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Abstract. Let M denote a compact, connected Riemannian manifold of dimension n ∈ N.
We assume that M has a smooth and connected boundary. Denote by g and dvg respectively,
the Riemannian metric on M and the associated volume element. Let ∆ be the Laplace
operator on M equipped with the weighted volume form dm := e−h dvg. We are interested
in the operator Lh· := e−h(α−1)(∆ · +αg(∇h,∇·)), where α > 1 and h ∈ C2(M) are given.
The main result in this paper states about the existence of upper bounds for the eigenvalues
of the weighted Laplacian Lh with the Neumann boundary condition if the boundary is
non-empty.
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1 Introduction

Let (M, g) be a compact connected n-dimensional Riemannian manifold. Let h ∈ C2(M) and ρ
be the positive function define by ρ := e−h. Let dvg, ∆ and ∇ denote respectively, the Rieman-
nian volume measure, the Laplace and the gradient operator on (M, g). For simplicity, we also
denote by dvg the volume element for the induced metric on ∂M . We define the Laplacian with
negative sign, that is the negative divergence of the gradient operator.

The Witten Laplacian (also called drifting, weighted or Bakry–Emery Laplacian) with respect
to the weighted volume measure ρdvg is define by

∆W := ∆ ·+ g(∇h,∇ ·). (1)

We designate by {λk(ρ, ρ)}k>0 the spectrum of the operator in (1) under Neumann conditions if
the boundary is non-empty. Let Sk be the set of all k-dimensional vector subspaces of H1(M),
the spectrum consists of a non-decreasing sequence of eigenvalues variationally defined by

λk(ρ, ρ) = inf
V ∈Sk+1

sup
u∈V \{0}

∫
M |∇u|

2ρdvg∫
M u2ρdvg

, (2)

for all k > 0.

In recent years, the Witten Laplacian received much attention from many mathematicians
(see [6, 7, 8, 9, 11, 12, 13, 14] and the references therein), in particularly the classical research
topic of estimating eigenvalues.

When h is a constant, the Witten Laplacian is exactly the Laplacian. Another spectrum has
a similar characterisation with the one of the Witten Laplacian: the spectrum of the Laplacian
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associated with the metric ρ
2
n g, which is conformal to g. It is natural to denote its spectrum by{

λk
(
ρ, ρ

n−2
n

)}
k>0

, since the eigenvalues are variationally characterised by

λk
(
ρ, ρ

n−2
n
)

= inf
V ∈Sk+1

sup
u∈V \{0}

∫
M |∇u|

2ρ
n−2
n dvg∫

M u2ρ dvg
. (3)

In the present work, we are interested in the expanded eigenvalue problem of the Dirichlet en-
ergy functional weighted by ρα, with respect to the L2 inner product weighted by ρ, where α > 0
is a given constant. These eigenvalues are those of the operator Lρ· = Lh· := −ρ−1 div(ρα∇ ·) =
e−h(α−1)(∆ · + αg(∇h,∇ ·)) on M endowed with the weighted volume form dm := ρdvg. The
spectrum consists of an unbounded increasing sequence of eigenvalues

Spec(Lh) =
{

0 = λ0(ρ, ρα) < λ1(ρ, ρα) 6 λ2(ρ, ρα) 6 · · · 6 λk(ρ, ρα) 6 · · ·
}
,

which are given by

λk(ρ, ρ
α) = inf

V ∈Sk+1

sup
u∈V \{0}

∫
M |∇u|

2ρα dvg∫
M u2ρ dvg

,

for all k > 0. As already mentioned, Sk is the set of all k-dimensional vector subspaces of H1(M).
The particular cases where α = 1 and α = n−2

n correspond to the problems mentioned above,
whose eigenvalues are respectively given by (2) and (3).

A main interest is to investigate the interplay between the geometry of (M, g) and the effect
of the weights, looking at the behaviour of λk(ρ, ρ

α), among densities ρ of fixed total mass. The
more general problem where the Dirichlet energy functional is weighted by a positive function σ,
not necessarily related to ρ is presented by Colbois and El Soufi in [4].

In the aforementioned paper, Colbois and El Soufi exhibit an upper bound for the singular
case where α = 0 [4, Corollary 4.1]:

λk(ρ, 1)|M |
2
n 6 Cnk

2
n ,

where Cn depends only on the dimension n. Whereas, in [5, Theorem 5.2], Colbois, El Soufi
and Savo prove that, when α = 1, there is no upper bound among all manifolds. Indeed, they
show that, on a compact revolution manifold, one has λ1(ρ, ρ) as large as desired. In their work
in [10], Kouzayha and Pétiard give an upper bound for λk(ρ, ρ

α), when α ∈
(
0, n−2

n

]
and prove

that there is none for λ1(ρ, ρα) when α runs over the interval
(
n−2
n , 1

)
.

In this work, we treat the remaining cases, that is when α > 1. We prove, as conjectured
in [10, Remark 3], that there is no upper bound for λ1(ρ, ρα), in the class of manifolds M with
convex boundary and positive Ricci curvature.

Theorem 1. Let α > 1 be a given real constant. Let (M, g) be a compact connected Riemannian
manifold of dimension n, whose Ricci curvature satisfies Ric > κ, for some positive constant κ.
If M has convex boundary, then there exists a sequence of densities {ρj}j>2 and j0 ∈ N, such
that

λ1(ρj , ρ
α
j )

(
|M |∫

M ρjdvg

)α−1

> 2κj, ∀ j > j0.

Here, |M | denotes the volume of M .

This inequality provides a lower bound that grows linearly to infinity in j as j →∞, showing
that with respect to these densities, λ1(ρ, ρα) becomes as large as desired. Unfortunately, I do
not know any other way to prove it, than the following long and painful computation.
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Our aim is to show that, there exists a family of densities ρj = e−hj , j ∈ N, such that
their corresponding first non-zero eigenvalues become as large as desired. For this, we use the
extended Reilly formula presented in Theorem 2, to provide a lower bound that grows linearly
to infinity in j, as j →∞.

Let (M, g) be a compact connected Riemannian manifold of dimension n with smooth bound-
ary ∂M . Let D2 denote the Hessian tensor, ∇∂ the tangential gradient, ∆∂ the Laplace–Beltrami
operator on ∂M and ∂n the derivative with respect to the outer unit normal vector n to ∂M .
The second fundamental form on ∂M is defined by I(X,Y ) := g(∇X n, Y ) for any vector fields X
and Y . Let H := tr I denote the mean curvature of ∂M and Ric the Ricci curvature on M .

Theorem 2 (Reilly formula). Consider M equipped with the weighted volume form dm =
e−h dvg for some h ∈ C2(M). Then, for every u ∈ C∞(M), we have:∫

M
eh(α−1)|Lhu|2 − e−h(α−1)|D2u|2 dm =

∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm

+

∫
∂M

e−h(α−1)g
(
∂nu,H∂nu− αg(∇h,∇u)−∆∂ u

)
dm

+

∫
∂M

e−h(α−1)
[
I(∇∂ u,∇∂ u)− g(∇∂ u,∇∂ ∂nu)

]
dm. (4)

In the next section, we prove these two theorems.

2 Proofs

2.1 Proof of Theorem 2

To prove Theorem 2, one needs the following adapted Bochner formula deduced from the stan-
dard one for smooth functions (see, e.g., [1, Theorem 346] and [3]):

1

2
∆
(
|∇u|2

)
= −|D2u|2 + g(∇u,∇∆u)− Ric(∇u,∇u).

Lemma 1. Let u be a smooth function on (M, g). Then,

1

2
Lh|∇u|2 = −e−h(α−1)

(
|D2u|2 +

(
Ric + αD2h

)
(∇u,∇u)

)
+ g
(
∇u,∇Lhu+ (α− 1)g(∇h, Lhu)

)
. (5)

Proof.

1

2
Lh|∇u|2 =

1

2
e−h(α−1)

(
∆ |∇u|2 + αg

(
∇h,∇|∇u|2

))
= e−h(α−1)

(
−
∣∣D2u

∣∣2 + g(∇u,∇∆u)− Ric(∇u,∇u)
)

+
1

2
αe−h(α−1)g

(
∇h,∇|∇u|2

)
= −e−h(α−1)

(∣∣D2u
∣∣2 + Ric(∇u,∇u)

)
+ e−h(α−1)g(∇u,∇∆u)

− αe−h(α−1)D2h(∇u,∇u) + αe−h(α−1)g(∇(g(∇h,∇u)),∇u).

For the last line, we have used

1

2
g
(
∇h,∇|∇u|2

)
= g(∇h,∇∇u∇u) = D∇ug(∇h,∇u)− g(∇∇u∇h,∇u)

= g(∇(g(∇h,∇u)),∇u)−D2h(∇u,∇u).
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Moreover,

g(∇(Lhu),∇u) = −(α− 1)g(g(∇h, Lhu),∇u)

+ e−h(α−1)g(∇∆u,∇u) + αe−h(α−1)g(∇(g(∇h,∇u)),∇u).

Finally,

1

2
Lh|∇u|2 = −e−h(α−1)

(∣∣D2u
∣∣2 +

(
Ric + αD2h

)
(∇u,∇u)

)
+ g
(
∇u,∇Lhu+ (α− 1)g(∇h, Lhu)

)
. �

Proof of Theorem 2. We shall integrate equality (5). On the left-hand side, we have

1

2

∫
M
Lh| ∇u|2 dm =

1

2

∫
M

e−h(α−1)
(

∆ | ∇u|2 + αg
(
∇h,∇ |∇u|2

))
dm

=
1

2

∫
M
g
(
∇
(
| ∇u|2

)
,∇
(
e−αh

))
dvg −

1

2

∫
∂M

∂n
(
| ∇u|2

)
e−αh dvg

+
1

2
α

∫
M

e−h(α−1)g
(
∇h,∇ |∇u|2

)
dm

= −
∫
∂M

e−h(α−1)g(∂n(∇u),∇u) dm.

The second term on the right-hand side gives∫
M
g
(
∇u,∇Lhu+ (α− 1)g(∇h, Lhu)

)
dm =

∫
M
g
(
∇u, e−h∇Lhu

)
dvg

+ (α− 1)

∫
M
g(∇u, g(∇h, Lhu))e−h dvg

=

∫
M
g
(
∇u,∇

(
Lhue−h

))
dvg +

∫
M
g(∇u, g(∇h, Lhu)) dm

+ (α− 1)

∫
M
g(∇u, g(∇h, Lhu)) dm

=

∫
M
g(∆u, Lhu) dm+ α

∫
M
g(Lhu, g(∇h,∇u)) dm+

∫
∂M

g(∂nu, Lhu) dm

=

∫
M

eh(α−1)|Lhu|2dm+

∫
∂M

g(∂nu, Lhu) dm.

Then, replacing in (5), one has

−
∫
∂M

e−h(α−1)g
(
∂n(∇u),∇u

)
dm

= −
∫
M

e−h(α−1)
∣∣D2u

∣∣2 dm−
∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm

+

∫
M

eh(α−1)|Lhu|2 dm+

∫
∂M

g(∂nu, Lhu) dm,∫
M

eh(α−1)|Lhu|2 − e−h(α−1)
∣∣D2u

∣∣2 dm =

∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm

−
∫
∂M

g(∂n(∇u),∇u)e−h(α−1) + g(∂nu, Lhu) dm. (6)

Now, it remains to estimate [g(∂n(∇u),∇u)e−h(α−1) + g(∂nu, Lhu)] which is equal to

e−h(α−1)[g(∂n(∇u),∇u) + g(∂nu,∆u) + αg(∂nu, g(∇h,∇u)].
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We notice that

∆u = −H∂nu+ ∆∂ u− ∂2
nu, (7)

(see, e.g., [2, equation (3)]). We recall that our sign convention for the operators ∆ and ∆∂ is
the opposite of that in [2]. Moreover,

g(∂n(∇u),∇u) = (−∆u+ ∆∂ u−H∂nu)∂nu− I(∇∂ u,∇∂ u) + g(∇∂ u,∇∂ ∂nu)

= g
(
∂nu, ∂

2
nu
)
− I(∇∂ u,∇∂ u) + g(∇∂ u,∇∂ ∂nu) (8)

(see [2, p. 4]).

We then combine equalities (7) and (8) to derive an expression for the last term in the
right-hand side of (6):

g(∂n(∇u),∇u)e−h(α−1) + g(∂nu, Lhu) = e−h(α−1)[−I(∇∂ u,∇∂ u) + g(∇∂ u,∇∂ ∂nu)]

+ e−h(α−1)g(∂nu,−H∂nu+ αg(∇h,∇u) + ∆∂ u).

Hence,∫
M

eh(α−1)|Lhu|2 − e−h(α−1)
∣∣D2u

∣∣2dm =

∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm

+

∫
∂M

e−h(α−1)g(∂nu,H∂nu− αg(∇h,∇ut)−∆∂ u) dm

+

∫
∂M

e−h(α−1)[I(∇∂ ,∇∂ u)− g(∇∂ u,∇∂ ∂nu)] dm. �

2.2 Proof of Theorem 1

Let (M, g) be a compact connected n-dimensional Riemannian manifold with a convex bound-
ary ∂M . Let h ∈ C2(M) and assume that λ is the first non-zero eigenvalue of Lh. Let u 6= 0 be
an eigenfunction with corresponding eigenvalue λ, i.e., u satisfies Lhu = λu.

Lemma 2. If Ric + αD2h > α2 |∇h|2
nz +A, for some A > 0 and z > 0 then

Aλ

∫
M
u2 dm 6

λ2

n(z + 1)

∫
M
u2
(
eh(α−1)n(z + 1)− e−h(α−1)

)
dm. (9)

Proof. With the Neumann boundary condition, (4) becomes∫
M

eh(α−1)|Lhu|2 − e−h(α−1)
∣∣D2u

∣∣2 dm

=

∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm+

∫
∂M

e−h(α−1)I(∇∂ u,∇∂ u) dm. (10)

Since ∂M is convex, then I(∇∂ u,∇∂ u) > 0 and (10) becomes∫
M

eh(α−1)|Lhu|2 − e−h(α−1)
∣∣D2u

∣∣2 > ∫
M

e−h(α−1)
(
Ric + αD2h

)
(∇u,∇u) dm (11)

> α2

∫
M

e−h(α−1)| ∇u|2 | ∇h|
2

nz
dm+Aλ

∫
M
u2 dm.

Notice that the same inequality also holds if ∂M is empty.
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On the other hand,
∣∣D2u

∣∣2 > |∆u|2
n (see [1, p. 409]), and∫

M
eh(α−1)|Lhu|2 − e−h(α−1)|D2u|2 dm 6

∫
M

eh(α−1)λ2u2 − 1

n
e−h(α−1)|∆u|2 dm

=

∫
M

eh(α−1)λ2u2 − 1

n
e−h(α−1)(λu− αg(∇h,∇u))2 dm

6
∫
M

eh(α−1)λ2u2 − 1

n
e−h(α−1)

(
λ2u2

z + 1
− α2 |g(∇h,∇u)|2

z

)
dm

= λ2

∫
M
u2 eh(α−1)n(z + 1)− e−h(α−1)

n(z + 1)
dm+ α2

∫
M

e−h(α−1) |g(∇h,∇u)|2

nz
dm. (12)

In the second to last inequality we have used Young’s inequality. Indeed, given any ε > 0,

λuαg(∇h,∇u) 6
λ2u2

2ε
+
ε

2
α2|g(∇h,∇u)|2,

since
(
λu√
2ε
−
√

ε
2αg(∇h,∇u)

)2
is non-negative. Adding the expression

−1

2

(
λ2u2 + α2|g(∇h,∇u)|2

)
to both sides of this inequality, we get

−
(
λu− αg(∇h,∇u)

)2
6 −

[
λ2u2

(
1− 1

ε

)
+ α2|g(∇h,∇u)|2(1− ε)

]
.

Then choosing ε := z+1
z , one has

−
(
λu− αg(∇h,∇u)

)2
6 −

[
λ2u2

z + 1
− α2|g(∇h,∇u)|2

z

]
.

Now, combining (11) and (12), we have

Aλ

∫
M
u2 dm 6 λ2

∫
M
u2 eh(α−1)n(z + 1)− e−h(α−1)

n(z + 1)
dm. �

Now, we consider λ̃ := λ
( |M |∫

M e−hdvg

)α−1
which is invariant under rescaling. Indeed, for any

non-zero scalar a,∫
M | ∇u|

2
(
ae−h

)α
dvg∫

M u2
(
ae−h

)
dvg

·
(

|M |∫
M (ae−h) dvg

)α−1

=

∫
M | ∇u|

2e−hα dvg∫
M u2e−h dvg

(
|M |∫

M e−h dvg

)α−1

.

Replacing λ by λ̃
(∫

M e−hdvg
|M |

)α−1
in (9), under the assumptions of Lemma 2, we get the following

inequality:

Aλ̃

∫
M
u2 dm 6 λ̃2

∫
M
u2

(∫
M e−h dvg

|M |

)α−1(
eh(α−1)n(z + 1)− e−h(α−1)

n(z + 1)

)
dm. (13)

Let j > 2, z ∈ R>0, α > 1 and | | : M 3 x −→ d(x0, x) ∈ R>0 where x0 ∈M is a fixed point.
We define

c0 :=

√
n(z + 1)eα−1

(
eα−1 − 1

j

)
, Cj := − 1

α− 1
log(c0), hj(x) := e

− |x|
2

j + Cj .

The following properties hold.
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Lemma 3. The function hj satisfies:

(i)
(∫

M e−hj dvg
|M |

)α−1
6 c0,

(ii) ehj(α−1)n(z+1)−e−hj(α−1)

n(z+1) 6 1
jc0

,

(iii) | ∇hj |2 − αD2hj 6 2α
j .

Proof. (i) hj(x) > Cj implies that∫
M

e−hj(x) dvg 6
∫
M
c

1
α−1

0 dvg = c
1

α−1

0 |M |.

(ii) Let us set b := n(z + 1) and u := ehj(α−1). We want to prove that (u2b−1)jc0−bu
ubjc0

6 0.

Notice that u > 0, bjc0 > 0 and (u2b−1)jc0−bu
u = (u−u1)(u−u2)

u , where

u1 :=
b−

√
b2 + 4bj2c2

0

2bjc0
< 0 and u2 :=

b+
√
b2 + 4bj2c2

0

2bjc0
> 0.

Moreover, 0 < ehj(α−1) 6 u2. Indeed, ehj(α−1) = e(α−1)
(

e
−|x|

2

j +Cj

)
, so the first inequality is

immediate. For the second inequality, we have√
4

b
+

1

j2c2
0

=
1

c0

√4c2
0

b
+

1

j2

 =
1

c0

√(
2eα−1 − 1

j

)2

=
1

c0

(
2eα−1 − 1

j

)
.

Hence,

log

(
1

c0

)
= log

[
1

2

(√
4

b
+

1

j2c2
0

+
1

jc0

)]
− (α− 1)

and

Cj =
1

(α− 1)
log

[
1

2

(√
4

b
+

1

j2c2
0

+
1

jc0

)]
− 1,

hj(x) 6 1 + Cj 6
1

α− 1
log

[
1

2

(√
4

b
+

1

j2c2
0

+
1

jc0

)]
.

Hence,

ehj(α−1) 6
1

2

(√
4

b
+

1

j2c2
0

+
1

jc0

)
= u2.

(iii) Setting r(x) = |x|, r is radial and we have

hj(r) = e
− r

2

j , ∇hj(r) = e
− r

2

j

(
−2

j

)
r, D2hj(r) =

(
−2

j

)
e
− r

2

j

(
1− 2

j

)
r.

Hence,

| ∇hj(r)|2 − αD2
jhj(r) = e

− r
2

j

(
− 4

j2
αr2 +

4

j2
r2e
− r

2

j +
2α

j

)
= e
− r

2

j

(
2α

j
+

4

j2
r2
(
e
− r

2

j − α
))

6
2α

j
, since e

− r
2

j 6 1. �
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Proof of Theorem 1. We set z = α2

n , A := κ
2 and j0 :=

⌈
4α
κ

⌉
. Then from Lemma 3 (iii), we

have

Ric + αD2hj > κ+ α2 | ∇hj |2

nz
− 2α

j
> α2 | ∇hj |2

nz
+A, ∀ j > j0.

Combining inequality (13), Lemma 3 (i) and (ii), we finally get

Aλ̃

∫
M
u2 dm 6 λ̃2

∫
M
u2c0

1

jc0
dm.

Hence, for every j > j0, one has Aj 6 λ̃. �
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