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Abstract. We overview the classifications of simple finite-dimensional modular Lie alge-
bras. In characteristic 2, their list is wider than that in other characteristics; e.g., it contains
desuperizations of modular analogs of complex simple vectorial Lie superalgebras. We con-
sider odd parameters of deformations. For all 15 Weisfeiler gradings of the 5 exceptional
families, and one Weisfeiler grading for each of 2 serial simple complex Lie superalgebras
(with 2 exceptional subseries), we describe their characteristic-2 analogs – new simple Lie
algebras. Descriptions of several of these analogs, and of their desuperizations, are far from
obvious. One of the exceptional simple vectorial Lie algebras is a previously unknown deform
(the result of a deformation) of the characteristic-2 version of the Lie algebra of divergence-
free vector fields; this is a new simple Lie algebra with no analogs in characteristics distinct
from 2. In characteristic 2, every simple Lie superalgebra can be obtained from a simple
Lie algebra by one of the two methods described in arXiv:1407.1695. Most of the simple Lie
superalgebras thus obtained from simple Lie algebras we describe here are new.
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ãut(B), 29
aut(1)(B), 29
ba(n), 19
b(n), 21
b(1)(n), 27

b
(1)
1 (n), 27

b
(1)
∞ (n), 27

bλ(n), 27
bλ(n;N ;n), 32
ba,b(n), 27
ba,b(n;N), 37
c, cg := c(g), 10

6



Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations 7

degLie, 46
degLie;3, 46
dimN , 18
d(g), 10, 54, 75
gl(Size), 12
g(A) Lie (super)algebra with Cartan matrix A,

34
g(a|b) or g(a;N |b), a vectorial Lie

superalgebra of type g, 16
gs(2), Shen’s analog of g(2), 90
g
.k := [g, [g, . . . [g, g] . . . ]], 10

gk,(i), the kth prolong “in the direction
of Vi ⊂ g1”, 50

hei(2n|m), 19
h(2n|m), 20
h(1)(0|m), 20, 21
hI(n;N), 33
hΠ, 42
hω0(2k;N), 36
hω1,A(2k;N), 36
hω2,j (2k;N), 36

k̃as(7;M), 79
kas(8;M), 80
k(2n+ 1|m), 20
kas(1)(1;N |6), 77
kle
(
15; Ñ
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)
, 58

le(n), 21
legen(n;N |n), 29
me(1)(5;1), 90
m(n) := m(n+ 1|n), pericontact Lie

superalgebra, 20
mb
(
9; M̃

)
, 71

mb2

(
11; Ñ
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svecta,b(0|n), 30
vas, 88
vect(m;N |n), 17
vect(m;N |n) = W (m;N |n), 16
vle(4|3), 46
vle(9; Ñ), 52

vle
(
7; M̃

)
:= F(vle(4;M |3)), 49

vas(4|4), 87
∆, 26–28, 46
∆m, 32
Λ[θ] = Λ(r), the exterior algebra

in θ = (θ1, . . . , θr), 10
Φ, 23, 75
Π or Πk or Πn|n, matrix, 13
Π, change of parity, 9
Ξ := ξ1 · · · ξn, 83
α0, even contact form, 19
α̃1, odd contact form, 24
α1, odd contact form, 19
µ, linear form, 31
ω0, 36
ω0, symplectic form, 19
ω1,A, 36
ω2,j , 36
Antibracket, 20
Antisymmetry, 10
Berezin integral, 18, 71
Bracket, 10
Buttin bracket, 20
Cartan prolongation, 15
Cartan prolongation, partial, 15
Conjecture, 18
Convention, 10, 14, 15, 18, 50, 51
Coordinate, critical, 18
Deform, semi-trivial, 37
Deform, the result of deformation, 12
Deform, true, 37
Deformation, (non)trivial, 12
Density, weighted, 17, 26
Desuperization, complete, 41
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Distinguished partial derivative, 16

Divergence, 17, 26, 31, 33

Divergence, standard, 18

Divided powers, 14

Form, bilinear (anti)symmetric, 14

Format, standard (of basis, of supermatrix), 12

Grading, standard, 16, 24

Hamiltonian vector fields, 20

Ideal, of the Lie superalgebra, 11

Jacobi identity, 11

Jacobson–Witt algebra, 17

KSh-method, 34, 38

Leibniz (super)algebra, 11, 33

Lie (super)algebra, lopsided, 38

Lie (super)algebra, primitive, 61

Lie (super)algebra, symmetric, 38

Lie (super)algebra, transitive, 15, 61

Lie algebra, standard, 37, 38

Lie superalgebra, 10, 11

Lie superalgebra for p = 2, 10

Lie superalgebra for p = 3, 11

Lie superalgebra in the category
of linear supervarieties, 12

Lie superalgebra, almost simple, 11

Lie superalgebra, derived, 11

Lie superalgebra, semisimple, 11

Lie superalgebra, simple, 11

Lie superalgebra, vectorial, 16

Melikyan algebra, 38, 45, 89

Morphism of superalgebras, 9

Morphisms of supercommutative
superalgebras, 10

Order, standard of indeterminates, 14

Pre-Lie superalgebra, 11

Problem, open, 27, 33, 45, 87

Quantization, 42

Queertrace, 13

Relative of a simple Lie (super)algebra, 35, 38

Representation of the Lie superalgebra, 11

Schouten bracket, 20

Shen algebra, 45, 90

Sign Rule, 9

Squaring, 10

Superalgebra, 9

Superspace, 9

Supertrace, 13

Supertransposition, 13

Trace, 17

Transposition, of matrices, 13

Upsetting, of bilinear forms, 14

Vector field, (peri)contact, 19
Vector, shearing, 15
Volichenko algebra, 42
W-grading, Weisfeiler grading, 24
Witt algebra, 17
ZD, 28
Zassenhaus algebra, 17
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1 Notation and background

To make the text understandable for the uninitiated, we place the most basic facts before the
Introduction which we have divided into two parts to make it more readable; for the same
reason we divided the background to accommodate both students and experts. Statements
proved directly, or by means of Mathematica-based SuperLie package [26], are called Claims.

We recall the basics and show how to modify familiar formulas in order to pass from C to
fields of positive characteristic, especially characteristic 2. In some formulas given for p = 2, we
retain notation convenient for comparison with the cases where p 6= 2.

1.1 Main points

1. We give an overview of the classification of simple finite-dimensional modular Lie algebras
and Lie superalgebras over an algebraically closed field K of characteristic p > 0. We
update the conjectures for various values of p > 0.

2. We use our results on classification of Lie superalgebras of vector fields with polynomial
coefficients over C to describe their characteristic-p versions, especially, their desuperiza-
tions, for all 15 Weisfeiler gradings of all 5 exceptional simple vectorial Lie superalgebras,
and for several serial ones, also exceptional in a sense.

3. One of the deforms1 of the divergence-free Lie algebra svect(5;N) which exists only if
p = 2. It is one of the exceptional simple vectorial Lie algebras – a desuperization of an
exceptional simple vectorial Lie superalgebra. This is the most unexpected result of this
paper.

1.2 Generalities

As is now customary, we denote the elements of Z/2 by 0̄ and 1̄, to distinguish them from
integers. For us, N := {1, 2, . . . }, as it used to be in the past, and still is in some countries;
we set Z+ := N ∪ {0}. The parity p of a non-zero element v of a Z/2-graded space V , called
a superspace, is equal to i if and only if v ∈ Vi. Any Z/2-graded algebra is called a superalgebra.

Hereafter K is an algebraically closed field of characteristic p > 0; usually, p = 2 and all Lie
(super)algebras are finite-dimensional unless otherwise stated. Mostly (exceptions indicated),
Π denotes the change of parity functor, i.e., tensoring by Π(Z).

The superization of most formulas of algebra is achieved via the following sign rule

“If something of parity a is moved past something of parity b, the sign (−1)ab accrues.
Formulas defined only on homogeneous elements are extended to arbitrary elements
via linearity.”

Note that only even homomorphisms are considered as morphisms of superalgebras.
Observe that sometimes applying the Sign Rule requires some dexterity. For example, we

have to distinguish between two versions both of which turn in the non-super case into one,
called skew- or anti-commutativity, which are synonyms only in the non-super case; for two
elements a and b of a superalgebra we call the following conditions

ba = (−1)p(b)p(a)ab super commutativity,

ba = −(−1)p(b)p(a)ab super anti-commutativity,

ba = (−1)(p(b)+1)(p(a)+1)ab super skew-commutativity,

ba = −(−1)(p(b)+1)(p(a)+1)ab super antiskew-commutativity.

1Deform is the result of a deformation, like transform is the result of a transformation.
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Examples: the bracket in any Lie superalgebra is super anti-commutative; the anti-bracket
{−,−}B.b., see (2.5), being anti-commutative relative the parity in the Lie superalgebra is,
however, super antiskew-commutative relative to the natural parity of generating functions.

1.2.1 Conventions and notation often used

In what follows, we assume that every supercommutative superalgebra is associative with 1; their
morphisms send 1 to 1.

We denote by c the center of a given Lie (super)algebra; both c(g) and cg := c ⊕ g denote
a trivial central extension of g.

Let anb or boa denote the semi-direct sum of modules (algebras) in which a is a submodule
(ideal).

Let d(g) := gnKD, where D is an outer derivation of g; unless specified otherwise, D is the
grading operator of g. For example, for d(oΠ(2k)), we take D = diag(Ik, 0k).

Let g
.k := [g, [g, . . . [g, g] . . . ]], the k-fold bracket.

We denote the functor of raising to the nth symmetric (resp. exterior) power by Sn (resp. En,
often denoted also by Λn); sometimes we denote the exterior (Grassmann) algebra by Λ[θ] or Λ(r)
in generators θ = (θ1, . . . , θr) satisfying anti-commutativity relations (and, additionally, θ2

i = 0
for all i if p = 2).

The symbol id (sometimes idn, ida|b) denotes not only the identity operator (in the space of
dimension n, resp. superspace of superdimension a|b), but also the tautological module V over
the linear Lie superalgebra g ⊂ gl(V ); sometimes we write idg := V for clarity.
LD is the Lie derivative along the vector field D.

1.2.2 Definition of Lie superalgebras for p 6= 2, 3

The “naive” definition of Lie superalgebras for p 6= 2, 3 is obtained by applying the Sign Rule
to anti-commutativity and Jacobi identities. To understand deformations with odd parameter,
we need a more sophisticated approach using the functor of points. The multiplication in the
Lie superalgebra will be called super-bracket or just bracket.

1.2.3 Definition of Lie superalgebras for p = 2

If p = 2, the antisymmetry condition for Lie algebra g0̄ should be replaced by an equivalent for
p 6= 2, but otherwise stronger, alternating or antisymmetry condition

[x, x] = 0 for any x ∈ g0̄.

If p = 2, a Lie superalgebra is a superspace g = g0̄ ⊕ g1̄ such that g0̄ is a Lie algebra, g1̄ is a g0̄-
module (made two-sided by symmetry), with a squaring x 7→ x2 and a bracket of odd elements,
which are defined via a linear map s : S2(g1̄) −→ g0̄, where S2 denotes the operator of raising
to symmetric square, as follows:

x2 := s(x⊗ x),

[x, y] := s(x⊗ y + y ⊗ x) for any x, y ∈ g1̄.

The linearity of the g0̄-valued function s implies that

(ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and

[x, y] is a bilinear form on g1̄ with values in g0̄.

The Jacobi identity involving odd elements takes the form of the following two conditions:[
x2, y

]
= [x, [x, y]] for any x ∈ g1̄, y ∈ g0̄,

[
x2, x

]
= 0 for any x ∈ g1̄. (1.1)
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The (super)algebra satisfying only Jacobi identity, without any symmetry conditions, is called
a Leibniz (super)algebra.

Over Z/2, the condition (1.1) must (for a reason, see [44]) be replaced with a more general
one: [

x2, y
]

= [x, [x, y]] for any x ∈ g1̄ and y ∈ g. (1.2)

For any other ground field, this condition is equivalent to condition (1.1).
More generally, for any Lie superalgebra g, since we want the Lie superalgebra der g of all

derivations of g to be a Lie superalgebra, we have to add (to the Leibniz rule) the following
condition on derivations (it becomes (1.2) for D = ady)

D
(
x2
)

= [D(x), x] for odd elements x ∈ g1̄ and any D ∈ der g.

By an ideal i of a Lie superalgebra g, one always means i homogeneous with respect to parity,
i.e., equal to i ∩ g0̄

⊕
i ∩ g1̄; for p = 2, the ideal should be closed with respect to squaring.

Recall that a given Lie (super)algebra g is said to be simple if dim g > 1 and g has no proper
ideals; g is semisimple if its radical is zero; g is almost simple if it can be sandwiched (non-
strictly) between a simple Lie superalgebra s and the Lie superalgebra der(s) of derivations of s,
i.e., s ⊂ g ⊂ der(s).

The definition of the derived of the Lie superalgebra g changes when p = 2: let g(0) := g and
for any i ≥ 0, set

g(i+1) = (g(i))(1) :=

{[
g(i), g(i)

]
if p 6= 2,[

g(i), g(i)
]

+ Span
{
g2 | g ∈ g

(i)

1̄

}
if p = 2.

An even linear mapping r : g −→ gl(V ) is said to be a representation of the Lie superalgebra g,
and V is said to be a g-module if

r([x, y]) = [r(x), r(y)] for any x, y ∈ g,

r(x2) = (r(x))2 for any x ∈ g1̄.

1.2.4 Definition of Lie superalgebras for p = 3

Since we are giving a review of the context for any p > 0, we have to note a peculiarity of p = 3,
where the Jacobi identity for Lie superalgebras entails, additionally, that

[x, [x, x]] = 0 for any x ∈ g1̄. (1.3)

The super anti-commutative algebra satisfying the Jacobi identity, but not (1.3) is called a pre-
Lie superalgebra. For interesting examples of pre-Lie superalgebras, see [2].

1.3 Basics on the functor of points

In this subsection, we follow [59]; we advise the reader interested in subtleties that we, like most
authors, do not dwell on, to read the Appendices to [60].

For a fixed object M and any object X of a category C, the association X 7−→ HomC(X,M)
defines a functor F : C ; Sets. The idea is

(A) To consider HomC(X,M) as the set of points of M , which is indeed the case for any
set M if X is a point of M , and C = Sets;

(B) Considering objects of the category C of sets endowed with a structure (of a group,
algebra, module over a fixed algebra, topological space, etc.), and the morphisms in C being the
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maps of these sets preserving (exactly, or up to an equivalence, see [59, Section 1.16.3]) a certain
structure (that of a group, or of an associative algebra, or of Lie algebra, etc.), as a model, we’d
like to imitate these sets-with-a-structure by objects of another category.

For example, a Lie supergroup is any group in the category of supermanifolds, see [59].

Likewise, a Lie superalgebra is any Lie algebra in the category of linear supervarieties, see [44].
There we reformulate the naive definition of Lie superalgebras, which are Z/2-graded linear
spaces with multiplication satisfying certain identities, in terms of supervarieties.

1.3.1 PBW-theorem for Lie superalgebras

In [23], an interesting description of conditions when the Poincaré–Birkhoff–Witt theorem for
Lie superalgebras holds (or not) is offered for p > 0. Note, although we will not use this in this
paper, that for Lie superalgebras understood “naively”, the PBW theorem holds.

1.3.2 Deformations of the brackets

Let C be a supercommutative superalgebra, let SpecC be the affine super scheme.

Recall, see [62], where the non-super case is considered, that a deformation of a Lie superal-
gebra g over SpecC, is a Lie algebra G such that G ' g⊗ C, as superspaces. The deformation
is trivial if G ' g⊗C, as Lie superalgebras, not just as superspaces, and non-trivial otherwise.

Generally, the deforms of a Lie superalgebra g over K are Lie superalgebras G⊗I K, where I
is any closed point in SpecC.

In particular, consider a deformation with an odd parameter τ . This is a Lie superalgebra G
isomorphic to g⊗K[τ ] as a super space; if, moreover, G ' g⊗K[τ ] as a Lie superalgebra, i.e.,

[a⊗ f, b⊗ g] = (−1)p(f)p(b)[a, b]⊗ fg for all a, b ∈ g and f, g ∈ K[τ ],

then the deformation is considered trivial (and non-trivial otherwise). Observe that g⊗ τ is not
an ideal of G: the ideal should be a free K[τ ]-module.

Comment. Consider formal deformations over K[[τ ]]. If the formal series in τ converges in
a domain D, we can evaluate τ for any τ ∈ D and – if dim g < ∞ – consider copies gτ , where
τ ∈ D, of the same dimension as g. If the parameter is formal or odd, such an evaluation is
possible only trivially: τ 7→ 0.

1.4 Linear (matrix) Lie superalgebras

Certain basics of linear superalgebra are not well-known, or given wrongly in the literature; no
harm in recalling about them.

The general linear Lie superalgebra of all supermatrices of size Size corresponding to linear
operators in the superspace V = V0̄ ⊕ V1̄ over the ground field K is denoted by gl(Size), where
Size = (p1, . . . , p|Size|) is an ordered collection of parities of the basis vectors of V for which
we take only vectors homogeneous with respect to parity and |Size| := dimV ; usually, for the
standard (simplest from a certain point of view) format, gl(0̄, . . . , 0̄, 1̄, . . . , 1̄) is abbreviated to
gl(dimV0̄|dimV1̄). Any supermatrix from gl(Size) can be uniquely expressed as the sum of its
even and odd parts; in the standard format this is the following block expression; on non-zero
summands the parity is defined:

(
A B

C D

)
=

(
A 0

0 D

)
+

(
0 B

C 0

)
, p

((
A 0

0 D

))
= 0̄, p

((
0 B

C 0

))
= 1̄.
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The supertrace is the map gl(Size) −→ K, (Xij) 7−→
∑

(−1)pi(p(X)+1)Xii. Thus, in the standard
format, str

(
A B
C D

)
= trA − trD. Observe that for the Lie superalgebra glC(p|q) over a super-

commutative superalgebra C, i.e., for supermatrices with elements in C, we have

strX = trA− (−1)p(X) trD for any X =

(
A B

C D

)
,

where p(X) = p(Aij) = p(Dkl) = p(Bil) + 1̄ = p(Ckj) + 1̄.

So if C1̄ 6= 0, then on odd supermatrices the supertrace coincides with the trace.

Since str [x, y] = 0, the subsuperspace of supertraceless matrices constitutes a Lie subsuper-
algebra of gl(Size) called special linear and denoted sl(Size).

1.4.1 The queer version of gl(n)

There are at least two super versions of gl(n), not one; for reasons, see [52, Chapters 1 and 7].
The other version – q(n) – is called the queer Lie superalgebra and is defined as the one that
preserves – if p 6= 2 – the complex structure given by an odd operator J , i.e., q(n) is the
centralizer C(J) of J :

q(n) = C(J) = {X ∈ gl(n|n) | [X, J ] = 0}, where J2 = − id .

It is clear that by a change of basis we can reduce J to the form (shape) J2n in the standard
format, and then q(n) takes the form

q(n) =

{
(A,B) :=

(
A B

B A

)
, where A,B ∈ gl(n) and J2n :=

(
0 1n

−1n 0

)}
.

(Over any algebraically closed field K, instead of J we can take any odd operator K such that
K2 = a idn|n, where a ∈ K×; and the Lie superalgebras C(K) are isomorphic for distinct K; if

p = 2, it is natural to select K2 = id, and hence Πn|n := Π2n =
(

0 1n
1n 0

)
can serve as the normal

shape of K.)

On q(n), the supertrace vanishes, but the queertrace is defined: qtr : (A,B) 7−→ trB. Denote
by sq(n) the Lie superalgebra of queertraceless matrices; set psq(n) := sq(n)/K12n.

If p = 2, on q(n) there is another (even) trace htr : (A,B) 7→ tr(A), see [44].

1.4.2 The supermatrix of the dual operator (after [52])

Let F ∈ EndC(V ). The passage from the matrix of F in a basis of V to the matrix of F ∗ in the
dual basis of V ∗ is performed by means of the supertransposition which in the standard format
is of the shape

X =

(
R S

T U

)
7→ Xst :=



(
Rt T t

−St U t

)
if p(X) = 0̄,(

Rt −T t

St U t

)
if p(X) = 1̄,

where M t is the transposed of the matrix M .
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1.4.3 Lie superalgebras preserving bilinear forms

The supermatrices X ∈ gl(Size) such that

XstB + (−1)p(X)p(B)BX = 0 for an homogeneous matrix B ∈ gl(Size)

constitute the Lie superalgebra aut(B) that preserves the bilinear form B on V whose Gram
matrix B = (Bij) is given by the formula

Bij = (−1)p(B)p(vi)B(vi, vj) for the basis vectors vi ∈ V . (1.4)

In order to identify a bilinear form B(V,W ) with an operator, an element of Hom(V,W ∗), the
matrix B of the bilinear form B is defined in [52, Chapter 1] by equation (1.4), not by seemingly
natural – but inappropriate for such an identification – formula

Bij = B(vi, vj) for the basis vectors vi ∈ V . (1.5)

Moreover, the would-be definition (1.5) contradicts the manifest symmetry of the odd bilinear
form qtr on q(n). To correctly define symmetry of bilinear forms, consider the upsetting of
bilinear forms u : Bil(V,W ) −→ Bil(W,V ), see [52, Chapter 1], given by the formula

u(B)(w, v) = (−1)p(v)p(w)B(v, w) for any v ∈ V and w ∈W .

If V = W , we say that B is symmetric if

u(B) = B, where u(B) =

(
Rt (−1)p(B)T t

(−1)p(B)St −U t

)
for B =

(
R S

T U

)
.

Similarly, B is anti-symmetric if u(B) = −B.

1.4.4 Notational convention

By abuse of notation we will often denote the bilinear form B by its Gram matrix B in a normal
shape.

1.5 Analogs of polynomials for p > 0

Let C[x] := C[x1, . . . , xa] denote the supercommutative superalgebra of polynomials in indeter-
minates x in their standard order ; i.e., let the first m indeterminates be even and the other n be
odd (m+n = a). Among the bases of C[x] in which the structure constants are integers, the two
bases are usually considered: the monomial basis and the basis of divided powers constructed as
follows.

For any multi-index r = (r1, . . . , ra), where r1, . . . , rm ∈ Z+ and rm+1, . . . , ra ∈ {0, 1}, we set

u
(ri)
i :=

xrii
ri!

and u(r) :=
∏

1≤i≤a
u

(ri)
i . (1.6)

Clearly, we have

u(r) · u(s) =

 ∏
m+1≤i≤a

min(1, 2− ri − si) · (−1)

∑
m<i<j≤a

rjsi

 · (r + s

r

)
u(r+s), (1.7)

where
(
r + s

r

)
:=

∏
1≤i≤m

(
ri + si
ri

)
.

These u
(ri)
i form an “integer basis” (i.e., a basis in which all structure constants with respect to

the product (1.7) are integers) of C[x].
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1.5.1 Notational convention

In what follows, for clarity, we will write exponents of divided powers in parentheses.
Over any field K of characteristic p > 0, we consider the supercommutative superalgebra

(now we do not have any elements x, only the u
(ri)
i )

O(m;N |n) := K[u;N ] := SpanK

(
u(r) | ri

{
< pNi for i ≤ m

= 0 or 1 for i > m

)
,

with multiplication given by formula (1.7) where N = (N1, . . . , Nm) is the shearing vector with
Ni ∈ Z+ ∪∞ (we assume that p∞ =∞). Important particular cases of shearing vectors:

1 := (1, . . . , 1) and N∞ := (∞, . . . ,∞); we set Ô(m) := O(m;N∞). (1.8)

The algebra

F := O(m;N |n) = K[u;N ] and its completion Ô(m;N∞|n) (1.9)

are called the algebras of divided powers. We will sometimes need completion Ô
(
N̂ i

)
with respect

to only one indeterminate, where
(
N̂ i

)
j

= N j except for
(
N̂ i

)
i

=∞.

Clearly, O(a;1) = K[u;1] is the algebra of truncated polynomials. Only K[u;1] is indeed
generated by the declared indeterminates whereas the list of generators of K[u;N ] consists

of u
(pki )
i for all i and all ki such that 0 ≤ ki < Ni if ui is even.

1.6 The (generalized) Cartan prolongation

Let g− = ⊕
−d≤i≤−1

gi be a nilpotent Z-graded Lie (super)algebra and g0 a Lie sub(super)algebra

of the Lie (super)algebra der0(g−) of degree 0 derivations of g−. Recall that the graded Lie
superalgebra b = ⊕p>−d bp is said to be transitive if for all p ≥ 0 we have

{x ∈ bp | [x, b−] = 0} = 0, where b− := ⊕i<0bi.

The maximal transitive Z-graded Lie (super)algebra whose non-positive part is g− ⊕ g0 is
called the (generalized) Cartan prolong of the pair (g−, g0) and is denoted by (g−, g0)∗.

If p = 0, we can realize g− by elements of negative degree of vect(n|m;~r) and g0 by elements
of 0th degree of vect(n|m;~r) in a non-standard (see Section 2.4.1) grading of vect(n|m), where
n|m = sdimg−. Then the Cartan prolong (g−, g0)∗ := ⊕

k≥−d
gk of the pair (g−, g0) is obtained

for any k > 0 by

gk := {D ∈ vect(n|m;~r)k | [D, gi] ⊂ gk+i for any i < 0}.

The above-described procedure is called generalized prolongation because the initial Cartan
prolongation was defined for d = 1 only.

1.6.1 Partial Cartan prolongation involving positive components

Let h1 ⊂ g1 be a proper g0-submodule such that [g−1, h1] = g0. If such h1 exists (usually,
[g−1, h1] ⊂ g0), define the 2nd prolongation of ( ⊕

i≤0
gi)⊕ h1 to be

h2 := {D ∈ g2 | [D, g−1] ⊂ h1}.

The terms hi, where i > 2, are similarly defined. Set hi := gi for i ≤ 0 and call h∗ := ⊕hi the
partial Cartan prolong involving positive components.

Examples. The Lie superalgebra vect(1|n;n) is a subalgebra of k(1|2n;n). The former is
obtained as the Cartan prolong of the same nonpositive part as k(1|2n;n) and a submodule of
k(1|2n;n)1. The simple exceptional superalgebra kas discovered in [64, 65] is another example.
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1.7 Vectorial Lie algebras and algebras of divided powers

The Cartan prolong of (g−, g0), where g0 acts faithfully on g− and sdim g− = m|n, can be
embedded into the superalgebra of polynomial vector fields of m even and n odd indeterminates,
i.e., into der C[x1, . . . , xa] (where a = m + n, the first m indeterminates are even, and the rest
are odd), see [66].

Over a field K of characteristic p > 0, if one tries to follow the recipe of Section 1.6 naively
and use derivations of usual polynomials, instead of divided powers, it would not work. For
example, let us consider the prolong (g−, g0)∗, where g− = g−1, sdim g−1 = sdim g0 = 1|0,

and the action of g0 on g−1 is non-trivial. It has the form
∞⊕

i=−1
gi such that sdim gi = 1|0 and

gi = [g−1, gi+1] for all i ≥ −1.

The corresponding prolong over C would be embedded isomorphically into der C[x] so that gi
would be mapped into Span

(
xi+1∂x

)
. Over K, the construction of embedding would fail for

gp−1, because [∂x, x
p∂x] = 0, and there is no element X such that [∂x, X] = xp−1∂x.

However, over K, Cartan prolongs can be embedded into the superalgebra of derivations of
the algebra of divided powers. Let us first say a bit about these derivations.

Over C, consider the action of derivation ∂xi of C[x1, . . . , xa] in the basis of divided powers.
It is given by (recall the definition (1.6) of u(r))

∂xiu
(r) =

{
0 if ri = 0,

(−1)max(0,i−m−1)u((r1,...,ri−1,ri−1,ri+1,...,ra)) otherwise.
(1.10)

Since all the coefficients are integer, the map given by this formula is a derivation of K[m;N |n].
We will denote this map ∂i := ∂xi and call the maps ∂1, . . . , ∂a distinguished partial derivatives.

The general Lie algebra of vector fields consists of the following derivations expressed in terms
of distinguished partial derivatives

vect(m;N |n) =

 ∑
1≤i≤a

fi∂i | fi ∈ O(m;N |n)

 .

Note that if N 6= 1, then vect(m;N |n) is not the whole derK[m;N |n]. Maps ∂p
k

i , where
1 ≤ i ≤ m and 1 ≤ k < Ni, are also derivations of K[m;N |n], and a general derivation of
K[m;N |n] has the form2

∑
1≤i≤m

∑
0≤k≤Ni−1

fi,k∂
pk

i +
∑

m+1≤i≤a
fi∂i, where fi,k, fi ∈ K[m;N |n].

The Lie superalgebra vect(m;N |n) and its subalgebras, are called vectorial Lie superalge-
bras (cf. with matrix or linear Lie superalgebras). Cartan prolongs can be embedded into
vect(m;N |n); in particular, the above Cartan prolong would be isomorphic to vect(1;N∞|0),

with gi corresponding to Span
(
u

(i+1)
1 ∂1

)
.

1.7.1 Notation, again

Hereafter, the symbol g(a|b) or g(a;N |b) will designate the vectorial Lie superalgebra with given
name g realized by vector fields on the linear supermanifold Ka|b (the one corresponding to
the superspace Ka|b, see [44]), and endowed with a W-grading, see Table (2.18). The standard

2It is easy to see that K[m;N |n] is isomorphic to K[
∑
Ni;1|n], so their algebras of derivations are isomorphic

as well, so it is not surprising that a general element of derK[m;N |n] has
∑
Ni + n functional parameters.
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grading is taken as a point of reference for regradings governed by the vector ~r of degrees,
which often can be described by one number r that usually (for details, see [56, 65]) is equal
to the number of odd indeterminates of degree 0. The regraded Lie superalgebra is denoted
by g(a|b; r). In the standard grading the parameter r is usually omitted, see Table (2.18) and
tables in Section 25.4.

The module F of “functions” over vect(m;N |n) and its subalgebras (usually with the same
negative part) is an analog of the tautological module V over gl(V ) and its subalgebras.

1.7.2 Names

The Lie algebra vect(1;N) is called a Zassenhaus algebra. For p = 2 it is not simple. Observe that
vect(1;N) ' k(1;N) (indeed, f∂x ←→ Kf , see definition (2.2); clearly, ∂x is the distinguished
derivative with respect to the only indeterminate). The simple derived algebra vect(1)(1;N) '
k(1)(1;N) is also called a Zassenhaus algebra causing confusion, while vect(1;1) is lately called
(even for p = 0) the Witt algebra in honor of Witt who was the first to study one of its modular
incarnations, see Introduction to the first volume of [73].

In the old literature, vect(m;N), like its version for p = 0, was called the general Lie algebra
of Cartan type; lately, it is called the Jacobson–Witt algebra, whereas the name Witt algebra is
reserved for the particular case vect(1; 1) for p > 2.

1.8 Traces and divergencies on vectorial Lie superalgebras

On any Lie (super)algebra g over a supercommutative superalgebra C, e.g., over a field C = K,
a trace is any linear mapping tr : g −→ C such that

tr
(
g(1)
)

= 0. (1.11)

Now let g be a Z-graded vectorial Lie (super)algebra with g− := ⊕
i<0

gi generated by g−1,

and let tr be a trace on g0. Recall that any Z-grading of a given vectorial Lie (super)algebra is
given by degrees of the indeterminates, so the space of functions F , see equation (1.9), is also
Z-graded.

The divergence div: g −→ F is a degree-preserving adg−1-invariant extension of the trace to
the Cartan prolong; this extension should satisfy the following conditions, so div ∈ Z1(g;F),
i.e., is a cocycle:

Xi(divD) = div([Xi, D]) for all elements Xi that span g−1,

div |g0 = tr,

div |g− = 0.

We denote by Vol(u;N) or simply Volu := F∗ the vect(m;N |n)-module of volume forms dual
to F over F . As an F-module, Volu is generated by the volume element volu = 1∗ with fixed
indeterminates (“coordinates”) u which we often do not indicate. On the rank-1 F-module of
weighted λ-densities Volλ(m;N |n) with generator volλu over F , the vect(m;N |n)-action is given
for any f ∈ F and D ∈ vect(m;N |n) by the Lie derivative

LD
(
f volλu

)
=
(
D(f) + (−1)p(f)p(D)λf div(D)

)
volλu . (1.12)

The special Lie algebra sg := Ker div of divergence-free elements of g is the Cartan prolong
of (g−,Ker tr |g0). For example, svect(m;N |n) = (idsl(m|n), sl(m|n))∗,N .

The vect(0|n)-module Vol(0|n) contains a submodule Vol0(0|n) of codimension 1:

Vol0(0|n) :=

{
f vol |

∫
f vol = 0, where f ∈ F = Λ(n)

}
, (1.13)



18 S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites and I. Shchepochkina

where the Berezin integral
∫
f volθ is equal to the coefficient of the monomial of the highest

in θs degree.
Over svect(0|n), we often identify Vol0(0|n) with a submodule of F and omit (0|n); set

T 0
0 (0|n) := Vol0(0|n)/K · vol .

1.8.1 Examples of several divergences

On vect(m;N |n), the explicit expression of the standard divergence is as follows

div:
∑

fi∂xi −→
∑

(−1)p(xi)p(fi)∂xifi. (1.14)

The supertrace restricted from gl vanishes on q, but there is an “indigenous” queer trace
on q; analogously, the standard divergence (1.14) vanishes on certain Lie subsuperalgebras of
vect(m;N |n) on which there might be defined an “indigenous” divergence. This happens, e.g.,
with k(2n+ 1|2n+ 2) and m(n) as will be shown later on.

If there are several traces on g0, and hence divergences on g = (g−, g0)∗,N , there are several
types of special subalgebras, and we need an individual name for each.

If g is a Lie superalgebra, then the linear functional tr satisfying condition (1.11) is often
called, for emphasis, supertrace and denoted by str. If we were consistent, we should, accordingly,
use the term superdivergence but instead we drop the preface “super” in both cases.

1.9 Critical coordinates and unconstrained shearing vectors

The coordinate of the shearing vector N corresponding to an even indeterminate of the Z-graded
vectorial Lie (super)algebra g is said to be critical if it cannot take an arbitrarily big value.

The shearing vector without any imposed restrictions on its coordinates is said to be uncon-
strained ; we denote it by Nu. Let

dimN be the number of coordinates of N,

ParNu := dimNu − card({critical coordinates)}
be the number of parameters Nu depends on.

We established the (non)critical coordinates of the shearing vectors of the Z-graded vectorial
Lie (super)algebra g with a computer’s aid by explicitly computing the bases of the first several
terms gi for i ≥ 0 without imposing any constraints on N .

Conjecture 1.1. If the value of the coordinate N i (of the Z-graded vectorial Lie (super)algebra
g) can be > 1, then it can take any value.

2 Background continued. Subtleties

2.1 The serial simple vectorial Lie superalgebras over C as prolongs

When we only need the vectorial Lie superalgebras considered as abstract, not realized by vector
fields, we may consider their simplest filtrations with the smallest codimension of their maximal
subalgebras, and gradings associated with such filtrations.

2.1.1 Convention: on central element z ∈ g0

We chose the central element z ∈ g0 so that it acts on gi as i · id. The irreducible 1-dimensional
module over the commutative Lie algebra spanned by z which acts as i · id is denoted by K[i].
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2.2 The two types of superizations of the contact series over C

The type k: Define the Lie superalgebra hei(2n|m) on the direct sum of a (2n,m)-dimensional
superspace W , endowed with a non-degenerate antisymmetric bilinear form B, and a (1, 0)-
dimensional space spanned by z. Clearly, we have

k(2n+ 1|m) = (hei(2n|m), cosp(m|2n))∗

and, given hei(2n|m) and a subalgebra g of cosp(m|2n), we call (hei(2n|m), g)∗ the k-prolong of
(W, g), where W is the tautological osp(m|2n)-module.

The type m: The “odd” analog of k is associated with the following “odd” analog of hei(2n|m).
Denote by ba(n) the antibracket Lie superalgebra (ba is Anti-Bracket read backwards). Its
space is W ⊕ C · z, where W is an n|n-dimensional superspace endowed with a non-degenerate
antisymmetric odd bilinear form B; the bracket in ba(n) is given by the following relations:

z is odd and lies in the center; [v, w] = B(v, w) · z for any v, w ∈W .

Given ba(n) and a subalgebra g of cpe(n), we call (ba(n), g)∗ the m-prolong of (W, g), where W
is the tautological pe(n)-module.

2.3 Generating functions over C

A laconic way of describing k, m and their subalgebras is via generating functions.
On the 2n + 1|m-dimensional superspace with even coordinates t, and p = (p1, . . . , pn),

q = (q1, . . . , qn), and odd indeterminates (“coordinates”) (ξ, η, θ), where ξ = (ξ1, . . . , ξk), η =
(η1, . . . , ηk) and θ = (θ1, . . . , θs), the odd contact form α1 is defined to be

α1 = dt+
∑

1≤i≤n
(pidqi − qidpi) +

∑
1≤j≤k

(ξjdηj + ηjdξj) +

0 if m = 2k,∑
1≤`≤s

θ`dθ` if m = 2k + s.
(2.1)

For any f ∈ C[t, p, q, ξ, η, θ], set

Kf = (2− E)(f)
∂

∂t
+Hf +

∂f

∂t
E, (2.2)

where E =
∑
i
yi

∂
∂yi

(here the yi are all the coordinates except t) is the Euler operator, and

Hf =
∑
i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)

∑
`≤s

∂f

∂θ`

∂

∂θ`
+
∑
j≤k

(
∂f

∂ξj

∂

∂ηj
+
∂f

∂ηj

∂

∂ξj

) .

The Hamiltonian vector field Hf with Hamiltonian f preserves the symplectic form ω0 := dα1.
On the (n|n + 1)-dimensional superspace with even coordinates q = (q1, . . . , qn), and odd

indeterminates (“coordinates”) ξ = (ξ1, . . . , ξn), and τ , the even contact form α0, is defined to
be

α0 = dτ +
∑
i≤n

(ξidqi + qidξi). (2.3)

For any f ∈ C[q, ξ, τ ], set

Mf = (2− E)(f)∂τ − Lef −(−1)p(f)∂τ (f)E, where E =
∑
i

yi∂yi and where y = (q, ξ),
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Lef =
∑
i≤n

(
∂f

∂qi

∂

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂

∂qi

)
.

Since

LKf (α1) = 2
∂f

∂t
α1 = K1(f)α1,

LMf
(α0) = −(−1)p(f)2

∂f

∂τ
α0 = −(−1)p(f)M1(f)α0. (2.4)

Let k(2n+ 1|m) be the (contact) Lie superalgebra preserving the distribution given by the Pfaff
equation with the 1-form α1; let m(n) := m(n + 1|n) be the pericontact (“odd” contact) Lie
superalgebra preserving the distribution given by the Pfaff equation with the 1-form α0.

Equation (2.4) implies that Kf ∈ k(2n+ 1|m) and Mf ∈ m(n). Observe that

p(Lef ) = p(Mf ) = p(f) + 1̄.

Contact brackets, Poisson bracket, antibracket a.k.a. Buttin (Schouten) bracket.
To the (super)commutators [Kf ,Kg] and [Mf ,Mg] there correspond contact brackets of the
generating functions:

[Kf ,Kg] = K{f, g}k.b. ,

[Mf ,Mg] = M{f, g}m.b. .

The explicit expressions for the contact brackets are as follows. Let us first define the brackets
on functions that do not depend on t (resp. τ).

The Poisson bracket {−,−}P.b. (in the realization with the form ω0 := dα1 for m = 2k+ 1 it
is given by the formula

{f, g}P.b. =
∑
i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)

− (−1)p(f)

∑
`≤s

∂f

∂θ`

∂

∂θ`
+
∑
j≤k

(
∂f

∂ξj

∂g

∂ηj
+
∂f

∂ηj

∂g

∂ξj

) for any f, g ∈ C[p, q, ξ, η, θ].

The Buttin3 bracket {−,−}B.b., discovered by Schouten and initially known as the Schouten
bracket, is very popular in physics under the name antibracket, see [24]. It is given by the formula

{f, g}B.b. =
∑
i≤n

(
∂f

∂qi

∂g

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂g

∂qi

)
for any f, g ∈ C[q, ξ]. (2.5)

In terms of the Poisson and Buttin brackets, respectively, the contact brackets are as follows:

{f, g}k.b. = (2− E)(f)
∂g

∂t
− ∂f

∂t
(2− E)(g)− {f, g}P.b.,

{f, g}m.b. = (2− E)(f)
∂g

∂τ
+ (−1)p(f)∂f

∂τ
(2− E)(g)− {f, g}B.b.. (2.6)

The Lie superalgebras of Hamiltonian vector fields (or Hamiltonian superalgebras) and their
special subalgebras (defined only if n = 0) are

h(2n|m) = {D ∈ vect(2n|m) |LDω0 = 0, where ω0 := dα1},

h(1)(0|m) =

{
Hf ∈ h(0|m) |

∫
f vol = 0

}
.

3C. Buttin was the first to publish that the Schouten bracket satisfies super Jacobi identity.
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The “odd” analogues of the Lie superalgebra of Hamiltonian fields are the Lie superalgebra of
vector fields Lef introduced in [50], and its special subalgebra:

le(n) = {D ∈ vect(n|n) |LDω1 = 0, where ω1 := dα0},
sle(n) = {D ∈ le(n) | divD = 0}. (2.7)

It is not difficult to prove the following isomorphisms as Lie superalgebras with the brackets on
the right-hand sides given by the above-described brackets k.b. (where Kf and Hf are involved)
and m.b. (where Mf and Lef are involved)

k(2n+ 1|m) = {Kf | f ∈ C[t, p, q, ξ]} ∼= C[t, p, q, ξ],

po(2n|m) :=

{
Kf | f ∈ C[t, p, q, ξ] such that

∂f

∂t
= 0

}
∼= C[p, q, ξ],

h(2n|m) = {Hf | f ∈ C[p, q, ξ]} ' C[p, q, ξ]/C · 1,
m(n) = {Mf | f ∈ C[τ, q, ξ]} ∼= C[τ, q, ξ],

b(n) :=

{
Mf | f ∈ C[τ, q, ξ), such that

∂f

∂τ
= 0

}
∼= Π(C[q, ξ]),

le(n) = {Lef | f ∈ C[q, ξ]} ∼= Π(C[q, ξ]/C · 1).

We have

po(1)(0|m) =

{
Kf ∈ po(0|m) |

∫
f vol = 0

}
,

h(1)(0|m) = po(1)(0|m)/C ·K1.

2.3.1 Generating functions over K

Recall that the contact Lie superalgebra k(n0̄ + 1;N |n1̄) consists of the vector fields D that
preserve the contact structure (a non-integrable distribution given by a contact form α1, cf. (2.1))
on the supervariety M associated with the superspace Kn0̄+1|n1̄ :

LD(α1) = FDα1 for some FD ∈ F , where F is the space of functions on M. (2.8)

Consider the form (here n0̄ = 2k0̄; if n0̄ is odd, no contact form exists)

α1 = dx0 +
∑

1≤i≤k
xidxk+i

+

{
0 if n = (n0̄ + 1) + n1̄ = (2k0̄ + 1) + 2k1̄ = 2k + 1,

x2k+1dx2k+1 if n = (n0̄ + 1) + n1̄ = (2k0̄ + 1) + (2k1̄ + 1) = 2k + 2,
(2.9)

where in order to make expressions for brackets simpler, we consider the following nonstandard
order of indeterminates the constituents of dual pairs one above/under the other:

even: x0, even: x1, . . . , xk0̄
, odd: xk0̄+1, . . . , xk0̄+k1̄

,

even: xk0̄+k1̄+1, . . . , x2k0̄+k1̄
, odd: x2k0̄+k1̄+1, . . . , x2k; odd: x2k+1.

The vector fields D satisfying (2.8) for some function FD look differently for different character-
istics:

For p 6= 2, and also if p = 2 and n = 2k+ 1, the fields D satisfying (2.8) have, for any f ∈ F ,
the following form (compare with (2.2)):

Kf = (1− E′)(f)
∂

∂x0
+

∂f

∂x0
E′ +

∑
1≤i≤k0̄

(
∂f

∂xk+i

∂

∂xi
− ∂f

∂xi

∂

∂xk+i

)
(2.10)
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−(−1)Π(f)

 ∑
k0̄+1≤i≤k

(
∂f

∂xk+i

∂

∂xi
+
∂f

∂xi

∂

∂xk+i

)
+

0 if n = 2k + 1

1
2

∂f
∂x2k+1

∂
∂x2k+1

if n = 2k + 2

 ,

where

E′ :=
∑

1≤i≤k
xi∂xi +

{
0 if n = 2k + 1,

1
2x2k+1∂x2k+1

if n = 2k + 2.

For p = 2 and n = 2k+2, we cannot use formula (2.10) anymore (at least, not for arbitrary f)
since it contains 1

2 . In this case, the elements of the contact algebra are of the following three
types, and their linear combinations, where k = k0̄ + k1̄:

a) For any f ∈ F such that ∂f
∂x0

= ∂f
∂x2k+1

= 0, we have

Kf = (1 + E′)(f)
∂

∂x0
+
∑

1≤i≤k

(
∂f

∂xi

∂

∂xk+i
+

∂f

∂xk+i

∂

∂xi

)
, (2.11)

where E′ :=
∑

1≤i≤k
xi

∂
∂xi

.

Observe that in (2.10) and (2.11) we can also take E′ :=
∑

k+1≤i≤2k

xi
∂
∂xi

.

b) Set

F̂ := O(x0, x1, . . . , xk0̄
, xk+1, . . . , xk+k0̄

;N |xk0̄+1, . . . , xk, xk+k0̄+1, . . . , x2k). (2.12)

For any g ∈ F̂ , or equivalently, for any g ∈ F such that ∂g
∂x2k+1

= 0, we set

b1) Ag := g
(
x2k+1∂x0 + ∂x2k+1

)
,

b2) Bg := gx2k+1∂x2k+1
.

For the pericontact Lie superalgebra m(n;N |n) the analog of the formula (2.9) takes the form

α0 = dx0 +
∑

1≤i≤k
xidxk+i,

where the parities of indeterminates are such that p(xi) = p(xi+k) + 1̄; e.g., they are as follows

even: x1, . . . , xk; odd: xk+1, . . . , x2k, and x0.

Theorem 2.1 (on explicit squaring and contact brackets for p = 2). Brackets and squares of
contact vector fields, and the corresponding contact brackets of generating functions, are given
by formulas (2.14). Both the contact brackets {−,−}k.b. and {−,−}m.b. are of the shape

{f, f1} =
∂f

∂x0
(1 + E′)(f1) + (1 + E′)(f)

∂f1

∂x0
+
∑

1≤i≤k

(
∂f

∂xi

∂f1

∂xk+i
+

∂f

∂xk+i

∂f1

∂xi

)
,

where E′ :=
∑

1≤i≤k
xi

∂

∂xi
or E′ :=

∑
k+1≤i≤2k

xi
∂

∂xi
for any f, f1 ∈ F̂ . (2.13)

Then, for any f, f1, g, g1 ∈ F̂ , we deduce

[Kf ,Kf1 ] = K{f,f1}k.b. , [Mf ,Mf1 ] = M{f,f1}m.b. ,

(Kf )2 = K ∑
1≤i≤k

∂f
∂xi

∂f
∂xk+i

, (Mf )2 = M ∑
1≤i≤k

∂f
∂xi

∂f
∂xk+i

,
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[Kf , Ag] = A{f,g}k.b. , (Ag)
2 = B

g ∂g
∂x0

+ g2K1,

[Kf , Bg] = B{f,g}k.b. , [Ag, Bg1 ] = Agg1 ,

[Ag, Ag1 ] = B ∂(gg1)
∂x0

, [Bg, Bg1 ] = (Bg)
2 = 0. (2.14)

Proof is based on direct computations, see formulas (2.14). �

In particular, for k(1;N |0), we have (unless a = b = 0)

{x(a), x(b)} =
((

a+ b− 1

a− 1

)
+
(
a+ b− 1

b− 1

))
x(a+b−1) =

(
a+ b

a

)
x(a+b−1).

Lemma 2.2 (A helpful lemma). For any g ∈ F̂ , see (2.12), we have g2 ∈ K, see the expressions
for (Ag)

2 and [Ag, Bg] in equation (2.14).

Proof. Indeed, g =
∑

r grx
(r), where r is a (2k+1)-tuple of non-negative numbers and the sum

runs over a set of such tuples, and gr ∈ K for all r. Then,

g · g =
∑
r,s

grgsx
(r) · x(s),

i.e., the terms with r 6= s, are encountered 2 times, so what remains is∑
r

g2
rx

(r) · x(r) =
∑
r

g2
r

(
2r

r

)
x(2r) =

∑
r

g2
r

(
2k∏
i=0

(
2ri
ri

))
x(2r). (2.15)

If a > 0, then
(

2a

a

)
= 0 (mod 2). By definition,

(
0

1

)
:= 0; hence the product in equation (2.15)

vanishes even if there are only even indeterminates involved. Therefore, only the summand with
r = (0, . . . , 0), i.e., (g(0,...,0))

2, survives. �

Claim 2.3 (Grading operators in k(2n0̄ + 1;N |m) and m(n;N |n + 1)). For p 6= 2 and the
bracket (2.13), the x0-action gives a grading of g by the formula adx0 |gi = i id; this action
also defines the 1-dimensional g0-module we denote by K[i].

For p = 2, let

K[∗] denote the Kx0-module analogous to K[i]; Φ :=
∑

1≤i≤k
xixk+i. (2.16)

For p = 2, the element x0 annihilates a subspace ann(x0)|g−1 of g−1 and acts as multiplication
by 1 on both g−1/(ann(x0)|g−1), and g−2.

For p = 2, the operators adx0 |g0 and adΦ |g0 interchange their roles as compared with p 6= 2:
now adΦ commutes with g0.

Claim 2.4 (brackets in k(2k0̄ + 1;N |2k1̄ + 1)). In items 1)–3) the isomophisms are between
the LHS, defined as the Lie superalgebras of vector fields that multiply the contact form α by
a function, and the RHS, the brackets and squarings in which is given by formulas (2.14).

1) k(1;N |0) ' vect(1;N |0).

2) k(1;N |1) ' (KK1⊕O(x0;N))
⊕

Π(O(x0;N)). The even part of the simple Lie superalgebra
k(1)(1;N |1) is solvable. (For other examples of the same phenomenon indigenous to p = 2,
see [10, Section 16.2].) This Lie superalgebra is the superization of vect(1)(1;N + 1) by
“method 2”, see [12] and [43], and the desuperization F(k(1)(1;N)) is simple Lie algebra
vect(1)(1;N + 1).

3) k(2k0̄ + 1;N |2k1̄ + 1) '
(
po(2k0̄; N̂ |2k1̄) ⊕ F̂

)⊕
Π
(
F̂
)
, where N = (N0, N̂) and at least

one of k0̄ and k1̄ is non-zero. These Lie superalgebras and their desuperizations are not
simple, the ideal i is generated by the Ag and Bg; recall (2.12). We have

k(2k0̄ + 1;N |2k1̄ + 1)/i ' h(2k0̄;N |2k1̄).
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2.4 Weisfeiler gradings

For vectorial Lie superalgebras, the invariant notion is filtration, not grading. In character-
istic 0, the Weisfeiler filtrations were used in the description of the infinite-dimensional Lie
(super)algebras L by selecting a maximal subalgebra L0 of finite codimension; for the simple
vectorial Lie algebra, there is only one such L0. (Dealing with finite-dimensional algebras for
p > 0, we can confine ourselves to maximal subalgebras of least codimension, or “almost least”.)

Let L−1 be a minimal L0-invariant subspace strictly containing L0; for i ≥ 1, set:

L−i−1 =

[L−1,L−i] + L−i unless p = 2 and i = 1,

[L−1,L−i] + L−i + Span
(
X2 |X ∈ L−1

)
for p = 2 and i = 1,

Li = {D ∈ Li−1 | [D,L−1] ⊂ Li−1}.

We thus get a filtration:

L = L−d ⊃ L−d+1 ⊃ · · · ⊃ L0 ⊃ L1 ⊃ · · · . (2.17)

The d in (2.17) is called the depth of L, and of the associated Weisfeiler-graded Lie superalgebra
g = ⊕

−d≤i
gi, where gi = Li/Li+1. We will for brevity say W-graded and W-filtered.

For the list of simple W-graded vectorial Lie superalgebras g = ⊕
−d≤i

gi over C, see [55]

reproduced in Tables 25.2 and 25.3.

2.4.1 The Z-gradings of vectorial Lie superalgebras

These gradings are defined by the vector ~r of degrees of the indeterminates, but this vector can
be shortened for W-gradings to a number r, or a symbol, which we do not indicate for r = 0.
Let the indeterminates t, pi, qj , and u` be even, while τ , ξi, ηj , and θ` be odd. Let the contact
Lie superalgebra k(2n+ 1|m) preserve the distribution given by the Pfaff equation

α1(X) = 0 for X ∈ vect(2n+ 1|m),

where the form α1 is given by (2.1). For the k series, let u = (t; p, q) be even indeterminates,
the odd indeterminates being the θ (resp. θ, ξ, η), see (2.1).

For the m series, the indeterminates in Table (2.18) are denoted as in formula (2.3), i.e., the qi
even, the ξi, and τ odd.

In Table (2.18), the “standard” gradings correspond to r = 0, they are marked by an aster-
isk (∗). For r = 0, the codimension of L0 is the smallest.

Lie superalgebra its Z-grading

vect(n|m; r), deg ui = deg θj = 1 for any i, j (∗)
where 0 ≤ r ≤ m deg θj = 0 for 1 ≤ j ≤ r;

deg ui = deg θr+s = 1 for any i, s

m(n; r), deg τ = 2, deg qi = deg θi = 1 for any i (∗)
where 0 ≤ r < n− 1 deg τ = deg qi = 2, deg ξi = 0 for 1 ≤ i ≤ r;

and one more grading (next line): deg qr+j = deg ξr+j = 1 for any j

m(n;n) deg τ = deg qi = 1, deg ξi = 0 for 1 ≤ i ≤ n
k(2n+ 1|m; r), deg t = 2, deg pi = deg qi = deg ξj = deg ηj = deg θ` = 1

where 0 ≤ r ≤ [m
2

], for any i, j, ` (∗)
r 6= k − 1 if (n,m) = (0, 2k) deg t = deg ξi = 2, deg ηi = 0 for 1 ≤ i ≤ r;

and one more grading (next line): deg pi = deg qi = deg θ` = 1 for ` ≥ 1 and all i

k(1|2m;m) deg t = deg ξi = 1, deg ηi = 0 for 1 ≤ i ≤ m

(2.18)
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2.5 Divergence-free and traceless subalgebras

In this subsection, the ground field is any K for p 6= 2. The peculiarities of p = 2 are considered
in Sections 2.9 and 2.10. Here we will not mention N if p > 2.

2.5.1 k series

Since the restriction of the standard divergence (1.14) to the subalgebra of degree 0 is (su-
per)trace, and since the space g0/[g0, g0], where g := k(2n + 1|m), is spanned by Kt for
(n,m) 6= (0, 2), it is easy to calculate that

divKf = (2n+ 2−m)∂t(f) if 2n+ 2−m 6= 0, (2.19)

it follows that the divergence-free (relative the restriction of the divergence (1.14) to k(2n+1|m))
subalgebra of the contact Lie superalgebra either coincides with it for m = 2n+2 or is the Poisson
superalgebra singled our by the condition ∂t(f) = 0.

On k(2n+ 1|2n+ 2) there is its own, “indigenous” divergence Kf 7→ ∂t(f); it also singles out
the Poisson superalgebra. This, however, is not the whole story: the case k(1|2) is exceptional.

The case of k(1|2). Let α1 = dt+ ξdη + ηdξ. Since k(1|2)0 is commutative and 2-dimen-
sional, there are 2 linearly independent traces on it: one – tr – is equal to 1 at t and vanishes at
ξη, the other one – call it tr(2) – is equal to 1 at ξη and vanishes at t.

Clearly, the condition K1(f) = 0 singles out the subalgebra k− ⊕ Kξη of k(1|2). In other
words, the operator ∂t = 1

2K1 in the adjoint representation is an analog of the divergence – the
prolong of the trace on k0; this analog is equal to 1 at t and vanishes at ξη.

The divergence-free condition divD = 0, where D ∈ g for a Z-graded vectorial Lie super-
algebra g, should single out the complete prolong of (g−, s), where s = {g ∈ g0 | tr g = 0}.
Therefore, the condition that determines the divergence is

X(divD) = div([X,D]) for any X ∈ g−. (2.20)

Since g−1 generates the negative part, it suffices to require fulfillment of the condition (2.20) for
any X ∈ g−1.

Therefore, we have to express the divergence not in terms of partial derivatives, but in terms
of the operators commuting (not supercommuting) with g− (recall that in [66], the operators
that span g− are denoted by Xi, and the operators commuting with g− are denoted by Yi).

To write the second divergence div(2), which is the prolong of tr(2), we need two operators
commuting (not supercommuting!) with k(1|2)−. In our case, the X-operators are

K1 = 2∂t, Kξ = ∂η + ξ∂t and Kη = ∂ξ + η∂t,

then the needed Y -operators are

K̃1 = ∂t, K̃ξ(f) = (−1)p(f)(∂η − ξ∂t)(f) and K̃η(f) = (−1)p(f)(∂ξ − η∂t)(f). (2.21)

Let α1 = dt+ ξdη which works for any characteristic. Then, the X-operators are

K1 = ∂t, Kξ = ∂η and Kη = ∂ξ + η∂t,

and the Y -operators are

K̃1 = ∂t, K̃ξ(f) = (−1)p(f)(∂η − ξ∂t)(f) and K̃η(f) = (−1)p(f)∂ξ(f). (2.22)
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Claim 2.5 (the second divergence on k(1|2)). The prolong of tr(2) composed of the Y -opera-
tors (2.21) or (2.22) is the same

div(2) := K̃ηK̃ξ − K̃1,

and div(2)(ξη) = 1 while div(2)(t) = 0.

The k(1|2)-module of weighted densities. Over contact Lie superalgebras k(2n + 1|m)
it is natural to express the spaces of weighted densities in terms of the conformally preserved
form α1. This recalculation is well-known for m = 0, where vol = α1 ∧ (dα1)n. The general case
follows from equation (2.19): from the point of view of the k(2n+ 1|m)-action

vol =

{
(α1)(2n+2−m)/2 if (m,n) 6= (0, 0),

α1 if (m,n) = (0, 0).

Since the center of k(1|2)0 is of dimension 2, the weights of the spaces of weighted densities
have 2 parameters, not one: Fa,b := Fαa1βb, where a, b ∈ K.

Let β be the symbol of the class of the differential form dξ (or, equivalently, (dη)−1 )in the
quotient space Ω1/Fα1 of 1-forms. The Lie derivative acts as follows

LKf
(
αa1β

b
)

=
(
a∂t(f) + (−1)p(f)bdiv2(Kf )

)(
αa1β

b
)

=
((
a− (−1)p(f)b

)
∂t(f) + (−1)p(f)bK̃ηK̃ξ(f)

)(
αa1β

b
)
. (2.23)

The space Fa,b of weighted densities over k(1|2) is a rank-1 module generated by αa1β
b over the

algebra of functions F = F0,0.

2.5.2 m series, its simple subalgebras, and weighted densities

For the pericontact series, the situation is more interesting than that for contact series: the
divergence-free subalgebra is simple and new (only as compared with the above-described alge-
bras; it is known since ca 1978, see [1]).

Let p 6= 2. Since

divMf = (−1)p(f)2

(1− E)
∂f

∂τ
−
∑
i≤n

∂2f

∂qi∂ξi

 ,

it follows that the divergence-free subalgebra of the pericontact superalgebra is

sm(n) = Span

Mf ∈ m(n) | (1− E)
∂f

∂τ
=
∑
i≤n

∂2f

∂qi∂ξi

 .

In particular,

div Lef = (−1)p(f)2
∑
i≤n

∂2f

∂qi∂ξi
= (−1)p(f)2∆(f), where ∆ :=

∑
i≤n

∂2

∂qi∂ξi
.

The divergence-free vector fields from sle(n) are generated by harmonic functions, i.e., such that
∆(f) = 0.

Rank 1 over the algebra F modules Fm
a,b := Fαa0γb, where a, b ∈ K, are generated by αa0γ

b,
where γ is a symbol of the class of differential forms (whose explicit expression is irrelevant,
same as that of β, see equation (2.23)). The Lie derivative acts as follows:

LMf

(
αa0γ

b
)

=
(
(−1)p(f)b∂τ (f) + a ∆m(f)

)(
αa0γ

b
)
.
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The divergence-free relative the standard divergence Lie superalgebras sle(n), sb(n) and
svect(1|n) have traceless ideals sle(1)(n), sb(1)(n) and svect(1)(n) of codimension 1; they are
defined from the exact sequences

0 −→ sle(1)(n) −→ sle(n) −→ K · Leξ1...ξn −→ 0,

0 −→ sb(1)(n) −→ sb(n) −→ K ·Mξ1...ξn −→ 0,

0 −→ svect(1)(1|n) −→ svect(1|n) −→ K · ξ1 · · · ξn∂t −→ 0.

2.5.3 A deform of the series b

Let p 6= 2. For an explicit form of Mf , see Section 2.3. Set

ba,b(n) =

{
Mf ∈ m(n) | a divMf = (−1)p(f)2(aE − bn)

∂f

∂τ

}
.

We denote the operator that singles out bλ(n) in m(n) as follows, cf. (1.12):

divλ = (bn− aE)
∂

∂τ
− a∆, for λ =

2a

n(a− b)
and ∆ =

∑
i≤n

∂2

∂qi∂ξi
.

Taking the explicit form of the divergence of Mf into account, we get

ba,b(n) =

{
Mf ∈ m(n) | (bn− aE)

∂f

∂τ
= a∆f

}
=
{
D ∈ vect(n|n+ 1) |LD

(
volaq,ξ,τ α

a−bn
0

)
= 0
}
. (2.24)

It is subject to a direct verification that ba,b(n) ' bλ(n) for λ = 2a
n(a−b) ∈ KP 1. Obviously, if

λ = 0, 1,∞ (where b0 := b and b∞ := ba,a) the structure of bλ(n) differs from the other members
of the parametric family: the following exact sequences single out simple Lie superalgebras (the
quotient le(n) and ideals, the first derived subalgebras):

0 −→ KM1 −→ b(n) −→ le(n) −→ 0,

0 −→ b
(1)
1 (n) −→ b1(n) −→ K ·Mξ1...ξn −→ 0,

0 −→ b(1)
∞ (n) −→ b∞(n) −→ K ·Mτξ1...ξn −→ 0. (2.25)

Problem 2.6. The Lie superalgebras bλ(n) can be further deformed at certain points λ, see [58],
where K = C; the Lie superalgebras of series h and le also have extra deformations. Describe
the deformations of bλ(n;N), as well as h and le for all p > 0.

2.6 Passage from p = 0 to p > 0

Here we have collected answers to several questions that stunned us while we were writing
this paper. We hope that even the simplest of these answers will help the reader familiar with
representations of Lie algebra over C, but with no experience of working with characteristic p > 0.

For p = 2, several of our definitions are new, see Sections 2.9 and 2.10.

2.6.1 The Lie (super)algebras preserving symmetric non-degenerate
bilinear forms B

We often denote the Gram matrix of the bilinear form B also by B, let aut(B) be the Lie
(super)algebra preserving B. If B is odd and the superspace, on which it is defined, is of
superdimension n|n, we write peB(n) instead of aut(B).
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Let p 6= 2 and g = peB(n). The Lie superalgebra g consists of the supermatrices of the
form

X =

(
A B

C −At

)
, where B is symmetric and C is antisymmetric

if the form B is in its normal shape Πn|n := Π2n =

(
0 1n

1n 0

)
.

Clearly, strX = 2 trA. We also have g(1) = spe(n), i.e., spe(n) is of codimension 1; it is singled
out by the condition strX = 0, which is equivalent to trA = 0.

The Lie superalgebra le(n;N |n) is, by definition, the Cartan prolong (id, pe(n))∗,N .
Over C, there is no shearing vector, and le(n) := le(n|n) is spanned by the elements Lef ,

where f ∈ C[q, ξ].

If p > 2, the elements of O(q;N |ξ) ⊕ Span
(
q

(pNi )
i |Ni < ∞

)
, or O(q;N∞|ξ) for N = N∞,

see (1.8), generate le(n;N). If Ni < ∞ for at least one i, the additional part Irreg does not
change while the regular part looks the same for any p > 2:

Reg = Span(Lef | f ∈ O(q;N |ξ))⊕ Span
(
q

(pNi )
i |Ni <∞

)
,

Irreg = Span(ξi∂qi)
n
i=1. (2.26)

In other words: there are vector fields corresponding to non-existing generating functions, like

q
(pNi )
i and ξ2

j . The prolong sle(n;N) := (id, spe(n))∗,N is singled out by the condition

div Lef = 0⇐⇒ ∆f = 0, where ∆ =
∑
i≤n

∂2

∂qi∂ξi
.

The operator ∆ is, therefore, the “Cartan prolong of the supertrace on g0” expressed as an
operator acting on the space of generating functions.

Modifications in the above description for p = 2. If p = 2, the analogs of symplectic
(resp. periplectic) Lie (super)algebras accrue additional elements: if the matrix of the bilinear
form B is Π2n (resp. Πn|n), then aut(B) consists of the (super)matrices of the form

X =

(
A B

C At

)
, where B and C are symmetric, A ∈ gl(n). (2.27)

Denote the general Lie (super)algebra preserving the form B as follows:

aut(B) =

{
ogen(2n) for B = Π2n,

pegen(n) for B = Πn|n.

Let

ZD denote the space of symmetric matrices with zeros on their main diagonals.

The derived Lie (super)algebra aut(1)(B) consists of the (super)matrices of the form (2.27), where
B,C ∈ ZD. In other words, these Lie (super)algebras resemble the orthogonal Lie algebras.

On these Lie (super)algebras aut(1)(B) the following (super)trace (half-trace) is defined:

htr :

(
A B

C At

)
−→ trA.
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The half-traceless Lie sub(super)algebra of aut(1)(B) is isomorphic to aut(2)(B).
There is, however, an algebra ãut(B), such that aut(1)(B) ⊂ ãut(B) ⊂ aut(B), consisting of

(super)matrices of the form (2.27), where B ∈ ZD, and any symmetric C (or isomorphic to it
version of the Lie superalgebra with C ∈ ZD, and any symmetric B). We suggest that it be
denoted as follows:

ãut(B) =

{
F(pe)(2n) for B even,

pe(n) for B odd,

aut(1)(B) = {X ∈ ãut(B) |htrX = 0} =

{
F(spe)(2n) for B even,

spe(n) for B odd.

2.7 Central extensions

There is only one non-trivial central extension of spe(n) for p 6= 2, 3 existing only for n = 4.
We denote it as because it was discovered by A. Sergeev (1970s, unpublished). For numerous
non-trivial central extensions of versions of spe(n) and its simple subquotients for p = 2, 3, see [6].

Let us represent an arbitrary element A ∈ as as a pair A = x+d · z, where x ∈ spe(4), d ∈ C,
and z is the central element. The bracket in as is[(

a b

c −at

)
+ d · z,

(
a′ b′

c′ −(a′)t

)
+ d′ · z

]
=

[(
a b

c −at

)
,
(
a′ b′

c′ −(a′)t

)]
+ tr cc̃′ · z, (2.28)

where ˜ is extended via linearity from matrices cij = Eij − Eji on which c̃ij = ckl for any even
permutation (1234) 7−→ (ijkl). Recall that b = bt and b′ = (b′)t in (2.28), whereas c = −ct and
c′ = −(c′)t.

The Lie superalgebra as can also be described in terms of the spinor representation. For this,
we need several vectorial superalgebras. Consider po(0|6), the Lie superalgebra whose superspace
is the Grassmann superalgebra Λ(ξ, η) generated by ξ = (ξ1, ξ2, ξ3) and η = (η1, η2, η3) with the
Poisson bracket.

Recall that h(0|6) = Span(Hf | f ∈ Λ(ξ, η)). Now, observe that spe(4) can be embedded into
h(0|6). Indeed, setting deg ξi = deg ηi = 1 for all i we introduce a Z-grading on Λ(ξ, η) which,
in turn, induces a Z-grading on h(0|6) of the form h(0|6) = ⊕

i≥−1
h(0|6)i. Since sl(4) ∼= o(6), we

can identify spe(4)0 with h(0|6)0.
It is not difficult to see that the elements of degree −1 in the standard gradings of spe(4) and

h(0|6) constitute isomorphic sl(4) ∼= o(6)-modules. It is subject to a direct verification that it is
possible to embed spe(4)1 into h(0|6)1.

Sergeev’s extension as is the result of the restriction to spe(4) ⊂ h(0|6) of the cocycle that
turns h(0|6) into po(0|6). The quantization deforms po(0|6) into gl(Λ(ξ)); the through maps
Tλ : as −→ po(0|6) −→ gl(Λ(ξ)) are representations of as in the 4|4-dimensional modules spinλ
isomorphic to each other for all λ 6= 0. The explicit form of Tλ is as follows:

Tλ :
(
a b

c −at

)
+ d · z 7−→

(
a b− λc̃
c −at

)
+ λd · 14|4,

where 14|4 is the unit matrix and c̃ is defined in the line under equation (2.28). Clearly, Tλ is
an irreducible representation for any λ.

2.8 Prolongs

The Lie superalgebra pegen(n) is larger than pe(n): both B and C in pegen(n) are symmetric,
see (2.27). Observe that pegen(n) ⊂ sl(n|n). Denote

legen(n;N |n) := (id, pegen(n))∗,N .
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Clearly, if N = N∞, see (1.8), then legen(n;N |n) consists of the following two parts, cf. equa-
tion (2.26):

Reggen = Span(Lef | f ∈ O(q;N |ξ)), Irreggen = Span(Bi := ξi∂qi)
n
i=1. (2.29)

The part Irreggen corresponds to the nonexisting generating functions ξ2
i . Clearly, legen(n;N |n)

is contained in svect(n;N |n), and therefore

legen(n;N |n) = slegen(n;N |n).

The difference between legen(n;N |n) and le(n;N |n) is constituted by the space Irreggen. The

nonexisting generating functions ξ
(2)
i generate linear vector fields corresponding to the diagonal

elements of the matrices B in (2.27), like the q
(2)
i generate linear vector fields corresponding to

the diagonal elements of the matrices C in (2.27), but these two sets of elements are different in
their nature: there are no elements of degree > 0 in (id, pegen)∗,N whose brackets with g−1 give
the Bi in (2.29).

The correct p = 2 analogs of the complex Lie superalgebras sle(n) and spe(n) are, respectively,(
id, (pe(n))(1)

)
∗,N and pe(n)(1).

In [48], Lebedev considered g = pe(n), the derived algebras g(1) and g(2), and the Cartan
prolongs of these derived algebras playing the role of g0, whereas for g−1 he considered the
tautological g0-module id. Clearly, g(1) consists of supermatrices of the form (2.27) with zero-
diagonal matrices B and C, whereas g(2) is singled out of g(1) by the condition htr = 0. The
corresponding Cartan prolongs only have the regular parts:(

id, g(1)
)
∗,N = Span

(
Lef | f ∈ O(q;1|ξ)

)
;(

id, g(2)
)
∗,N = Span

(
Lef | f ∈ O(q;1|ξ) and ∆f = 0

)
.

Let a non-degenerate (anti)symmetric bilinear form B be defined on a superspace V ; let F(B) be
the same form considered on F(V ), the same space with superstructure forgotten. Let hB(a;N |b)
denote the Hamiltonian Lie superalgebra – the Cartan prolong of the ortho-orthogonal Lie
superalgebra ooB(a|b) preserving the non-degenerate form B; its desuperization is hF(B)(a+b; Ñ),

where Ñ has no critical coordinates.

Remark 2.7. For N with Ni < ∞ for all i and p = 2, the Lie superalgebra le(1)(n;N |n) is
spanned by the elements f ∈ O(q;N |ξ), whereas each of the “virtual” generating functions

q
(2Ni )
i 6∈ O(q;N |ξ) determines an outer derivation of le(1)(n;N |n).

2.8.1 Divergence-free subalgebras g of series h and le in the standard W-grading

These subalgebras are prolongations of subalgebras of 0th components of h and le consisting of
traceless subalgebras; that is how these (super)algebras were described in [48].

It is possible, however, to describe various subalgebras of h0 or le0, generated by (linear
combinations of) quadratic monomials, by eliminating squares of indeterminates from the set of
functions generating g0. In other words,

constraints imposed on the shearing vector N corresponding to the space of
generating functions determine various divergence-free subalgebras of h(n;N)
and le(n;N).

2.8.2 svecta,b(0|n)

For p > 0, let svecta,b(0|n) denote svect(0|n) n K(az + bd), where the element d :=
∑
ξi∂ξi

determines the standard Z-grading of svect(0|n), while z is an element generating the trivial
center commuting with svect(0|n) nK · d.



Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations 31

2.8.3 spea,b(n)

For p = 0, the meaning of spea,b(n) is similar to that of svecta,b(0|n), but with d := diag(1n,−1n).
To define the analog of spea,b(n) for p = 2, see line N = 7 in Table 25.2, observe that the
codimension of spe(n) in m0, where m := m(n) is considered in its standard Z-grading, is equal
to 2.

So, to pass from spe(n) to m0, we have to add two linearly independent elements, whereas to
pass to spea,b we have to add a linear combination of these elements with coefficients a and b.
The question is: “can we single out these elements in a canonical way?”

For p = 0. The identity operator (in matrix realization) is one of these elements. How to
select the other element? There is no distinguished element in pe(n)\spe(n). But, if p = 0, there
is an element diag(1n,−1n) corresponding to a “most symmetric” generating function

∑
qiξi.

For p > 2 this “most symmetric” element lies in spe(n) if p divides n and the choice of the
linearly independent second element from pe(n) \ spe(n) becomes a matter of taste.

For p = 2, the situation becomes completely miserable. Now, the restriction of M∑
qiξi to m−1

not only lies in spe(n) for n even, it coincides with the identity operator. So, in this case, there
is no distinguished operator not lying in spe(n). What to do?

We suggest considering the elements of m0 as operators acting not just on m−1, but on the
whole m−. If m0 is thus understood, there are two well-defined linear forms ` and µ that single
out spe(n) in m0:

for any operator A ∈ m0, let Ai = adA |mi ; then A−2 = `(A) · id and A−1 is as in (2.27),

µ(A) =

{
htr(A−1) for p = 2,

str(A−1) for p > 2.
(2.30)

Now, spe(n) is singled out by conditions `(A) = µ(A) = 0, while

spea,b(n) := {X ∈ pe(n) = m0 | (aµ+ b`)(X) = 0}.

2.9 On m and b

To pass from b(n;N |n) to m(n;N |n+1), we have to add to b(n)0 = pe(n) the central element; it
will serve as a grading operator of the prolong. We see that m is the generalized Cartan prolong
of (b(n)−, cb(n)0).

The commutant of m(n;N |n + 1)0 is the like that of b(n)0 = pe(n), so is of codimension 2.
Hence there are two traces on m(n;N |n+ 1)0, namely htr and `, see (2.30), and therefore there
are two divergences on m. One of them is given by the operator

∂τ , more precisely Dτ := ∂τ ◦ sign,

i.e., Dτ (f) = (−1)p(f)∂τ (f) for any f ∈ O(q;N |τ, ξ)

since this should be the mapping commuting (not supercommuting) with m−, see [66]. The
condition Dτ (f) = 0, i.e., just ∂τ (f) = 0 singles out precisely b(n).

The other divergence is given by the operator (2.32).

2.9.1 sb

The definition of sb(n;N) is the same for any characteristic p (in terms of generating “functions”
from an appropriate space F , see (1.9)):

sb(n;N) = Span(f ∈ F |∆(f) = 0).
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2.9.2 ba,b for p = 2

The direct analog of trace on m0 is htr. On le, the prolong of htr is the operator ∆. But ∆ does
not commute with the whole of m−. To obtain the m−-invariant prolong of this trace on m0,
we have to express htr in terms of the operators commuting with m− (Y -type vectors in terms
of [66]). Taking m− spanned by the elements

m−2 = K · ∂τ , m−1 = Span(∂qi + ξi∂τ , ∂ξi)
n
i=1,

we see that the operators commuting with m− are spanned by

∂τ , ∂qi , ∂ξi + qi∂τ .

In terms of these operators, the vector field Mf takes the form:

Mf = f∂τ +
∑
i

(
∂qi(f)(∂ξi + qi∂τ ) + (∂ξi + qi∂τ )(f)∂qi

)
(2.31)

and the invariant prolong of htr – the direct analog of divergence – takes the form:

∆m(f) =
∑
i

((∂ξi + qi∂τ )∂qi(f) = ∆(f) + Eq∂τ (f), where Eq :=
∑
i

qi∂qi . (2.32)

The condition ∆m(f) = 0 singles out the p = 2 analog of sm, whereas the condition

b∂τ (f) + a∆m(f) = (b+ aEq)∂τ (f) + a∆(f) = 0 (2.33)

singles out the p = 2 analog of ba,b, cf. (2.24).
Setting

poa,b
(
2n; Ñ

)
:= F(ba,b(n;N))

we single out a subalgebra in the Lie algebra of contact vector fields which has no analogs for
p 6= 2.

Let us figure out how the parameter λ of the regrading poλ(2n;N) := F(bλ(n;N)) depends
on parameters a, b above; for a summary, see N = 6, 7 in Table 25.2. The space of ba,b(n;N)
consists of vector fields (2.31) whose generating functions satisfy equation (2.33); the regrading

deg τ = deg qi = 1, deg ξi = 0 for all i

turns ba,b(n;N) into the Lie superalgebra bλ(n;N ;n) whose 0th component is isomorphic to
vect(0|n) and the (−1)st component is isomorphic to the vect(0|n)-module Volλ of weighted
λ-densities. Set

poλ
(
2n+ 1; Ñ

)
:= F(bλ(n;N ;n)).

To express λ in terms of the parameters a, b, we take an element in the 0th component of
ba,b(n;N) not lying in b(n;N) and see how it acts on M1.

Let f = ατ +βq1ξ1. Equation (2.33) implies that αb+βa = 0, so we can take f = aτ + bq1ξ1.
Observe that Mbq1ξ1 acts on the (−1)st component as the vector field D = bξ1∂ξ1 and

[Maτ ,M1] = [aτ∂τ , ∂τ ] = a∂τ =
a

b
(divD)M1, hence λ =

a

b
.

The p = 2 version of equation (2.25) are the following exact sequences that single out the
simple Lie superalgebras (recall that b(n;N) = bλ(n;N) for λ = 0):

0 −→ KM1 −→ b(n;N) −→ le(n;N) −→ 0,
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0 −→ b
(1)
1 (n;N) −→ b1(n;N) −→ K ·Mξ1...ξn −→ 0,

0 −→ b(1)
∞ (n;N) −→ b∞(n;N) −→ K ·Mτξ1...ξn −→ 0. (2.34)

The following statement follows directly.

Proposition 2.8 (two exceptional deforms of the Poisson algebra). Desuperization of the simple
Lie superalgebras introduced in (2.34) yields 2 exceptional serial Lie algebras that have no analogs
for p 6= 2:

po
(1)
1 (n;N) := F

(
b

(1)
1 (n;N)

)
and po(1)

∞ (n;N) := F
(
b(1)
∞ (n;N)

)
.

Problem 2.9. In [58], we described the deformations of the Buttin algebra b(n) over C, having
corrected a result due to Kochetkov [42] who described exceptional deformations of bλ(n) at
certain values of λ; some of these deformations having an odd parameter. It is an open problem
to obtain a version of [58] in the modular case.

2.10 On k and po for p = 2

Observe that poI(n;N), a central extension of the Lie algebra hI(n;N), is not a Lie algebra.
Indeed, the bracket should be anti-symmetric, i.e., alternate, while {xi, xi}I = 1, not 0, so
poI(n;N) is a Leibniz algebra, not Lie algebra. Only hΠ(2n;N) has an analog of the familiar
central extension; this nontrivial central extension is a correct direct analog of the complex
Poisson Lie (super)algebra po(2n|0).

To pass from po(0|n) to k(1;N |2n), we have to add, as a direct summand, a central element

to po(0|n)0 = o
(1)
Π (n); it will act on the prolong of

(
po(0|n)−, co

(1)
Π (n)

)
as a grading operator.

We see that the generalized Cartan prolong of
(
po(0|n)−, co

(1)
Π (n)

)
is k(1;N |2n).

• The commutant of k0(1;N |2n) is isomorphic to that of po0(0|n) = o
(1)
Π (n), so it is of

codimension 2 in k0(1;N |2n). Thus, there are two traces on k0(1;N |2n), and hence there are
two divergences on k(1;N |2n), like on m(n;L|n). These divergences are given by almost the
same formulas as for m(n;L|n), where L = (N,1) and 2N is the hight of t, “almost” because ∂t
should replace ∂τ .

For p 6= 2, we have two divergences on k(1;N |2n) only if n = 1, see Section 2.5.1.

2.11 Exceptional simple vectorial Lie superalgebras for p = 2
analogous to their namesakes over C

We give detailed description of all exceptional simple vectorial Lie superalgebras over C and fields
of characteristic 2 in the main text; for a summary, see Section 25. These Lie superalgebras
constitute two non-intersecting sets as follows.

The complete Cartan prolong of its negative part: such is every Lie superalgebra of series
vect, k and m in the standard grading, see (2.18) and each simple exceptional Lie superalgebra g
of depth > 1, whose negative part in its W-grading is different from the negative part of the Lie
superalgebras of series k or m in their respective standard gradings.

The complete Cartan prolong of its nonpositive part: such are the exceptional vectorial Lie
superalgebras, and their desuperizations, see Tables 25.3 and 25.5, other than in the above
paragraph; the corresponding gradings are explicitly given in Table (25.4).

The desuperizations of two nonisomorphic Lie superalgebras realized by vector fields on su-
pervarieties of different superdimension might turn out to be vectorial Lie algebras realized on
varieties of the same dimension. We distinguish these cases by indicating their depths as an
index at the name (mb2(11;N) and mb3(11;N), and also kle2(20;N) and kle3(20;N)); for the

case of equal depths, we distinguish non-isomorphic algebras by a tilde: vle(9;N) and ṽle(9;L),

as well as kas(7;N) and k̃as(7;L); for details, see respective sections.
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2.12 A technical remark: natural generators of vectorial Lie superalgebras

This subsection is needed for calculations only. Let g = ⊕gi be a Weisfeiler grading of a given
simple vectorial Lie superalgebra. We see that g−1 is an irreducible g0-module with highest-
weight vector H, and g1 is the direct sum of indecomposable (sometimes, irreducible) g0-modules
with lowest-weight vectors vi.

Over C, and over K for N = 1, the simple Lie superalgebra g is generated (bar a few
exceptions) by the generators of g0, the vector H, and the vi. (For other values of N , we have to
add the g0-lowest-weight vectors vkj ∈ gj for some j > 1 to the above generators; these cases are
not considered.) So we have to describe the generators of g0, or rather of its quotient modulo
its center.

If g0 is of the form g(A) or its simple subquotient, we select its Chevalley generators, see [10].

If g0 is an almost simple “lopsided”, see Section 3.2.2 (in particular, of type pe, spe), but
Z-graded Lie superalgebra, we apply the above-described procedure to g0: first, take its 0th
components and its generators, then the highest and lowest-weight vectors in its components of
degree ±1, etc.

If g0 is semi-simple of the form s⊗ Λ(r) n vect(0|k), where s is almost simple, then we take
the already described generators of vect(0|k) and apply the above procedures to s.

For a list of defining relations for many simple Lie superalgebras over C, and their relatives,
see [27, 29]. For defining relations for Lie algebras with Cartan matrix over K, see [5].

3 Introduction: overview of the scenery

In the Introduction (divided into two parts to ease digesting it) we give a brief sketch of the main
constructions and ideas; for basic background, see Section 1. For further details, see [48, 55, 56].
All voluminous computations are performed with the help of the SuperLie package, see [26].

3.1 Goal: classification of simple finite-dimensional Lie algebras
over K a.k.a. modular

In 1960s, Kostrikin and Shafarevich suggested a method for producing simple finite-dimensional
Lie algebras over K for any p > 0, together with the final list for p > 5. This list is explicit
for simple Z-graded algebras; for the rest, it is somewhat implicit (“and deforms of Z-graded
algebras”), see [40]. The above-mentioned deforms are often deforms of non-simple algebras the
stock of which was not clearly described; this made this part of the KSh-method rather vague.

3.1.1 The original KSh-method

The initial ingredients are simple Lie algebras over C of two types:

finite-dimensional, i.e., of the form g(A), where A is a Cartan matrix, (3.1)

infinite-dimensional vectorial types (vect, svect, h, and k)

with polynomial coefficients. (3.2)

Next, one, respectively,

takes a Z-form g(A)Z of g(A) corresponding to the Chevalley basis,

and tensors with K to get g(A)Z ⊗Z K, (3.3)

considers modular, over K, analogs of simple vectorial Lie algebras over C with divided

powers as coefficients of distinguished partial derivatives, see equation (1.10). (3.4)
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The ingredient (3.1) yields via (3.3) one finite-dimensional Lie algebra; the ingredient (3.2) yields
via (3.4) an infinite family of finite-dimensional Lie algebras over K depending on the shearing
vector N . Each of the finite-dimensional Lie algebras thus obtained is either simple, or a “re-
lative” of the simple Lie algebra over K (a central extension or a subalgebra in the algebra of
derivations). Some of these simple Lie algebras can be deformed.

To describe the deforms is a rather complicated part of the KSh-method. (3.5)

Let us clarify claim (3.5). Tables (3.8) and (3.11) show that some of simple Lie algebras are
filtered deforms not of the simple Z-graded algebras, but of certain non-simple subalgebras of
their Cartan prolongs (since their dimensions differ from those of simple algebras). The list of
deforms was obtained in a roundabout way, avoiding computing the cohomology that describes
a filtered deformation:

1) In [76], Wilson sharpened a result due to Kac [32, Proposition 7.2] and classified equivalence
classes of volume forms for p > 5; later, it turned out that the description works for p > 2.
(Earlier Tyurin published a solution of the same problem [74], but got more classes than
Wilson: Tyurin missed some equivalences.)

2) Skryabin [69, 70] classified (for p > 2) all equivalence classes of symplectic forms (Skryabin
called them Hamiltonian forms); some of Skryabin’s difficult-to-obtain results hold for
p = 2 as well.

Types of Lie algebras svect described by Tyurin and Wilson [74, 76]. In the mid-
1970s, Kac observed in [32] that the Lie algebra that preserves the volume element of the form
h vol, where h ∈ Ô

(
N̂ i

)
is invertible, can be a subalgebra of vect(m;N) with finite coordinates

of N . Let p > 2 and suppose that

N1 = · · · = Nt1 < Nt1+1 = · · · = Nt2 < · · · < Nts−1+1 = · · · = Nts = Nm. (3.6)

The results of Tyurin and Wilson, correct for p > 3, state that there are only the following three
types of non-equivalent classes of volume forms, and hence filtered deforms with parameter
ε ∈ K× of divergence-free algebras preserving them:

svecth(m;N) := {D ∈ vect(m;N) |LD(h vol) = 0}, where h is one of the following:

h =


1,

1 + εū, where ū :=
∏
ūi and ūi := u

(pNi−1)
i ,

exp
(
εu

(
p
Nti

)
ti

)
:=
∑
j≥0

(
εu

(
p
Nti

)
ti

)(j)
∈ Ô

(
N̂ ti

)
.

(3.7)

For brevity, set svectexpi(m;N) := svecth(m;N), where h = exp
(
εu

(
p
Nti

)
ti

)
.

Remarks 3.1.

1. For p = 3 and 2, these deformations of svect are also possible. For p = 3, nobody knows
if there are other deforms, whereas for p = 2, there definitely is at least one more deform:
its existence is the most spectacular result of this paper, see Section 14.

2. S. Tyurin described the Lie algebras of divergence-free type and got an extra type of
volume form, as compared with Wilson’s list (3.7), cf. [74].

3. S. Kirillov [38] verified Skryabin’s remark in passing [71] for which i the ith derived algebra
from Wilson’s list (3.7) is simple, and found the dimensions of these simple Lie algebras:

dim svectexpj (m;N) = (m− 1)p|N | i = 0

dim svect
(1)
1+ū(m;N) = dim svect(1)(m;N) = (m− 1)p|N | −m+ 1 i = 1

(3.8)
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Hamiltonian Lie algebras h described and classified by S. Skryabin [69, 70]. Let
h(2k;N) or hω0(2k;N) be the Z-graded Lie algebra preserving the symplectic form

ω0 =
∑

1≤i≤k
dui ∧ duk+i.

The only non-isomorphic filtered deforms of hω0(2k;N) with parameter ε ∈ K× are hωi(2k;N),
where i = 1, 2, which preserve the following respective forms (of type 1 and 2 in Skryabin’s
terminology):

ω2,j = d

exp(εuj)
∑

1≤i≤k
uiduk+i

 ,where j = t1, . . . , ts, see (3.6), (3.9)

ω1,A = ω0 + ε
∑

1≤i,j≤2k

Ai,jd(ūi) ∧ d(ūj), where ūi := u
(pNi )
i for the shearing vector N,

and where the non-equivalent normal shapes of the indecomposable matrices A = (Ai,j) can
only be equal for p > 2 to one of the following:

type of A form of A detailed notation of ω1

Jk(0) antidiag
(
Jk(0),−Jk(0)T

)
ω1,0 for k > 1

Jk,r(λ), where λ 6= 0 antidiag
(
Jk,r(λ),−(Jk,r(λ))T

)
ω1,r,λ for k = rn for r, n ≥ 1

Ck antidiag
(
Ck,−CT

k

)
ω1,C for k > 1

where Jk(λ) is a Jordan k× k block with eigenvalue λ, and Jk,r(λ) is a k× k block matrix with
blocks of size r × r, so k = r × n for some r, n ≥ 1:

Jk,r(λ) =


0r 1r 0

. . .

0 0 1r

Jr(λ) 0 0r

 ,

and

Ck =


0 1 0

. . .

0 0 1

1 0 0

 is of size k × k for k > 1.

The two conditions on Jk,r(λ) and Ck. 1) The case with Jk,r(λ) occurs only when

N1 + · · ·+Nnr = Nnr+1 + · · ·+N2nr (recall that k = rn) (3.10)

and, furthermore, Nir−j = Nir for all i = 1, . . . , 2n and all j = 1, . . . , r−1; i.e., r indeterminates
in each of the 2n successive groups have equal heights.

The case with Ck occurs only when condition (3.10) is violated.
2) Let G be the group generated by the cyclic permutations of the row vectors of length k.

Then, the identity element is the only permutation in G that simultaneously fixes the two vectors

a = (N1, . . . , Nk) and b = (Nk+1, . . . , N2k).

It suffices to consider representatives of equivalence classes of pairs (a, b) under the G-action.
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Remarks 3.2.

1. Over C the supervarieties of parameters of deformations of Poisson and Hamiltonian Lie
superalgebras can differ, see [58]. For p = 2, there is at least one new type of deform: a 1-
parametric family of non-isomorphic deforms different from the above – desuperisations of
ba,b(n;N).

2. S. Kirillov [38] determined the i for which the ith derived algebra of the Hamiltonian Lie
algebra from Skryabin’s list [69] is simple and what its dimension is equal to:

dim h(i)
ω (2k;N) =



p|N | − 2 if ω = ω0 i = 2,

p|N | if ω = ω2,where k + 1 6≡ 0 (mod p) i = 0,

p|N | − 1 if ω = ω2,where k + 1 ≡ 0 (mod p) i = 1,

p|N | − 1 if ω = ω1,A,where detA 6= 0 i = 1,

p|N | − 2 if ω = ω1,A,where detA = 0

(type Js(0)) i = 2.

(3.11)

3.1.2 True and semi-trivial deforms

In particular, the amount of infinitesimal deformations is overwhelming and even frightening as p
becomes small (p = 3 or – a horrible case – p = 2). We recall reasons not to be too frightened;
besides, the KSh-method had been considerably improved over the past years.

The abundance of deforms of simple Lie (super)algebras for p > 0, especially overwhelming
for p = 2, is somewhat misleading. It is occasioned by semi-trivial deforms each of which is given
by a cocycle representing a nontrivial cohomology class but, though integrable, yields a deform
isomorphic to the initial algebra. For a description of many semi-trivial deforms, see [13]. We
say that a nontrivial and nonsemi-trivial deform is a true deform.

The Lie (super)algebra g is said to be rigid if it has no true deforms; until recently we thought
that semi-trivial deforms existed only if p > 0, but a more careful study of the literature shows
they are a universal phenomenon [61].

If p > 3, the classification has been completed, mainly due to Premet and Strade [3, 73], based
on explicit description of deforms [4, 70, 76].

If p = 3, we conjecture the classification: the examples obtained by Cartan prolongation
(see Section 1.6) of appropriate parts of Lie algebras with Cartan matrix [7, 28], exhaust the
list of “standard” examples some of which were discovered by Frank, Ermolaev and, mainly,
Skryabin. For an (incomplete at the moment) list of true deforms of several “standard” algebras,
see [8, 45, 46, 47, 70], and [14] in which an earlier claim concerning deforms is corrected.

If p = 2, we are still completing the stock of “standard” examples.

3.1.3 Amendments to the formulation of the goal

On several occasions P. Deligne told us what we understood as follows (for Deligne’s own words,
and several open problems, see [49]):

“In positive characteristic, the problem “classify ALL simple Lie (super)algebras,
and their representations” is, perhaps, not very reasonable, and definitely very tough;
investigate first the restricted case related to geometry, and hence meaningful.”

Following Deligne’s advice, we investigated several plausible notions of restrictedness for p = 2
in [12] and gave explicit expressions of the restriction maps for several types of simple Lie
algebras and superalgebras in [11]. Nevertheless, even to describe restricted Lie (super)algebras
one often needs nonrestricted ones; for more serious examples of their usage, see [40].
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In this paper, we concentrate on simple Lie (super)algebras, keeping in mind that algebras
of the following types are no less important than simple ones:

� Lie (super)algebras of the form g(A) where A is indecomposable, see [7, 10].

� Central extensions and algebras of derivations of the known simple Lie (super)algebras
(see Section 14.1 and [6]). The algebras of these two types will be called relatives of the
corresponding simple Lie (super)algebras and each other.

� The generalized Cartan prolongs (g−, g0)∗,N with g0 close to simple, see Sections 1.6
and 14.1.

� True deforms (for definition, see Section 3.1.2) of Lie (super)algebras, see [41, 8].

� Restricted closures of nonrestricted simple Lie algebras.

3.2 Improvements of the KSh-method

3.2.1 “Standard” modular Lie algebras

Dzhumadildaev and Kostrikin [41] suggested simplifying the KSh-method by skipping the step
over C and considering certain “standard” modular Lie algebras from the very beginning, further
deforming them and their “relatives”. On the other hand, the stock of “standard” examples
should include, if p < 7, certain non-simple Lie algebras, see [25, 41, 72]. The snag is: we have
no idea how to select them.

Until the year 2000 or so, it was believed that the initial KSh-method produces all simple
Lie algebras only if p > 5. This belief was based on insufficient study of deformations and too
narrow a choice of “standard” examples: as shown in [41], the Melikyan algebra, indigenous for
p = 5, are deforms of Poisson Lie algebra which should be considered “standard” and processed
via the KSh-scheme (3.1)–(3.5).

What examples should qualify as “standard”? In [51], the improvement of the KSh-
method suggested in [41] was developed further by eliminating the vectorial simple Lie algebras
from the input of the KSh-method thus diminishing the stock of “standard” simple Lie algebras.
In the new procedure, the role of generalized Cartan prolongation (complete or partial), see Sec-
tion 1.6 and especially Section 1.6.1, becomes even more important than in the KSh-procedure.
This approach definitely works for p > 3, and conjecturally works for p = 3.

The stock of “standard” (not necessarily simple) Lie algebras must be enlarged with examples
found after [41] was published; for p = 3, see [28]; for p = 2, see [7, 13, 22, 25, 48, 72], and this
paper.

3.2.2 Splitting the problem into smaller chunks

All simple Lie algebras are of the following two types: the root system of a “symmetric” algebra
contains the root −σ of the same multiplicity as that of σ for any root σ; the algebras with root
systems without this property are said to be “lopsided”.

This paper is devoted to the study of lopsided algebras, but “symmetric” Lie (super)algebra
will be needed in the process

Symmetric algebras. A significant quantity of symmetric simple Lie algebras consists of
algebras g(A) with indecomposable Cartan matrix A or simple “relatives” of such algebras of
the form g(i)(A)/c, where4 g(i)(A) is the ith derived algebra of g(A) and c is the center of g(i)(A).

For any p, finite-dimensional Lie algebras g(A) with indecomposable Cartan matrix A, and
their simple relatives, were classified in [75] with an omission; for corrections, see [34, 71], where

4This is shorter and more graphic than the correct notation (g(A))(i); usually, we will similarly place subscripts
designating the degree (closer to the “family name” g).
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no claim was made that these were the only corrections needed; for this claim with a proof,
a classification of Lie superalgebras of the form g(A) with indecomposable Cartan matrix A,
and their simple relatives, and precise definitions of related notions, see [10].

Lopsided algebras: the set they constitute is a virtually virgin territory a part of which –
vectorial Lie (super)algebras – we investigate through the whole of this text.

3.2.3 Cartan prolongations of Lie (super)algebras with Cartan matrix

It turns out that every known Z-graded simple Lie algebra for p > 2 is obtained as a (gener-
alized, perhaps partial) Cartan prolong of the non-positive part of a Lie algebra g(A) with an
indecomposable Cartan matrix A. For p > 3 this follows from the classification.

Conjecture 3.3. The above Z-graded simple Lie algebras and simple relatives of their deforms
constitute the list of simple finite-dimensional Lie algebras for p = 3 as well.

3.3 Super goal

Although Lie superalgebras appeared in topology in the 1940s (over finite fields, often over Z/2),
the understanding of their importance dawned only in the 1970s, thanks to their applications in
physics. This understanding put the problem “classify simple Lie superalgebras” on the agenda
of researchers. Over C, the finite-dimensional simple Lie superalgebras were classified by several
teams of researchers, see reviews [33, 37]. The classification of certain types of simple vectorial
Lie superalgebras was explicitly announced in [33], together with a conjecture listing all primitive
vectorial Lie superalgebras; for the first counterexamples, see [1, 50].

A classification of the simple vectorial Lie superalgebras over C was implicitly announced
when the first exceptional examples were given [63, 64, 65] and explicitly at a conference in
honor of Buchsbaum [57]. The claim of [33] was corrected in [55] (the correction contained both
the complete list of simple vectorial algebras, bar one exception later described in [64], and
the method of classification of simple Z-graded Lie superalgebras of depth 1) and in a series of
papers [17, 19, 20, 21, 35, 36], where the proof in the case of Z-grading compatible with parity
was given; for further corrections and proofs, see Section 13. The classification is not completed
till today: there is no classification of deformations with odd parameters.

Although to complete the classification of the simple finite-dimensional Lie superalgebras
over K for p “sufficiently big” (say > 7) will be a more cumbersome and excruciating task
than that for Lie algebras, the answer (conjectural, but doubtless) is obvious: to get restricted
superalgebras, take the obvious modular analogs of the complex simple Lie superalgebras (of
both finite-dimensional and of infinite-dimensional vectorial considered for the shearing vector
N = 1, see definition (1.8)) passing to the derived algebra and quotients modulo center if
needed; to get nonrestricted superalgebras, consider true deforms, see Section 3.1.2, of the above-
mentioned analogs (for N unconstrained, speaking about vectorial algebras). For p “small”, the
classification problem becomes more and more involved, see, e.g., [9, 30]. Nevertheless, in the
two cases the classification is obtained:

� For any p, the super goal is reached for Lie superalgebras of the form g(A) with inde-
composable Cartan matrices A or its “relative”, see [10]. Either g = g(A) or its “relative”
of the form g(i)/c, where g(i) is the ith derived algebra of g and c its center, is simple. For
deforms, see [8].

� Amazingly, the super goal is reached if p = 2, see [12], with a catch: modulo the clas-
sification of simple Lie algebras, i.e., without an explicit list of all examples.5 Here, we
contribute to a conjectural list of “standard” simple Lie algebras (conjecturally a tame

5Thus, [12] resembles the classification of restricted Lie algebras for p > 5 in the paper [4]: there are no explicit
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problem); in particular, we explicitly describe simple vectorial Lie algebras analogous to
those over C.

� p > 5. The conjecture [51] is easy to formulate (“take direct characteristic-p versions of the
simple complex Lie superalgebras of the form g(A), queer, and vectorial with polynomial
coefficients, and their deformations”), but to describe deformations of even the symmetric
ones (of the form g(A) and queer) is not easy (for partial results, see [8]).

� p = 5. Most plausible conjecture is like for p > 5. Observe that there are indigenous p = 5
examples of the form g(A),

� p = 3. We have discovered several new vectorial Lie superalgebras, see [8, 15], and of the
form g(A), see [10].

3.4 Getting simple Lie algebras from simple Lie superalgebras if p = 2

If p = 2, there are two methods for constructing a simple Lie superalgebra from a simple Lie
algebra, and every simple Lie superalgebra is obtained by one of these two methods; for an
amazingly short proof, see [12]. Reversing the process we recover a simple Lie algebra given any
simple Lie superalgebra.

Even before these two methods were known, it was clear that one can get a Lie algebra
from any Lie superalgebra as follows. Observe that for any odd element x ∈ g in any Lie
superalgebra g over any field K, we have [x, x] := 2x2 ∈ U(g). That is why if p = 2, then one
needs a squaring x 7−→ x2 for any odd x ∈ g; together with the brackets of even elements with
all other elements, it is the squaring that defines the multiplication in any Lie superalgebra (for
details, see Section 1.2.3), while the bracket of odd elements is the polarization of the squaring.
Hence,

For p = 2, every Lie superalgebra with the bracket as multiplication –
we forget the squaring – is a Z/2-graded Lie algebra.

(3.12)

To classify simple Lie superalgebras is a much more difficult task than to classify simple Lie
algebras of the same type: the former is based on the latter as well as on careful study of the
representation theory of Lie algebras. In [39], it was, nevertheless, suggested – for p = 2 – to
reverse the process:

Let F be the desuperization functor forgetting squaring, see (3.12).
To obtain simple Lie algebras for p = 2,
(A) apply the functor F to every simple Lie superalgebra g;
(B) single out the simple Lie subalgebra s(F(g)) of F(g).

(3.13)

Clearly, s(F(g)) is uniquely recoverable by inverting one of the two superization processes (either
queerification or “method 2”) that had lead to g, see [12].

Observe immediately that the idea of [39] just to apply F to the simple Lie superalgebra g to
get a simple Lie algebra, see (3.12), was naive and partly wrong: the example of psq(n) should
have hinted at importance of item (B) in the process (3.13). Understanding of this subtlety
came together with the description of the two methods of superization of any simple Lie algebra
as the only means to obtain any simple Lie superalgebra, see [12]. For the simple vectorial Lie

formulas for p-structures of simple Lie algebras of Hamiltonian series to this day, see Strade’s lamentations in [73,
Vol. 1, p. 357]: “The problem of restrictedness is approached. . . . [But] the family of Hamiltonian algebras . . .
is not yet handable”. This is no wonder: although Skryabin classified symplectic forms in 1985, the answer was
published only in 1991, see [70], three years after [4] appeared (and the details of [70], obtained in 1985, became
available only recently, see [69]). The explicit formula for the bracket in any of the deformed Lie algebra of
Hamiltonian vector fields is not published to this day and can be found only in Kirillov’s Ph.D. Thesis only (in
Russian), not in its published summary [38].
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superalgebras, in particular, exceptional ones, just by forgetting squaring we get a simple Lie
algebra. Let

F−1 = s(F(−)) denote the complete desuperization−

the composition of F and application of item (B) of (3.13).
Two reasons to take the direction of study opposite to a seemingly reasonable one:

(a) Although the classification of the simple vectorial Lie superalgebras over C was only con-
jectured at the time [39] was written, the list of known examples was already wider than
that of known simple vectorial Lie algebras for p = 2, and was (and is, as we demonstrate
in this paper) able to provide new simple examples.

(b) The results of [25, 72] show that a “frontal attack” on the classification for p = 2 is likely
to be much more excruciating than that performed for p > 3 by Premet and Strade. Even
to classify restricted Lie algebras for p = 2 will be much more difficult problem than
that Block and Wilson solved for p > 5, see [4]. (Even if we confine ourselves to the
classical definition of restrictedness, while certain examples, which should be considered
as “classical”, have another version of restrictedness, see [12].) So, a plausibly complete
inventory of simple examples will be helpful. Our interpretations of the Lie (super)algebras
are of independent interest.

Here, after a long break, we continue exploring method (3.13). It provides us with new
examples of simple vectorial Lie algebras of the form F(g), where g is a modular, indigenous for
p = 2, version of a simple vectorial Lie superalgebra over C. The two methods of superization
(see [12]) applied to F(g) bring many more simple Lie superalgebras than g, most of them new.

3.5 Forgetting the superstructure if p = 2

Applying F to the serial vectorial Lie superalgebra g(m;N |n) we get the Lie algebra F(g)
(
m+

n; Ñ
)
, see Table 25.2; these Lie algebras are not necessarily simple, but their simple derived

algebras are; here Ñ = (N, 1, . . . , 1) with the last n coordinates equal to 1.

3.5.1 Parameters of the Lie superalgebra that change under desuperization

Here are several examples:

� The unconstrained shearing vector Ñ
u
, see Section 1.9, of the vectorial Lie algebra F(g)

may depend on more parameters than the shearing vector Nu of g.

For example, dimN = ParNu = a for vect(a;N |b), whereas

dim Ñ
u

:= Par Ñ
u

= a+ b, where Ñ := (N, 1 . . . , 1)

for F(vect(a;N |b)) = vect
(
a+ b; Ñ

)
. In all cases, except for vle

(
4; M̃ |3

)
, the tilde over any

shearing vector L is understood in the above sense: it enlarges the set of coordinates of L
acquiring the coordinates of the desuperized odd indeterminates.

The same applies to the desuperizations of the Lie superalgebras of the series k, h, m, le
and their divergence-free subalgebras.

The abstract Lie superalgebra g realized as vectorial Lie superalgebra, g(a;N |b), depending
on a even and b odd indeterminates, can be realized in several ways as g(a;N |b; r) by means
of Weisfeiler filtrations or associated regradings r, see Section 2.4. This g(a;N |b; r) can
be interpreted as the (generalized) Cartan prolong of the nonpositive part of g in the
corresponding grading, see Section 1.6.1.
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� The Lie algebra obtained by desuperization might acquire new properties which its name-
sakes for p 6= 2 do not have. For example, the Lie algebra po(2n;N) = F(bλ(n;n;N))
has a deformation depending on a parameter λ ∈ KP 1; the corresponding non-isomorphic
(for different values of λ) deforms are additional to the well-known one, which for p = 0 is
called the result of the quantization.

� Desuperization F might turn distinct (types of) Lie superalgebras into one (type of) Lie
algebras:

– the Lie superalgebras of types k and m in the standard grading (2.18) turn into k;

– the Lie superalgebras of types hΠ and le in the standard grading (2.18) turn into hΠ.

3.6 Comment on Volichenko algebras in characteristic 2

The notion of Volichenko algebra6, which is an inhomogeneous (relative to parity) subspace
h ⊂ g of a Lie superalgebra g closed with respect to the superbracket in g, was introduced
in [39]. For a classification of simple (without any nontrivial ideals, both one-sided and two-
sided) finite-dimensional Volichenko algebras over C under a certain (hopefully, inessential)
technical assumption, and examples of certain infinite-dimensional algebras, see [53, 54].

The results of [31] suggested that we look at the definition of the Lie superalgebra for p = 2,
see Section 1.2.3, more carefully. If one does this, it is not difficult to deduce that

if p = 2, the Volichenko algebras are, actually, Lie algebras. (3.14)

In [31, 39], the fact (3.14) had not been understood, and therefore there is no need to consider
these papers or Volichenko algebras in characteristic 2 while searching for simple Lie algebras.
Unlike desuperizations of Lie superalgebras, which are worth investigating.

4 Introduction, continued. Our strategy, main results
and open problems

4.1 Generalized Cartan prolongation

This is a principal procedure for getting vectorial Lie (super)algebras over C, the following fact
is well-known [77]:

given a simple Lie algebra of the form g(A), and its Z-grading, the generalized pro-
long of the nonpositive (with respect to that grading) part of g(A) is isomorphic
to g(A), bar two series of exceptions corresponding to certain simplest gradings of
the embedded algebras – sl(n + 1) ⊂ vect(n) and sp(2n + 2) ⊂ k(2n + 1) – and the
ambients are the exceptional prolongs.

(4.1)

In [51], it is shown how to obtain simple Lie algebras over C of the two types of prime
importance for the classification procedure over K: finite-dimensional and vectorial. Namely, by
induction and using (generalized, in particular, partial) Cartan prolongation, see Section 1.6.
First, one thus obtains all finite-dimensional simple Lie algebras (each of them has a Cartan
matrix); during the next step one obtains all four series of simple vectorial Lie algebras, by
considering not only complete Cartan prolongs as in equation (4.1), but also partial ones.

The same method works to obtain Z-graded simple Lie algebras for p sufficiently big and with
new standard examples added. After that, there still remain considerable technical problems:
namely, to describe the deforms and to classify non-isomorphic deforms.

6In memory of I. Volichenko who was the first to study inhomogeneous subalgebras in Lie superalgebras.
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For any characteristic, the super version of classification of simple Lie algebras is much more
complicated than its non-super counterpart: we have to supply the input with several more
types of algebras, but the main procedures are still the same: generalized, especially partial,
prolongations and deformations.

In several papers (e.g., [8, 7, 15]), we have considered simple Lie (super)algebras, and have
investigated the prolongs of the nonpositive parts relative to their Z-gradings with one (or two
if p = 2) pair(s) of Chevalley generators being of degree ±1, and the other generators being of
degree 0.

Here we consider serial and exceptional simple vectorial Lie superalgebras over C and desu-
perizations of their analogs for p = 2. Realization of a given Lie (super)algebra g in terms
of vector fields implies that g is endowed with a filtration; one of these filtrations, called the
Weisfeiler filtration, is the most important, see equation (2.17). Associated with the filtration
is the grading; for brevity, the Weisfeiler filtrations and gradings are referred to, respectively,
as W -filtration and W-grading. For several vectorial Lie algebras over fields of characteristic 2,
we investigate the following problem answered by the fact (4.1) over C:

when (g−, g0)∗,Nu ' g and when the prolong strictly contains g?

We consider only the Z-gradings of the finite-dimensional vectorial algebras corresponding to
the W-gradings of their infinite-dimensional versions corresponding to Nu. For examples of Lie
(super)algebras g that differ from the prolong of the nonpositive part of a regrading of g, see [7].

4.2 “Hidden supersymmetries” of Lie algebras

It is sometimes possible to endow the space of a given simple Lie algebra g with (several) Lie
superalgebra structures. For example, for g = sl(n) over any ground field, consider any dis-
tribution of parities (of the pairs corresponding to positive and negative simple roots) of the
Chevalley generators; we thus get Lie superalgebras sl(a|b) for a + b = n in various superma-
trix formats. The sets of defining relations between the Chevalley generators corresponding to
different formats are different.

It is, clearly, possible to perform such changes of parities of (pairs of) Chevalley generators
for any simple Lie algebra but, except for sl(n), the simple Lie superalgebras obtained by
factorization modulo the ideal of relations [10] are infinite-dimensional unless p = 2.

If p = 2, the following fact is obvious (here x 7−→ x[2] is the restriction mapping and x 7−→ x2

is the squaring):7

any classically restricted and Z/2-graded Lie algebra g = g+ ⊕ g− can be turned

into a Lie superalgebra by setting x2 := x[2] for any x ∈ g−. (4.2)

In [12], a (rather unexpected) generalization of the possibility (4.2) is described: every simple Lie
algebra g can be turned into a simple Lie superalgebra by slightly enlarging its space if g is not
restricted. This generalization, and a “queerification”, are the two methods which, from every
simple Lie algebra, produce simple Lie superalgebras, and every simple Lie superalgebra can be
obtained in one of these two ways, as proved in [12]. These two methods applied to the simple
Lie algebras we describe in this paper yield a huge quantity of new simple Lie superalgebras,
both serial and exceptional. We do not list them; this is routine, modulo the far from routine,
as shown in [43], job of describing all Z/2-gradings of our newly found simple Lie algebras.

7In [12], in addition to the classical restrictedness, we introduced other, indigenous to p = 2, versions of
restrictedness; their meaning is yet unclear, but since they pertain to classical and often used algebras, e.g.,
o(2n+ 1) and h(2n+ 1;1), we believe that these new “restrictednesses” are important.
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4.3 From C to K

We consider the W-grading (of the desuperized p = 2 version of the simple vectorial Lie su-
peralgebra over C) for which the nonpositive part, especially the 0th component, is most clear.
Then, we consider the regradings described in Table (25.4), and perform generalized Cartan
prolongation of the nonpositive (or negative) part of the regraded algebra in the hope of getting
a new simple Lie (super)algebra, as in (4.1).

When this approach is inapplicable since there is no visible analog, suitable for p = 2, of the
Lie (super)algebras we worked with over C, we consider the description of the Lie superalgebras
as the sum of its even and odd parts, desuperize this description and only after this consider
the W-grading of the desuperization.

4.4 Our main results

Observe that every modular analog of one vectorial Lie (super)algebra over C is usually a family
of algebras depending on N ; by abuse of speech we often skip the word “family” (of algebras)
and talk about one algebra having in mind the extra parameter N .

Of the simple Lie superalgebras that can be obtained by the two methods described in [12]
from the simple Lie algebras we describe here all but one (the initial one, the one we desuperized)
are new. In more details the Lie algebras obtained by desuperization are described in the
following Theorems 4.1–4.5 summarizing respective sections with proofs.

Theorem 4.1 (an exceptional deform of svect(5;N)). All W-regradings of mb3(11;N) are W-
regradings of a previously unknown true deform of svect(5;N).

Proof. See Section 14. �

Theorem 4.2 (desuperizations of ba,b(n) and s̃bν
(
2n−1 − 1|2n−1

)
for n even, as well as

s̃bν
(
2n−1|2n−1 − 1

)
for n odd). As (generalized) Cartan prolongs, the desuperizations of the

characteristic-2 analogs of complex Lie superalgebras ba,b(n) and s̃bν
(
2n−1− 1|2n−1

)
for n even,

as well as s̃bν
(
2n−1|2n−1 − 1

)
for n odd, yield s̃bν

(
2n − 1;N

)
and

poλ(2n+ 1;N), the serial simple (for
a

b
generic) Lie algebras poa,b(2n;N),

their simple relatives for
a

b
= 0, 1, and ∞ (for a 6= 0, b = 0), see (2.34).

Proof. See Sections 2.9.2 and 21. �

Theorem 4.3 (desuperizations of the 15 exceptional simple vectorial Lie superalgebras). The
generalized Cartan prolongs of the nonpositive (or negative) parts of all 15 W-gradings, see
Table (25.3), of the 5 exceptional simple vectorial Lie algebras – desuperizations of the charac-
teristic 2 analogs of complex exceptional simple vectorial Lie superalgebras, see Section 2.11 –
yield three simple Lie algebras, see Table (25.5) while the other two, vle(9;N) and mb3(11;N),
are described from another point of view in [7].

Theorem 4.4 (isomorphisms between desuperizations of the 15 exceptional simple vectorial Lie
superalgebras).

(i) For p 6= 2, the characteristic-p analogs of the 15 W-graded analogs of the complex excep-
tional simple vectorial Lie superalgebras constitute, as abstract Lie superalgebras, 5 Lie
superalgebras.
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(ii) For p = 2, all their finite-dimensional analogs, and their desuperizations, remain regradings

of each other, with one exception: the 3 indeterminates of k̃as
(
7; K̃

)
are defined to be

constrained, Par K̃
u

= 3.

One – for p 6= 2 – exceptional family (kas) yields – for p = 2 – two families:

vle
(
7; L̃

)
' vle

(
9; M̃

)
' ṽle

(
9; Ñ

)
Par L̃

u
= Par M̃

u
= Par Ñ

u
= 3

mb3

(
9; L̃

)
' mb3

(
11; M̃

)
' mb2

(
11; Ñ

)
Par L̃

u
= Par M̃

u
= Par Ñ

u
= 5

kle
(
15; K̃

)
' k̃le

(
15; L̃

)
' kle3

(
20; M̃

)
' kle2

(
20; Ñ

)
Par K̃

u
= Par L̃

u
= Par M̃

u
= Par Ñ

u
= 5

kas(1)
(
7; L̃

)
' kas(1)

(
8; M̃

)
' kas(1)

(
10; Ñ

)
Par L̃

u
= Par M̃

u
= Par Ñ

u
= 7

k̃as
(1)(

7; K̃
)

Par K̃
u

= 3

vas(1)(8;N) ParNu = 4

Proof of Theorems 4.3 and 4.4. For vle
(
9; Ñ

)
, see Section 7. For vle(5;N |4) and ṽle

(
9; Ñ

)
,

see Section 8. For ṽle
(
15; Ñ

)
, see Section 9. For kle3

(
20; Ñ

)
, see Section 11. For mb

(
9; Ñ

)
, see

Section 15. For k̃as
(
5; Ñ |5

)
, see Section 20.

For vle(7; L̃), see Section 6. For mb2

(
11; Ñ

)
, see Section 16. For kle2

(
20; Ñ

)
, see Section 12.

For kas
(
8; M̃

)
, see Section 19. For k̃as

(
7; M̃

)
, see Section 18. For vas(4;N |4) and vas(8;N), see

Section 22. �

Theorem 4.5 (desuperizations of kas). For p = 2, the analogs of the W-graded simple vectorial
Lie superalgebra kas over C are not simple; they contain a simple ideal of codimension 1, the
derived algebra.

Proof. See Section 17.4. �

Other results. We explicitly describe characteristic-2 Shen’s version (see [68] and Section 23
here) of both g(2) and the Melikyan algebra as vectorial Lie algebras.

We single out the divergence-free subalgebra shΠ

(
2n; Ñ

)
of the Lie algebra of Hamiltonian

vector fields hΠ(2n;M) = F(le(n;N |n)), discovered in [48], by imposing constraints on M .

4.4.1 Open problems

1. In this paper, for serial simple vectorial Lie superalgebras, we considered 2 W-gradings
of F

(
s̃b(2n − 1)

)
(the standard and of depth 1). We did not consider 32 W-gradings of

the remaining simple vectorial Lie superalgebras, see Section 1.16 in [56]. The fact (4.1)
suggests that we should investigate if these W-gradings yield new simple Lie algebra.

2. Describe all the Z/2-grading of the newly found simple Lie algebras in characteristic 2 (see
[7, 13, 22, 25, 48, 72], and this paper) to obtain new simple Lie superalgebras. For first
results, see [43].

3. Are the partial prolongs described in Section 19.1 and in equation (21.1) isomorphic to
known simple Lie algebras?

4. See Problems 2.6, 2.9, 22.1.

5 The Lie superalgebra vle(4|3) over C and its p > 2 versions

5.1 Recapitulations, see [67]

In the realization of le(3) by means of generating functions, we identify the space of le(3) with
Π(C[θ, q]/C ·1), where before the functor Π is applied θ = (θ1, θ2, θ3) are odd and q = (q1, q2, q3)
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are even, see (2.7). In the standard grading degLie of le(3), we assume that deg qi = deg θi = 1
for all i, and that the grading is given by the formula

degLie(f) := deg Lef = deg f − 2 for any monomial f ∈ C[θ, q].

The nonstandard grading degLie;3 of g = le(3; 3) is determined by the formulas

deg3 θi = 0 and deg3 qi = 1 for i = 1, 2, 3,

degLie;3(f) = deg3 f − 1 for any monomial f ∈ C[θ, q].

This grading of g = le(3; 3) is of depth 1, and its homogeneous components are of the form:

g−1 = Π(C[θ1, θ2, θ3]/C · 1), gk = Π(C[θ1, θ2, θ3])⊗ Sk+1(q1, q2, q3) for k ≥ 0.

In particular, g0 ' vect(0|3), and g1 is an irreducible g0-module with the lowest-weight vec-
tor q2

1. The whole Lie superalgebra le(3; 3) is the Cartan prolong of its nonpositive part and the
component g1 generates the whole positive part.

To obtain vle(4|3), we add the central element d to the 0th component of le(3; 3); so that add
is the grading operator on the Cartan prolong of its nonpositive part; this prolong is strictly
bigger than le(3; 3) nC · d.

This Cartan prolong is the exceptional simple Lie superalgebra vle(4|3).
Its component vle1 is reducible, but indecomposable vle0-module such that

vle1/le(3; 3)1 ' (le(3; 3)−1)∗.

The other, not lying in le(3; 3)1, lowest-weight vector in vle1 is the element dual to the highest-
weight vector in g−1, i.e., to Π(θ1θ2θ3).

5.1.1 Introducing indeterminate y (as well as xi and ξi)

Under the identification

Π(θ1θ2θ3) 7−→ −∂y, Π(θi) 7−→ −∂xi , Π

(
∂(θ1θ2θ3)

∂θi

)
7−→ −∂ξi

each vector field D ∈ vle(4|3) is of the form

Df, g = Lef +yBf − (−1)p(f)

(
y∆(f) + y2 ∂3f

∂ξ1∂ξ2∂ξ3

)
∂y

+Bg − (−1)p(g)
(

∆(g) + 2y
∂3g

∂ξ1∂ξ2∂ξ3

)
∂y, (5.1)

where f, g ∈ C[x, ξ]; the operators Bg and ∆ are given by the formulas

Bg =
∂2g

∂ξ2∂ξ3

∂

∂ξ1
+

∂2g

∂ξ3∂ξ1

∂

∂ξ2
+

∂2g

∂ξ1∂ξ2

∂

∂ξ3
, ∆ =

∑
1≤i≤3

∂2

∂xi∂ξi
. (5.2)

There are two embeddings of le(3) into vle(4|3). The embedding i1 : le(3) −→ vle(4|3) corre-
sponds to the grading le(3; 3). Let us reproduce the explicit formulas from [67]:

Let us clarify notation of indeterminates. At the beginning, the indeterminates describing le
in any grading are denoted by q and θ, while the indeterminates describing vle are denoted by x
and ξ. Hence, introduce the passage i from one set of indeterminates to the other, and f̂ :

i(q1, q2, q3, θ1, θ2, θ2) := (x1, x2, x3, ξ1, ξ2, ξ3),

f̂(x1, x2, x3, ξ1, ξ2, ξ3) := f(i(q1, q2, q3, θ1, θ2, θ2)).
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a) If f = f(q), then

i1(Lef ) = Le∑( ∂f̂
∂xi

)
ξjξk−yf̂

,

where y is treated as a parameter and (i, j, k) ∈ A3 (even permutations of {1, 2, 3}).
b) If f =

∑
fi(q)θi, then

i1(Lef ) = Lef̂ −ϕ(x)
∑

ξi∂ξi + (−ϕ(x)y + ∆(ϕ(x)ξ1ξ2ξ3)) ∂y,

where ϕ(x) = ∆
(
f̂
)
.

c) If f = ψ1(q)θ2θ3 + ψ2(q)θ3θ1 + ψ3(q)θ1θ2, then

i1(Lef ) = −∆
(
f̂
)
∂y −

∑
1≤i≤3

ψi(x)
∂

∂ξi
.

d) If f = ψ(q)θ1θ2θ3, then

i1(Lef ) = −ψ(x)∂y.

The embedding i2 : le(3) −→ vle(4|3) corresponds to the standard grading of le(3). In terms
of generating functions this embedding is of the form

i2(f(q, θ)) −→ Df(i(q,θ)), 0. (5.3)

As vector spaces, we have

vle(4|3) = i1(le(3; 3)) + i2(le(3)) while i1(le(3; 3)) ∩ i2(le(3)) ' sle(1)(3). (5.4)

By abuse of notation, denote the operator
∑

1≤i≤3

∂2

∂qi∂θi
acting on the space of functions (divided

powers if p > 0) in qi, θi also by ∆. In this notation, we have

i1(f(q)) = i2(∆(f(q)θ1θ2θ3)), i1(∆(f(q)θ1θ2θ3)) = −i2(f(q)), (5.5)

and

i1(f) = i2(f) if f =
∑

1≤i≤3

fi(q)θi and ∆f = 0. (5.6)

The formulas (5.3), (5.5), and (5.6) are valid for any p, in particular, for p = 2.
The lowest-weight vectors in vle1 are i1

(
q2

1

)
and i2(θ1θ2θ3). We have

sdim vle1 = 28|27. (5.7)

Proposition 5.1 (passage from C to K for p > 2). The situation described in the previous
subsection does not change under passage from the ground field C to any field of characteristic 0
and also to K if charK = p > 2 provided the coordinates of the shearing vector M of the algebra
of coefficients of the vector fields are such that M i =∞ for each even indeterminate xi.

In all these cases, the Lie superalgebra g – the Cartan prolong of the nonpositive part of vle –
remains simple and of infinite dimension. The component g1 also retains its structure as a g0-
module, but it does not generate the whole of g (since the xi do not generate O(x;M) if M 6= 1,
see (1.8)).
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Proof. Proof follows directly from the formulas of Section 5.1. �

In what follows we will investigate the case of shearing vectors with finite coordinates.

Theorem 5.2 (vle exists for any p > 0). A characteristic-p version vle
(
4; M̃ |3

)
of the Lie

superalgebra vle(4|3) exists for any p > 0 and any shearing vector M̃ = (M,My) provided
My = 1.

For the case p = 2, see Sections 6, 7, 8. For the case p > 2, see the next proposition.

Proposition 5.3 (description of vle
(
4; M̃ |3

)
). If p > 2 and M i < ∞ for i = 1, 2, 3, then

vle
(
4; M̃ |3

)
= Span(Df, g), where M̃ = (M,My) and My = 1, and

f ∈ O(x;M |ξ)⊕ Span
(
x

(si)
i

)3
i=1

and g ∈ O(x;M |ξ)⊕K · x(s1)
1 x

(s2−1)
2 x

(s3−1)
3 ξ1.

Proof. For p > 2, the component g1 also retains its structure as g0-module even if any (or all)
of the coordinates of the shearing vector M = (M1,M2,M3) become finite. If M i <∞ for all i,
the Cartan prolong is finite-dimensional. It can be described by means of equation (5.1), but

we should investigate when Df, g ∈ vect
(
4; M̃ |3

)
, where

M̃ = (M,My) and My = 1.

Direct observation gives the answer:

f ∈ O(x;M |ξ)⊕ Span
(
x

(si)
i

)3
i=1
, where si = pMi ;

i.e., we should add “virtual” (non-existing for the given M) elements f = x
(si)
i for i = 1, 2, 3.

Since due to (5.5)

D
x

(si)
i ,0

= i2
(
q

(si)
i

)
= i1

(
∆
(
q

(si)
i θ1θ2θ3

))
,

we see that i2
(
q

(si)
i

)
∈ vle(1)

(
4; M̃ |3

)
though q

(si)
i /∈ le(1)(3;M).

Now, let us investigate the generating functions g. We have

Ker(D0,− : g 7−→ D0,g) = Span

(
D0,g = 0 | g = g(x) or g =

∑
i

gi(x)ξi with ∆g = 0

)
. (5.8)

If g =
∑
i
gi(x)ξi, but ∆g = h(x) 6= 0, then D0,g = h(x)∂y depends on h only. It is clear that any

function h ∈ O(x;M) can be expressed as h = ∆g for some g ∈ O(x;M |ξ), except for

hs = x
(s1−1)
1 x

(s2−1)
2 x

(s3−1)
3 , where s = (s1, s2, s3).

To obtain D = hs∂y, we should add to the space of generating functions any of the “virtual”
functions

gs,i = ξi∂j∂k
(
x

(s1)
1 x

(s2)
2 x

(s3)
3

)
for i = 1, 2, 3, and j, k 6= i, j 6= k.

Modulo the kernel (5.8) of the map D0,− only one “extra” generator suffices; for definiteness,

we select gs := x
(s1)
1 x

(s2−1)
2 x

(s3−1)
3 ξ1. Formula (5.1) shows that D0,gs lies in the homogeneous

component of degree

s1 + (s2 − 1) + (s3 − 1) + 1− 3 ≡ −4 mod p.

Since the Lie superalgebra vle(4; M̃ |3) has a grading operator, it follows that

D0,gs ∈ vle(1)
(
4; M̃ |3

)
for p > 2. Moreover, as was shown in [67] for p = 0 (but the formulas remain true for any p > 0),

D0,gs = i1(−hsξ1ξ2ξ3), and hence D0,gs ∈ i1
(
le(1)(3;M)

)
for p > 2. �
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If p > 2, the fact (5.4) does not hold. We have

D0, hsξ1ξ2ξ3 ∈ vle
(
4; M̃ |3

)
, but D0, hsξ1ξ2ξ3 = i1(f)− i2(f),

where

f = q
(s1)
1 q

(s2−1)
2 q

(s3−1)
3 θ1 + q

(s1−1)
1 q

(s2)
2 q

(s3−1)
3 θ2 + q

(s1−1)
1 q

(s2−1)
2 q

(s3)
3 θ3 /∈ O(q;M |θ).

If M i > 1 for i = 1, 2, 3, then sdim g1 = 28|27 remains the same as over C and any other
p > 2.

6 A description of vle
(
7; M̃

)
:= F(vle(4;M |3)) for p = 2

In this and two next sections we prove Theorem 5.2 for the case p = 2.
There are three W-gradings of vle with unconstrained shearing vector. In this and two next

sections, we consider each of these gradings for p = 2, describe the corresponding 0th and
1st components of the regraded Lie superalgebra vle, and calculate partial prolongs. Next, we
consider desuperizations of each of them. As a result, we get a new simple Lie superalgebra and
a new simple Lie algebra in p = 2. Unfortunately (we’d like to get new simple algebras!), there
are no partial prolongs.

The Lie superalgebra vle
(
4; M̃ |3

)
for p = 2 is a direct reduction modulo 2 of the integer form,

with divided powers as coefficients, of the complex vectorial Lie superalgebra vle(4|3).
First of all, let us define squares of odd elements for the Lie superalgebra le(n;M), cf. equa-

tion (2.14):

f2 :=
∑

1≤i≤n

∂f

∂qi

∂f

∂θi

and have in mind that if p = 2 and M i < ∞ for all i, the Lie superalgebra g = le(n;M) is not

simple: the generating function of the maximal degree q
(s1−1)
1 q

(s2−1)
2 · · · q(sn−1)

n θ1θ2 · · · θn does
not belong to g(1), the latter being simple.

For p > 2, we just reduce the expression (5.1) modulo p.
For p = 2, we cannot just reduce the expression (5.1) modulo 2; we should modify it. Indeed,

the system of equations on the coefficients of the field D ∈ vle(4|3) whose solution is given by

the formula (5.1) contain coefficients 1
2 , see [67]. The vector field D ∈ vle

(
4; M̃ |3

)
is of the form

(recall formula (5.2) for Bg):

Df, g = Lef +yBf + y∆(f)∂y +Bg + ∆(g)∂y, where M̃ = (M,My) and My = 1. (6.1)

Let us explain how we got this formula: we just rewrote equations from [67] without 1
2

(multiplied the equations by 2) and solved them in the same way as it was done in [67].

For p = 2, unlike the case p 6= 2, this Lie superalgebra g = vle
(
4; M̃ |3

)
is not simple, but g(1)

is simple, its codimension in g is equal to 2: for f = q
(s1−1)
1 q

(s2−1)
2 q

(s3−1)
3 θ1θ2θ3, we have

Df,0 = i2(f) /∈ g(1), D
0,x

(s1)
1 x

(s2−1)
2 x

(s3−1)
3 ξ1

= i1(f) /∈ g(1).

For p = 2, the structure of the g0-module g1 differs drastically from that for p 6= 2. Instead
of two lowest-weight vectors, we have three of them. Besides, these three lowest-weight vectors
do not describe the whole complexity of the module.

The submodule i1(le(3; 3)1) has a complicated structure. To describe it, observe that for any
vectorial Lie (super)algebra expressed in terms of generating functions, the shearing vector can
be considered either
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(1) on the level of generating functions (let us denote it M in this case) or

(2) on the level of coefficients of vector fields they generate (let us denote it M̃ in this case).

In case(1), we obtain the “underdeveloped” Lie superalgebra

le(n;M) := Span(Lef | f ∈ O(n;M |n));

in case (2), we get the correct le
(
n; M̃

)
= Span

(
Lef ∈ vect

(
n; M̃ |n

))
. We have

le
(
n; M̃

)
= le(n;M) n Span

(
q

(si)
i | i = 1, . . . , n

)
.

Accordingly, for M̃ unconstrained, the component le
(
3; M̃ ; 3

)
1

is of the form:

le
(
3; M̃ ; 3

)
1

= Π
(
K[θ1θ2θ3]

)
⊗ S2(q1, q2, q3).

This component contains submodules corresponding to the minimal values M i = 1 for some i.
To describe g1 as g0-module, consider the submodule

W0 := le(1)(3; 3)1 = Span(qiqjϕ(θ) for any i, j and any function ϕ).

It is irreducible. It is glued to the submodules

Wi := W0 nK · q(2)
i

in each of which W0 is a submodule, but not a direct summand. Each Wi can be further enlarged
to the module

Wi,θ := Wi n Span
(
q

(2)
i ϕ(θ)

)
corresponding to M i > 1, where M j = 1 for j 6= i

with shearing performed on the level of generating functions.

Let us describe the subalgebras of vle
(
4; 1̃|3

)
, the partial prolongs. In what follows we will

often use the following

6.1 Notational convention: on partial prolongs

Let vi be a lowest-weight vector of the g0-module g1

and Vi the submodule generated by vi.

Let gk,(i) be the kth prolong “in the direction of Vi ⊂ g1”, i.e.,

kth prolong of (g−, g0, Vi). (6.2)

Consider the g0-submodules W ⊂ g1 not contained in i1(le(3; 3)). There is only one such
submodule V3 ⊂ W generated by v3, see (6.3). The g0-module g1,M has the following three
lowest-weight vectors expressed in the form Df, g, and also as i1(−) or i2(−):

v1 x1y∂ξ2 + x1ξ3∂x1 + x1ξ1∂x3 + x2y∂ξ1 i1(q1q2) Dx1ξ1ξ3+x2ξ2ξ3, 0

+x2ξ3∂x2 + x2ξ2∂x3 + ξ3ξ2∂ξ2 + ξ3ξ1∂ξ1

v2 x1y∂ξ1 + x1ξ3∂x2 + x1ξ2∂x3 + ξ3ξ2∂ξ1 i1
(
q

(2)
1

)
Dx1ξ2ξ3, 0

v3 yξ3∂ξ3 + yξ2∂ξ2 + yξ1∂ξ1 + ξ3ξ2∂x1 i2(θ1θ2θ3) Dξ1ξ2ξ3, 0

+ ξ3ξ1∂x2 + ξ2ξ1∂x3

(6.3)
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By increasing the value of some of the coordinates M i we enlarge g1,(3) = vle
(
4; 1̃|3

)
1
. As

g0-module, g1,(3) is of the following form:

W0 ⊂ (W1 +W2 +W3) ⊂ g1,(3),

where g1,(3)/(W1 +W2 +W3) ' (g−1)∗, and (W1 +W2 +W3)/W0 is the trivial 0|3-dimensional
module, and where sdimW0 = 12|12.

The superdimensions of the positive components of vle(4;1|3) (and of its derived algebra in
parentheses) are given in the following table:

g1 g2 g3 g4

sdim 16|18 10(9)|12 4|3 1(0)|0

6.2 Partial prolongs as subalgebras of vle
(
4; M̃ |3

)
We have [g−1, g1,(i)] ' vect(0|3) for i = 1, 2. (Actually, g1,(2) = g1,(1) nK · i1

(
q

(2)
1

)
.)

6.2.1 Convention: on partial prolongs “of no interest”

In what follows, we do not investigate partial prolongs with [g−1, g1,(i)], see (6.2), smaller than g0

if the [g−1, g1,(1)]-module g−1 is not irreducible: no such prolong can be a simple Lie (su-
per)algebra with the given nonpositive part.

6.3 Desuperization

We have g0 ' c(vect(3;1)), and g−1 ' F/K.

For N unconstrained, we have dim g1 = 55. (Compare with (5.7) and (6.4): for N = 1, the
dimension drops.)

Critical coordinates of the unconstrained shearing vector : M̃1, M̃2, M̃3, M̃7.

The dimensions of the positive components of vle(7; 1̃) and its simple derived algebra (in
parentheses) are given in the following table; so dim vle(1)

(
7; 1̃
)

= 94:

g1 g2 (or g
.2
1 ) g3 = g

.3
1 g4 or −

dim 34 22 (21) 7 1 (−)
(6.4)

6.4 Partial prolongs as subalgebras of vle
(
7; M̃

)
(i) We have dim(g′1) = 34. (If N = 1, then dim(g1,(1)) = dim g1; otherwise, g1,(1) ( g1.) The

partial Cartan prolong

vle′
(
7; M̃

)
:=
(
g−, g0, g1,(1)

)
∗;M̃

is such that [g−1, g1] ' cvect(3;1); this prolong is vle
(
7; 1̃
)
.

(ii) The partial Cartan prolong (g−, g0, g1,(i))∗;M is such that [g−1, g1,(i)] ' vect(3;1) for i =
2, 3. By Convention 6.2.1, we do not investigate this partial prolong.

Conclusion. We have found a new simple Lie superalgebra vle(1)
(
4; M̃ |3

)
and a new simple

Lie algebra vle(1)
(
7; M̃

)
. Partial prolongs do not yield new simple Lie (super)algebras.



52 S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites and I. Shchepochkina

7 vle
(
9; Ñ

)
:= F(vle(3;N |6)),

where vle(3;N |6) := vle(4;M |3;K) for p = 2

The Lie superalgebra vle(3;N |6) := vle(4;M |3;K) is the complete prolong of its negative part,
see Section 2.11. A realization of the weight basis of the nonpositive components by vector fields
is as follows, where the wi is a shorthand notation for convenience:

gi the basis elements

g−2 ∂1, ∂2, ∂3

g−1 ∂4, ∂5, ∂6, w7 = x5∂3 + x6∂2 + ∂7,

w8 = x4∂3 + x6∂1 + ∂8, w9 = x4∂2 + x5∂1 + ∂9

g0
∼= X+

1 = x2∂1 + x4∂5 + x7∂8, X
−
1 = x1∂2 + x5∂4 + x8∂7, X

±
3 =

[
X±1 , X

±
2

]
,

sl(3)⊕ gl(2) X+
2 = x3∂2 + x5∂6 + x8∂9, X

−
2 = x2∂3 + x6∂5 + x9∂8, Hi =

[
X+
i , X

−
i

]
for i = 1, 2;

X̃+
1 = x7 x8∂3 + x7 x9∂2 + x8 x9∂1 + x7∂4 + x8∂5 + x9∂6,

X̃−1 = x4x5∂3 + x4x6∂2 + x5x6∂1 + x4∂7 + x5∂8 + x6∂9,

d = x1∂1 + x2∂2 + x3∂3 + x4∂4 + x5∂5 + x6∂6, H̃1 =
[
X̃+

1 , X̃
−
1

]
The g0-module g1 has the following lowest- weight vectors:

v1 = x1x4∂3 + x1x6∂1 + x2x5∂3 + x2x6∂2 + x1∂8 + x2∂7 + x4x6∂4 + x4x9∂7

+ x5x6∂5 + x5x9∂8 + x6x7∂7 + x6x8∂8,

v2 = x1x5∂3 + x1x6∂2 + x1∂7 + x5x6∂4 + x5x9∂7 + x6x8∂7.

7.1 No simple partial prolongs

For N unconstrained, dim g1 = 18. The module V1 generated by v1 is 6-dimensional, and the
module V2 generated by v2 is 8-dimensional; V1 ⊂ V2.

Critical coordinates of the unconstrained shearing vector : Ñ4, . . . , Ñ9.

8 A description of ṽle
(
9; Ñ

)
:= F(vle(5;N |4)) for p = 2

Whenever possible in this section, we do not indicate the shearing vectors. This Lie superalgebra
is the complete prolong of its negative part, see Section 2.11.

For p = 0, the g0-action on g−1 is that on the tensor product of a 2-dimensional space on the
space of semi–densities in 2 odd indeterminates. So it is not possible to just reduce modulo 2
the formulas derived for the characteristic 0. We have to understand how g0 acts on g−1 when
p = 2. For this, we use the explicit form of elements of vle(4|3) for p = 2, see equation (6.1).

Note that the mapping Lef 7−→ D(f,0) determines a Lie superalgebra isomorphism be-
tween le(3) and its image in vle. However, first, the mapping D0,− : g 7−→ D(0, g) has the
kernel:

Ker(D0,−) = {g ∈ O(x;M |ξ) | degξ g < 2 and ∆g = 0}, (8.1)

and, second, certain coincidences D(f,0) = D(0,g) might occur. Formula (6.1) makes it clear that
such a coincidence takes place if and only if (recall formula (5.2) for Bg)

Bf = 0, ∆f = ∆g = 0, and Lef = Bg.

Taking equation (5.2) into account, these conditions are equivalent to following conditions:

f = f(x), g =
∑

(i,j,k)∈A3

∂f

∂xi
ξjξk. (8.2)
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The grading of the Lie superalgebra we are interested in is induced by the following grading
of the space of generating functions:

deg ξ1 = 0, deg x1 = 2, deg ξ2 = deg ξ3 = deg x2 = deg x3 = 1, deg y = 0. (8.3)

Clearly, degD(f,g) = deg f−2 = deg g−2. Therefore (here we introduce the 9 indeterminates
z1, z2, z3, z8, z9 (even) and z4, z5, z6, z7 (odd) of the ambient Lie superalgebra vect(5;N |4)
containing our g) and ∂i := ∂zi

gi the basis elements in terms of vect(5;N |4)

g−2 D(f,0), where f = ξ1 ∂1

g−1 D(f,0), where f = xi, ξ1ξi | ξi, ξ1xi for i = 2, 3 xi ←→ ∂2+i, ξ1ξi ←→ ∂4+i + z2+i∂1

ξi ←→ ∂i, ξ1xi ←→ ∂6+i + zi∂1

because, for the nonzero vector fields of the form D(0,g) lying in g−, we have, thanks to condi-
tions (8.2), the following identifications:

D(0,ξ1ξ2) = D(x3,0), D(0,ξ1ξ3) = D(x2,0).

Because the tautological representation of sl(2) is isomorphic to its dual, we identify

g−1 'W = V ⊗ Λ(ξ, η), where V = Span(v1, v2)

using the rules listed in Table (8.4). The table also contains the explicit form of the vector fields
D(f,0) ∈ g−1 needed to calculate the action of the fields of the form D(0,g) ∈ g0 on g−1 (the
action of the fields of the form D(f,0) ∈ g0 can be computed in terms of generating functions
and the bracket in le).

f D(f,0) the image in W f D(f,0) the image in W

ξ2 ∂x2 v1 ξ1ξ2 ξ2∂x1 + ξ1∂x2 + y∂ξ3 v1 ⊗ ξ

ξ3 ∂x3 v2 ξ1ξ3 ξ3∂x1 + ξ1∂x3 + y∂ξ2 v2 ⊗ ξ

x2 ∂ξ2 v2 ⊗ η ξ1x2 ξ1∂ξ2 + x2∂x1 v2 ⊗ ξη

x3 ∂ξ3 v1 ⊗ η ξ1x3 ξ1∂ξ3 + x3∂x1 v1 ⊗ ξη

(8.4)

Proposition 8.1 (the component g0 of g = vle(5;N |4) := vle(4;N |3; 1) and its action on g−1).
The component g0 of g = vle(5;N |4) := vle(4;N |3; 1) consists of vector fields D(f, g), where
deg f = deg g = 2 in the grading (8.3). Table (8.5) shows the correspondence between pair of
generating functions (f, g) and operators in End(W )

(f, g) its image in End(W ) (f, g) its image in End(W )

f =
∑

i,j=2,3
aijxiξj ,

a22 a23

a32 a33

⊗ 1 f = ξ1
∑

i,j=2,3
aijxiξj ,

a22 a23

a32 a33

⊗ ξ
∆(f) = 0, g = 0 a22 + a33 = 0 ∆(f) = 0, g = 0 a22 + a33 = 0

(
x
(2)
2 , 0

) 0 1

0 0

⊗ η (
ξ1x

(2)
2 , 0

) 0 1

0 0

⊗ ξη
(
x
(2)
3 , 0

) 0 0

1 0

⊗ η (
ξ1x

(2)
3 , 0

) 0 0

1 0

⊗ ξη
(x2x3, 0)

1 0

0 1

⊗ η (ξ1x2x3, 0)

1 0

0 1

⊗ ξη
(x1, 0) ∂ξ (ξ1x1, 0) ξ∂ξ

(ξ2ξ3, 0) ∂η (ξ1ξ2ξ3, 0) ξ∂η

(x2ξ2, 0)

1 0

0 0

⊗ 1 + η∂η (ξ1x2ξ2, 0)

1 0

0 0

⊗ ξ + ξη∂η

(0, ξ1x1) η∂ξ (0, ξ1ξ2ξ3) ξ∂ξ + η∂η

(0, ξ1ξ2x2)

1 0

0 0

⊗ η + ξη∂ξ

(8.5)
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Thus, g0 ' d(sl(2) ⊗ Λ(2) n vect(0|2)), where the operator of outer derivation added to the
ideal sl(2) ⊗ Λ(2) n vect(0|2) is D = D ⊗ 1, where D = ( 1 0

0 0 ), and the subalgebra vect(0|2)
acts as X 7→ 1 ⊗ X + D ⊗ div(X) for any X ∈ vect(0|2). Hence, g−1 ' Vol(0|2) ⊕ Λ(2), as
vect(0|2)-module.

Proof. Let us begin with fields of the form D(f,0).

As we have already noted above, [D(f1,0), D(f2,0)] = D({f1,f2},0), and hence the action of such
fields can be described in terms of the generating functions and the Buttin bracket.

If f =
∑

i,j=2,3
aijxiξj and ∆(f) = 0, then f acts on g−1 as

∑
i,j=2,3

aij(ξj∂ξi + xi∂xj ) which,

thanks to our identification, corresponds to the action of the operator ( a22 a23
a32 a33 ) ⊗ 1; i.e., the

elements of this form span the subspace sl(V )⊗ 1 ∈ End(W ).

Analogously, the functions of the form f = ξ1
∑

i,j=2,3
aijxiξj such that ∆(f) = 0 act on g−1 as

ξ1
∑

i,j=2,3
aij(ξj∂ξi + xi∂xj ) which corresponds to the action of the operator ( a22 a23

a32 a33 )⊗ ξ; i.e., the

elements of this form span the subspace sl(V )⊗ ξ ∈ End(W ).

The correspondence between the other operators D(f,g) and operators in End(W ) is not so
evident. To find it, in tables (8.6)–(8.8) and (8.9)–(8.10) we indicate nonzero actions of an
operator D(f,g) in the first row of these tables and the same actions in the basis of the space W
in the second row. This allows us to reestablish the operator in End(W ).

For example, Table (8.6) describes the action of the generating function f = x
(2)
2 . In terms

of generating functions, f acts as Lef , i.e., as the vector field (operator) X = x2∂ξ2 . Looking at
Table (8.4) we deduce that this X acts as non-zero only on ξ2 and ξ1ξ2. Explicitly, X(ξ2) = x2,
and X(ξ1ξ2) = ξ1x2. This is precisely what is written in the first row of Table (8.6).

In the 2nd row there is the same action in terms of the basis of W . Indeed, looking again at
Table (8.4) we see that in W the incarnation of ξ2 is denoted by v1, whereas x2 by v2 ⊗ η; i.e.,
the equality X(ξ2) = x2 in the new notation takes the form X(v1) = v2 ⊗ η:

ξ2 7−→ x2 ξ1ξ2 7−→ ξ1x2

v1 7−→ v2 ⊗ η v1 ⊗ ξ 7−→ v2 ⊗ ξη
(8.6)

Thus, f = x
(2)
2 acts as x2∂ξ2 , i.e., as ( 0 1

0 0 )⊗ η ∈ End(W ).

Similarly, f = x
(2)
3 acts as ( 0 0

1 0 ) ⊗ η ∈ EndW , whereas f = x2x3 acts as the operator
( 1 0

0 1 )⊗ η ∈ End(W ).

Thus, the functions of the form f = f(x2, x3) span sl(V )⊗ η ∈ End(W ).

Analogously, the functions of the form f = ξ1f(x2, x3) span sl(V )⊗ ξη ∈ End(W ).

Clearly, f = x1 acts on g−1 as ∂ξ1 which corresponds to the operator ∂ξ ∈ End(W ), and
f = ξ1x1 acts on g−1 as ξ1∂ξ1 which corresponds to the operator ξ∂ξ ∈ End(W ). The element
f = ξ2ξ3 acts on g−1 as ξ2∂x3 + ξ3∂x2 , i.e., as ∂η ∈ End(W ):

x3 7−→ ξ2 x2 7−→ ξ3 ξ1x3 7−→ ξ1ξ2 ξ1x2 7−→ ξ1ξ3

v1 ⊗ η 7−→ v1 v2 ⊗ η 7−→ v2 v1 ⊗ ξη 7−→ v1 ⊗ ξ v2 ⊗ ξη 7−→ v2 ⊗ ξ
(8.7)

Analogously, f = ξ1ξ2ξ3 acts as the action of ξ∂η ∈ End(W ).

Finally, f = x2ξ2 acts as ( 1 0
0 0 )⊗ 1 + η∂η:

ξ2 7−→ ξ2 ξ1ξ2 7−→ ξ1ξ2 x2 7−→ x2 ξ1x2 7−→ ξ1x2

v1 7−→ v1 v1 ⊗ ξ 7−→ v1 ⊗ ξ v2 ⊗ η 7−→ v2 ⊗ η, v2 ⊗ ξη 7−→ v2 ⊗ ξη
(8.8)

Analogously, f = ξ1x2ξ2 acts as the operator ( 1 0
0 0 )⊗ ξ + ξη∂η.



Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations 55

Now, let us describe the action of operators D(0,g). First, taking equation (8.2) into account,
we have

D(0,ξ2ξ3) = D(x1,0), D(0,ξ1ξ2x3) = D
(x

(2)
3 ,0)

,

D(0,ξ1ξ3x2) = D
(x

(2)
2 ,0)

, D(0,ξ1ξ2x2+ξ1ξ3x3) = D(x2x3,0).

Now, taking the kernel (8.1) into account, we only have to establish the three operators corre-
sponding to the functions g = ξ1x1, ξ1ξ2ξ3, and ξ1ξ2x2.

For g = ξ1x1, the operator D(0,g) = ∂y corresponds to η∂ξ ∈ End(W ):

ξ1ξ2 7−→ x3 ξ1ξ3 7−→ x2

v1 ⊗ ξ 7−→ v1 ⊗ η v2 ⊗ ξ 7−→ v2 ⊗ η
(8.9)

If g = ξ1ξ2ξ3, then D(0,g) =
∑

1≤i≤3
ξi∂i, which corresponds to ξ∂ξ + η∂η ∈ End(W ).

Finally, let D(0,ξ1ξ2x2) = x2∂ξ3 + ξ1∂y. This operator acts as follows:

∂x2 = D(ξ2,0) 7−→ ∂ξ3 = D(x3,0) ξ3∂x1 + ξ1∂x3 + y∂ξ2 = D(ξ1ξ3,0)

7−→ ξ1∂ξ2 + x2∂x1 = D(ξ1x2,0)

v1 7−→ v1 ⊗ η v2 ⊗ ξ 7−→ v2 ⊗ ξη
(8.10)

which corresponds to the action of the operator ( 1 0
0 0 )⊗ η + ξη∂ξ ∈ End(W ).

D(x1ξ1+x2ξ2,ξ1ξ2ξ3) corresponds to the operator D := ( 1 0
0 0 ) ⊗ 1 ∈ End(W ), and D(x2ξ2,ξ1ξ2ξ3)

corresponds to the operator ( 1 0
0 0 )⊗ 1 + ξ∂ξ ∈ End(W ). �

Critical coordinates of Ñ
u
: Ñ1, Ñ2, Ñ3, and sdim g1 = 20|20. There are five lowest-weight

vectors in g1:

v1 = z1z3∂1 + z1∂9 + z3z6∂6 + z3z7∂7 + z3z8∂8 + z3z9∂9,

v2 = z
(2)
3 ∂3 + z3z4∂4 + z3z6∂6 + z3z9∂9 + z4z6∂9 + z1z3∂1 + z1∂9 + z2z3∂2

+ z2z4∂5 + z2z7∂6 + z2z8∂9 + z3z6∂6 + z3z7∂7 + z4z7∂8,

v3 = z
(2)
3 ∂2 + z3z4∂5 + z3z7∂6 + z3z8∂9 + z4z7∂9,

v4 = z1z2∂1 + z1∂8 + z2z6∂6 + z2z7∂7 + z2z8∂8 + z2z9∂9 + z
(2)
2 ∂2

+ z2z3∂3 + z2z7∂7 + z3z5∂4 + z3z6∂7 + z3z9∂8 + z5z6∂9 + z1z2∂1 + z1∂8

+ z2z4∂4 + z2z7∂7 + z2z9∂9 + z4z6∂8 + z2z5∂5 + z2z6∂6 + z5z7∂8,

v5 = z
(2)
3 ∂3 + z3z4∂4 + z3z6∂6 + z3z9∂9 + z4z6∂9 + z3z5∂5 + z3z7∂7 + z3z9∂9 + z5z7∂9.

No simple partial prolongs. The module generated by either one of v1, v2 is g1. The
modules Vi generated by either of v3, v4 are of dimension 4|4 and sdim([g−1, Vi]) = 4|4; sdimV5 =
8|8 and sdim([g−1, Vi]) = 8|10, so there are no new simple partial prolongs, see 6.2.1.

8.1 Desuperization

For N unconstrained, the critical coordinates are those that correspond to the formerly odd
indeterminates.
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9 kle
(
15; Ñ

)
:= F(kle(5;N |10))

Whenever possible in this section, we do not indicate the shearing vectors. The Lie superalgebra
kle(5;N |10) is the complete prolong of its negative part, see Section 2.11.

Recall that for g = kle(5|10), we have g0̄ = svect(5|0) ' dΩ3(5|0) and g1̄ = Π
(
dΩ1(5|0)

)
with

the natural g0̄-action on g1̄ and the bracket of any two odd elements being their product, where
we identify

dxi ∧ dxj ∧ dxk ∧ dxl ⊗ vol−1 = sign(ijklm)∂xm for any permutation (ijklm) of (12345).

Let xi, where 1 ≤ i ≤ 5, be the even indeterminates, ∂i := ∂xi . Let θab, where 1 ≤ a, b ≤ 5,
be an odd indeterminate such that θab = −θba; in particular, θaa = 0 and we may assume
that a < b. Let δab := ∂θab . Let g0 = sl(5) = sl(V ) act on g−2 as on its tautological 5-
dimensional module V . Let E2(V ) be the 2nd exterior power of V . For a basis of the nonpositive
components of F(kle(5;N |10)) we take the following elements (only Chevalley generators are
given for g0):

gi the basis elements

g−2 = V ∂1, ∂2, ∂3, ∂4, ∂5

g−1 = E2(V ) w12 = δ12 + θ34∂5 + θ45∂3 − θ35∂4, w13 = δ13 + θ25∂4 − θ24∂5 − θ45∂2,

w14 = δ14 + θ23∂5 + θ35∂2 − θ25∂3, w15 = δ15 + θ24∂3 − θ23∂4 − θ34∂2,
w23 = δ23 + θ45∂1, w24 = δ24 + θ35∂1, w25 = δ25 + θ34∂1,

δ34, δ35, δ45

g0 = sl(V ) Z1 = x1∂2 + θ23θ24∂5 + θ23θ25∂4 + θ24θ25∂3 + θ23δ13 + θ24δ14 + θ25δ15,

Z2 = x2∂3 + θ34θ35∂1 + θ13δ12 + θ34δ24 + θ35δ25,

Z3 = x3∂4 + θ14δ13 + θ24δ23 + θ45δ35, Z4 = x4∂5 + θ15δ14 + θ25δ24 + θ35δ34

H1 = [Z1, Y1], H2 = [Z2, Y2], H3 = [Z3, Y3], H4 = [Z4, Y4]

Y1 = x2∂1 + θ13θ14∂5 + θ13θ15∂4 + θ14θ15∂3 + θ13δ23 + θ14δ24 + θ15δ25,

Y2 = x3∂2 + θ24θ25∂1 + θ12δ13 + θ24δ34 + θ25δ35

Y3 = x4∂3 + θ13δ14 + θ23δ24 + θ35δ45, Y4 = x5∂4 + θ14δ15 + θ24δ25 + θ34δ35,

The g0-module g1 is irreducible of dimension 40. The lowest-weight vector is

v1 = θ12θ13δ15 + θ12θ23δ25 + θ13θ23δ35 + θ14θ23δ45 + θ12θ13θ23∂4 + θ12θ14θ23∂3

+ θ13θ14θ23∂2 + θ13θ23θ24∂1 + x5δ45.

No simple partial prolongs. Critical coordinates of the shearing vector for kle
(
15; Ñ

)
are those

corresponding to the formerly odd indeterminates.

10 k̃le
(
15; Ñ

)
:= F(kle(9;N |6))

The construction of kle(9;N |6), and its desuperization k̃le
(
15; Ñ

)
, resemble that of kas, see

Section 17.

However, kas is a partial prolong of k(1|6)≤0⊕ kas1, where kas1 is a “half” of k(1|6)1. Indeed,
kas1 is one of the two irreducible modules whose direct sum is k(1|6)1, and the Lie superalgebra
kle(9;N |6) is the prolong of k(9;N |6)− ⊕ kle(9;N |6)0, the latter summand constituting a half of
k(9;N |6)0; this half corresponds to either of the two possible embeddings svect(0|4) −→ osp(6|8)
corresponding to the representations of svect(0|4) in the space T 0

0 (0|4) := Vol0(0|4)/K · vol,
see (1.13), and in its dual.

This is why kle(9;N |6) is NOT the complete prolong of its negative part, see Section 2.11.

To determine the component g0 of g, we have to consider a linear combination of two elements:
the central element Z commuting with the image of svect(0|4) in osp(6|8) and an outer derivation,
say D = ξ1∂ξ1 ∈ vect(0|4).
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Let G be the prolong of the nonpositive part where G0 := (svect(0|4) n KD)
⊕

KZ and
G− := g−. Having computed [G1, g−1] we determine the coefficients in the linear combi-
nation aZ + bD that should belong to g0 := svect(0|4) n K(aD + bZ) from the condition
[G1, g−1] = g0.

To realize the Lie superalgebra g by vector fields, we use the representation of the even
part of g as svect(5;M) and its odd part as Π

(
dΩ1(5;M)

)
: whatever the Z-grading of g,

the components g0̄ and g1̄ have the needed nonpositive part. For convenience, we use gl(5)-
weights of the elements of g, having added the outer derivation – the grading operator – to
svect(5;M).

Let u1, . . . , u5 be a basis of the space U we used to define svect(U) and dΩ1(U). In our grading,
deg(u5) = 2 and deg(ui) = 1 for i < 5. Let x1, . . . , x15 be the desuperized indeterminates. Then,

∂x1 + · · · ←→ ∂u1 , . . . , ∂x4 + · · · ←→ ∂u4 ,

∂x5 + · · · ←→ Π(du1du2), . . . , ∂x10 ←→ Π(du3du4),

∂x11 ←→ u1∂u5 , . . . , ∂x14 ←→ u4∂u5 , ∂x15 ←→ ∂u5 . (10.1)

The functor Π is interpreted as multiplication (tensoring) by the 1-dimensional module whose
generator Π has the following weight w to make the weight and degree compatible:

w(Π) =
(
−1

2
, . . . ,−1

2

)
,

deg(Π) = −5

2
.

To get rid of fractions, we multiply all weights by 2; assuming that deg dui = deg ui we have

w(x5) = w(Π) + w(du1) + w(du2)

= (−1,−1,−1,−1,−1) + (2, 0, 0, 0, 0) + (0, 2, 0, 0, 0)

= (1, 1,−1,−1,−1).

Now, the weights are symmetric in the sense that if there is an element of weight (2, 0, 0, 0, 0),
there should be elements whose weight have all coordinates but one equal to 0, one coordi-
nate being equal to 2. This symmetry helps to find correct expressions of the vector fields
in each component. Thus, the weights of the indeterminates in the new grading are as fol-
lows:

x1 → {−2, 0, 0, 0, 0}, x6 → {1,−1, 1,−1,−1}, x11 → {2, 0, 0, 0,−2},
x2 → {0,−2, 0, 0, 0}, x7 → {1,−1,−1, 1,−1}, x12 → {0, 2, 0, 0,−2},
x3 → {0, 0,−2, 0, 0}, x8 → {−1, 1, 1,−1,−1}, x13 → {0, 0, 2, 0,−2},
x4 → {0, 0, 0,−2, 0}, x9 → {−1, 1,−1, 1,−1}, x14 → {0, 0, 0, 2,−2},
x5 → {1, 1,−1,−1,−1}, x10 → {−1,−1, 1, 1,−1}, x15 → {0, 0, 0, 0,−2}.

The degree is equal to one half of (the sum of the first 4 coordinates plus the doubled fifth
one).

In equation (10.2) we give the basis of the negative part and generators of the 0th component.
It is possible to generate the semi-simple part of g0 by just 1 positive and 4 negative generators,
or 4 positive and 1 negative ones, but for symmetry we give 4 and 4 of them. These 8 generators
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do not generate the element D + Z ∈ [g1, g−1] of weight (0, 0, 0, 0, 0), so we give it separately.

gi the generators

g−2 ∂15

g−1 ' F
(
T 0

0 (0|4)
)
, ∂1 + x11∂15, ∂2 + x12∂15, ∂3 + x13∂15, ∂4 + x14∂15, ∂5 + x10∂15,

see (1.13) ∂6 + x9∂15, ∂7 + x8∂15, ∂8, . . . , ∂14

g0 ' K(D + Z) {−1,−1,−1, 1, 1} → x2∂6 + x9∂12 + x3∂5 + x10∂13 + x1∂8

osvect(4;1) + x7∂11 + x1x7∂15

{−1,−1, 1,−1, 1} → x2∂7 + x8∂12 + x4∂5 + x10∂14 + x1∂9

+ x6∂11 + x1x6∂15

{−1, 1,−1,−1, 1} → x3∂7 + x8∂13 + x4∂6 + x9∂14 + x1∂10

+ x5∂11 + x1x5∂15

{1,−1,−1,−1, 1} → x2∂10 + x5∂12 + x2x5∂15 + x3∂9 + x6∂13

+ x3x6∂15 + x4∂8 + x7∂14 + x4x7∂15

{0, 0, 0, 0, 0} → x1∂1 + x8∂8 + x9∂9 + x10∂10 + x12∂12 + x13∂13

+ x14∂14 + x15∂15

{0, 0, 0, 4,−2} → x14∂4 + x
(2)
14 ∂15, {0, 0, 4, 0,−2} → x13∂3 + x

(2)
13 ∂15

{0, 4, 0, 0,−2} → x12∂2 + x
(2)
12 ∂15, {4, 0, 0, 0,−2} → x11∂1 + x

(2)
11 ∂15

(10.2)

No simple partial prolongs. Critical coordinates for k̃le
(
15; Ñ

)
are those corresponding to

formerly odd indeterminates.

11 kle3

(
20; Ñ

)
:= F(kle(9;N |11))

Whenever possible in this section, we do not indicate the shearing vectors. The Lie superalgebra
kle(9;N |11) is the complete prolong of its negative part, see Section 2.11.

11.1 Description of kle(9;N |11)−

We consider the realization of g = kle as the direct sum of g0̄ = svect(U) and g1̄ = Π
(
dΩ1(U)

)
,

where U = Span(u1, . . . , u5). Let i, j = 1, 2, while a, b, c = 3, 4, 5. Let {ijabc} = {12345} as
sets, ∂α := ∂uα for any index α. Set, cf. (25.4):

deg u = (3, 3, 2, 2, 2), deg du = (0, 0,−1,−1,−1), where u = (u1, . . . , u5). (11.1)

Then,

g−3 = Span(∂1, ∂2),

g−2 = Span(∂a, dua ∧ dub for any a, b = 3, 4, 5),

g−1 = Span(ua∂i, dui ∧ dua for any i = 1, 2, a = 3, 4, 5).

The brackets are as in grading K, see (25.4):

[g−1, g−1] : [du1 ∧ duxa, du2 ∧ dub] = ∂c for {a, b, c} = {3, 4, 5},
[dui ∧ dua, ub∂i] = dua ∧ dub,

[g−1, g−2] : [dui ∧ dua, dub ∧ duc] = ∂j , [∂a, ua∂i] = ∂i.
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11.1.1 Description of kle(9;N |11)− in terms of vector fields

We use the realization of Section 10 with the same weights and degrees (11.1).
Recall that g := kle(9;N |11) is the prolong of its negative part, and g0̄ = svect(5;M). For

a basis of the negative part we take the following elements, where we denote the 20 indeterminates
by x, set δi := ∂xi :

gi the generators

g−3 {2, 0, 0, 0, 0} → δ19, {0, 2, 0, 0, 0} → δ20

g−2 {0, 0, 2, 0, 0} → δ13 + x7δ19 + x8δ20, {0, 0, 0, 2, 0} → δ14 + x9δ19 + x10δ20,

{0, 0, 0, 0, 2} → δ15 + x11δ19 + x12δ20,

{1, 1,−1,−1, 1} → δ16, {1, 1,−1, 1,−1} → δ17, {1, 1, 1,−1,−1} → δ18

g−1 ' {−1, 1,−1, 1, 1} → δ1 + x5δ15 + x6δ14 + x9δ16 + x11δ17 + x18δ20

{−1, 1, 1,−1, 1} → δ2 + x4δ15 + x6δ13 + x7δ16 + x11δ18 + x17δ20

{−1, 1, 1, 1,−1} → δ3 + x4δ14 + x5δ13 + x7δ17 + x9δ18 + x16δ20

{1,−1,−1, 1, 1} → δ4 + x10δ16 + x12δ17 + x18δ19

{1,−1, 1,−1, 1} → δ5 + x8δ16 + x12δ18 + x17δ19

{1,−1, 1, 1,−1} → δ6 + x8δ17 + x10δ18 + x16δ19

{2, 0,−2, 0, 0} → δ7, {0, 2,−2, 0, 0} → δ8, {2, 0, 0,−2, 0} → δ9, {0, 2, 0,−2, 0} → δ10

{2, 0, 0, 0,−2} → δ11, {0, 2, 0, 0,−2} → δ12

No simple partial prolongs. Critical coordinates of Ñ
u

for kle3

(
20; Ñ

)
are those corresponding

to formerly odd indeterminates.

12 kle2

(
20; Ñ

)
:= F(kle(11;N |9))

Whenever possible in this section, we do not indicate the shearing vectors. The Lie superalgebra
kle(11;N |9) is the complete prolong of its negative part, see Section 2.11.

12.1 Description of kle(11;N |9)−

In [67], the Lie superalgebra kle was constructed from a central extension of sle(1)(4) with central
element further denoted by c. The algebra sle(1)(4) was considered in the grading where the
degrees of the odd indeterminates are all 0. The regradings of this realization are listed in
equation (25.4). Let us give details.

Let the degrees of the generating functions of sle(1)(4) be determined as follows:

deg ξ3 = deg ξ4 = 0, deg q3 = deg q4 = 2, deg qi = deg ξi = 1 for i = 1, 2.

Then, (recall that the parities of the function are opposite to the “natural” ones, and c is even)

g−2 = Span(c, ξ3, ξ4, ξ3ξ4), g−1 = Span(ξ1, ξ2, q1, q2)⊗ Λ(ξ3, ξ4),

with the nonzero brackets of the generating functions f and g in ξ3 and ξ4 being as follows:

[fξ1, gξ2] = c

∫
ξ
(fgξ1ξ2), where

∫
ξ
F = coeff. of ξ1ξ2ξ3ξ4 in the expansion of F ,

[fξi, gqi] =

{
0 if f, g ∈ K,

fg otherwise
for i = 1, 2.
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12.1.1 Description of kle(11;N |9)− in terms of vector fields

The above was a description easy to understand for humans. To compute with the aid of
SuperLie, we use the realization of Section 11 with the same weights and the degrees given by
(compare with (11.1))

deg u = (2, 2, 2, 1, 1), deg du = (0, 0, 0,−1,−1), where u = (u1, . . . , u5).

Let us express the basis of g−1 in terms of the ui introduced in (10.1):

∂x1 + · · · ←→ ∂u4 , ∂x2 + · · · ←→ ∂u5 ,

∂x3 + · · · ←→ Π(du1du4), . . . , ∂x8 + · · · ←→ Π(du3du5),

∂x9 ←→ u4∂u1 , . . . , ∂x14 ←→ u5∂u3 ,

∂x15 ←→ Π(u4du4du5), ∂x16 ←→ Π(u5du4du5),

∂x17 ←→ ∂u1 , . . . , ∂x19 ←→ ∂u3 , ∂x20 ←→ Π(du4du5). (12.1)

The Lie superalgebra kle(11;N |9) is the prolong of the negative part. For a basis of the negative
part we take the following elements, see (12.2). For their weights we take

w(ui) = w(dui) = (0, . . . , 2, . . . , 0), w(Π) = (−1, . . . ,−1).

We select the degree of Π so as to ensure the correct degrees of the ∂xi , see (12.2), where by
abuse of notation ∂i := ∂xi . Looking at the expression of ∂x20 , see (12.1), we set deg(Π) = −4.
Likewise, the weights of ∂15 and ∂16, see (12.2), are deduced from their expressions in terms of
the ui, see (12.1):

gi the generators

g−2 {−2, 0, 0, 0, 0} → ∂17, {0,−2, 0, 0, 0} → ∂18, {0, 0,−2, 0, 0} → ∂19,

{−1,−1,−1, 1, 1} → ∂20

g−1 ' {0, 0, 0,−2, 0} → ∂1 + x9∂17 + x10∂18 + x11∂19 + x15∂20,

{0, 0, 0, 0,−2} → ∂2 + x12∂17 + x13∂18 + x14∂19 + x16∂20,

{1,−1,−1, 1,−1} → ∂3 + x8∂18 + x6∂19 + x12∂20,

{1,−1,−1,−1, 1} → ∂4 + x7∂18 + x5∂19 + x9∂20,

{−1, 1,−1, 1,−1} → ∂5 + x8∂17 + x13∂20,

{−1, 1,−1,−1, 1} → ∂6 + x7∂17 + x10∂20,

{−1,−1, 1, 1,−1} → ∂7 + x14∂20, {−1,−1, 1,−1, 1} → ∂8 + x11∂20,

{−2, 0, 0, 2, 0} → ∂9, {0,−2, 0, 2, 0} → ∂10, {0, 0,−2, 2, 0} → ∂11

{−2, 0, 0, 0, 2} → ∂12, {0,−2, 0, 0, 2} → ∂13, {0, 0,−2, 0, 2} → ∂14,

{−1,−1,−1, 3, 1} → ∂15, {−1,−1,−1, 1, 3} → ∂16

(12.2)

No simple partial prolongs. The critical coordinates of the shearing vector for kle2

(
20; Ñ

)
are

those corresponding to the formerly odd indeterminates. Explicitly: noncritical coordinates of
the shearing vector correspond to x1, x2, x17, x18, x19.

13 The Lie superalgebra mb(4|5) over C

In this section, we illustrate the algorithm presented in detail in [66], verify and rectify one
formula from [17]. This algorithm allows one to describe vectorial Lie superalgebras by means
of differential equations. In [64, 65] the algorithm was used to describe the exceptional simple
vectorial Lie superalgebras over C.
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The Lie superalgebra mb(4|5) has three realizations as a transitive and primitive (i.e., not
preserving invariant foliations on the space where it is realized by means of vector fields) vecto-
rial Lie superalgebra. Speaking algebraically, the requirement that it should be transitive and
primitive vectorial Lie superalgebra is the same as to have a W -filtration, so mb(4|5) has three
W -filtrations.

Two of these W -filtrations are of depth 2, and one is of depth 3. In each realization this Lie
superalgebra is the complete prolong of its negative part, see Section 2.11. In this section we
consider the case of depth 3 (the grading K); i.e., we explicitly solve the differential equations
singling out our Lie superalgebra. We thus explicitly obtain the expressions for the elements
of mb(4|5;K).

In this realization, the Lie superalgebra g = mb(3|8) = mb(4|5;K) is the complete prolong of
its negative part g− = g−3 ⊕ g−2 ⊕ g−1, where

sdim g−3 = 0|2, sdim g−2 = 3|0, sdim g−1 = 0|6.

We would like to embed g− into the Lie superalgebra

v := vect(3|8) = derC[u1, u2, u3; η1, η2, η3, ζ1, ζ2, ζ3, χ1, χ2]

considered with the grading

deg ηi = deg ξi = 1, deg ui = 2, degχj = 3 for any i, j.

According to the algorithm described in [66], we find in v− two mutually commuting families
of elements: X-vectors (the basis of g−) and Y -vectors. The table of correspondences, where
i = 1, 2, 3 and j = 1, 2:

k basis in mb−k X Y

−1 q1, q2, q3 Xηi Yηi
ξ2ξ3, ξ3ξ1, ξ1ξ2 Xζi Yζi

−2 ξ1, ξ2, ξ3 Xui Yui
−3 1, 1̂ Xχj Yχj

The nonzero commutation relations for the X-vectors are of the form ((i, j, k) ∈ A3):

[Xηi , Xui ] = −Xχ1 , [Xζi , Xui ] = −Xχ2 , [Xηi , Xζk ] = −Xuj , [Xηi , Xζj ] = Xuk .

The nonzero commutation relations for the Y -vectors correspond to the negative of the above
structure constants:

[Yηi , Yui ] = Yχ1 , [Yζi , Yui ] = Yχ2 , [Yηi , Yζk ] = Yuj , [Yηi , Yζj ] = −Yuk .

Let us represent an arbitrary vector field D ∈ vect(3|8) in the form

X = F1Yχ1 + F2Yχ2 +
∑

1≤i≤3

(fζiYζi + fηiYηi + fuiYui). (13.1)

As it was shown in [66], any X ∈ mb(3|8) is completely determined by a pair of functions F1,
F2 by means of equations, where i = 1, 2, 3 and (i, j, k) ∈ A3:

Yζi(F1) = 0, Yηi(F1) = −(−1)p(fui )fui = Yζi(F2), Yηi(F2) = 0, (13.2)

Yζi(fui) = Yηi(fui) = 0, (13.3)

Yζi(fuj ) = (−1)p(fηk )fηk , Yηi(fuj ) = −(−1)p(fζk )fζk , (13.4)

Yζi(fuk) = −(−1)p(fηj )fηj , Yηi(fuk) = (−1)
p(fζj )

fζj . (13.5)
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(Comment: since (i, j, k) ∈ A3, i.e., is an even permutation, the formulas (13.4) and (13.5) are
different; of course one can express the system by one formula inserting the sign of permutation.)
Therefore the functions F1, F2 must satisfy the following three groups of equations:

Yζi(F1) = 0, Yηi(F1) = Yζi(F2), Yηi(F2) = 0 for i = 1, 2, 3. (13.6)

The relations (13.2), (13.4) determine the remaining coordinates while the relations (13.3), (13.5)
follow from (13.2), (13.4) and the commutation relations that the Y -vectors obey. Indeed, since
p(fuj ) = p(fui) = p(X), we have

Yζi(fuj ) =

{
−(−1)p(fui )YζiYζi(F2) = 0 for i = j,

−(−1)p(fuj )YζiYζj (F2) = (−1)p(fui )YζjYζi(F2) = −Yζj (fui) for i 6= j.

Besides,

fζk = −(−1)p(fζk )Yηi(fuj ) = −YηiYζj (F2) = YζjYηi(F2) + Yuk(F2) = Yuk(F2).

We similarly get the expressions for the remaining coordinates:

fηk = Yuk(F1).

Therefore, an arbitrary element X ∈ mb(3|8) is of the form

X = XF = F1Yχ1 + F2Yχ2 +
∑

1≤i≤3

(
Yui(F2)Yζi + Yui(F1)Yηi − (−1)p(X)Yζi(F2)Yui

)
, (13.7)

where the pair of functions F = {F1, F2} satisfies the system of equations (13.6).
We select the Y -vectors so that the equations (13.6) the functions F1, F2 should satisfy were

as simple as possible. For example, take the following Y -vectors, where i = 1, 2, 3, s = 1, 2,
(i, j, k) ∈ A3:

Yηi = ∂ηi + ζk∂uj − ζj∂uk + (ζkηj − ζjηk)∂χ1 − ζjζk∂χ2 , Yζi = ∂ζi ,

Yui = ∂ui + ηi∂χ1 + ζi∂χ2 , Yχs = ∂χs .

Then, the corresponding X-vectors are of the form

Xηi = ∂ηi + ui∂χ1 , Xζi = ∂ζi − ηj∂uk + ηk∂uj − ηjηk∂χ1 + ui∂χ2 ,

Xui = ∂ui , Xχs = ∂χs .

The Lie superalgebra mb(3|8) consists of the vector fields preserving the distribution deter-
mined by the following equations for the vector field D of the form (13.1):

fu1 = fu2 = fu3 = F1 = F2 = 0. (13.8)

Let us express the coordinates f of the field D in the Y -basis in terms of the standard
coordinates in the basis of partial derivatives:

D = gχ1∂χ1 + gχ2∂χ1 +
∑

1≤i≤3

(gζi∂ζi + gηi∂ηi + gui∂ui).

We get

fui = gui + gηjζk − gηkζj for 1 ≤ i ≤ 3 and (i, j, k) ∈ A3,
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F1 = gχ1 −
∑

guiηi, F2 = gχ2 −
∑

guiζi −
∑

1≤i≤3, (i,j,k)∈A3

gηiζjζk.

Therefore, in the standard coordinates, the distribution singled out by conditions (13.8) is given
by the equations:

gui + gηjζk − gηkζj = 0 for i = 1, 2, 3,

gχ1 −
∑

guiηi = 0, gχ2 −
∑

guiζi −
∑

1≤i≤3, (i,j,k)∈A3

gηiζjζk = 0. (13.9)

The three equations determined by the first line of (13.9) allow one to express gui and substitute
into the third line to get

gχ2 +
∑

1≤i≤3, (i,j,k)∈A3

gηiζjζk = 0.

Assuming that the pairing of the space of vector fields with that of 1-forms is given by the
formula

〈f∂ξ, gdξ〉 = (−1)p(g)fg for any f, g ∈ F ,

we see that the distribution is singled out by Pfaff equations given by the following 1-forms8:

dui + ζjdηk − ζkdηj , where (i, j, k) ∈ A3,

dχ1 −
∑

ηidui, dχ2 +
∑

i such that (i,j,k)∈A3

ζjζkdηi.

Let us now solve the system (13.6).
Since Yζi = ∂ζi , the condition Yζi(F1) = 0 implies that F1 = F1(u, η, χ). The condition

Yζi(F2) = Yηi(F1) takes the form:

∂F2

∂ζi
=
∂F1

∂ηi
+

(
ζk
∂F1

∂uj
− ζj

∂F1

∂uk

)
+ (ζkηj − ζjηk)

∂F1

∂χ1
− ζjζk

∂F1

∂χ2
,

wherefrom (since F1 does not depend on ξ) we see that

F2 =
∑

1≤i≤3

ζi
∂F1

∂ηi
−

∑
i=1,2,3, (i,j,k)∈A3

ζiζj

(
∂F1

∂uk
+ ηk

∂F1

∂χ1

)
− ζ1ζ2ζ3

∂F1

∂χ2
+ α2, (13.10)

where α2 = α2(u, η, χ), i.e., does not depend on ζ.
Let us consider the last group of equations (13.6):

Yηi(F2) = 0 for i = 1, 2, 3. (13.11)

To solve this system, take the expression (13.10) for F2 and apply the operator Yηi . As a result,
we get a function depending on various indeterminates, in particular, on ζj . By virtue of (13.11),
the coefficients of all monomials in ζ should vanish. Observe that the coefficient of ζ1ζ2ζ3 vanishes
automatically. The terms of degree 0 in ζ are of the form:

∂α2

∂ηi
= 0 =⇒ α2 = α2(u, χ).

8We do not use the formulas thus obtained in THIS text. However, they describe the algebra in meaningful
terms, “as preserving a distribution” and explicitly define this distribution. So we provide these formulas, and
keep them for future use.
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Now, let us look at the degree 1 terms in ζ. To get them we should either take the term
independent of ζ in expression (13.10) for F2 (and this is α2), and apply to it the degree 1 terms
in ζ of Yηi , i.e.,

ζk∂uj − ζj∂uk + (ζkηj − ζjηk)∂χ1 ,

or, the other way round, take the degree 1 terms in ζ in (13.10), i.e.,
∑

s ζs
∂F1
∂ηs

, and apply to it
the degree 0 in ζ term of the operator Yηi , i.e., ∂ηi .

Therefore, the terms of degree 1 in ζ are of the form:

ζk
∂α2

∂uj
− ζj

∂α2

∂uk
+ (ζkηj − ζjηk)

∂α2

∂χ1
= ζj

∂2F1

∂ηi∂ηj
+ ζk

∂2F1

∂ηi∂ηk
,

implying that

F1 =
∑

i=1,2,3,(i,j,k)∈A3

ηiηj
∂α2

∂uk
+ η1η2η3

∂α2

∂χ1
+ α1(u, χ) +

∑
1≤i≤3

fi(u, χ)ηi.

So, the functions F1, F2 are completely determined by the 5 functions α1, α2, f1, f2, f3 that
depend only on u and χ.

The terms of degree 2 in ζ follow from the same expression (13.10) and the same explanation
as in the above paragraph leads to the equation (the coefficient of ζjζk):∑

1≤s≤3

(
∂2F1

∂us∂ηs
− ηs

∂

∂ηs

∂F1

∂χ1

)
+
∂F1

∂χ1
+
∂α2

∂χ2
= 0. (13.12)

Let us expand this equation in parts corresponding to degrees in η. In degree 0 we have:∑
1≤i≤3

(−1)p(fi)
∂fi
∂ui

+
∂α1

∂χ1
+
∂α2

∂χ2
= 0. (13.13)

In degrees 1, 2, 3 in η the equation (13.12) is automatically satisfied.

Let us express equation (13.13) in the following more lucid way. We designate

fi := f0
i + f1

i χ1 + f2
i χ2 + f12

i χ1χ2, αs := α0
s + α1

sχ1 + α2
sχ2 + α12

s χ1χ2.

The equation (13.13) is equivalent to the following system of four equations:

∑
1≤i≤3

∂f12
i

∂ui
= 0, α12

1 −
∑

1≤i≤3

∂f2
i

∂ui
= 0, α12

2 +
∑

1≤i≤3

∂f1
i

∂ui
= 0, α1

1 + α2
2 +

∑
1≤i≤3

∂f0
i

∂ui
= 0.

Let us describe the commutation relations in mb(3|8) more explicitly. Let us represent the
vector field (13.7) as

XF = xF +
∑

1≤i≤3

(
fζiYζi + fηiYηi − (−1)p(X)fuiYui

)
, where xF = F1∂χ1 + F2∂χ2 , (13.14)

and observe that, taking relation (13.2) and (13.4) into account, we have[
XF , XG

]
= XH , where

H1 =
[
xF , xG

]
1

+
∑

1≤i≤3

(
fuigηi − (−1)p(X

G)fηigui
)
,
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H2 =
[
xF , xG

]
2

+
∑

1≤i≤3

(
fuigζi − (−1)p(X

G)fζigui
)
.

Observe that it suffices to compute only the defining components of F , G, and H:

the pair determined by the set

F {αs, fi | s = 1, 2, i = 1, 2, 3}
G {βs, gi | s = 1, 2, i = 1, 2, 3}
H {γs, hi | s = 1, 2, i = 1, 2, 3}

Then, we get

γ1 =
∑

1≤i≤3

(
−fi

∂β1

∂ui
+ (−1)p(X

G)∂α1

∂ui
gi

)
+

(
α1
∂β1

∂χ1
+ α2

∂β1

∂χ2

)
− (−1)p(X

F )p(XG)

(
β1
∂α1

∂χ1
+ β2

∂α1

∂χ2

)
,

γ2 =
∑

1≤i≤3

(
−fi

∂β2

∂ui
+ (−1)p(X

G)∂α2

∂ui
gi

)
+

(
α1
∂β2

∂χ1
+ α2

∂β2

∂χ2

)
− (−1)p(X

F )p(XG)

(
β1
∂α2

∂χ1
+ β2

∂α2

∂χ2

)
,

hi = −
∑

1≤r≤3

fr
∂gi
∂ur

+
∑

1≤r≤3

∂fi
∂ur

gr

− (−1)p(X
G)

(
∂α2

∂uj

∂β1

∂uk
− ∂α2

∂uk

∂β1

∂uj
− ∂α1

∂uj

∂β2

∂uk
+
∂α1

∂uk

∂β2

∂uj

)
+
∑
s=1,2

αs
∂gi
∂χs
− (−1)p(X

F )p(XG)
∑
s=1,2

βs
∂fi
∂χs

for i = 1, 2, 3, (i, j, k) ∈ A3. (13.15)

In what follows we identify the vector field XF with the collection

{αs, fi | s = 1, 2, i = 1, 2, 3}. (13.16)

The bracket of vector fields corresponds to the bracket of such collections given by equa-
tions (13.15).

Consider now the even part mb(3|8)0̄ of our algebra. Since p(F1) = p(F2) = 1̄, it follows that
p(αs) = 1̄ and p(fi) = 0̄ for all s and i. The component mb(3|8)0̄ has the three subspaces:

mb(3|8)0̄ = V1 ⊕ V2 ⊕ V3.

The subspace V1 is determined by the collection (13.16) such that

{α1 = α2 = 0, fi = fi(u)χ1χ2 |
∑

i=1,2,3

∂fi
∂ui

= 0}.

Equations (13.15) imply that the vector fields generated by such functions form a commutative
ideal in mb(3|8)0̄; we will identify this ideal with dΩ1(3):

{0, 0, fi | i = 1, 2, 3} 7−→ −
∑

i such that (ijk)∈A3

fiduj ∧ duk.

The subspace V2 is determined by the collection (13.16) such that fi = 0 for i = 1, 2, 3. We
will identify this space with Ω0(3)⊗ sl(2), by setting

{α(u)(aχ1 + bχ2), α(u)(cχ1 − aχ2), 0, 0, 0} 7−→ α(u)⊗

(
a c

b −a

)
,
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where α ∈ Ω0(3), a, b, c ∈ C. Equations (13.15) imply that the subspaces V1 and V2 commute
with each other whereas the brackets of two collections from V2 is in our notation of the form

[f ⊗A, g ⊗B] = fg ⊗ [A,B] + df ∧ dg · trAB.

Concerning V3, we have the following three natural ways to describe it: in all three cases we
take fi = fi(u) for all i, whereas for the αs, we select one of the following:

(a) α1 = −
∑ ∂fi

∂ui
χ1, α2 = 0,

(b) α1 = 0, α2 = −
∑ ∂fi

∂ui
χ2,

(c) α1 = −1

2

∑ ∂fi
∂ui

χ1, α2 = −1

2

∑ ∂fi
∂ui

χ2. (13.17)

For p 6= 2, the case (c) is more convenient to simplify the brackets. Thus, we identify V3 with
vect(3), by means of the mapping{

−1

2

∑ ∂fi
∂ui

χ1, −
1

2

∑ ∂fi
∂ui

χ2, f1(u), f2(u), f3(u)

}
7−→ Df = −

∑
fi(u)∂ui .

The actions of Df on the subspace V1 (as on the space of 2-forms) and V2 (as on the space
F ⊗ sl(2) of sl(2)-valued functions) are natural. The bracket of two elements if the form Df is,
however, quite different from the usual bracket thanks to an extra term:

[Df , Dg] = DfDg −DgDf −
1

2
d(divDf ) ∧ d(divDg).

Consider now the odd part: mb(3|8)1̄. We have p(F1) = p(F2) = 0̄, and hence

p(αs) = 0̄, p(fi) = 1̄.

Let V4 consist of collections (13.16) with fi = 0. We identify V4 with Ω0(3) vol−1/2⊗C2, by
setting

{(α(u)w1, α(u)w2, 0, 0, 0)} 7−→ α(u) vol−1/2⊗

(
w2

−w1

)
.

Let V5 consist of the collections (13.16), where

fi = fi(u)(v1χ1 + v2χ2), α1 = v2

∑ ∂fi
∂ui

χ1χ2, α2 = −v1

∑ ∂fi
∂ui

χ1χ2. (13.18)

We identify V5 with Ω2(3) vol−1/2⊗C2, by assigning to the collection (13.18) the element

ω vol−1/2⊗

(
v1

v2

)
, where ω = −

∑
i such that (ijk)∈A3

fiduj ∧ duk.

Let us sum up a description of the spaces Vi and their elements, see Table (13.19).
Having explicitly computed the brackets using expressions (13.15) and presenting the result

by means of correspondences (13.19), we obtain the formulas almost identical to those offered
in [17]. The difference, however, is vital: the Jacobi identity either holds or not.

We have already given the brackets of the even elements. The brackets of elements of mb0̄

and mb1̄ are of the form:

[V1, V4] :
[
ω, α vol−1/2⊗v

]
= α · ω vol−1/2⊗v ∈ V5,



Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations 67

The space α1 α2 fi the element of Vi

V1
∼= dΩ1(3) 0 0 fi(u)χ1χ2, ω =

∑
fiduj ∧ duk,∑ ∂fi

∂ui
= 0 dω = 0

V2
∼=

Ω0(3)⊗ sl(2)
α(u)(aχ1 + bχ2) α(u)(cχ1 − aχ2) 0 α(u)⊗

a c

b −a


V3
∼= − 1

2
f(u)χ1 − 1

2
f(u)χ2 fi(u) D = −

∑
fi(u)∂ui

vect(3) f(u) =
∑ ∂fi

∂ui
divD = −f(u)

V4
∼=

Ω0 vol−1/2⊗C2
α(u)w1 α(u)w2 0 α(u)

vol1/2
⊗

 w2

−w1


V5
∼= v2f(u)χ1χ2 −v1f(u)χ1χ2 fi(u)(v1χ1 + v2χ2) ω

vol1/2
⊗

v1

v2


Ω2 vol−1/2⊗C2 f(u) =

∑ ∂fi
∂ui

ω =
∑
fiduj ∧ duk

(13.19)

[V2, V4] :
[
f ⊗A,α vol−1/2⊗v

]
= fα vol−1/2⊗Av − df ∧ dα vol−1/2⊗Av ∈ V4 ⊕ V5,

[V3, V4] :
[
D,α vol−1/2⊗v

]
= (D(α)− 1

2
divD · α) vol−1/2⊗v

+
1

2
d(divD) ∧ dα · vol−1/2⊗v ∈ V4 ⊕ V5,

[V1, V5] = 0,

[V2, V5] :
[
f ⊗A,ω vol−1/2⊗v

]
= fω vol−1/2⊗Av ∈ V5,

[V3, V5] :
[
D,ω vol−1/2⊗v

]
= (LDω −

1

2
divD · ω) vol−1/2⊗v ∈ V5.

To describe in these terms the bracket of two odd elements, perform the following natural
identifications:

Ω2(3)

vol
∼= vect(3) :

ω

vol
←→ Dω,

iDω(vol) = ω, i.e.,
∑

{i,j,k}={1,2,3} such that (ijk)∈A3

fidxj ∧ dxk ←→
∑

fi∂i,

Λ2C2 ∼= C : v ∧ w ←→ det

(
v1 w1

v2 w2

)
,

S2(C2) ∼= sl(2) : v · w ←→

(
−v1w2 − v2w1 2v1w1

−2v2w2 v1w2 + v2w1

)
.

The bracket of two odd elements is of the form:

[V4, V4] :

[
f

vol1/2
⊗ v, g

vol1/2
⊗ w

]
=
df ∧ dg ⊗ v ∧ w

vol
∈ vect(3) = V3,

[V5, V5] :

[
ω1

vol1/2
⊗ v, ω2

vol1/2
⊗ w

]
= (Dω1(ω2)− (divDω2) · ω1)v ∧ w ∈ V1,

[V4, V5] :

[
f

vol1/2
⊗ v, ω

vol1/2
⊗ w

]
=
fω

vol
⊗ v ∧ w − 1

2
(fdω − ω ∧ df)⊗ v · w + df ∧ d(divDω)⊗ v ∧ w. (13.20)
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In the last line above, the first summand lies in V3, the second one in V2, and the third one
in V1. The difference as compared with [17]: the coefficient of the third summand in the last line
on (13.20) should be 1 whereas in [17] it is equal to 1

2 .

To verify, compute the Jacobi identity (it holds for 1 and not for 1
2) for the triple

u3du2 ∧ du3 ∈ V1,
u1

vol1/2
⊗ e1, and

u2

vol1/2
⊗ e2 ∈ V4, where e1, e2 span C2.

For p = 2, when case (c) in (13.17) is not defined, we can select any one of the cases (a)
or (b), we take case (a) for definiteness. In these cases (a) and (b), we get two embeddings
vect(3) ⊂ mb(3|8)0̄.

14 The Lie algebra F(mb(3;N |8)) is a true deform of svect
(
5; Ñ

)
In this section, we describe the analog of the complex Lie superalgebra mb(3|8) for p = 2 and
consider its desuperization. For brevity, whenever possible we do not indicate the shearing
vectors.

In Section 13, we showed that an arbitrary vector field XF ∈ g, where g = mb(3|8), is of the
form (13.14) and is determined by 5 functions (α1, α2, f1, f2, f3) in indeterminates χ1, χ2, u1,
u2, u3. Now, in discussing F(mb(3|8)), we assume that all these indeterminates are even.

For consistency we replace χi with u3+i, and αi with f3+i. Accordingly we denote XF by Xf ,
where f = (f1, f2, f3, f4, f5). The equation (13.13) takes the form∑

1≤i≤5

∂fi
∂ui

= 0. (14.1)

The equation (14.1) is the only condition imposed on the functions fi, and hence there
are no restrictions on the values of coordinates of the shearing vector corresponding to the
indeterminates ui, including u4 and u5.

Consider the mapping

ϕ : g −→ vect(5), Xf 7−→ Df :=
∑

fi∂ui . (14.2)

Clearly, this is a linear injective mapping. Formula (14.1) implies that ϕ(g) = svect(5). The map-
ping ϕ is not, however, an isomorphism of Lie algebras g and svect(5). Indeed, equations (13.15)
rewritten in new notation imply the following equality (since p = 2, we skip the signs):

ϕ
([
Xf , Xg

])
=
[
Df , Dg

]
+

∑
(i,j,k)∈S3

(
∂f4

∂ui

∂g5

∂uj
+
∂f5

∂ui

∂g4

∂uj

)
∂

∂uk
. (14.3)

Realization of kle convenient in what follows: for g = kle(5|10), we have g0̄ = svect(5|0) ' dΩ3

and g1̄ = Π
(
dΩ1

)
with the natural g0̄-action on g1̄, while the bracket of any two odd elements

is their product naturally identified with a divergence-free vector field.

For any D =
∑

1≤i≤5
fi∂ui ∈ svect(5), we define

Zi(D) := dui ∧ dfi ∈ dΩ1(5)

and construct the embedding (as a vector space)

ψ : svect(5|0) −→ F(kle), D 7−→ D + Z4(D) + Z5(D). (14.4)
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Let us compute the bracket of two fields of the form (14.4):[
Df + Z4

(
Df
)

+ Z5

(
Df
)
, Dg + Z4

(
Dg
)

+ Z5

(
Dg
)]
.

In order not to write too lengthy expressions, let us compute, separately, the brackets of indi-
vidual summands. First, let i = 1, 2, 3, and k = 4, 5:

[fi∂ui , gk∂uk + Zk(gk∂uk)] = [fi∂ui , gk∂uk + duk ∧ dgk]

=

(
fi
∂gk
∂ui

)
∂

∂uk
+ duk ∧ d

(
fi
∂gk
∂ui

)
+ gk

∂fi
∂uk

∂

∂ui

= [fi∂i, gk∂k] + Zk([fi∂i, gk∂k]). (14.5)

Here we applied the Leibniz formula for the action of a vector field on a 2-form, and the expres-
sions for the Lie derivative along the vector field X:

Lfi∂i(duk) = 0 and LX ◦ d = d ◦ LX .

Now, let k = 4 or 5:

[fk∂uk + Zk(fk∂uk), gk∂uk + Zk(gk∂uk)] = [fk∂uk + duk ∧ dfk, gk∂uk + duk ∧ dgk]
= [fk∂uk , gk∂uk ] + Lfk∂uk (duk ∧ dgk) + Lgk∂uk (duk ∧ dfk) + [duk ∧ dfk, duk ∧ dgk]

=

(
fk
∂gk
∂uk

+ gk
∂fk
∂uk

)
∂uk + dfk ∧ dgk + duk ∧ d

(
fk
∂gk
∂uk

)
+ dgk ∧ dfk + duk ∧ d

(
gk
∂fk
∂uk

)
= [fk∂uk , gk∂uk ] + Zk([fk∂uk , gk∂uk ]). (14.6)

Finally, let i = 4 and k = 5:

[f4∂u4 + Z4(f4∂u4), g5∂u5 + Z5(g5∂u5)] = [f4∂u4 + du4 ∧ df4, g5∂u5 + du5 ∧ dg5]

=

(
f4
∂g5

∂u4

)
∂

∂u5
+ du5 ∧ d

(
f4
∂g5

∂u4

)
+ g5

∂f4

∂u5

∂

∂u4
+ du4 ∧ d

(
g5
∂f4

∂u5

)
+
du4 ∧ df4 ∧ du5 ∧ dg5

vol

= [f4∂4, g5∂5] + Z4([f4∂4, g5∂5]) + Z5([f4∂4, g5∂5]) +
∑

(i,j,k)∈S3

∂f4

∂ui

∂g5

∂uj

∂

∂uk
. (14.7)

The expressions (14.5), (14.6), and (14.7) show that the through mapping ψ ◦ ϕ determines
an embedding g −→ kle, and hence the Lie algebra g is isomorphic to the thus-constructed Lie
subalgebra of kle.

Remark 14.1. Note that, thanks to formulas (14.5) and (14.6), the image of Lie algebra svect(5)
under the embedding

svect(5) −→ kle, D 7−→ D + Zk(D) for any k

is isomorphic to svect(5). The image of the embedding with three additional terms

svect(5) −→ kle, D 7−→ D + Z3(D) + Z4(D) + Z5(D) (14.8)

is not a proper subalgebra of kle: it generates the whole kle. Indeed: take the bracket of the
images of two fields of the form f∂4, g∂5 ∈ svect(5); we see, thanks to equation (14.7), that the
image of svect(5) under the mapping (14.8) must contain 2-forms such as du3 ∧ dh for certain h,
and hence this image is not a subalgebra. Since the svect(5)-module dΩ1(5) is irreducible, the
image of (14.8) generates the whole kle.
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14.1 The Lie algebra F(mb(3;N |8)) is a true deform of svect
(
5; Ñ

)
Indeed, for the shearing vectors of the form N∞, all W-gradings of mb are the same as over C.
None of them has a maximal subalgebra of codimension 5, whereas svect(5) has such a subalge-
bra; cf. deforms described in [74, 76] as well.

We consider g as a deform of svect(5) with the grading

deg ua = 2, deg ui = 3, where a = 1, 2, 3, i = 4, 5

and the new bracket (14.3) designated [[−,−]]:[[
Df , Dg

]]
=
[
Df , Dg

]
+ c
(
Df , Dg

)
, (14.9)

where DF =
∑
fi∂i ∈ svect(5), [−,−] is the usual bracket of vector fields, and the cocycle that

determines the deform is

c
(
Df , Dg

)
=

∑
(i,j,k)∈S3

(
∂f4

∂ui

∂g5

∂uj
+
∂f5

∂ui

∂g4

∂uj

)
∂

∂uk
.

All calculations in this realization are rather simple. We have (observe that thanks to for-
mulas (14.2) and (14.9) brackets between the elements of g−1 are nontrivial, and g−1 generates
the negative part)

gi its basis

g−3 ∂4, ∂5

g−2 ∂1, ∂2, ∂3

g−1 ua∂i, where a = 1, 2, 3, i = 4, 5

We also have

g0 = sl(3)⊕ sl(2)⊕K(u1∂1 + u5∂5), where

sl(3) =

 ∑
a,b=1,2,3

αabua∂b |
∑

1≤a≤3

αaa = 0

 , sl(2) = Span(u4∂5, u5∂4, u4∂4 + u5∂5).

14.1.1 The deforms of svect(n;N) for p > 3

These deforms are described in [76].

14.2 Partial prolongs

The Lie algebra g = F(mb(3|8)) constructed above is the complete prolong of its negative
part, see Section 2.11; let us investigate if there is a partial prolong inside g. The component
g1 = V1 ⊕ V2 is the direct sum of the following g0-invariant subspaces:

V1 = Span(ui∂a | i = 4, 5, a = 1, 2, 3), V2 = Span(uaub∂i | a, b = 1, 2, 3, i = 4, 5).

The g0-module V1 is irreducible.

The g0-module V2 contains an irreducible g0-submodule V 0
2 = Span(xaxb∂i | a 6= b) ⊂ V2

and g0 acts in the quotient space as follows: sl(3) acts in V2/V
0

2 by zero and sl(2) acts as idsl(2)

with multiplicity 3, so dimV2/V
0

2 = 8.
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Using (14.9) it is easy to see that

[[V1, g−1]] = g0, [[V2, g−1]] ⊂ sl(3).

This means that only partial prolongs with g̃1 ⊂ g1 containing V1 can be simple.
For g̃1 = V1 ⊕ V 0

2 , the partial prolong with the unconstrained shearing vector which is of the
form Nu = (1, 1, 1,∞,∞) is a deform of svect

(
5;Nu

)
.

For g̃1 = V1 ⊕ V 0
2 ⊕ Span

(
u

(2)
1 ∂i | i = 4, 5

)
, the partial prolong is a deform of svect

(
5;Nu

)
with Nu = (∞, 1, 1,∞,∞).

For g̃1 = V1 ⊕ V 0
2 ⊕ Span

(
u

(2)
a ∂i | a = 1, 2, i = 4, 5

)
, the partial prolong is a deform of

svect
(
5;Nu

)
with Nu = (∞,∞, 1,∞,∞).

The subspace V1 is commutative and the partial prolong h with V1 as the first component is
trivial, i.e., h = g−3⊕ g−2⊕ g−1⊕ g0⊕

(
g̃1 = V1

)
. Since [[V1, g−2]] = 0, it follows that g−3⊕ g−2

is an ideal in h. The simple 24-dimensional quotient obtained is isomorphic to sl(5) with the
degrees of Chevalley generators being (0,±1, 0, 0).

Conclusion. There are no new algebras as partial prolongs.

15 mb
(
9; M̃

)
and analogs of semi-densities for p = 2

The Lie algebra mb
(
9; M̃

)
is the desuperization of mb(4;M |5), the p = 2 analog of mb(4|5)

over C. It can be obtained from the Lie algebra F(mb(3;N |8)), a deform of svect
(
5; Ñ

)
, by

regrading of the latter:

deg u5 = 2, deg ui = 1 for i = 1, 2, 3, 4.

Let us recall a description of mb(4|5) as the Lie superalgebra that preserves something.
Over C, the Lie superalgebra mb(4|5) was initially constructed as follows. Consider the Lie

superalgebra m(3; 3): this is the regrading of m(3) which preserves the distribution given by the
Pfaff equation with the form dτ +

∑
qidξi; this regrading is a Z-grading of depth 1, see (2.18).

We have (assuming p
(

vol1/2
)

= 1̄)

m = (m−1,m0)∗,

where

m0 = vect(ξ) o Λ(ξ)τ and m−1 = Λ(ξ)⊗ vol1/2
as spaces
' Π(Λ(ξ)).

Here vect(ξ) = Span
(∑

fi(ξ)qi
)
. Denote n := Λ(ξ)τ .

Considering m−1 as a vect(ξ)-module, we preserve the multiplication of the Grassmann alge-
bra Λ(ξ); i.e., the vect(ξ)-action satisfies the Leibniz rule, whereas the ideal n of m0 does not pre-
serve this multiplication. However, there is an isomorphism of vect(ξ)-modules σ : n −→ Π(m−1)
and the action of n on m−1 is accomplished with the help of this isomorphism9:

[f, g] = σ(f) · g for any f ∈ n, g ∈ m−1.

9Speaking informally, although n does not preserve the multiplication in m−1 considered as the Grassmann
algebra, n “remembers” this multiplication. And since m is the Cartan prolong, it also somehow “remembers”
this structure.

The bilinear form ω with which we construct the central extension m− = m−2 ⊕ m−1 is the Berezin integral
(the coefficient of the highest term) of the product of the two functions:

ω(g1, g2) =

∫
g1g2 vol for any g1, g2 ∈ m−1;

i.e., it also “remembers” the multiplication in m−1.
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The “right” question therefore is not “which elements of m0 preserve ω?”, but rather

“which elements of m0 preserve ω conformally, up to multiplication by a scalar?” (15.1)

It is precisely these elements which are derivations of the Lie superalgebra m−, and since m is
the maximal algebra that “remembers” the multiplication, it follows that the whole of der(m−)
lies inside m0.

Let us give an interpretation of the analog of the space of semi-densities for p = 2.
For p 6= 2, we know the answer to the question (15.1): these are elements of the two types:

(a) the elements of (b1/2(3))0, the space of linear vector fields preserving the form ω, i.e.,
elements of the form

D +
1

2
divD, where D ∈ vect(ξ);

(b) the elements of the form c · τ ∈ n which multiply ω by 2c ∈ K.

For p = 2, the elements of the form c · 1 ∈ n, where c ∈ K, multiply ω by 2c = 0 ∈ K.
Moreover, any function f ∈ n preserves ω as well:

fω(g1, g2) =

∫
((fg1)g2 + g1(fg2)) vol = 0 for any f ∈ n, g1, g2 ∈ m−1.

Thus, the form ω is preserved by svect(ξ)oΛ(ξ) which is isomorphic to the subalgebra of linear
(degree 0) vector fields in b∞. This should have been expected: since 2 = 0, then 1

2 =∞.
The elements conformally preserving ω are precisely ξi∂i ←→ qiξi, so we have to add their

sum to the 0th part and calculate the Cartan prolong.
Now we are able to obtain the basis of the nonpositive components of mb(9;M). A realization

of the weight basis of the negative components and generators of the 0th component by vector
fields is as follows, see Section 2.12 (X±i are the Chevalley generators of sl(3) = svect(0|3)0):

gi the generators

g−2 ∂1

g−1 ' ξ1 ←→ ∂2, ξ2 ←→ ∂3, ξ3 ←→ ∂4, ξ1ξ2ξ3 ←→ ∂9 + x8∂1,

O(3;1) 1←→ ∂8, ξ1ξ2 ←→ ∂5 + x4∂1, ξ1ξ3 ←→ ∂6 + x3∂1, ξ2ξ3 ←→ ∂7 + x2∂1

g0 ' KDo ∂ξ3 ←→ x6x7∂1 + x4∂8 + x6∂2 + x7∂3 + x9∂5,

(svect(3;1) oO(3;1) X−1 ←→ x3∂2 + x7∂6, X
+
1 ←→ x2∂3 + x6∂7,

X−2 ←→ x4∂3 + x6∂5, X
+
2 ←→ x3∂4 + x5∂6,

ξ1ξ2∂3 ←→ x
(2)
4 ∂1 + x4∂5, ξ1ξ3∂2 ←→ x

(2)
3 ∂1 + x3∂6,

ξ2ξ3∂1 ←→ x
(2)
2 ∂1 + x2∂7, ξ1ξ2ξ3 ←→ x

(2)
8 ∂1 + x8∂9,

D = x1∂1 + x2∂2 + x5∂5 + x6∂6 + x9∂9

For M unconstrained, dim g1 = 64. The lowest-weight vectors in g1 are

v1 = x2x5x6∂1 + x
(2)
2 ∂8 + x2x5∂3 + x2x6∂4 + x2x9∂7 + x5x6∂7,

v2 = x2x3x4∂1 + x2x3∂5 + x2x4∂6 + x3x4∂7 + x2x7∂9 + x2x8∂2 + x4x5∂9 + x4x8∂4

+ x5x8∂5 + x7x8∂7 + x1x8∂1 + x1∂9 + x2x7∂9 + x2x8∂2 + x6x8∂6

+ x8x9∂9 + x3x6∂9 + x3x8∂3 + x
(2)
8 ∂8,

v3 = x2x5x7∂1 + x3x5x6∂1 + x2x3∂8 + x2x5∂2 + x2x7∂4 + x2x9∂6 + x3x5∂3 + x3x6∂4

+ x3x9∂7 + x5x6∂6 + x5x7∂7,

v4 = x1∂8 + x5x6∂2 + x5x7∂3 + x5x9∂5 + x6x7∂4 + x6x9∂6 + x7x9∂7.

Critical coordinates: M5 = M6 = M7 = M9 = 1. This Lie algebra is a regrading of
mb3(11;N).
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15.1 No simple partial prolongs with the whole g0

There are remarkable elements in g1:

v1 = x
(2)
2 ∂7 + x

(3)
2 ∂1, v2 = x

(2)
3 ∂6 + x

(3)
3 ∂1, v3 = x

(2)
4 ∂5 + x

(3)
4 ∂1, v4 = x

(2)
8 ∂9 + x

(3)
8 ∂1.

Each of the first three vectors generates a submodule of dim = 32; any two of the first three
generate a submodule of dim = 40; all three together generate a submodule of dim = 48. The
last one generates a submodule of dim = 8. All 4 together generate a submodule of g̃1 of
dim = 56. The quotient g1/g̃1 is an irreducible g0-module. We have dim([g−1, g̃1]) = 25 while
dim g0 = 26; absent is the vector of weight 0:

x1∂1 + x2∂2 + x5∂5 + x6∂6 + x9∂9.

Note that [g−1, g1] = g0.

For the 24-dimensional intersection g1i of the 32-dimensional submodules, we see that g−1 is
irreducible over [g−1, g1i], and hence over [g−1, g̃1]; we have dim([g−1, g1i]) = 21.

The elements absent in [g−1, g1i] as compared with g0:

x2
8∂1 + x8∂9, x2

2∂1 + x2∂7, x2
3∂1 + x3∂6, x2

4∂1 + x4∂5.

16 A description of mb2

(
11; Ñ

)
:= F(mb(5;N |6))

Whenever possible in this section, we do not indicate the shearing vectors. The Lie superalgebra
mb(5;N |6) is the complete prolong of its negative part, see Section 2.11.

Let us consider g := F(mb(5;N |6)) as a deform of svect(5) with the grading

deg u1 = deg u2 = 1, deg u3 = deg u4 = deg u5 = 2.

Let us describe the complete prolong of this negative part of this Lie superalgebra, see
Section 2.11. We deduce the form of the vector fields forming a basis of the negative part
of mb(5;N |6) from nonzero commutation relations between ∂k and xi∂a, where k = 1, . . . , 5,
a = 3, 4, 5, and i = 1, 2, cf. (14.3), (14.9), considered as elements of F(mb(5;N |6)):

[[∂i, ui∂a]] = ∂a, [[u1∂4, u2∂5]] = [[u1∂5, u2∂4]] = ∂3. (16.1)

For a basis we take realization in vector fields in 5 indeterminates zk, where k = 1, . . . , 5, and 6
indeterminates zia, where a = 3, 4, 5 and i = 1, 2, of which z1, z2, z3, z13, z23 are even while z4,
z5, z14, z15, z24, z25 are odd and δi := ∂zi :

gi the generators (even | odd)

g−2 δ3 | δ4, δ5
g−1 δ1, δ2, δ13 + z1δ3, δ23 + z2δ3 | δ14 + z1δ4 + z25δ3, δ24 + z2δ4, δ15 + z1δ5 + z24δ3, δ25 + z2δ5

Because the bracket (16.1) is a deformation that does not preserve the grading given by the
torus in gl(5), we consider the part of the weights that is salvaged, namely, we just exclude the
3rd coordinate of the weight; whereas the weight of x3 is defined to be equal to (−1,−1, 1, 1).

The dimension of g0 is the same for all p; it is the expressions of the elements that differ.
The raising operators in g0 are those of weight (1,−1, 0, 0) or (0, 0, 1,−1), and those with
a positive sum of coordinates of the weight, dim(g+

0 ) = 13; we skip their explicit description (it
is commented with % marks in the TEX file available in arXiv).
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The lowering operators in g0 are those of weight (−1, 1, 0, 0) or (0, 0,−1, 1), and those with
a negative sum of coordinates of the weight; dim(g−0 ) = 4:

{-1,-1,0,1} → {z13δ14 + z23δ24 + z15δ2 + z25δ1 + z3δ4 + z15z23δ3 + z15z24δ4 + z15z25δ5},

{-1,-1,1,0} → {z13δ15 + z23δ25 + z14δ2 + z24δ1 + z3δ5 + z14z23δ3 + z14z24δ4 + z14z25δ5},

{-1,1,0,0} → {z2δ1 + z13δ23 + z14δ24 + z15δ25 + z14z15δ3},

{0,0,1,-1} → {z14δ15 + z24δ25 + z4δ5}. (16.2)

Noncritical coordinates: N1, N2, N3.

For the unconstrained shearing vector, sdim g1 = 20|20 with the lowest-weight vector

v1 = x3δ1 + x6x7δ7 + x6x8δ8 + x6x10δ10 + x7x8δ9 + x7x10δ11

+ x8x10δ2 + x8x9x10δ4 + x8x10x11δ5

generating the whole g0-module g1. All other highest- and lowest-weight vectors together ge-
nerate a submodule V of g1 of superdimension 16|16 such that [g−1, V ] is a 20-dimensional
subalgebra of g0. The g0-module g1/V is irreducible.

16.1 Desuperization

Its 0th component is the same as in (16.2) with parities forgotten.

Noncritical coordinates: N1, . . . , N5.

17 On analogs of kas for p = 2

In this section, whenever possible, we do not indicate the shearing vectors. All computations
in this section are performed for p = 2; however, for comparison, we also recall expressions
obtained earlier over C in [64, 65, 67]. These expressions do not differ, usually, from those for
p > 2.

The Lie superalgebra kas over C was the last example needed to complete the list of simple
W-graded vectorial Lie superalgebras, see [64, 65]. Its nonpositive part is the same as that of
g := k(1|6) (generated by the functions in the even t and 6 odd indeterminates) in its standard
Z-grading while the component g1 is exceptional, as a g0-module, among various k(1|n): only
for n = 6 does g1 split into 3 irreducible components: one depends on t, the other two are dual
to each other. For any p 6= 2, we define two copies of kas; each of them is the partial prolong
generated by the nonpositive part, and the two submodules of g1: the one that depends on t,
and any one of the other two submodules.

To distinguish between these two isomorphic copies of kas, we denote by kasξ the one whose
space of generating functions contains the product ξ1ξ2ξ3; let kasη be the one whose space of
generating functions contains the product η1η2η3. We always consider only kasξ, see (17.4), so
we skip the superscript.

For p = 2, the structure of g1 as a g0-module is rather complicated, and it is not clear what
should one take for an analog of kas. Let us investigate.
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17.1 The component g1 as g0-module for g := k(1|6) if p = 2

Let g = k(1|6) be described in terms of generating functions of ξ, η, t, where ξ = (ξ1, ξ2, ξ3) and
η = (η1, η2, η3), with the bracket

{f, g}k.b. =
∂f

∂t
(1 + E′)(g) + (1 + E′)(f)

∂g

∂t
+
∑

1≤i≤3

(
∂f

∂ξi

∂g

∂ηi
+
∂f

∂ηi

∂g

∂ξi

)
, (17.1)

where E′ =
∑
ξi∂ξi , and the standard grading deg t = 2, deg ξi = deg ηi = 1.

We have g0 ' d
(
o

(1)
Π (4)

)
. However, since G0 ' d(oΠ(4)) for G := k(7;N), we have to

investigate how can we enlarge d
(
o

(1)
Π (4)

)
to get a “correct” version of F(kas)0.

Consider the subalgebra h := o
(1)
Π (6) ' Λ2(ξ, η) = h−2 ⊕ h0 ⊕ h2 of g0 = d(o

(1)
Π (6)), where

h−2 = Λ2(ξ), h0 = Span(ξiηj | i, j = 1, 2, 3) ' gl(3), h2 = Λ2(η). (17.2)

Set Φ :=
∑
ξiηi. For p 6= 2 and the contact bracket (2.6), we have adΦ |hi = i id, hence the

grading in (17.2). For p = 2, the elements Φ and t interchange their roles: Φ commutes with

g0 = co
(1)
Π (6), while t is a grading operator on g0 = h0 ⊕ h1, where h1 = h−2 ⊕ h2.

17.2 Desuperization

Under desuperization k(1;N |6) turns into G := k
(
7; Ñ

)
, whereas the Lie algebra h, see (17.2),

turns into H := oΠ(6) = S2(ξ, η) ⊂ G0 ' d(oΠ(4)), where

H−2 = S2(ξ), H0 = Span(ξiηj | i, j = 1, 2, 3) ' gl(3), H2 = S2(η).

The highest-weight vectors of the G0-module S3(ξ, η) are as follows (in parentheses are the
dimensions of the respective G0-modules these vectors generate)

ξ
(3)
1 (26), ξ1ξ

(2)
2 (26), ξ1ξ2ξ3(14), ξ1(ξ2η2 + ξ3η3)(6).

The lowest-weight vectors and the dimensions of the G0-modules these vectors generate are
the same with the replacement ξ ←→ η. However, since the modules generated by lowest or
highest-weight vectors do not span the whole of G1 if p = 2, it is more natural to describe this
component differently, as follows.

Bracketing ξ
(3)
i (resp. η

(3)
j ) with g−1 yields ξ

(2)
i (resp. η

(2)
j ), and since each of the 26-dimen-

sional modules generated by any cube contains only one cube, to have all squares in F(kas)0, we
have to take for F(kas)1 the module generated by all cubes. But we cannot do this: the prolong of
the module containing all cubes is equal to k(7). Let us establish which cubes should be absent
in the correct version of F(kas)1 and how many versions are there.

At this stage we do not yet know what shall we eliminate in G0 to get a correct version
of F(kas)0, so we consider modules over g0.

The g0-submodules of E3(ξ, η) and g1. The submodule V = Span(ξiΦ, ηiΦ)3
i=1 ⊂ E3(ξ, η)

is the smallest; observe that in E3(ξ, η) all squares vanish. By adding any of the following
8 one-dimensional modules

spanned by expressions x1x2x3, where xi is any of ξi or ηi, (17.3)

we can enlarge V and still have a g0-submodule. Together these modules span a 14-dimensional
submodule W . The quotients E3(ξ, η)/W ' V ∗ and W/V are irreducible g0-modules.

Now, let us involve t. Set P := Span(tξj , ηi(t+ξjηj) | i 6= j). As is easy to see, dimV ∩P = 3.
The g0-module generated by tξi is of dimension 16, as space it is the direct sum

(V + P )⊕ a 4-dimensional subspace of the 8-dimensional space (17.3).
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The g0-module generated by tξi and tηj is of dimension 26; as a vector space it is the direct sum

(V + P )⊕ the 8-dimensional space (17.3).

The g0-submodules of S3(ξ, η) and G1. There are 6 modules of dimension 26 each, each of

them is generated by one cube
(
ξ

(3)
i or η

(3)
j

)
. The intersection of ≥ 2 of these modules is

a 20-dimensional module E3(ξ, η). Unions of several of these modules form 32-, 38-, 44-, and
50-dimensional submodules, or the whole S3(ξ, η).

The module generated by ξ
(3)
1 is of dimension 16, and contains 5 elements with ξ

(2)
1 , V and

4 elements of the form ξ1x2x3, see (17.3). The intersection of all 6 such modules generated by
cubes is equal to W = V⊕the 8-dimensional space (17.3).

The dimension of the union of the modules generated by ξ
(3)
i and ξ

(3)
j for i 6= j is equal to 24.

The dimension of the union of the modules generated by ξ
(3)
i and η

(3)
j for any i and j is equal

to 26.
The dimension of the union of the modules generated by ξ

(3)
i and η

(3)
j for all i and j is equal

to 50, it is all G1 except for V ∗. Verdict:

F(kas(1;N |6)) is the prolong of k(7)− and Y ⊕ (V + P ),

where Y is the 8-dimensional module (17.3),

V := Span(ηiΦ, ξjΦ)3
i,j=1, P := Span(tξj , ηi(t+ ξjηj) | i 6= j). (17.4)

17.3 Remark: useful formulas for manual computations

The lowest-weight vectors of the g0-module g1 are as follows:

η1η2ξ3, η1η2η3, tη1 for p = 0,

η1η2ξ3, η1η2η3, η1η2ξ2 + η1η3ξ3 = η1Φ for p = 2.

Clearly, Λ3(ξ, η) is a g0-submodule. Let us describe it.
Let X0 := η1η2η3. The subalgebra h2 ⊂ g0 commutes with X0, and h0 acts on X0 by scalar

operators, so U(g0)X0 = U(h−2)X0. Denote V1 := Span(η1Φ, η2Φ, η3Φ).
We have

{ξ1ξ2, X0} = ξ2η2η3 + ξ1η1η3 = η3(ξ1η1 + ξ2η2) = η3Φ.

Similar computations show that [h−2, X0] = V1.
Let us now describe [h−2, V1]. Clearly, see (17.1),

{ξiξj , ηαΦ} = {ξiξj , ηα} · Φ + ηα{ξiξj ,Φ}.

We have

{ξiξj ,Φ} =

{
2ξiξj for p 6= 2,

0 for p = 2,

and respectively we have

{ξ1ξ2, η1Φ} =

{
ξ2(−ξ1η1 + ξ3η3),

ξ2Φ,
{ξ1ξ3, η1Φ} =

{
ξ3(−ξ1η1 + ξ2η2),

ξ3Φ,

{ξ2ξ3, η1Φ} =

{
2η1ξ2ξ3,

0.
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We set V2 := [h−2, V1] = Span(ξ1Φ, ξ2Φ, ξ3Φ) and see that [h−2, V2] = 0.

Therefore, KX0 ⊕ V1 ⊕ V2 is a g0-submodule.

We have {ηiηj , ηαΦ} = 0; i.e., V = V1 ⊕ V2 is a submodule to which KX0 us glued “from
above”.

Absolutely analogously, if Y0 := ξ1ξ2ξ3, then Y0 generates the submodule KY0⊕ V1⊕ V2, and
KY0 is now a submodule glued to V “from below”.

Now, let W1 := Span(ξ2ξ3η1, ξ1ξ3η2, ξ1ξ2η3) and W2 := Span(ξ1η2η3, ξ2η1η3, ξ3η1η2). Then,

ξiξj : W1 −→ 0, ξiηj : W1 −→

{
V2 for i 6= j,

W1 for i = j,
ηiηj : W1 −→ V1,

ξiξj : W2 −→ V2, ξiηj : W2 −→

{
V1 for i 6= j,

W2 for i = j,
ηiηj : W2 −→ 0.

We see that U := V ⊕W1 ⊕W2 is a submodule and h annihilates the quotient U/V , and
hence it is possible to glue any element of W1 ⊕W2 to V .

Finally, the tautological representation of o
(1)
Π (6) is realized in the 6-dimensional quotient

of Λ3(ξ, η); it cannot be, however, singled out as a SUBmodule, moreover, it is glued to the
whole submodule U , including the elements X0 and Y0.

Now, look at the elements of g1 whose expressions contain t.

The Lie algebra h0 = gl(3) acts in the same way as for p = 0 (as on the direct sum of the
tautological gl(3)-module and its dual). Whereas

{ηiηj , tηk} =

{
ηiηjηk = X0 if the indices i, j, k are distinct,

0 otherwise.

Further,

{ξ1ξ2, tη1} = ξ2(t+ ξ1η1), {ξ1ξ3, tη1} = ξ3(t+ ξ1η1), {ξ2ξ3, tη1} = ξ2ξ3η1,

and {ξiξj , ξ2(t+ ξ1η1)} = 0 for all i, j.

Thus, under the action of h the space Q1 = Span(tη1, tη2, tη3) generates the space

Q2 = Span(ξ1(t+ ξ2η2), ξ2(t+ ξ3η3), ξ3(t+ ξ1η1)),

as well as V2, W1, and KX0.

We can try to twist the elements tηi by adding something to them to enable the subalgebra h2

annihilate them. Such twisted elements span the space P1 := Span(ηi(t + ξjηj) | i 6= j). Under
the action of g−2 we obtain from P1 the spaces P2 := Span(tξ1, tξ2, tξ3), W2, and KY0.

17.4 The simple ideal kas(1)(1;N |6) in kas

Let g := kas(1;N |6) considered with the standard Z-grading. In g0, the subalgebra h, see (17.2),

is not simple: it contains the ideal o
(2)
Π (6) of codimension 1, consisting of matrices

(
A B
C At

)
with

zero-diagonal symmetric matrices B and C and A ∈ sl(6) whereas h consists of the same type
matrices with A ∈ gl(6). Therefore, g = kas(1;N |6) contains a simple ideal kas(1)(1;N |6) of
codimension 1, its outer derivation being the outer derivation of g0. This derivation is present
in the versions of kas considered in the next three sections.
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17.5 Desuperizations of kas(1;N |6)

For one of the W-gradings of F(kas), we do not require presence of all squares in F(kas)0, but
rather require their absence; this affects the number of parameters the shearing vector depends
on.

Critical coordinates. The shearing vector Ñ of the desuperization k := k
(
7; Ñ

)
, the ambient

of the desuperized kas(1;N |6), has no critical coordinates.

18 k̃as(7;M) := F
(
kas

(
4; Ñ |3

))
, where kas(4|3) := kas(1|6; 3η)

element of its action the corresponding

g0 on g−1 ' Vol0 vector field ∈ vect(4;N |3)

ξ1 ∂η1 z1∂0 + z12∂2 + z13∂3

ξ2 ∂η2 z2∂0 + z12∂1 + z23∂3

ξ3 ∂η3 z3∂0 + z13∂1 + z23∂2

t←→ 1, ξiηi ←→ ηi∂ηi =⇒ t+ ξiηi ←→ ηi∂ηi + div(ηi∂ηi)

t 1
∑
zs∂s for any index s

ξ1η1 η1∂η1 z1∂1 + z12∂12 + z13∂13

ξ2η2 η2∂η2 z2∂2 + z12∂12 + z23∂23

ξ3η3 η3∂η3 z3∂3 + z13∂13 + z23∂23

ξ1η2 η2∂η1 z1∂2 + z13∂23

ξ1η3 η3∂η1 z1∂3 + z12∂23

ξ2η1 η1∂η2 z2∂1 + z23∂13

ξ2η3 η3∂η2 z2∂3 + z12∂13

ξ3η1 η1∂η3 z3∂1 + z23∂12

ξ3η2 η2∂η3 z3∂2 + z13∂12

ξiηjηk ←→ ηjηk∂ηi ∈ svect(η), i 6= j 6= k

ξ1η2η3 η2η3∂η1 z1∂23

ξ2η1η3 η1η3∂η2 z2∂13

ξ3η1η2 η1η2∂η3 z3∂12

ηiΦ←→ ηi(ηj∂ηj + ηk∂ηk ) ∈ svect(η), i 6= j 6= k

η1Φ η1(η2∂η2 + η3∂η3) z2∂12 + z3∂13

η2Φ η2(η1∂η1 + η3∂η3) z1∂12 + z3∂23

η3Φ η3(η2∂η2 + η1∂η1) z1∂13 + z2∂23

ηi(t+ ξjηj)←→ ηiηj∂ηj + ηi = ηiηj∂ηj + div(ηiηj∂ηj )

η1(t+ ξ2η2) η1η2∂η2 + η1 z0∂1 + z3∂13

η2(t+ ξ3η3) η2η3∂η3 + η2 z0∂2 + z1∂12

η3(t+ ξ1η1) η1η3∂η1 + η3 z0∂3 + z2∂23

ηiηi(t+ ξkηk)←→ η1η2η3∂ηk + ηiηj = η1η2η3∂ηk + div(η1η2η3∂ηk )

η1η2(t+ ξ3η3) η1η2η3∂η3 + η1η2 z0∂12

η1η3(t+ ξ2η2) η1η2η3∂η2 + η1η3 z0∂13

η2η3(t+ ξ1η1) η1η2η3∂η1 + η2η3 z0∂23

(18.1)
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For bases in g−1 and g0 we take the following elements:

g−1 :
∂0 ←→ 1, ∂12 ←→ η1η2, ∂13 ←→ η1η3, ∂23 ←→ η2η3,

∂1 ←→ η1, ∂2 ←→ η2, ∂3 ←→ η3.
(18.2)

Let k(1;N |6) be considered as preserving the distribution given by the form dt+
∑
ξidηi with

the contact bracket (17.1) and the grading of the generating functions given by, see Table (25.4):

deg t = deg ξi = 1, deg ηi = 0 for i = 1, 2, 3, hence degLie(f) = deg(f)− 1.

For g := kas
(
4; Ñ |3

)
, we have g−1 ' Vol0 = Span(f(η) |

∫
f = 0), i.e, all polynomials of η

without the product of the three of them. In (18.2), (18.1) we express these fields in terms of
the 7 indeterminates z; we set ∂i := ∂zi , ∂ij := ∂zij . We have (recall the definition of Vol0,
see (1.13))

g0 ' c(vect(0|3)),

with vect(0|3) acting on g−1 as on the space of volume forms, i.e., D 7−→ D + div(D), and the
element t generating the center of g0 acts on g as the grading operator. To simplify notation,
we redenote the indeterminates as follows:

z0 ←→ 1←→ x1, z12 ←→ η1η2 ←→ x2, z13 ←→ η1η3 ←→ x3, z23 ←→ η2η3 ←→ x4,

z1 ←→ η1 ←→ x5, z2 ←→ η2 ←→ x6, z3 ←→ η3 ←→ x7.

18.1 Partial prolongs

The unconstrained shearing vector only depends on N1, we have sdim g1 = 16|18.
Let Vi be the g0-submodule in g1 generated by vi. For the unconstrained shearing vector, we

have sdimV1 = 8|6, sdimV2 = 12|9 with [g−1, Vi] = g0, and V1 ⊂ V2.

The prolong in the direction of V1, see (6.2), is trivial, namely g
(V1)
2 = 0.

The prolong in the direction of V2, see (6.2), gives sdim g
(V2)
2 = 4|4, and sdim g

(V2)
2 = 0|1.

sdim([V2, V2]) = 3|4, while [V2, g
(V2)
2 ] = 0.

There are also 3 highest-weight vectors that generate nested modules W1 ⊂ W2 ⊂ W3; we
have

W1 = V1, sdim(W2) = 8|7 and sdim(W3) = 12|12.

The prolong in the direction of W2 is trivial, as is the prolong in the direction of V1.
The prolong in the direction of the 12|10-dimensional module V2 +W2 is equal to the prolong

in the direction of V2.
The prolong in the direction of W3: sdim g

(W3)
i = 12|12 for every i > 1; and N depends on

one parameter: N1.
The prolong in the direction of the 16|15-dimensional module V2 + W3 is the same as for

the whole of g1, and sdim g
(V2+W3)
i = 16|16 for every i > 1; and hence N depends on one

parameter: N1.
The lowest-weight vectors in g1 are

v1 = x1x2∂6 + x1x3∂7 + x1x5∂1 + x2x5∂2 + x3x5∂3 + x4x5∂4

+ x2x7∂4 + x3x6∂4 + x5x6∂6 + x5x7∂7,

v2 = x2x3∂3 + x2x4∂4 + x2x5∂5 + x2x6∂6 + x3x6∂7 + x4x5∂7 + x5x6∂1.

The highest-weight vectors in g1 are

w1 = x
(2)
1 ∂5 + x1x6∂2 + x

(2)
1 ∂5 + x1x7∂3, w2 = x1x7∂2, w3 = x

(2)
1 ∂2.
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18.2 Desuperization

For the unconstrained shearing vector, we have dim g1 = 55 with three lowest-weight vectors.
The first two are as above, and the third one is

v3 = x2x3∂4 + x2x5∂6 + x3x5∂7 + x
(2)
5 ∂1.

The unconstrained shearing vector is of the form M = (m, 1, 1, 1, n, s, t).

18.2.1 Partial prolongs

For the unconstrained shearing vector, we have

dimV1 = 14, dimV2 = 21, dimV3 = 31 and dim(V3 +W3) = 40

with [g−1, Vi] = g0 for every i, and V1 ⊂ V2 ⊂ V3, W2 ⊂ V3.

The unconstrained shearing vector for the prolong in the direction of V3 depends on 1 pa-

rameter N5, and dim g
(V3)
i = 32 for every i > 1.

The unconstrained shearing vector for the prolong in the direction of V3 +W3 depends on 2
parameters N1, N5, and

dim g
(V3+W3)
2 = 56, dim g

(V3+W3)
3 = 72, dim g

(V3+W3)
4 = 88.

19 kas(8;M) := F(kas(4;N |4))

Let k(1;N |6) be considered as preserving the distribution given by the form dt +
∑
ξidηi with

the contact bracket (17.1) and the grading of the generating functions given by, see Table (25.4):

deg t = deg ηi = 1, deg ξi = 0 for i = 1, 2, 3, hence degLie(f) = deg(f)− 1.

For the subalgebra g = kas
(
4; Ñ |4

)
of k(1;N |6; 3ξ), see (17.4), we have

g0 '

{
sl(1|3) oO(0|3), where sl(1|3) ⊂ vect(0|3), for p 6= 2,

d(svect(1)(0|3)) oO(0|3), see (19.2), for p = 2,

with the natural action of sl(1|3) if p 6= 2, or d(svect(1)(0|3)) if p = 2, on O(0|3).

Indeed, the element (t + Φ)f(ξ) ∈ g0 acts on g−1 as the operator of multiplication by f(ξ).
Additionally g0 contains the following operators:

ηi ←→ ∂ξi , ξiηj ←→ ξi∂ξj , ξiΦ←→ ξi(ξj∂ξj + ξk∂ξk). (19.1)

For p 6= 2, the last 3 elements in (19.1) do not belong to svect(0|3) and the elements (19.1)
generate sl(1|3).

For p = 2, the last 3 elements in (19.1) do belong to svect(0|3), whereas the elements ξiηi do
not; it is the sum of any two of them that belongs to svect(0|3). So the elements (19.1) generate
a subalgebra d(svect(1)(0|3)) in the Lie algebra der(svect(1)(0|3)) of all derivations of svect(1)(0|3).

In (19.2) we introduce 8 indeterminates x needed to express kas(4;N |4) and its desuperization
in terms of vector fields as the prolong; ∂i := ∂xi . For a basis of the nonpositive part (the X±i
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are the Chevalley generators of what is sl(1|3) for p 6= 2 and turns into svect(1)(0|3) for p = 2)
we take:

g−1 even: 1←→ ∂1, ξ1ξ2 ←→ ∂2, ξ1ξ3 ←→ ∂3, ξ2ξ3 ←→ ∂4

odd: ξ1 ←→ ∂5, ξ2 ←→ ∂6, ξ3 ←→ ∂7, ξ1ξ2ξ3 ←→ ∂8

t+ Φ←→
∑
xi∂i, (t+ Φ)ξ1 ←→ x1∂5 + x4∂8 + x6∂2 + x7∂3,

(t+ Φ)ξ2 ←→ x1∂6 + x3∂8 + x5∂2 + x7∂4,

(t+ Φ)ξ3 ←→ x1∂7 + x2∂8 + x5∂3 + x6∂4,

(t+ Φ)ξ1ξ2 ←→ x1∂2 + x7∂8, (t+ Φ)ξ1ξ3 ←→ x1∂3 + x6∂8,

g0 ' O(0|3) (t+ Φ)ξ2ξ3 ←→ x1∂4 + x5∂8, tξ1ξ2ξ3 ←→ x1∂8

nd(svect(1)(0|3)) η1 ←→ x2∂6 + x3∂7 + x5∂1 + x8∂4, η2 ←→ x2∂5 + x4∂7 + x6∂1 + x8∂3,

X−1 = η3 ←→ x3∂5 + x4∂6 + x7∂1 + x8∂2,

X+
1 = ξ1Φ←→ x6∂2 + x7∂3, ξ2Φ←→ x5∂2 + x7∂4, ξ3Φ←→ x5∂3 + x6∂4,

X−2 = η1ξ2 ←→ x3∂4 + x5∂6, η1ξ3 ←→ x2∂4 + x5∂7,

X+
2 = η2ξ1 ←→ x4∂3 + x6∂5

X−3 = η2ξ3 ←→ x2∂3 + x6∂7, η3ξ1 ←→ x4∂2 + x7∂5,

X+
3 = η3ξ2 ←→ x3∂2 + x7∂6

η1ξ1 ←→ x2∂2 + x3∂3 + x5∂5 + x8∂8, η2ξ2 ←→ x2∂2 + x4∂4 + x6∂6 + x8∂8

η3ξ3 ←→ x3∂3 + x4∂4 + x7∂7 + x8∂8

(19.2)

For the unconstrained shearing vector, sdim g1 = 16|16. The g0-module g1 splits into the
2 irreducible submodules: g1 = V1 ⊕ V2, where sdim(V1) = 12|12, and sdim(V2) = 4|4. There
are the 2 highest-weight vectors in g1:

h1 = x1x6∂2 + x1x7∂3 + x6x7∂8, h2 = x
(2)
1 ∂8;

and the 2 lowest-weight vectors:

v1 = x2x3∂3 + x2x4∂4 + x2x5∂5 + x2x6∂6 + x3x6∂7 + x4x5∂7 + x5x6∂1

+ x5x8∂3 + x6x8∂4,

v2 = x
(2)
1 ∂1 + x1x2∂2 + x1x7∂7 + x1x8∂8 + x2x7∂8 + x

(2)
1 ∂1 + x1x3∂3 + x1x6∂6

+ x1x8∂8 + x3x6∂8 + x
(2)
1 ∂1 + x1x4∂4 + x1x5∂5 + x1x8∂8 + x4x5∂8 + x5x6∂2

+ x5x7∂3 + x6x7∂4.

19.1 Partial prolongs

We have sdim([g−1, g1]) = 12|10, as it should be (having in mind the outer derivation of kas);
for its representative, we can take x1∂1 + x2∂2 + x3∂3 + x4∂4.

In the direction of V1, we have sdim([g−1, V1]) = 12|9 (apart from the outer derivative, x1∂8

is absent); the [g−1, V1]-module g−1 is irreducible, sdim(g
(V1)
2 ) = 4|7, and g

(V1)
3 = 0. More

precisely, sdim([V1, V1]) = 3|3 and the [g−1, V1]-modules V1 and [V1, V1] are irreducible. Thus,
the superdimension of this simple prolong is 31|28.

In the direction of V2 we have sdim([g−1, V2]) = 4|4, the [g−1, V1]-module g−1 is not irre-
ducible, so no new simple partial prolongs exist in this direction.

Critical coordinate: only N1.

19.2 Desuperization

The same as above, with dimension a+ b instead of superdimension a|b.
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20 The Lie superalgebra kas
(
5; Ñ |5

)
⊂ k(1;N |6; 1ξ)

Whenever possible we do not indicate the shearing vector.
Let k(1;N |6) be the Lie superalgebra which preserves the distribution given by the form

dt+
∑
ξidηi. Then, k(1;N |6) is endowed with the contact bracket (17.1); set degKf = deg(f)−2,

where the grading of the generating functions is given by

deg t = deg η1 = 2, deg ξ1 = 0, deg ηi = deg ξi = 1 for i = 2, 3.

We identify g−1 with V (Λ)⊗W , where Λ := Λ[ξ1] and V (Λ) := V ⊗Λ; let V = Span(v1, v2),
W = Span(w1, w2). For a basis of the nonpositive part of g, we take the elements listed in (20.2).

The component

g0
∼=


d
((
s̃l(W )⊕ (gl(V ; Λ) n vect(0|1))/KZ

))
,

where d = KD, see (20.2) if p = 2,

s̃l(W )⊕ (gl(V ; Λ) n vect(0|1)) if p 6= 2

(20.1)

of the subalgebra g := kas
(
5; Ñ |5

)
⊂ k(1;N |6; 1ξ), see (17.4), is rather complicated for p = 2.

To describe this component, we compare it with the complete prolong of the negative part, see
Section 2.11. The 0th component of this prolong is equal to the 0th component of k(1;N |6; 1ξ).
Its 3 elements that do not belong to g0 are easy to find from the description of kas given in
Section 17 (they are boxed):

gi the basis elements

g−2 ' Λ 1←→ ∂2 | ξ1 ←→ ∂1

g−1 ' idsl(W ) ξ1ξ2 ←→ ξ1v1 ⊗ w1 ←→ ∂3, ξ1ξ3 ←→ ξ1v1 ⊗ w2 ←→ ∂4,

⊗ idgl(V ;Λ) ξ1η2 ←→ ξ1v2 ⊗ w2 ←→ ∂5, ξ1η3 ←→ ξ1v2 ⊗ w1 ←→ ∂6 |

ξ2 ←→ v1 ⊗ w1 ←→ x5∂1 + ∂7, ξ3 ←→ v1 ⊗ w2 ←→ x6∂1 + ∂8,

η2 ←→ v2 ⊗ w2 ←→ x3∂1 + x7∂2 + ∂9, η3 ←→ v2 ⊗ w1 ←→ x4∂1 + x8∂2 + ∂10

ξ1E ⊗ 1←→ ξ1Φ←→ x7∂3 + x9∂5 + x8∂4 + x10∂6 + x7x9∂1 + x8x10∂1(
0 0
0 ξ1

)
⊗ 1←→ tξ1 ←→ x7∂3 + x8∂4 + x2∂1

ξ1X
− ⊗ 1←→ ξ1η2η3 ←→ x7∂6 + x8∂5 + x7x8∂1

ξ1X
+ ⊗ 1←→ ξ1ξ2ξ3 ←→ x9∂4 + x10∂3 + x9x10∂1

X+ ←→ ξ2ξ3 ←→ x5∂4 + x6∂3 + x9∂8 + x10∂7 + x9x10∂2

X̃+ ←→ ξ3η2 ←→ x3∂4 + x6∂5 + x7∂8 + x10∂9

g0 X− ←→ η2η3 ←→ x3∂6 + x4∂5 + x7∂10 + x8∂9 + x7x8∂2

X̃− ←→ ξ2η3 ←→ x4∂3 + x5∂6 + x8∂7 + x9∂10

D := ( 1 0
0 0 )⊗ 1 + 1⊗ ( 0 0

0 1 )←→ ξ2η2 ←→ x3∂3 + x5∂5 + x7∂7 + x9∂9

E ←→ ξ2η2 + ξ3η3 ←→ x3∂3 + x4∂4 + x5∂5 + x6∂6 + x7∂7

+ x8∂8 + x9∂9 + x10∂10

ξ1∂ξ1 ←→ ξ1η1 ←→ x4∂4 + x6∂6 + x8∂8 + x10∂10

( 0 0
0 1 )⊗ 1←→ t+ ξ1η1 ←→ x2∂2 + x3∂3 + x4∂4 + x9∂9 + x10∂10

∂ξ1 ←→ η1 ←→ x3x5∂1 + x4x6∂1 + x5x7∂2 + x6x8∂2

+ x1∂2 + x3∂7 + x4∂8 + x5∂9 + x6∂10

(20.2)

The component g0 contains two copies of sl(2); to distinguish them, we endow one of them
with a tilde: s̃l(2) = sl(W ) generated by X̃+ and X̃−, the other copy being sl(V ) generated
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by X+ and X−. These two copies of sl(2) are “glued”; their glued sum has a common center
spanned by E; i.e., their direct sum is factorized by a 1-dimensional subalgebra KZ in their
2-dimensional center, the explicit form of Z is inessential for us at the moment. Observe that
D, ξ1∂ξ1 /∈ [g−1, g1]; only their sum D + ξ1∂ξ1 ←→ ξ1η1 + ξ2η2 belongs to the commutant.

In (20.2), we expressed the nonpositive part of g by means of vector fields in 10 indetermi-
nates x setting ∂i := ∂xi .

The reader wishing to verify our computations will, of course, use the contact bracket and
generating functions to compute inside g0. The realization by vector fields is only needed to
compute gi for i > 0 (with computer’s aid to speed up the process).

The only noncritical coordinate of the shearing vector N is N2; it corresponds to what used
to be t.

For the unconstrained shearing vector, we have sdim g1 = 8|8. The only lowest-weight vector
(w.r.t. the boxed operators) of g1 that generates g1 as a g0-module is

u1 = x1∂9 + x3x4∂4 + x3x6∂6 + x3x7∂7 + x3x9∂9 + x4x6∂5 + x4x7∂8

+ x4x10∂9 + x6x7∂10 + x6x8∂9 + x1x3∂1 + x1x7∂2 + x6x7x8∂2.

The other lowest-weight vector and the only highest-weight vector (together and separately)
generate a submodule V which, together with g−1, generate an 8-dimensional part of g0. The
quotient g1/V is an irreducible g0-module.

20.1 Desuperization of kas
(
5; Ñ |5

)
The only critical coordinates are N1 and N2. (For the unconstrained shearing vector, dim g1 =
16, dim(g2) = 20, dim(g3) = 24, dim(g4) = 28.)

21 A description of s̃b
(
2n − 1; Ñ

)
for p = 2

21.1 Recapitulation: p = 0, n even

Let q = (q1, . . . , qn) and ξ = (ξ1, . . . , ξn). We consider the subsuperspace of functions C[q, ξ] of
the form

{(1 + Ξ)f(q, ξ) |∆(f) = 0 and

∫
ξ
f volξ = 0}, where Ξ := ξ1 · · · ξn,

with the Buttin bracket. In this section we use only this bracket and omit the index “B.b”.
Let us compute the bracket in (1 + Ξ)sb(1)(n;n) realized by elements of sb(1)(n). We have

{(1 + Ξ)f, (1 + Ξ)g}

=



{f, g} = (1 + Ξ){f, g} if degξ(f), degξ(g) > 0;

{(1 + Ξ)f, g} = (1 + Ξ){f, g} if degξ(f) = 0, degξ(g) > 1;

{(1 + Ξ)f, g} =

(1 + Ξ){f, g}+
∑
∂ξiΞf∂qi(gi)ξi if degξ(f) = 0, degξ(g) = 1,

(since
∑
∂ξiΞf∂qi (gi)ξi = Ξf

∑
∂qi (gi) = 0)

=

(1 + Ξ){f, g} if g =
∑
gi(q)ξi and ∆(g) = 0;∑

∂ξiΞ(∂qi(f)g − ∂qi(g)f) if degξ(f) = degξ(g) = 0.

In the Z-grading of g = s̃b(n;n) by degrees of the q shifted by −1, we have:
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� g−1 is spanned by monomials in ξ of degrees 1 through n− 1, and by 1 + Ξ;

� g0 is spanned by functions of the form g = (1 + Ξ)
∑
gi(ξ)qi, where

∑
∂ξigi = 0.

The g0-action on g−1 is as follows. If degξ(gi) > 0, then we can ignore Ξ in the factor 1 + Ξ
since Ξ annihilates gi, and hence adg acts on g−1 as the vector field

∑
gi∂ξi acts on the space

of functions in ξ.

If g = (1 + Ξ)qi, then the adg-acts on g−1 precisely as an element of s̃vect(0|n) acts on the
space Volξ:

{g, ξj} = (1 + Ξ)δij , {g, 1 + Ξ} = ∂ξi(Ξ), adg(f) = ∂ξi(f) for monomials f = f(ξ).

Since (1− Ξ) vol is the invariant subspace in Volξ, it follows that, in the quotient space, we can
take for a basis elements of the form f(ξ) volξ, where monomials f differ from 1 and Ξ, and
either 1 or Ξ. For reasons unknown, SuperLie selected Ξ, not 1.

21.1.1 Recapitulation: p = 0, n odd

Everything is as above but with τΞ, where τ an odd parameter, instead of Ξ.

21.2 F
(
s̃b
(
2n−1;N |2n−1 − 1

))
for n odd, p = 2

For p = 2, it is possible to desuperize deforms with odd parameters and consider them in the
category of superspaces, see [12]. We assume that p(volξ) ≡ n mod 2.

21.2.1 Example: n = 3

For a basis in g−1, where ∂i := ∂xi , we take:

∂1 = ξ1 volξ, ∂2 = ξ2 volξ, ∂3 = ξ3 volξ, ∂4 = ξ1ξ2 volξ, ∂5 = ξ1ξ3 volξ,

∂6 = ξ2ξ3 volξ, ∂7 = τξ1ξ2ξ3 volξ .

For a basis of g0, where δi := ∂ξi we take the following elements, where the g0-action on g−1

is given by realizations on the right of the ←→:

(1 + τξ1ξ2ξ3)δ1 ←→ x1∂7 + x4∂2 + x5∂3 + x7∂6,

(1 + τξ1ξ2ξ3)δ2 ←→ x2∂7 + x4∂1 + x6∂3 + x7∂5,

(1 + τξ1ξ2ξ3)δ3 ←→ x3∂7 + x5∂1 + x6∂2 + x7∂4,

ξ1δ2 ←→ x2∂1 + x6∂5,

ξ1δ3 ←→ x3∂1 + x6∂4,

ξ2δ1 ←→ x1∂2 + x5∂6,

ξ1δ1 + ξ2δ2 ←→ x1∂1 + x2∂2 + x5∂5 + x6∂6,

ξ1δ1 + ξ3δ3 ←→ x1∂1 + x3∂3 + x4∂4 + x6∂6,

ξ2δ3 ←→ x3∂2 + x5∂4,

ξ3δ1 ←→ x1∂3 + x4∂6,

ξ3δ2 ←→ x2∂3 + x4∂5,

ξ1ξ2δ3 ←→ x3∂4,

ξ1ξ3δ2 ←→ x2∂5,

ξ1ξ2δ2 + ξ1ξ3δ3 ←→ x2∂4 + x3∂5,

ξ2ξ3δ1 ←→ x1∂6,

ξ1ξ3δ1 + ξ2ξ3δ2 ←→ x1∂5 + x2∂6,

ξ1ξ2δ1 + ξ2ξ3δ3 ←→ x1∂4 + x3∂6.

The weights are considered with respect to sl(3) ⊂ F
(
s̃vect(0|3)

)
, i.e.,

w(ξ1) = (1, 0), w(ξ2) = (−1, 1), w(ξ3) = (0,−1).

The raising elements are those for which either w1 + w2 > 0 or w1 = −w2 > 0; the lowering
elements are those for which either w1 +w2 < 0 or w1 = −w2 < 0. (To find lowering and raising
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operators, we could have considered a Z-grading of s̃vect(0|n) by setting deg ξn = −n + 1 and
deg ξ1 = · · · = deg ξn−1 = 1 with ensuing natural division into “positive” and “negative” parts.)

The highest-weight vectors of the g0-module g1 are

w1 = x2x3∂7 + x2x5∂1 + x2x6∂2 + x2x7∂4 + x3x4∂1 + x3x6∂3

+ x3x7∂5 + x4x6∂4 + x5x6∂5,

w2 = x2x3∂1 + x2x6∂4 + x3x6∂5,

w3 = x
(2)
3 ∂1 + x3x6∂4.

The lowest-weight vectors of the g0-module g1 are

v1 = x
(2)
1 ∂1 + x1x2∂2 + x1x5∂5 + x1x6∂6 + x2x5∂6 + x

(2)
1 ∂1 + x1x3∂3

+ x1x4∂4 + x1x6∂6 + x3x4∂6,

v2 = x
(2)
1 ∂1 + x1x2∂2 + x1x5∂5 + x1x6∂6 + x2x5∂6 + x

(2)
1 ∂1 + x1x3∂3

+ x1x4∂4 + x1x6∂6 + x3x4∂6,

v3 = x
(2)
1 ∂6,

Partial prolongs: The elements of g0 absent in g̃0 := [g1, g−1] are ξ1ξ2δ3, ξ1ξ3δ2, ξ2ξ3δ1. The
g̃0-module g−1 is irreducible.

Let Vi and Wi denote the g̃0-modules generated by vi and wi, respectively. We have

dim g1 = 31, dim g2 = 49, dim g3 = 71,

dimV1 = dimW1 = 7, dimV2 = dimW2 = 8, dimV3 = dimW3 = 16,

V1 = W1, V1 ⊂ V2 ⊂ V3, W1 ⊂W2 ⊂W3,

dim(V2 +W2) = 9, dim(V2 +W3) = dim(V3 +W2) = 17, dim(V3 +W3) = 24.

The brackets with g−1:

dim([g−1, V1]) = dim[g−1, V2 +W2] = 14,

dim([g−1, V3]) = 15 (absent are ξ1ξ2δ3, ξ1ξ3δ2),

dim([g−1,W3]) = 15 (absent are ξ1ξ3δ2, ξ2ξ3δ1),

dim([g−1, V3 +W3]) = 16 (absent is ξ1ξ3δ2).

Therefore (recall the convention (6.2))

Partial prolongs in the direction of dimensions

V1 or V2 or V2 +W2 dim g2 = 1, g3 = 0
V3 or V3 +W2 dim g2 = dim g3 = 16
V3 +W3 dim g2 = 32, dim g3 = 40
[g−1, V1] or [g−1, V2 +W2] dim g1 = 10 absent are v3 and w3, dim g2 = 1, g3 = 0.

(21.1)

Critical coordinates of s̃b
(
7; Ñ

)
are N4, N5, N6, and N7, as follows from (21.1).

21.3 F(s̃b(2n−1 − 1;N |2n−1)) for n even, p = 2

For the unconstrained shearing vector Nu, the dimensions of homogeneous components of g =
s̃b(2n−1;Nu) are the same as those of sb(1)(n) in the nonstandard grading sb(1)(n;n) for p = 0.
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The main idea: sb(1)(n) = Im ∆|b(n), where ∆ =
∑ ∂2

∂qi∂ξi
. The dimensions of homogeneous

components for n even are:

i sdim gi sdim sb(1)(n;n)i

−1 2n−1|2n−1 2n−1|2n−1 − 1
0 n

(
2n−1|2n−1

)
(n− 1)

(
2n−1|2n−1

)
+ 1|0

1 1
2
n(n+ 1)

(
2n−1|2n−1

)
1
2

(
n2 − n+ 2

)(
2n−1|2n−1

)
− 0|1

Let the weights of ξi be w(ξi) = (0, . . . , 0, 1, 0, . . . , 0) with a 1 on the ith place for i < n and
w(ξn) = (−1, . . . ,−1).

21.3.1 Example: n = 4

For a basis (even | odd) of the g0-module g−1 ' Π(Vol(0|n))
K(1+ξ1···ξ4) volξ

, where g0 ' s̃vect(0|4)), we take:

∂1 := ξ1 volξ, ∂2 := ξ2 volξ, ∂9 := ξ1ξ2 volξ, ∂10 := ξ1ξ3 volξ,

∂3 = ξ3 volξ, ∂4 = ξ4 volξ, ∂11 := ξ1ξ4 volξ, ∂12 := ξ2ξ3 volξ,

∂5 = ξ1ξ2ξ3 volξ, ∂6 = ξ1ξ2ξ4 volξ, ∂13 := ξ2ξ4 volξ, ∂14 := ξ3ξ4 volξ,

∂7 = ξ1ξ3ξ4 volξ, ∂8 = ξ2ξ3ξ4 volξ, ∂15 := ξ1ξ2ξ3ξ4 volξ .

Critical coordinates of s̃b
(
15; Ñ

)
= F

(
s̃b(8;N |7)

)
are the same as those of s̃b(8;N |7): N5 =

N6 = N7 = N8 = 1, and also all those corresponding to the formerly odd indeterminates.

21.3.2 Partial prolongs

We have sdim g0 = 25|24, and g0 contains a simple ideal of sdim = 21|24, the quotient is
commutative; g−1 is irreducible over this ideal. We have sdim g1 = 56|55, there are 3 highest-
weight vectors and 2 lowest-weight vectors in g1;

V1 = W1, V1 ⊂ V2, W1 ⊂W2 ⊂W3,

sdimV1 = 24|21, sdimV2 = sdimW3 = 32|31, sdimW2 = 24|22,

sdim(V2 +W2) = 32|32, sdim(V2 +W3) = 40|40, sdim g2 = 105|104.

The highest-weight vector of W3 is w3 = x
(2)
4 ∂5. This answer seems strange: the algebra

is symmetric with respect to the permutation of the ξi while the list of highest-weight vectors

is not. Performing all possible permutations we obtain similar vectors x
(2)
1 ∂8, x

(2)
2 ∂7, x

(2)
3 ∂6

(which are not highest/lowest with respect to the division into positive/negative weights we
have selected first), but generate similar submodules Y1, Y2, Y3 (and Y4 = W3).

We have Y1 + Y2 + Y3 + Y4 = g1 and sdim(Y1 + Y2 + Y3) = 48|48.
Other highest-weight vectors:

w1 = x3x4∂10 + x3x13∂5 + x
(2)
4 ∂11 + x4x12∂5 + x4x13∂6

+ x2x4∂9 + x2x14∂5 + x
(2)
4 ∂11 + x4x12∂5 + x4x14∂7,

w2 = x3x4∂9 + x3x14∂5 + x4x14∂6. (21.2)

The lowest-weight vectors:

v1 = x1x2∂4 + x1x5∂7 + x1x9∂11 + x1x12∂14 + x2x5∂8

+ x2x9∂13 + x2x10∂14 + x9x10∂7 + x9x12∂8,

v2 = x
(2)
1 ∂4 + x1x5∂8 + x1x9∂13 + x1x10∂14 + x9x10∂8.
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We have

sdim([g−1, V1]) = 21|24, sdim([g−1, Yi]) = 22|24,

sdim([g−1, Yi + Yj ]) = 23|24 for i 6= j,

sdim([g−1, Yi + Yj + Yk]) = 24|24 for i 6= j 6= k 6= i. (21.3)

Partial prolongs of g0 and the following parts of g1:

� from V1 = W1 and W2: sdim g2 = 11|8, sdim g3 = 0|1, no parameters;

� from V2: sdim g2 = 33|32, 1 parameter: N1 (same for W3, parameter N4);

� from V2 +W3: sdim g2 = 56|56, 2 parameters: N1 and N4, similar for Yi + Yj ;

� from Y1 + Y2 + Y3: sdim g2 = 80|80, 3 parameters: N1, N2 and N3.

Partial prolongs of the following parts of g0, see equation (21.3):

� from (21|24): sdim g1 = 24|27, sdim g2 = 11|8, no parameters;

� from (22|24): sdim g1 = 32|34, sdim g2 = 33|32, 1 parameter;

� from (23|24): sdim g1 = 40|41, sdim g2 = 56|56, 2 parameters;

� from (24|24): sdim g1 = 48|48, sdim g2 = 80|80, 3 parameters.

22 vas(4;N |4)

In this section, we can omit N when the arguments do not depend on it.

22.1 For p 6= 2

For g = vas(4|4) described in Table 25.4 as the Cartan prolong of the pair (idas, as), we have
another description: g0̄ = vect(4|0) and g1̄ = Ω1(4|0) ⊗Ω0(4|0) Vol−1/2(4|0) with the natural
g0̄-action on g1̄, and the bracket of odd elements given by[

ω1√
vol

,
ω2√
vol

]
=
dω1 ∧ ω2 + ω1 ∧ dω2

vol
,

where we identify

dxi ∧ dxj ∧ dxk
vol

= sign(ijkl)∂xl for any permutation (ijkl) of (1234). (22.1)

22.2 For p = 2

The first impression is that the characteristic-2 version of the Lie superalgebra vas does not
exist: the cocycle that determines the central extension as of spe(4) is trivial, see [6]. The
following problem is most natural.

Problem 22.1 (on analogs of as for p = 2). For p = 2, there are 8 analogs of pe(n) and 8
analogs of spe(n), and lots of their nontrivial central extensions, see [6]. Is there a nontrivial
central extension e of one of these Lie (super)algebras, and an irreducible e-module M such that
(M, e)1 6= 0?
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The above-mentioned “first impression” was, however, too hasty. Define a character-2 analog
of vas in the form g = g0̄⊕g1̄, where g0̄ = svect(4|0)oF(4|0) and g1̄ = Ω1(4|0) with the natural
g0̄-action on g1̄. Define the bracket of odd elements by the formula

[ω1, ω2] =
d(ω1 ∧ ω2)

vol
+ div

(
dω1 ∧ ω2

vol

)
subject to identification (22.1). Define the square of every ω =

∑
fidxi ∈ Ω1(4|0) as follows,

where (i, j, k) is a permutation of indices (1, 2, 3):

ω2 :=
dω ∧ ω

vol
+

∑
(i,j,k)∈S3

∂fi
∂xj

(
∂fk
∂x4

+
∂f4

∂xk

)
.

Let svect(4|0) = svect(y), where y = (y1, y2, y3, y4). Consider the Z-grading of g of depth 1,
by setting

deg yi = 1, deg(dyi) = −1.

We get an embedding g −→ vect(4|4). Let us describe the non-positive components of the
embedded algebra. Let the coordinates of the ambient be x and ξ, and let us identify the basis
elements of g−1 with the following vector fields in vect(4|4) = vect(x|ξ)

∂yi ←→ ∂xi , dyi ←→ ∂ξi .

Then, g−1 = Span{∂yi , dyi} for i = 1, . . . , 4, and (g0)0̄ consists of the pairs (D, c), where
D =

∑
i,j aijyi∂yj is any vector field such that divD = 0, and c ∈ K, whereas (g0)1̄ consists of

1-forms yidyj :

Element of g0 its non-zero action the corresponding vector field

yi∂yj , i 6= j ∂yi 7→ ∂yj , dyj 7→ dyi xi∂xj + ξj∂ξi , i 6= j

yi∂yi + yj∂yj , ∂yi 7→ ∂yi , ∂yj 7→ ∂yj , xi∂xi + xj∂xj + ξi∂ξi + ξj∂ξj ,

i < j dyi 7→ dyi, dyj 7→ dyj i < j

1

id on (g−1)1̄

0 on (g−1)0̄

∑
ξi∂ξi

yidyi ∂yi 7→ dyi xi∂ξi

yidyj , ∂yi 7→ dyj , dyk 7→ ∂yl , dyl 7→ ∂yk , xi∂ξj + ξk∂xl + ξl∂xk

i 6= j (i, j, k, l) ∈ S4

(22.2)

This g0 is a characteristic-2 analog of as. In the basis ∂x1 , . . . , ∂x4 , ∂ξ1 , . . . , ∂ξ4 the g0-action
in g−1 is given by the following (super)matrix whose correspondence to vector fields we give ex-
plicitly only for (g0)0̄ since the correspondence with (g0)1̄ is too cumbrous to describe; moreover,
is not worth the trouble thanks to the explicit table (22.2):(

a c

b+ c̃ at

)
+ d diag(04, 14), where bt = b, c ∈ ZD, a ∈ sl(4),

c̃ij = Ekl for k < l and d ∈ K, corresponding to
∑

aijyi∂yj + d.

Claim 22.2 (description of the simple part of vas).

1) The Lie superalgebra vas(1)(4;N |4) is simple; its even part is svect(1)(4;N |0)oVol0(4;N |0),
see Section 24.1.2.

2) The critical coordinates of the shearing vector for the simple Lie algebra vas(1)
(
8; Ñ

)
– the

desuperization of vas(1)(4;N |4) – are the ones that correspond to formerly odd indetermi-
nates.
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22.2.1 Partial prolongs

In order to investigate possible partial prolongs, we have to consider the g0-submodules Vi
of g1 such that [vas−1, Vi] = g0. Since it is not clear what is a lowest/highest-weight vector
with respect to g0, we consider the lowest-weight vectors with respect to (g0)0̄, and build the
g0-submodules from them.

Claim 22.3 (lowest-weight vectors). There are 7 lowest-weight vectors LWVs:

LWV its image in (x, ξ)-model its image in y-model

v1 x2x3∂ξ4 + x2x4∂ξ3 + x3x4∂ξ2 y2y3dy4 + y2y4dy3 + y3y4dy2

v2 x3x4∂x1 + x3ξ1∂ξ4 + x4ξ1∂ξ3 y3y4∂y1

v3 x
(2)
3 ∂ξ4 + x3x4∂ξ3 y

(2)
3 dy4 + y3y4dy3

v4 x
(2)
4 ∂ξ4 y

(2)
4 dy4

v5 x
(2)
4 ∂x1 + x4ξ1∂ξ4 y

(2)
4 ∂y1

v6 x3x4∂ξ4 + x4ξ1∂x2 + x4ξ2∂x1 + ξ1ξ2∂ξ4 y3y4dy4

v7 x4

∑4
i=1 ξi∂ξi + ξ1ξ2∂x3 + ξ1ξ3∂x2 + ξ2ξ3∂x1 y4

(22.3)

Claim 22.4 (no partial prolongs). Let g := vas(4;N |4).

1) Let Vi be the g0-submodule of g1 generated by vi, see (22.3). Then, [Vi, g−1] = g0 for all i.
For N unconstrained, we have sdim(g1) = 40|40, and

V7 = V6 = V2 = V1 = V3 ∩ V4, this g0-module is irreducible, V4 = V5,

sdim(V1) = 24|24, sdim(V3) = sdim(V4) = 28|28.

2) Let gVi := (g−, g0, Vi)∗ be the prolong in the direction of Vi. Then, gV1 = vas(4;1|4). We
have sdim vas(1)(4;1|4) = 60|64.

3) In the quotient g1/V1, to each i ∈ {1, 2, 3, 4} there corresponds a 4|4-dimensional submodule

Mi spanned by the images of y
(2)
i ∂yj and y

(2)
i dyj for j = 1, 2, 3, 4. Each Mi is irreducible,

and the images of Mi and Mj in g1/V1 do not intersect for i 6= j. Thus, g1 contains
a submodule V1 corresponding to N = 1, and up to four modules Mi glued to V1 if N 6= 1.
The partial prolongation in the direction of (⊕i∈I⊂{1,2,3,4}Mi) o V1 is vas(4;N |4), where

Ni =

{
∞ if i ∈ I,

1 if i 6∈ I.

Idea of the proof. Since there is no complete reducibility, to prove item 3) we have to consider
also highest-weight vectors (HWV) with respect to (g0)0̄. Then, we are able to find the two
quotients modules Mi invisible in table (22.3) since their LWVs go to V1 under (g0)0̄. We have
already encountered similar phenomenon in previous sections considering LWVs and HWVs with
respect to the whole g0 for respective g. We skip the table of HWVs analogous to (22.3). �

23 Cartan prolongs of the Shen algebra; Melikyan algebras
for p = 2

23.1 Brown’s version of the Melikyan algebra in characteristic 2

Brown [16] described characteristic-2 analog of the Melikyan algebra as follows. As spaces, and
Z/3-graded Lie algebras, let

L(N) := g0̄ ⊕ g1̄ ⊕ g2̄ ' vect(2;N)⊕Vol(2;N)⊕O(2;N).
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The g0̄-action on the gī is natural (adjoint, on volume forms, and functions, respectively);
O(2;N) = K[u1, u2;N ] is the space of functions; Vol(2;N) is the space of volume forms with
volume element vol := vol(u), where u = (u1, u2). Let the multiplication in L(N) be given, for
any f, g ∈ O(2;N), by the following formulas:

[f vol, g vol] = 0, [f vol, g] = fHg, [f, g] := Hf (g) vol,

where

Hf =
∂f

∂u1
∂u2 +

∂f

∂u2
∂u1 .

Define a Z-grading of L(N) by setting

deg u(r)∂ui = 3|r| − 3, deg u(r) vol = 3|r| − 2, deg u(r) = 3|r| − 4.

Now, set me(5;N) := L(N)/L(N)−4, where L(N)−4 is the center (the space of constants).
The algebra me(5;N) is not simple, because Vol(2;N) has a submodule of codimension 1; but
me(1)(5;N) is simple; in [22], Eick denoted what we denote me(1)(5;1) by Bro2(1, 1). This algebra
was discovered by Shen Guangyu, see [68], and should be denoted somehow to commemorate
his wonderful discovery, we suggest to designate this Shen’s analog of g(2) by gs(2).

There are two Z-gradings of g(2) with one pair of Chevalley generators of degree ±1 (the
other generators being of degree 0): one Z-grading of depth 2 and the other one of depth 3.
As is easy to see, for the grading of depth 3, the nonpositive parts of g(2) over fields K of
characteristic p 6= 3 and those of me(5;N) are isomorphic. Remarkably, this description holds
for any p 6= 3, see [66]. For p = 3, the positive parts of the prolongation have the same dimensions
as those of g(2) for p 6= 2, 5, but [g1, g−1] = K12, the center of gl(2). (By the way, the realization
of the nonpositive components of g(2), see equation (23.1), that works for p 6= 3, should be
modified for p = 3, but we skip this since neither the complete prolong nor any partial prolong
is simple.)

Let U [k] be the gl(V )-module which is U as sl(V )-module, and let the central element z ∈
gl(V ) represented by the unit matrix, which acts on U [k] as k id, where k should be understood
modulo p. Then, the grading of depth 3 is of the form

g0 g−1 g−2 g−3

gl(2) ' gl(V ) V = V [−1] E2(V )[−2] V [−3]
for charK 6= 3.

Set ∂i := ∂xi to distinguish it from ∂ui ; we use both representations in terms of x and u,
whichever is more convenient. Here is the (borrowed from [66]) description of nonpositive com-
ponents of me(5;N), which are the same as those of gs(2) and g(2), by means of vector fields:

gi the basis elements

g−3 ∂u1 ←→ ∂1, ∂u2 ←→ ∂2

g−2 vol←→ ∂3

g−1 X−2 := u1 ←→ (x3 + x4x5)∂2 + ∂4, u2 ←→ x3∂1 + x4∂3 + ∂5

u1∂u1 ←→ x1∂1 + x3∂3 + x4∂4,

g0 ' X+
1 := u1∂u2 ←→ x

(3)
5 ∂1 + (x1 + x4x

(2)
5 )∂2 + x

(2)
5 ∂3 + x5∂4

gl(2) X−1 := u2∂u1 ←→ (x2 + x
(2)
4 x5)∂1 + x

(3)
4 ∂2 + x

(2)
4 ∂3 + x4∂5

u2∂u2 ←→ x2∂2 + x3∂3 + x5∂5

(23.1)
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The highest-weight vector in g−1 is X−2 := u1. Consider the positive part of g = gs(2). The
lowest-weight vector in g1 is given by the vector field

X+
2 := x

(3)
4 x5∂2 +

(
x2 + x

(2)
4 x5

)
∂3 + x4x5∂5 (= u2 vol).

So far, the generators and the dimensions of the components look like their namesakes in g(2)
for p > 3; however, the relations are different: To facilitate comparison with presentations in
terms of Chevalley generators, set Hi := [X+

i , X
−
i ]; i.e.,

H1 = x1∂1 + x2∂2 + x4∂4 + x5∂5 (= u1∂u1 + u2∂u2),

H2 = x2∂2 + x3∂3 + x5∂5 (= u2∂u2).

Clearly, H1 is the central element of g0; for its grading element we take u1∂u1 , see [10].

Lemma 23.1 (the multiplication tables in gs(2) and g(2)). The multiplication tables in gs(2)
and g(2) are as follows (for g(2), we get [Hi, X

±
j ] = ±AijX±j , not [Hi, X

±
j ] = ±AjiX±j ; let

X±3 := [X±1 , X
±
2 ])

in gs(2) in g(2) in gs(2) in g(2) in gs(2) in g(2)

[H1, X
+
1 ] = 0 2X+

1 [H2, X
+
1 ] = X+

1 −3X+
1 [H1, H2] = 0 0

[H1, X
+
2 ] = X+

2 −X+
2 [H2, X

+
2 ] = 0 2X+

2 [X−1 , X
−
2 ] = x3∂1 + x4∂3 + ∂5 X−3

[H1, X
−
1 ] = 0 −2X−1 [H2, X

−
1 ] = X−1 3X−1 [X+

1 , X
+
2 ] = u1 vol X+

3

[H1, X
−
2 ] = X−2 X−2 [H2, X

−
2 ] = 0 −2X−2 [X±1 , X

∓
2 ] = 0 0

Critical coordinates of me(5;N): N3 = 1.
The g0-module g1 is generated by the lowest-weight vector X+

2 ; we have dim g1 = 2. Since X±1
and X+

2 contain x4 and x5 in degrees 2 and 3, see equation (23.1), the corresponding coordinates
of the shearing vector in the generic case are ≥ 2; for the shearing vector with the smallest
coordinates still ensuring simplicity; i.e., for N = (1, 1, 1, 2, 2), the prolong g is of dimension 17;
it has ideals of dimension 14, 15, 16. The ideal of dimension 14 is simple, see [16, 22, 68].

24 Miscellaneous remarks

24.1 Desuperizations that are nonsimple if Ni <∞ for all i

In Section 17.4, the simple derived algebras of various W-graded versions of kas are described;
this is new. The results of this section are not new (although they were usually considered for
p > 2); see, e.g., Lemma 2.4 in [32]; we present them for completeness, see also equation (2.34)
and Section 23.1 on me(1).

24.1.1 g = svect(n;N)

Let us prove that the elements of the form

Dk =

 ∏
i∈{1,...,n}, i 6=k

x
(2Ni−1)
i

 ∂k

do not lie in g(1). In what follows we assume that k = n, for definiteness. As g is a sum of its
Zn-weighted components, it suffices to show that Dn cannot be obtained as the bracket of two
elements homogenous with respect to the grading by the weight. As the xn-weight (i.e., weight
with respect to xn∂n) of Dn is equal to −1, which is also the minimal possible xn-weight in g,
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it follows that, in order to obtain Dn as a bracket, one of the factors (we say “factor” speaking
about the Lie bracket, just as we do it for an associative multiplication) has to have weight −1
as well. Then, if this factor is homogenous w.r.t. the Zn-weight, it must be a monomial of

the form a =
( ∏

1≤i≤n−1
x

(ri)
i

)
∂n up to a scalar multiplier, where 0 ≤ ri < 2Ni . Then, from the

weight considerations, the other factor must be of the form

b =
∑

1≤i<n, ri>0

ci

 ∏
1≤j<n, j 6=i

x
(2Nj−1−rj)
j

x
(2Ni−ri)
i ∂i + cn

 ∏
1≤j≤n−1

x
(2Nj−1−rj)
j

xn∂n.

Clearly,

[a, b] =

 ∑
1≤i<n such that ri>0, i=n

ci

Dn,

div b =

 ∑
1≤i<n such that ri>0, i=n

ci

 ∏
1≤j≤n−1

x
(2Nj−1−rj)
j

 .

So b ∈ g if and only if [a, b] = 0, hence g(1) contains no elements of the same weight as Dn.

24.1.2 vas for p = 2

In this case, the even part of the Lie superalgebra vas(4;N |4), and of its Z/2-graded desuper-
ization, should be diminished to get a simple Lie algebra, namely

vas(1)(4;N |4)0̄ = svect(1)(4;N |0) o Vol0(4;N |0).

24.1.3 The Lie (super)algebra of contact vector fields

Let p 6= 2. As follows from equation (2.19), if 2n+ 2−m ≡ 0 mod p, then the Lie superalgebra
k(2n+ 1;N |m) is divergence-free, its derived algebra is simple.

If 2n + 2 −m ≡ −2 mod p, then k(2n + 1;N |m) ' Vol, and hence not simple; it contains
a codimension 1 ideal, k(1)(2n+ 1;N |m).

Let p = 2. If (n,m) 6= (0, 0), then the Lie (super)algebra k(2n + 1;N |2m) is divergence-free
if n+m+ 1 ≡ 0 mod 2, see equation (2.11).

The Zassenhaus algebra vect(1;N) for p = 2 is not simple; observe that vect(1;N) ' k(1;N).

24.2 On deforms of svect and h. Quantizations

� In [74], Tyurin described non-isomorphic filtered deforms of the Lie algebras of series svect
for p > 3 considered in the standard Z-grading. There are three statements in [74] that
should be corrected.

First, in the introduction to [74], Tyurin wrote that in [32] Kac proved that all deforms of
svect for p > 3 are filtered. Kac did not claim this in [32]. Moreover, Kac did not claim
he described all filtered deformations, either; Kac writes only about filtered deformations
associated with the standard Z-gradings.

Today, when the simple modular Lie algebras are classified for p > 3, the list of all their
deforms is not needed for classification, but is a useful part of interpretation of the algebras
found, see, e.g., [69, 70]; this is of independent interest, like knowledge about “occasional
isomorphisms” o(3) ' sl(2) or o(6) ' sl(4), or vect(1|1) ' m(1) ' k(1|2), as abstract Lie
superalgebras.
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Second, for any p, a particular deformation – called quantization in physical literature –
of the Poisson Lie algebra on 2 indeterminates, induces a deform of svect(2;N) ' h(2;N),
at least for N of the form (a, a) for any a ≥ 1, cf. [13]. Therefore, in [74], the claims
describing all deformations of svect(m;N) should have been confined to m > 2 and, more-
over, Tyurin’s main theorem should only claim a complete description of non-isomorphic
filtered deforms related to the standard Z-grading; for examples of filtered deforms of
svect(1)(3;1) ' h(1)(4;1) corresponding to distinct Z-gradings, see [18].

Although other deforms of h(2n;N) do not provide us with new Lie algebras, they do
provide us with new deforms, non-isomorphic to the filtered deforms.

Third, Wilson [76] corrected the main result of Tyurin who found all normal shapes of
volume forms for p > 2, but missed an isomorphism. Wilson wrote only about normal
shapes of volume forms, thus avoiding any discussion of deforms of svect.

� The deform of svect(5;N) we describe here is a completely new, exceptional, simple vec-
torial Lie algebra. It exists only for p = 2, the case neither Tyurin nor Wilson considered.

� The characteristic-2 analogs of exceptional deformations of h and b described in [58] can
have both even and odd parameters. The complete description of the deformations is
unknown.

25 Tables

25.1 Series of vectorial Lie superalgebras over C;
conditions for their simplicity

In Table (25.1), FD indicates finite dimension.

N the family and conditions for its simplicity

1 vect(m|n; r) for m ≥ 1 and 0 ≤ r ≤ n

2 vect(0|n; r) for n > 1 and 0 ≤ r ≤ n (FD)

3 svect(m|n; r) for m > 1, 0 ≤ r ≤ n

4 svect(0|n; r) for n > 2 and 0 ≤ r ≤ n (FD)

5 svect(1)(1|n; r) for n > 1, 0 ≤ r ≤ n

6 s̃vect(0|n) for n > 2 (FD)

7 k(2m+ 1|n; r) for 0 ≤ r ≤ [n
2

] unless (m|n) = (0|2k)

k(1|2k; r) for 0 ≤ r ≤ k except r = k − 1

8 h(2m|n; r) for m > 0 and 0 ≤ r ≤ [n
2

]

9 hλ(2|2; r) for λ 6= −2,− 3
2
,−1, 1

2
, 0, 1,∞, and

r = 0, 1 and Regh (see Sect. 1.3.1 in [58])

10 h(1)(0|n) for n > 3 (FD)

11 m(n|n+ 1; r) for 0 ≤ r ≤ n except r = n− 1

12 sm(n|n+ 1; r) for n > 1, but n 6= 3 and 0 ≤ r ≤ n except r = n− 1

13 bλ(n|n+ 1; r) for n > 2, where λ 6= 0, 1,∞ and 0 ≤ r ≤ n except r = n− 1

14 b
(1)
1 (n|n+ 1; r) for n > 2 and 0 ≤ r ≤ n except r = n− 1

15 b
(1)
∞ (n|n+ 1; r) for n > 2 and 0 ≤ r ≤ n except r = n− 1

16 le(n|n; r) for n > 1 and 0 ≤ r ≤ n except r = n− 1

17 sle(1)(n|n; r) for n > 2 and 0 ≤ r ≤ n except r = n− 1

18 s̃bµ(2n−1 − 1|2n−1) for µ 6= 0 and n > 2

(25.1)
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25.2 Lie algebras F(g) over K (p = 2) analogous to serial vectorial Lie superalgebras g over C and names of both

N g g−2 g−1 g0 F(g0) F(g)

1
vect(n|m)

for mn 6= 0, n > 1 or m = 0, n > 2
− id ' V gl(n|m) ' gl(V ) gl(n+m) vect(n+m; Ñ)

2 svect(n|m) for m,n 6= 1 − id ' V sl(n|m) ' sl(V ) sl(n+m) svect(n+m; Ñ)

3 hB(2n|m), where mn 6= 0, n > 1, − id ospB(m|2n) oF (B)(m+ 2n) hF (B)(2n+m; Ñ)

4 k(2n+ 1|m) for mn 6= 0 and m even F id ' V cospB(m|2n) ' cosp(V ) coF (B)(m+ 2n) k(2n+m+ 1; Ñ)

5 m(n) := m(n|n+ 1) for n > 1 Π(F) id ' V cpe(n) ' cpe(V ) cpe(n) k(2n+ 1; Ñ)

6 bλ(n;n) for n > 1 − Π(Volλ(0|n)) vect(0|n) vect(n;1) poλ(2n+ 1; Ñ)

61 b
(1)
1 (n;n) for n > 1 − Π(Vol0(0|n)) vect(0|n) vect(n;1) po

(1)
1 (2n+ 1; Ñ)

6∞ b
(1)
∞ (n;n) ' sm(n;n) for n > 1 − Π(Vol0(0|n)) svect(0|n) o Vol0(0|n) svect(n;1) o Vol0(n;1) po(1)

∞ (2n+ 1; Ñ)

7 ba,b(n) for n > 1 Π(F) id spe(n)a,b spe(n)a,b poa,b(2n; Ñ)

8 le(n) := le(n|n) for n > 1 − id ' V pe(n) ' pe(V ) pe(n) hΠ(2n; Ñ)

9 sle(n) := sle(n|n) for n > 1 − id ' V spe(n) ' spe(V ) spe(n) shΠ(2n; Ñ)

10 s̃bµ(2n−1 − 1|2n−1) or s̃bµ(2n−1|2n−1 − 1) − Π(Vol(0|n))
F(1−µξ1···ξn) volξ

s̃vectµ(0|n) s̃vectµ(n;1) s̃bµ(2n − 1; Ñ)

(25.2)

25.2.1 Remarks

In all lines Par Ñ = dim Ñ , except for the bottom line, see Section 21. To save space, we skip most of the conditions for simplicity in Table (25.2).
In columns gi for i < 0, obviously, F is C or K. In lines N = 6, 7, we have λ = 2a

n(a−b) for p 6= 2 and λ = a
b for p = 2. In line 6∞, we identify

Vol0 with a subspace of the space of functions F . In line 10, the Lie superalgebra

s̃vectµ(0|n) := (1 + µξ1 · · · ξn)svect(0|n) preserves the volume element (1− µξ1 · · · ξn) volξ, where p(µ) ≡ n mod 2.

For n even, we can (and do) set µ = 1, whereas µ odd should be considered as an additional indeterminate on which the coefficients depend.
The Lie superalgebras s̃vectµ(0|n) are isomorphic for nonzero µ’s; and therefore so are the algebras

s̃bµ
(
2n−1 − 1|2n−1

)
:= (1 + µξ1 · · · ξn)sb(n;n)for n even, s̃bµ

(
2n−1|2n−1 − 1

)
:= (1 + µξ1 · · · ξn)sb(n;n)for n odd,

Recall the definition of spe(n)a,b in Section 2.8.2.
To be specified : Some of the Lie superalgebras in Table (25.2) are not simple; it is their quotients modulo their centers or ideals of

codimension 1 which are simple (such are svect(1|m), h(0|m), bλ(n) for certain values of λ, and sle(n)); some small values of superdimension
should be excluded (like (1|1) and (0|m), where m ≤ 2, for the svect series; (0|m), where m ≤ 3, for the h series; etc.)
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25.3 Exceptional vectorial Lie superalgebras over C

g g−2 g−1 g0 g(sdim g−)

vle(4|3) − Π(Λ(3)/C1) c(vect(0|3)) vle(4|3)

vle(4|3; 1) C[−2] idsl(2;Λ(2))� vol1/2 c(sl(2; Λ(2)) n T 1/2(vect(0|2)) vle(5|4)

vle(4|3;K) idsl(3)�C[−2] id∗sl(3)� idsl(2)�C[−1] sl(3)⊕ sl(2)⊕ Cz vle(3|6)

vas(4|4) − spin as vas(4|4)

kas C[−2] Π(id) co(6) kas(1|6)

kas(; 1ξ) Λ(1) idsl(2)� idgl(2;Λ(1)) sl(2)⊕ [gl(2; Λ(1)) n vect(0|1)] kas(5|5)

kas(; 3ξ) − Λ(3) Λ(3)⊕ sl(1|3) kas(4|4)

kas(; 3η) − Vol0(0|3) c(vect(0|3)) kas(4|3)

mb(4|5) Π(C[−2]) Vol1/2(0|3) c(vect(0|3)) mb(4|5)

mb(4|5; 1) Λ(2)/C1 idsl(2;Λ(2))� vol1/2 c(sl(2; Λ(2)) n T 1/2(vect(0|2)) mb(5|6)

mb(4|5;K) idsl(3)�C[−2] Π(id∗sl(3)� idsl(2)�C[−1]) sl(3)⊕ sl(2)⊕ Cz mb(3|8)

kle(9|6) C[−2] Π(T 0
0 (~0)) svect3,4(0|4) kle(9|6)

kle(9|6; 2) Π(idsl(1|3)) idsl(2;Λ(3)) sl(2; Λ(3)) n sl(1|3) kle(11|9)

kle(9|6;K) id Π(Λ2(id∗)) sl(5) kle(5|10)

kle(9|6;CK) id∗sl(3;Λ(1)) idsl(2)� idsl(3;Λ(1)) sl(2)⊕ sl(3; Λ(1)) n vect(0|1) kle(9|11)

Depth 3: None of the simple W -graded vectorial Lie superalgebras over C is of depth > 3 and
only two superalgebras are of depth 3:

mb(3|8)−3 = Π(C� idsl(2)�C[−3]), kle(9|11)−3 = Π(idsl(2)�C[−3]). (25.3)

For the definition of the module Vol0, see (1.13). Here, T 1/2 is the representation of vect in
the module of 1

2 -densities, and as is the nontrivial central extension of spe(4), cf. [6]. For
the definition of svect3,4(0|4), see Section 2.8.2. In the 0th term (sl(2)� Λ(3)) n sl(1|3) of
g = kle(11;N |9), we consider sl(1|3) naturally embedded into vect(0|3) with its tautological
action on the space Λ(3) of “functions”.

For the notation C[i], see Section 2.1.1.

25.4 The exceptional simple vectorial Lie superalgebras over C
as Cartan prolongs

For depth 2, we sometimes write (g−2, g−1, g0)∗ for clarity.

In Table (25.4), there are given indeterminates and their respective degrees in the regra-
ding R(r).

vle(4|3; r) = (Π(Λ(3))/C · 1, cvect(0|3))∗ ⊂ vect(4|3;R(r)) r = 0, 1,K

vas(4|4) = (spin, as)∗ ⊂ vect(4|4)

kas(1|6; r) ⊂ k(1|6; r) r = 0, 1ξ, 3ξ

kas(1|6; 3η) = (Vol0(0|3), c(vect(0|3)))∗ ⊂ svect(4|3) r = 3η

mb(4|5; r) = (ba(4), cvect(0|3))∗ ⊂ m(4|5;R(r)) r = 0, 1,K

kle(9|6; r) = (hei(8|6), svect3,4(0|4))∗ ⊂ k(9|6; r) r = 0, 2, CK

kle(9|6;K) = (idsl(5),Λ
2(id∗sl(5)), sl(5))∗ ⊂ svect(5|10;R(K)), r = K
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vle(4|3) R(0) =

(
x1 x2 x3 y | ξ1 ξ2 ξ3

1 1 1 1 | 1 1 1

)

vle(5|4) R(1) =

(
x1 x2 x3 y | ξ1 ξ2 ξ3

2 1 1 0 | 0 1 1

)

vle(3|6) R(K) =

(
x1 x2 x3 y | ξ1 ξ2 ξ3

2 2 2 0 | 1 1 1

)

mb(4|5) R(0) =

(
x0 x1 x2 x3 | ξ0 ξ1 ξ2 ξ3 τ

1 1 1 1 | 1 1 1 1; 2

)

mb(5|6) R(1) =

(
x0 x1 x2 x3 | ξ0 ξ1 ξ2 ξ3 τ

0 2 1 1 | 2 0 1 1; 2

)

mb(3|8) R(K) =

(
x0 x1 x2 x3 | ξ0 ξ1 ξ2 ξ3 τ

0 2 2 2 | 3 1 1 1; 3

)

kas(1|6) R(0) =

(
t | ξ1 ξ2 ξ3 η1 η2 η3

2 | 1 1 1 1 1 1

)

kas(5|5) R(1ξ) =

(
t | ξ1 ξ2 ξ3 η1 η2 η3

2 | 0 1 1 2 1 1

)

kas(4|4) R(3ξ) =

(
t | ξ1 ξ2 ξ3 η1 η2 η3

1 | 0 0 0 1 1 1

)

kas(4|3) R(3η) =

(
t | ξ1 ξ2 ξ3 η1 η2 η3

1 | 1 1 1 0 0 0

)

kle(9|6) R(0) =

(
q1 q2 q3 q4 p1 p2 p3 p4 t | ξ1 ξ2 ξ3 η1 η2 η3

1 1 1 1 1 1 1 1; 2 | 1 1 1 1 1 1

)

kle(11|9) R(2) =

(
q1 q2 q3 q4 p1 p2 p3 p4 t | ξ1 ξ2 ξ3 η1 η2 η3

1 1 2 2 1 1 0 0; 2 | 0 1 1 2 1 1

)

kle(5|10) R(K) =

(
q1 q2 q3 q4 p1 p2 p3 p4 t | ξ1 ξ2 ξ3 η1 η2 η3

2 2 2 2 1 1 1 1; 2 | 1 1 1 1 1 1

)

kle(9|11) R(CK) =

(
q1 q2 q3 q4 p1 p2 p3 p4 t | ξ1 ξ2 ξ3 η1 η2 η3

3 2 2 2 0 1 1 1; 3 | 2 2 2 1 1 1

)

(25.4)
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25.5 Exceptional vectorial Lie superalgebras over K and their desuperizations

g F(g−2) F(g−1) F(g0) F(g) Par Ñ

vle(4;N |3) − O(3;1)/K1 c(vect(3;1)) vle
(
7; Ñ

)
3

vle(3;N |6) idsl(3)�K[∗] id∗sl(3)� idsl(2)�K[∗] sl(3)⊕ sl(2)⊕Kz vle
(
9; Ñ

)
3

kas(1;N |6) K[∗] id co
(1)
Π (6) kas

(
7; Ñ

)
7

kas(5;N |5) O(1;1) idsl(2)� idgl(2)�O(1;1) d((s̃l(W )⊕ (gl(V ;O)(1; 1)) n vect(1;1))/KZ), see (20.1) kas
(
10; Ñ

)
7

kas(4;N |4) − O(3;1) O(3;1) n d(svect(1)(3;1)), see (19.2) kas
(
8; Ñ

)
7

kas(4;N |3) − Vol0(3;1) c(vect(3;1)) k̃as
(
7; Ñ

)
3

mb(4;N |5) K[∗] O(3;1) svect(3;1) oO(3;1) mb
(
9; Ñ

)
5

mb(3;N |8) idsl(3)�K[∗] id∗sl(3)� idsl(2)�K[∗] sl(3)⊕ sl(2)⊕Kz mb3

(
11; Ñ

)
5

mb(5;N |6) O(2;1)/K1 idsl(2)�O(2;1) c(sl(2)�O(2;1) n T∞(svect(2;1) oO(2;1)) mb2

(
11; Ñ

)
5

kle(5;N |10) id Λ2(id∗) sl(5) kle
(
15; Ñ

)
5

kle(11;N |9) idsl(4) idsl(2)�O(3;1) (sl(2)�O(3;1)) n pgl(4) kle2
(
20; Ñ

)
5

kle(9;N |11) id∗sl(3)�O(1;1) idsl(2)�
(
idsl(3)�O(1;1)

)
sl(2)⊕ (sl(3)�O(1;1) n vect(1;1)) kle3

(
20; Ñ

)
5

vle(5;N |4) K[∗] id�O(2;1) c(sl(2)�O(2;1) n T∞(vect(2;1)) ṽle
(
9; Ñ

)
3

kle(9;N |6) K[∗] T 0
0 svect(4;1) nK(D + Z), see (10.2) k̃le

(
15; Ñ

)
5

vas(4;N |4) − idF(as) F(as) vas
(
8; Ñ

)
4

Recall the definition of the module Vol0, see (1.13) and (2.16); before desuperization we replace (25.3) with

mb(3|8)−3 = Π(K� idsl(2)�K[∗]), kle(9|11)−3 = Π(idsl(2)�K[∗]).

To distinguish the two desuperizations of kle realized by vector fields on the spaces of the same dimension, we indicate by an index the depths
of these algebras, e.g., kle2

(
20; Ñ

)
; if both algebras are of the same depth, we cover one of the desuperizations with a tilde. Clearly, under the

desuperization we should ignore the change of parity in the negative components of F(g).
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