj ; q
)
θ

∣∣∣∣∣ ≤ Cθ,
where

l = λ
(i)
k−i+1 − λ

(j)
k−j+1 + 1, a = t/q, θ = λ

(i)
k−i − λ

(i)
k−i+1, C = C1 (B.3)

in (B.1) and

l = −λ(j)
k−j + λ

(i)
k−i+1, a = q/t, θ = λ

(i)
k−i − λ

(i)
k−i+1, C = C2 (B.4)

in (B.2). We prove (B.1)–(B.2) using three different kinds of estimates:

Lemma B.1. Let θ ∈ Z≥0, a ∈ C, q, κ ∈ R with either |q| < 1 and |κ| > 1 or |q| > 1 and
|κ| < 1. Then the following estimates hold true,

(a) for all l ∈ Z and u ∈ C \ {R}:∣∣∣∣∣
(
qlau; q

)
θ(

qlu; q
)
θ

∣∣∣∣∣ ≤
(

1 +
|1− a|

| sin arg(u)|

)θ
, (B.5)

(b) for all m ∈ Z≥0, ` ∈ Z≥1:∣∣∣∣∣
(
q−θ−m+1aκ`

)
θ(

q−θ−m+1κ`
)
θ

∣∣∣∣∣ ≤
(

1 + |1− a| |κ|
|1− |κ||

)θ
, (B.6)

(c) for all m ∈ Z≥0, ` ∈ Z≥0:∣∣∣∣∣
(
q−θ−maκ`

)
θ(

q−θ−mκ`
)
θ

∣∣∣∣∣ ≤
(

1 + |1− a| 1

|1− |q||

)θ
. (B.7)
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(The proof is given in Appendix B.2.)
Case A: For j − i /∈ NZ≥0, we can use the estimate in (B.5): Since sj+N = κsj and κ

is real, we have | sin arg(sj/si)| = | sin arg(sj+N/si)| = | sin arg(si/sj)| for all j ≥ i; since
| sin arg(sj/si)| ≥ σ for all 1 ≤ i < j ≤ N by assumption, | sin arg(sj/si)| ≥ σ for all 1 ≤ i ≤ N
and j ≥ i such that j − i 6= NZ≥0, and we get∣∣∣∣(qlasi/sj ; q)θ(qlsi/sj ; q)θ

∣∣∣∣ ≤ (1 +
|1− a|
σ

)θ
(j − i /∈ NZ≥0)

for all cases in (B.3)–(B.4). This proves that the estimates in (B.1)–(B.2) for all

C1 ≥ 1 +
|1− t/q|

σ
, C2 ≥ 1 +

|1− q/t|
σ

(B.8)

and for all cases j − i /∈ NZ≥0.
We consider the remaining cases for (B.1) and (B.2) below in Cases B and C, respectively.
Case B: For j− i ∈ NZ≥1, we have sj/si = si+`N/si = κ` for some ` ∈ Z≥1, and we can use

the estimate in (B.6):∣∣∣∣∣
(
q−θ−m+1asi/sj ; q

)
θ(

q−θ−m+1si/sj ; q
)
θ

∣∣∣∣∣ ≤
(

1 + |1− a| |κ|
||κ| − 1|

)θ
(j − i ∈ NZ≥1, m ∈ Z≥0).

We check that all cases in (B.1) for j− i ∈ NZ≥1 are covered by this: all l in (B.3) for j = i+`N

can be written as (recall that λ
(i+`N)
k = λ

(i)
k )

l = −
[
λ

(i)
k−i − λ

(i)
k−i+1

]
−
[
λ

(i)
k−i−`N+1 − λ

(i)
k−i
]

+ 1 = −θ −m+ 1

with m = λ
(i)
k−i−`N+1−λ

(i)
k−i ≥ 0 since ` ≥ 1 and λ(i) =

(
λ

(i)
1 , λ

(i)
2 , . . .

)
is a partition. This proves

that (B.1) holds true if

C1 ≥ 1 + |1− t/q| |κ|
|1− |κ||

(B.9)

for all cases j − i ∈ NZ≥1.
Case C: For j− i ∈ NZ≥0, we have sj/si = si+`N/si = κ` for some ` ∈ Z≥0, and we can use

the estimate in (B.7):∣∣∣∣∣
(
q−θ−masi/sj ; q

)
θ(

q−θ−msi/sj ; q
)
θ

∣∣∣∣∣ ≤
(

1 + |1− a| 1

|1− |q||

)θ
(j − i ∈ NZ≥0, m ∈ Z≥0).

We check that all cases in (B.2) for j − i ∈ NZ≥0 are covered by this: all l in can be written as

l = −
[
λ

(i)
k−i − λ

(i)
k−i+1

]
−
[
λ

(i)
k−i−`N − λ

(i)
k−i
]

= −θ −m

with m = λ
(i)
k−i−`N − λ

(i)
k−i ≥ 0. This proves that (B.2) holds true if

C2 ≥ 1 + |1− q/t| 1

|1− |q||
(B.10)

for all cases j − i ∈ NZ≥0.
We proved that (B.1)–(B.2) holds true for all cases provided the conditions in (B.8), (B.9)

and (B.10) all hold true; this is the case if we choose C1 and C2 as in (3.12).
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B.2 Proof of Lemma B.1

B.2.1 Proof of the estimate in (B.5)

We have

LHS =

∣∣∣∣∣
θ−1∏
n=0

1− ql+nau
1− ql+nu

∣∣∣∣∣ =

θ−1∏
n=0

∣∣∣∣1 + (1− a)
ql+nu

1− ql+nu

∣∣∣∣
≤

θ−1∏
n=0

(
1 + |1− a|

∣∣∣∣ ql+nu

1− ql+nu

∣∣∣∣) ≤ θ−1∏
n=0

(
1 +

|1− a|
| sin arg(u)|

)
= RHS,

using the estimate in (3.14) and
∣∣ sin arg

(
ql+nu

)∣∣ = | sin arg(u)| since q is real.

B.2.2 Proof of the estimate in (B.6)

We have

LHS =

∣∣∣∣∣
θ−1∏
n=0

1− qn−θ−m+1aκ`

1− qn−θ−m+1κ`

∣∣∣∣∣ =
θ−1∏
n=0

∣∣∣∣1 + (1− a)
q−n−mκ`

1− q−n−mκ`

∣∣∣∣
≤

θ−1∏
n=0

(
1 + |1− a|

∣∣∣∣ q−n−mκ`

1− q−n−mκ`

∣∣∣∣) ≤ θ−1∏
n=0

(
1 + |1− a| |κ|

|1− |κ||

)
= RHS,

using ∣∣∣∣ q−lκ`

1− q−lκ`

∣∣∣∣ ≤ |κ|
|1− |κ||

(l ≥ 0, ` ≥ 1);

the latter follows for the case |κ| < 1 and |q| > 1 from the following inequality: x/(1 − x) <
y/(1− x) for 0 ≤ x < y < 1, and for the case |κ| > 1 and |q| < 1:∣∣∣∣ q−lκ`

1− q−lκ`

∣∣∣∣ =

∣∣∣∣ 1

1− qlκ−`

∣∣∣∣ ≤ 1

1− |1/κ|
=

|κ|
|1− |κ||

since 1/(1− x) < 1/(1− y) for 0 ≤ x < y < 1.

B.2.3 Proof of the estimate in (B.7)

We have

LHS =

∣∣∣∣∣
θ−1∏
n=0

1− qn−θ−maκ`

1− qn−θ−m+1κ`

∣∣∣∣∣ =

θ∏
n=1

∣∣∣∣1 + (1− a)
q−n−mκ`

1− q−n−mκ`

∣∣∣∣
≤

θ∏
n=1

(
1 + |1− a|

∣∣∣∣ q−n−mκ`

1− q−n−mκ`

∣∣∣∣) ≤ θ∏
n=1

(
1 + |1− a| 1

|1− |q||

)
= RHS,

using ∣∣∣∣ q−lκ`

1− q−lκ`

∣∣∣∣ ≤ |q−1|
||q−1| − 1|

=
1

|1− |q||
(l ≥ 1, ` ≥ 0),

as in the proof of (B.6).
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C Proof of Proposition 4.2

We prove Proposition 4.2 using Lemma 4.3 in the main text.

C.1 Proof of commutativity

We prove (4.3). We note that the action of the Macdonald–Ruijsenaars operators in (2.1) on
functions xλf(x) can be written as [15]

D±N (x|q, t)xλf(x) = xλE±N (x|s|q, t)f(x), si = tN−iqλi (C.1)

with the modified Macdonald–Ruijsenaars operators

E±N (x|s|q, t) =

N∑
i=1

AN,i
(
x|t±

)
s±1
i T±1

q,xi , (C.2)

AN,i(x|t±1) =

i−1∏
j=1

1− t±1xi/xj
1− xi/xj

N∏
k=i+1

1− t∓1xk/xi
1− xk/xi

(C.3)

(this can be proved by simple computations which we skip).
We also need properties of the function χN (x|y|q, t) in (4.7) which we summarize as follows.

Lemma C.1. The function χN (x|y|q, t) satisfies the following duality relation,

χN (x|y|q, t) = χN (y|x|q, t/q). (C.4)

Moreover,

E±N (x|y|q, t)χN (x|y|q, t) = e1

(
y±1
)
χN (x|y|q, t),

E±N (y|x|q, q/t)χN (x|y|q, t) = e1

(
x±1

)
χN (x|y|q, t)

(C.5)

with

e1

(
x±1

)
= x±1

1 + · · ·+ x±1
N . (C.6)

Proof. The definitions in (2.6) and (4.7) imply

χN (x|y|q, t) =
∏

1≤i<j≤N

(qxj/xi; q)∞
(qxj/txi; q)∞

(qyj/yi; q)∞
(tyj/yi; q)∞

ϕN (x|y|q, t).

The product on the right-hand side is manifestly invariant under the transformation (x, y, t) 7→
(y, x, q/t); the function ϕN (x|y|q, t) has this invariance by (2.7). This proves (C.4).

The first identity in (C.5) is implied by E±N (x|s|q, t)fN (x|s|q, t) = e1

(
s±1
)
fN (x|s|q, t) proved

in [15]; the second follows from the first and the duality in (C.4). �

Equation (C.1) and Lemma 4.3 imply that the result we want to prove:

D±N (x|q, t)TN (x|q, t)xλf(x) = TN (x|q, t)D±N (x|q, t)xλf(x),

is equivalent to[
E±N (x|s|q, t)

N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)
∏

1≤i<j≤N
(1− yj/yi)f(y)

]
1,y
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=

[
N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)
∏

1≤i<j≤N
(1− yj/yi)

(
E±N (y|s|q, t)f(y)

)]
1,y

.

The latter is obviously implied by the following two identities: first,

E±N (x|s|q, t)
N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)

= E∓N
(
y
∣∣s−1

∣∣q, q/t) N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t), (C.7)

and second,[(
E∓N
(
y
∣∣s−1

∣∣q, q/t) N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)

) ∏
1≤i<j≤N

(1− yj/yi)f(y)

]
1,y

=

[
N∏
i=1

ϑ3(sixi/yi|q)χN (x|y|q, t)
∏

1≤i<j≤N
(1− yj/yi)

(
E±N (y|s|q, t)f(y)

)]
1,y

. (C.8)

We first prove (C.7) in three steps, using the shorthand notation in (C.6). We start with

E±N (x|s|q, t)
N∏
i=1

ϑ3(sixi/yi|q) =
q−1/2

1− q−1

N∏
i=1

ϑ3(sixi/yi|q)
[
e1

(
x∓1

)
, E±N (x|y|q, t)

]
(C.9)

proved by the following computation (we insert definitions and change the summation variable
ni ± 1→ ni in the third equality),

LHS =

N∑
i=1

AN,i
(
x|t±1

)
s±1
i T±1

q,xi

∑
n∈ZN

N∏
j=1

(
sjxj
yj

)nj
q

1
2
n2
j

=
∑
n∈ZN

N∑
i=1

AN,i
(
x|t±1

)( yi
xi

)±1(sixi
yi

)ni±1

q
1
2
n2
i±ni

N∏
j=1
j 6=i

(
sjxj
yj

)nj
q

1
2
n2
jT±1
q,xi

=
N∏
i=1

ϑ3(sixi/yi|q)
N∑
i=1

AN,i
(
x|t±1

)( yi
xi

)±1

q−1/2T±1
q,xi = RHS

since [
e1

(
x∓1

)
, E±N (x|y|q, t)

]
=

N∑
i=1

AN,i
(
x|t±1

)
y±1
i

[
x∓1
i , T±1

q,xi

]
=
(
1− q−1

) N∑
i=1

AN,i
(
x|t±1

)( yi
xi

)±1

T±1
q,xi .

Next,[
e1

(
x∓1

)
, E±N (x|y|q, t)

]
χN (x|y|q, t) =

[
e1

(
y±1
)
, E∓N (y|x|q, q/t)

]
χN (x|y|q, t), (C.10)

which is proved by

LHS =
(
e1

(
x∓1

)
e1

(
y±1
)
− E±N (x|y|q, t)E∓N (y|x|q, q/t)

)
χN (x|y|q, t)

=
(
e1

(
y±1
)
e1

(
x∓1

)
− E∓N (y|x|q, q/t)E±N (x|y|q, t)

)
χN (x|y|q, t) = RHS
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using (C.5) and[
E±N (x|y|q, t), E∓N (y|x|q, q/t)

]
= 0;

the latter is verified by a simple computation using the definition in (C.2)–(C.3). Third,

E∓N
(
y|s−1|q, q/t

) N∏
i=1

ϑ3(sixi/yi|q)

=
q−1/2

1− q−1

N∏
i=1

ϑ3(sixi/yi|q)
[
e1

(
y±1
)
, E∓N (y|x|q, q/t)

]
, (C.11)

which is proved similarly as (C.9):

LHS =

N∑
i=1

AN,i
(
y|(q/t)∓1

)
s±1
i T∓1

q,yi

∑
n∈ZN

N∏
j=1

(
sjxj
yj

)nj
q

1
2
n2
j

=
∑
n∈ZN

N∑
i=1

AN,i
(
y|(q/t)∓1

)( yi
xi

)±1(sixi
yi

)ni±1

q
1
2
n2
i±ni

N∏
j=1
j 6=i

(
sjxj
yj

)nj
q

1
2
n2
jT∓1
q,xi

=
N∏
i=1

ϑ3(sixi/yi|q)
N∑
i=1

AN,i
(
y|(q/t)∓1

)( yi
xi

)±1

q−1/2T∓1
q,yi = RHS

since [
e1

(
y±1
)
, E∓N (y|x|q, q/t)

]
=

N∑
i=1

AN,i
(
y|(q/t)∓1

)
x∓1
i

[
y±1
i , T∓1

q,yi

]
=
(
1− q−1

) N∑
i=1

AN,i
(
y|(q/t)∓1

)( yi
xi

)±1

T∓1
q,yi .

We are now ready to prove (C.7): we insert (C.9) into the LHS in (C.7), use (C.10) and (C.11),
and obtain the RHS in (C.7).

To conclude our proof of (4.3), we prove (C.8) by the following computation, using the
definitions in (C.2)–(C.3) and the basic property

[(
T∓1
q,yig1(y)

)
g2(y)

]
1,y

=
[
g1(y)

(
T±1
q,yig2(y)

)]
1,y

of the constant term:

LHS =

[
N∑
i=1

AN,i
(
y|(q/t)∓1

)
s±1
i

(
T∓1
q,yi

N∏
i=1

ϑ3(sixi/yi|q)χN (y|x|q, t)

) ∏
1≤i<j≤N

(1− yj/yi)f(y)

]
1,y

=

[
N∏
i=1

ϑ3(sixi/yi|q)χN (y|x|q, t)
N∑
i=1

(
T±1
q,yiAN,i

(
y|(q/t)∓1

)
s±1
i

∏
1≤i<j≤N

(1− yj/yi)f(y)

)]
1,y

= RHS

provided

T±1
q,yiAN,i

(
y|(q/t)∓1

)∏
1≤i<j≤N (1− yj/yi)∏

1≤i<j≤N (1− yj/yi)
= AN,i

(
y|t±

)
;

the latter holds true for the coefficients AN,i(x|t) in (C.3), as is easily verified:

LHS =

i−1∏
j=1

1− (q/t)∓1q±1yi/yj
1− q±1yi/yj

N∏
k=i+1

1− (q/t)±1yk/q
±1yi

1− yk/q±1yi

i−1∏
j=1

1− q±1yi/yj
1− yi/yj
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×
N∏

k=i+1

1− yk/q±1yi
1− yk/yi

= RHS.

C.2 Eigenfunction property

The eigenfunctions xλfN (x|s|q, t) of D±N (x|s|q, t) are unique, and (4.3) therefore implies that
xλfN (x|s|q, t) also are eigenfunction of TN (x|q, t).

We are left to determine the eigenvalues. For that, we introduce some notation: the space
of formal power series C[[x2/x1, . . . , xN/xN−1]] is spanned by monomials

(x2/x1)α1 · · · (xN/xN−1)αN1

with α = (α1, . . . , αN−1) ∈ ZN−1
≥0 . Any such monomial can be written as xµ = xµ11 · · ·x

µN
N with

µ = µ(α) given by

µ1(α) = −α1, µi(α) = αi−1 − αi (i = 2, . . . , N − 1), µN (α) = αN−1.

One can verify that the action of the operator in (4.2) is triangular on this basis in the following
sense,

TN (x|q, t)xλxµ(α) = ε(λ+ µ(α))xλ

(
xµ(α) +

∑
β>α

vαβx
µ(β)

)

for some coefficients vαβ, where β ≥ α means that βi ≥ αi for all i = 1, . . . , N − 1 (this follows
from

q
1
2

∆xλxµ = ε(λ+ µ)xλ+µ, ε(λ+ µ) = q
1
2

∑N
i=1(λi+µi+(N−i)β)2

used already in the main text, and the fact that all functions of x appearing in the definition
of TN (x|q, t) in (4.2) can be expanded as power series in C[[x2/x1, . . . , xN/xN−1]]). Since

xλfN (x|s|q, t) = xλ

(
1 +

∑
α>0

bαx
µ(α)

)

for some coefficients bα, the eigenvalue is ε(λ) = ε(s|q) in (4.5).

D Identities

For clarify, and for the convenience of the reader, we state and prove two identities used in the
main text.

First, the identity∑
λ∈P

α|λ| =
1

(α;α)∞
(|α| < 1), (D.1)

which goes back to Euler, is important in our proof of Theorem 3.7. It is proved by the following
elementary computation making absolute convergence of the series manifest,

LHS = lim
M→∞

∑
λ1≥λ2≥···≥λM≥0

αλ1+λ2+···+λM

= lim
M→∞

∞∑
λ1=λ2

∞∑
λ2=λ3

· · ·
∞∑

λM−1=λM

∞∑
λM=0

αλ1+λ2+···+λM
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= lim
M→∞

∞∑
λ2=λ3

· · ·
∞∑

λM−1=λM

∞∑
λM=0

1

1− α
α2λ2+λ3+···+λM

= lim
M→∞

∞∑
λ3=λ4

· · ·
∞∑

λM−1=λM

∞∑
λM=0

1

(1− α)(1− α2)
α3λ3+λ4+···+λM = · · ·

= lim
M→∞

1

(1− α)

1

(1− α2)
· · · 1

(1− αM )
= RHS, (D.2)

summing repeatedly the geometric series.

Second, we state and prove an identity used in the proof of Fact 3.6 and Remark 4.6.

Lemma D.1. For p ∈ C, let xi ∈ C be given for i = 1, . . . , N , and extend this definition to all
i ≥ 1 by xi+N = pxi. Then

N∏
i=1

∏
j>i

(axj/xi; q)∞
(bxj/xi; q)∞

=
∏

1≤i<j≤N

(axj/xi; q, p)∞
(bxj/xi; q, p)∞

∏
1≤i≤j≤N

(paxi/xj ; q, p)∞
(pbxi/xj ; q, p)∞

for all a, b, q ∈ C.

Proof. We note that (z; q, p) =
∏∞
m=0(pmx; q)∞, and thus

LHS =
∏

1≤i<j≤N

∞∏
m=0

(axj+mN/xi; q)∞
(bxj+mN/xi; q)∞

∏
1≤j≤i≤N

∞∏
m=1

(axj+mN/xi; q)∞
(bxj+mN/xi; q)∞

=
∏

1≤i<j≤N

∞∏
m=0

(pmaxj/xi; q)∞
(pmbxj/xi; q)∞

∏
1≤j≤i≤N

∞∏
m=1

(pmaxj/xi; q)∞
(pmbxj/xi; q)∞

= RHS,

inserting xj+mN = pmxj . �
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