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Abstract. We examine a family pG
C
q

[
(a)
(b)

; z
]

of integrals of Mellin–Barnes type over the

space Z × R, such functions G naturally arise in representation theory of the Lorentz
group. We express pG

C
q (z) as quadratic expressions in the generalized hypergeometric func-

tions pFq−1 and discuss further properties of the functions pG
C
q (z).
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1 The statements

1.1 Introduction

Recall the Euler integral representation of the Gauss hypergeometric function:

F2 1

[
a, b

c
; z

]
=

1

B(b, c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt, (1.1)

where a, b, c are complex numbers and

B(α, β) :=

∫ 1

0
tα−1(1− t)β−1 dt =

Γ(α)Γ(β)

Γ(α+ β)
, (1.2)

is the beta function. The hypergeometric functions p+1Fp admit the following inductive integral
representation:

Fp+1 p

[
a1, . . . , ap, c

b1, . . . , bp−1, d
; z

]
:=

1

B(c, d− c)

∫ 1

0
tc−1(1− t)d−c−1 Fp p−1

[
a1, . . . , ap
b1, . . . , bp−1

; tz

]
dt.(1.3)

Let us replace the integration over the interval [0, 1] by the integration over the complex
plane for all integrals (1.1)–(1.3). The expression tb for t ∈ C, b ∈ C is ramified at t = 0, so the
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integration makes no sense. But we can replace tb by |t|2b = tbt
b
. It is better to consider a wider

generality and to write

tb|b
′

:= tbt
b′
.

This expression is non-ramified if b − b′ ∈ Z. Then the new beta-function equals (see [17,
Section II.3.7], [16, Section 1.6])1

BC(α|α′, β|β′) :=
1

π

∫
C
tα−1|α′−1(1− t)β−1|β′−1 d Re t d Im t

=
Γ(α)Γ(β)

Γ(α+ β)
· Γ(1− α′ − β′)

Γ(1− α′)Γ(1− β′)
. (1.4)

The new version of the Gauss hypergeometric function (Gauss hypergeometric functions of the
complex field) also can be evaluated (see [33, Theorem 3.9]), the result has the form

FC
2 1

[
a|a′, b|b′

c|c′
; z

]
= F2 1

[
a, b

c
; z

]
F2 1

[
a′, b′

c′
; z

]
+

{
product of
Γ-functions

}
z1−c|1−c′ F2 1

[
a+ 1− c, b+ 1− c

2− c
; z

]
F2 1

[
a′ + 1− c′, b′ + 1− c′

2− c′
; z

]
. (1.5)

The Gauss hypergeometric functions satisfy numerous identities, see for instance the book
Higher Hypergeometric Functions [13, Chapter 2]. Usually such identities (and maybe all such
identities) have counterparts for 2F

C
1 (see a collection of formulas in [33, Section 3]).

Counterparts of the Gauss hypergeometric functions were briefly mentioned in the book by
Gelfand, Graev and Vilenkin [17, Section II.3.7] in 1962. Later various formulas and identities
related to hypergeometric functions of complex fields of different levels and beta integrals of the
complex field appeared in works of numerous authors: Dotsenko and Fateev [12], Gelfand, Graev
and Retakh [16], Ismagilov [23, 24], Derkachov and Manashov [6, 8], Bazhanov, Mangazeev and
Sergeev [2], Derkachov, Manashov, Valinevich [9, 10], Kels [27, 28], Mimachi [32], Derkachov and
Spiridonov [11], Molchanov and Neretin [33], Neretin [39] (we discuss the references in a more
arranged form in Section 3.3).

The purpose of this paper is to give a definition of counterparts of higher hypergeometric
functions pFq(z) (formula (1.15)) and to obtain an analog of formula (1.5), see Theorem 1.2.
The main statements are contained in the present section, their proofs are done in Section 2. In
Section 3 we discuss further properties of our functions.

1.2 Notation

Denote by Z+ the set of integers > 0, by Z− the set of integers 6 0.

1.2.1 Hypergeometric functions.

Let r 6 s+ 1. Let a1, . . . , ar ∈ C and b1, . . . , bs ∈ C \Z−. Generalized hypergeometric functions
are defined by

Fr s

[
a1, . . . , ar
b1, . . . , br

; z

]
:=

∞∑
m=0

(a1)m · · · (ar)m
m!(b1)m · · · (bs)m

· zn, (1.6)

where (a)m := a(a + 1) · · · (a + m − 1) is the Pochhammer symbol. For r 6 s the radius of
convergence is ∞, for r = s+ 1 it is 1. For r > s+ 1 the series diverges.

1To evaluate this integral, we can pass to polar coordinates t = reiϕ. Integrating in ϕ we get a piece-wise

2F1-expression in r with a singularity at r = 1. It remains to apply the Slater theorem, see [43, Theorem 4.8.1,
namely formula (4.8.7)]. On the other hand, we can reduce (1.4) to the gamma-function (1.7) in the usual way
(see Jacobi’s proof of the beta-integral (1.2) in [1, Section I.1]), but a justification of a changing of integration
order is unexpectedly tedious.
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1.2.2 Notation for lists

Let a1, . . . , ap ∈ C and h ∈ C. We use the following notation for lists,

(a) := a1, . . . , ap;

(a) + h := a1 + h, . . . , ap + h;

(a)\j := a1, . . . , aj−1, aj+1, . . . , ap.

In particular, we denote (1.6) by Fr s

[ (a)
(b)

; z
]
.

1.2.3 Double powers

Denote by C× (resp. R×+) the multiplicative group of C (resp. the multiplicative group of positive
reals). By T ⊂ C× we denote the subgroup |z| = 1, we have T ' R/2πZ,

C× = T× R×+,

and R×+ is isomorphic to the additive group R of real numbers.

The dual group (C×)∗, i.e., the group of all homomorphisms C× → T, is

(C×)∗ = (T)∗ × (R×+)∗ ' Z× R.

Denote by ΛC the set of pairs a
∣∣a′ such that a, a′ ∈ C and a−a′ ∈ Z. We write such pairs by

a
∣∣a′ = k+σ

2

∣∣−k+σ
2 , where k ∈ Z, σ ∈ C.

By Λ ⊂ ΛC we denote the subset consisting of a|a′ satisfying a′ + a = 0,

a
∣∣a′ = k+is

2

∣∣−k+is
2 ∈ Λ, where s ∈ R.

Define the following functions on C×:

za|a
′

:= zaz a
′

:= (z/z)k/2|z|σ.

Notice that such functions are precisely all homomorphisms C× → C×. For a|a′ ∈ Λ we get
homomorphisms C× → T,∣∣∣z k+is

2

∣∣−k+is
2

∣∣∣ = 1.

1.2.4 The complex Mellin transform

Denote by d t the Lebesgue measure on C,

d t := d Re td Im t.

We define the complex Mellin transform M as the Fourier transform on the group C×. For
a function f on C× we define the Mellin transform as a function on ΛC defined by

g
(
a
∣∣a′) = Mf

(
a
∣∣a′) :=

1

2π

∫
C×

ta|a
′
f(t)

d t

t1|1
,

the factor d t/t1|1 is the C×-invariant measure on C×.
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The Mellin transform is a unitary operator from L2
(
C×, d t/t1|1

)
to L2 on Λ ' Z × R, the

inversion formula is

f(t) =
1

2π

∑
k∈Z

∫
R
g
(
k+is

2

∣∣−k+is
2

)
t
−k−is

2

∣∣k−is
2 ds.

The convolution on the group C× is defined by formula

f ∗ g(z) :=

∫
C
f(t)g(z/t)

d t

t1|1
.

The Mellin transform sends convolutions to products,

M(f ∗ g)(z) = 2πMf(z) ·Mg(z).

1.3 The Gamma-function of the complex field

Following Gelfand, Graev and Retakh [16], we define the Gamma-function of the complex field
as a function on ΛC by2

ΓC(a∣∣a′) :=
1

π

∫
C
ta−1|a′−1e2i Im t d ta

=
1

π
lim
r→∞

∫
|t|6r

ta−1|a′−1e2i Im t d t =
Γ(a)

Γ(1− a′)
=

(−1)a−a
′
Γ(a′)

Γ(1− a)

=
1

π
Γ(a)Γ(a′) sinπa′ =

(−1)a−a
′

π
Γ(a)Γ(a′) sinπa. (1.7)

The integral conditionally converges if 0 < Re(a + a′) < 1 and diverges otherwise. Clearly, the
right hand side is meromorphic in the whole ΛC.

Remark 1.1. In particular, we can write (1.4) as

BC(α|α′, β|β′) =
ΓC(α|α′) ΓC(β|β′)
ΓC(α+ β|α′ + β′)

.

It is easy to see that

ΓC(a|a′) = (−1)a−aΓC(a′|a), (1.8a)

ΓC(a|a′)ΓC(1− a|1− a′) = (−1)a−a
′
, (1.8b)

ΓC(a+m
∣∣a′ +m′

)
= (−1)m

′
ΓC(a∣∣a′)(a)m(a′)m′ , (1.8c)

ΓC(a−m∣∣a′ −m′) =
(−1)mΓC(a∣∣a′)

(1− a)m(1− a′)m′
, (1.8d)

k−1∏
j=0

ΓC(a+ j
k

∣∣a′ + j
k

)
= ΓC(ka∣∣ka′)k1−(a+a′)k, (1.8e)

where m ∈ N, k ∈ N. Values of ΓC at integer points are

ΓC(k|l) = 0, for k, l ∈ N;

2The definition slightly differs from a definition from [16], which was used in [33, 39]. We write Im t instead of

Re t. For this reason the factor ia−a
′

from [16, 33] disappears.
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Γ(m| − k) =
(m− 1)!(−1)k

k!
, for m ∈ N, k ∈ Z+.

For m, m′ ∈ Z+ we have a pole at (−m)|(−m′), more precisely,

res
ε=0

ΓC(−m+ ε| −m′ + ε) =
(−1)m

m!m′!
. (1.9)

Next (see Section 2.1 below), for a|a′ ∈ ΛC and ξ = 1
2(k + is) with k ∈ Z, s ∈ R we have

ΓC(a+ ξ|a′ − ξ
)

= exp
{

2i Im(ξ ln ξ − ξ)
}
· ξa−

1
2

∣∣a′−1
2
(
1 +O

(
|ξ|−1

))
. (1.10)

Therefore,∣∣ΓC(a+ ξ|a′ − ξ
)∣∣ ∼ |ξ|Re(a+a′)−1. (1.11)

1.4 Hypergeometric functions of the complex field

Let a1|a′1, . . . , aq|a′q, b1|b′1, . . . , bp|b′p ∈ ΛC. Temporarily, we assume that they satisfy the condi-
tions:

Re(aα + a′α) > 0, Re(bβ + b′β) > 0. (1.12)

and ∑
α

Re(aα + a′α) +
∑
β

Re(bβ + b′β) < p+ q. (1.13)

We define the following function on ΛC:

KC
p q

[
(a|a′)
(b|b′)

; k+σ
2

∣∣∣−k+σ
2

]
:=

q∏
α=1

ΓC
(
aα + k+σ

2

∣∣∣a′α + −k+σ
2

) p∏
β=1

ΓC
(
bβ + −k−σ

2

∣∣∣b′β + k−σ
2

)
. (1.14)

Next, we define the hypergeometric functions of the complex field as the contour integral:

GC
p q

[
(a|a′)
(b|b′)

; z

]
:=

1

2πi

∑
k∈Z

∫
iR

KC
p q

[
(a|a′)
(b|b′)

; k+σ
2

∣∣∣−k+σ
2

]
z
−k−σ

2

∣∣ k−σ
2 dσ. (1.15)

The integration is taken along the imaginary axis iR. The condition (1.13) provides the condi-
tional convergence of the integral in σ and the absolute convergence of the series (see Sections 2.2
and 2.3 below). Under the stronger condition∑

α

Re(aα + a′α) +
∑
β

Re(bβ + b′β) < p+ q − 1 (1.16)

all integrals in σ convergence absolutely (this follows from (1.11)).
The expression (1.14) has poles (they are analyzed in Section 2.3) in σ originating from two

groups of factors. We call poles of the factors ΓC(a+ k+σ
2

∣∣a′+ −k+σ
2

)
left poles, the poles of the

factors ΓC(b+ −k−σ
2

∣∣b′ + k−σ
2

)
right poles. Under the conditions (1.12) left poles are contained

in the left half-plane Reσ < 0, right poles are contained in the right half plane Reσ > 0, and
the axis iR separates these groups of poles.
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As usual (see [43]) we can write the analytic continuation of GC
p q

[ (a|a′)
(b|b′) ; z

]
to a wider domain

of (a|a′), (b|b′) by moving integration contours. Let us omit the condition (1.12) and fix aα|a′α,
bβ|b′β. Then iR separates left and right poles for all but a finite number of summands. Assume

aα + bβ /∈ Z+ for all α, β. (1.17)

For each k we choose a contour Lk that coincides with iR at infinity and separates left and right
poles of the corresponding summand, the result of the integration does not depend on a choice
of Lk. Then we replace the expression (1.15) by∑

k

∫
Lk

and get an expression of our integral in the domain defined by conditions (1.13), (1.17).

1.5 The statements of the paper

For the same (a|a′), (b|b′) we define the expression ΣC
+(z) by

ΣC
+

[
(a|a′)
(b|b′)

; z

]
:= 2

q∑
j=1

zaj |a
′
j ·
∏
β

ΓC(bβ + aj
∣∣b′β + a′j

)
·
∏
α 6=j

ΓC(aα − aj∣∣a′α − a′j)
× Fp q−1

[
(bα + aj)

(1− aα + aj)\j
; (−1)q z

]
Fp q−1

[
(b′α + a′j)

(1− a′α + a′j)\j
; (−1)p z

]
. (1.18)

We also define the expression ΣC
−(z) by

ΣC
−

[
(a|a′)
(b|b′)

; z

]
:= ΣC

+

[
(b|b′)
(a|a′)

; z−1

]
.

Theorem 1.2. Let (a|a′), (b|b′) satisfy the conditions (1.12) and (1.13).

(a) For q > p we have

GC
p q

[
(a|a′)
(b|b′)

; z

]
= ΣC

+

[
(a|a′)
(b|b′)

; z

]
and for q < p we have pG

C
q (z) = ΣC

−(z).

(b) For p = q

GC
p q (z) =

{
ΣC

+(z), if |z| < 1,

ΣC
−(z), if |z| > 1.

Remark 1.3. This statement and the main argument for its proof are potentially contained in
the paper by Ismagilov [24, Lemma 2].

Corollary 1.4. The function F (z) := GC
p q

[ (a|a′)
(b|b′) ; z

]
satisfies the following system of differential

equations

DF = 0, DF = 0, (1.19)

where

D := (−1)q
p∏

α=1

(
z
∂

∂z
+ aα

)
− z

q∏
β=1

(
z
∂

∂z
− bβ

)
, (1.20a)

D := (−1)p
p∏

α=1

(
z
∂

∂z
+ a′α

)
− z

q∏
β=1

(
z
∂

∂z
− b′β

)
. (1.20b)
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Consider the expression GC
p q

[ (a|a′)
(b|b′) ; z

]
as a function of a variable z and parameters (a|a′),

(b|b′), i.e., a function defined on a certain domain in the space

C× (ΛC)p+q ' C× Zp+q × Cp+q.

Fixing integer parameters3 (a−a′), (b−b′) we get a countable collection of functions on domains
in C× Cp+q.

Next, fix α, β, fix also m, m′ ∈ Z+. Consider the subset S(α, β;m,m′) in C×(ΛC)p+q defined
by the equations{

aα + bβ = m,

a′α + b′β = m′.
(1.21)

Proposition 1.5. For fixed (a − a′) ∈ Zp+q, (b − b′) ∈ Zp+q the expression GC
p q

[ (a|a′)
(b|b′) ; z

]
as

a function of (a), (b), z admits an extension to a function which is real analytic in z (i.e., real
analytic as a function in two variables Re z, Im z) in the domain

z ∈ C \ {0}, if p 6= q,

z ∈ C \ {0, (−1)p}, if p = q,

and meromorphic in (a), (b) with singularities (simple poles) located in⋃
α,β,m,m′

S(α, β;m,m′).

Lemma 1.6.

(a) Let the parameters (a|a′), (b|b′) satisfy the conditions

Re(aα + a′α) > 0, Re(bβ + b′β) > 0,∑
α

Re(aα + a′α) +
∑
β

(bβ + b′β) < p+ q − 1.

Then the function GC
p q

[ (a|a′)
(b|b′) ; z

]
is contained in L2

(
C, |z|−2 d z

)
.

(b) Under the same conditions

1

2π

∫
C
zσ−1|σ′−1 GC

p q

[
(a|a′)
(b|b′)

; z

]
d z = KC

p q

[
(a|a′)
(b|b′)

;σ|σ′
]
,

where the integral is understood as a Mellin transform in L2.

Theorem 1.7. Let two functions

GC
p q

[
(a|a′)
(b|b′)

; z

]
, GC

r s

[
(c|c′)
(d|d′)

; z

]
be contained in L2

(
C, |z|−2 d z

)
. Then

1

2π

∫
C
GC
p q

[
(a|a′)
(b|b′)

; z

]
· GC
r s

[
(c|c′)
(d|d′)

;
t

z

]
d z

z1|1 = GC
p+r q+s

[
(a|a′), (c|c′)
(b|b′), (d|d′)

; t

]
. (1.22)

Taking p = q = 1 (see (3.2)) we get a counterpart of formula (1.3):

1

2π

∫
C
za|a

′
(1 + z)−a−b|−a

′−b′ · GC
r s

[
(c|c′)
(d|d′)

;
t

z

]
d z

z1|1

=
1

2ΓC(a+ b|a′ + b′)
GC

1+r 1+s

[
a|a′, (c|c′)
b|b′, (d|d′)

; t

]
.

3The conditions (1.12) and (1.13) allow arbitrary integer parameters.
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2 Proofs

2.1 Asymptotics of ΓC

Let us derive formula (1.10) for the asymptotics of the function ΓC(a + ξ|a′ − ξ). First, let us
verify that the right-hand side is single-valued on Λ. We must verify that the expression

exp
{
ξ ln ξ − ξ ln ξ

}
, ξ = k+is

2

is single valued. Represent ξ = reiϕ. We transform our expression as

exp
{
ξ(ln(r) + iϕ+ 2πin)− ξ(ln(r)− iϕ− 2πin)

}
= exp

{
(ξ − ξ) ln r + (ξ + ξ)(iϕ+ 2πin)

}
.

We have ξ + ξ ∈ Z and therefore the exponential is single valued.

Next, we apply the Stirling formula in the form (see [13, equation (1.18(3))])

ln Γ(c+ z) =
(
z + c− 1

2

)
ln z − z + 1

2 ln(2π) +O
(
z−1
)
, where | arg(z)| < π − ε,

and get

Γ(a+ ξ) '
√

2π exp
{(
ξ + a− 1

2

)
ln ξ − ξ

}
,

Γ(1− a′ − ξ) '
√

2π exp
{(
ξ − a′ + 1

2

)
ln ξ − ξ

}
.

The ratio gives us (1.10). An evaluation of the asymptotics in the sector | arg(−z)| < π−ε gives
the same result.

Corollary 2.1. Let Re(aα + a′α) > 0, Re(bβ + b′β) > 0. Denote

υ :=
∑

(aα + a′α) +
∑

(bβ + b′β).

(a) If υ < p+ q, then F (k, is) := KC
p q

[ (a|a′)
(b|b′) ; k+is

2

∣∣; −k+is
2

]
tends to 0 as |k + is| tends to ∞.

(b) If υ < p + q − 1, then for each k the function F (k, is) as a function in s is integrable.
Under the same condition F (k, is) is contained in L2(Λ).

(c) If υ < p+ q − 2, then F (k, is) is contained in L1(Λ).

Remark 2.2. Formula (1.10) also gives us asymptotics of KC
p q on vertical lines σ = h + is.

Indeed,

Γ
(
a+ k+h+is

2

∣∣a′ + −k+h+is
2

)
= Γ

(
a+ h

2 + k+is
2

∣∣a′ + h
2 + −k+is

2

)
,

and we can control integrability under shifts of the integration contour.

2.2 Decomposition of Mellin–Barnes integrals in residues

Now we start to prove Theorem 1.2, i.e., to derive the quadratic expressions of the functions GC
p q

in terms of the usual hypergeometric functions Fp q.

First, we write the definition (1.15) of GC
p q in the form

∑
k∈Z

z−k/2
∣∣k/2Ik(z), Ik(z) =

1

2πi

∫
(. . . )|z|−σ dσ.



Barnes–Ismagilov Integrals and Hypergeometric Functions of the Complex Field 9

The integrals Ik(z) are special cases of Mellin–Barnes integrals, i.e., integrals of the type

JA,BC,D (a, b, c, d;u) =
1

2πi

∫
L

A∏
α=1

Γ(aα + σ)
B∏
β=1

Γ(bβ − σ)

C∏
γ=1

Γ(cγ + σ)
D∏
δ=1

Γ(dδ − σ)

u−s ds, (2.1)

where L is a contour separating poles of factors Γ(aα + σ) and poles of Γ(bβ − σ). The behavior
of such Mellin–Barnes integrals (Meijer G-functions) was investigated by Meijer, his results
are exposed in [3, 30, 31]. Under certain conditions J(a, b, c, d;u) can be expressed in terms
of functions Σ±(z), where Σ+(z) is the sum of residues of the integrand at poles of factors
Γ(aα + σ), and Σ−(z) the sum of residues at poles of Γ(bβ − σ).

In our case A = D = q, B = C = p, and u = |z| is a positive real. The contour L coincides
with the imaginary axis at infinity. The asymptotics of the absolute value of the integrand on
the imaginary axis is

∼ |σ|

q∑
α=1

Re(aα−dα)+
p∑

β=1
Re(bβ−cβ)

,

see [13, equation (1.18(4))]. One of the statements of [31, Theorem 18] implies that if the inte-
grand tends to zero on the imaginary axis, then the integral J(a, b, c, d;u) conditionally converges
if the integrand tends to 0 at infinity for u > 0 and is given by

– Σ+(u) for q > p;

– Σ−(u) for q < p;

– for p = q we have Σ+(u) if 0 < u < 1 and Σ−(u) for u > 1.

If
∑

Re(aα − dα) +
∑

Re(bβ − cβ) < −1, then the absolute convergence is obvious.
In our case aα is replaced by aα+k/2, bβ by bβ−k/2, and cβ 7→ 1−b′β−k/2, dα 7→ 1−a′α+k/2.

Therefore under our conditions (1.12), (1.13) all integrals Ik converge.

2.3 Evaluation of sums of residues

Lemma 2.3. Fix a|a′ and consider the following family of functions:

γk(σ) := ΓC(a+ k+σ
2

∣∣a′ + −k+σ
2

)
.

Denote by Ω the sets of all points (k, σ) ∈ Z× C such that σ is a pole of γk(σ).

(a) The set Ω is contained in the half-plane Reσ < 0 if and only if Re(a+ a′) > 0.

(b) The set Ω consists of points

k = −m+m′ − a+ a′,

σ = −m−m′ − a− a′,

where m, m′ range in Z+.

Proof. (a) Let all poles be contained in the domain Reσ < 0. Taking k = a′ − a we get

γa′−a(σ) = ΓC(a+ a′−a+σ
2

∣∣a′ + −a′+a+σ
2

)
= ΓC(a+a′

2 + σ
2

∣∣a+a′

2 + σ
2

)
.

The point σ = −(a+ a′) is a pole of γa′−a(σ). Therefore, Re(a+ a′) > 0.
Conversely, let Re(a+ a′) > 0. Consider (k, σ) ∈ Ω. Then (see Section 1.3)

a+ k+σ
2 = −m ∈ Z−, a′ + −k+σ

2 = −m′ ∈ Z−. (2.2)

Therefore a+ a′ + σ ∈ Z− and Imσ < 0.
(b) We solve the system (2.2). �
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Evaluation of the sum of residues (the proof of Theorem 1.2). For definiteness assume
that p 6 q. Let us write the residue R(j;m,m′) of the integrand (1.15) at a point

k = −m+m′ − aj + a′j , σ = −m−m′ − aj − a′j .

We have

k+σ
2 = −aj −m, −k+σ

2 = −a′j −m′,

and keeping in mind (1.9) we get

R(j;m,m′) =
2(−1)m

m!m′!

∏
α 6=j

ΓC(aα − aj −m∣∣a′α − a′j −m′)
×
∏
β

ΓC(bβ + aj +m
∣∣b′β + a′j +m′

)
× zaj+m|a

′
j+m

′
.

Applying (1.8c) and (1.8d) we come to

R(j;m,m′) = 2
(−1)m

m!m′!

∏
α 6=j

ΓC(aα − aj∣∣a′α − a′j)(−1)m

(1− aα + aj)m(1− a′α + a′j)m′

×
∏
β

ΓC(bβ + aj
∣∣b′β + a′j

)
bβ + aj

)
m

(b′β + a′j)m′(−1)m
′ × zaj+m|a

′
j+m

′
.

Reordering factors, we get

2zaj |a
′
j

∏
α 6=j

ΓC(aα − aj∣∣a′α − a′j)∏
β

ΓC(bβ + aj
∣∣b′β + a′j

)

× (−1)mq
zm
∏
β

(bβ + aj
)
m

m!
∏
α6=j

(1− aα + aj)m
× (−1)m

′p

zm
′∏
β

(b′β + a′j
)
m′

m′!
∏
α 6=j

(1− a′α + a′j)m′
.

Formal calculation with series gives∑
m,m′

R(j,m,m′) = 2zaj |a
′
j

∏
α 6=j

ΓC(aα − aj∣∣a′α − a′j)∏
β

ΓC(bβ + aj
∣∣b′β + a′j

)

×
∑
m

(
(−1)qz

)m∏
β

(bβ + aj
)
m

m!
∏
α 6=j

(1− aα + aj)m
×
∑
m′

(
(−1)pz

)m′∏
β

(bβ + aj
)
m′

m′!
∏
α 6=j

(1− a′α + a′j)m′
.

We get a product of two hypergeometric series whose radius of convergence is ∞ if q > p and 1
if q = p. They are absolutely convergent in the disk of convergence, therefore the last identity
really takes place. Therefore∑

j

∑
m,m′

R(j,m,m′) = ΣC
+(z).

On the other hand the absolute convergence allows us to write∑
m,m′

R(j,m,m′) =
∑
k∈Z

∑
m,m′ : m−m′=k

R(j,m,m′) =
∑
k∈Z

(z/z)k/2Ik. (2.3)

Thus we proved the coincidence of GC
p q and ΣC

+. The summation of residues at the right poles

of pK
C
q is similar.

It is important that the convergence of the series
∑
k∈Z

in (2.3) is locally uniform in the pa-

rameters aα, bβ near any point (a0) ∈ Cq, (b0) ∈ Cp, for which the coefficients at zlzl
′

are
well-defined. �
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2.4 The application of the Mellin transform

Our next purpose is Theorem 1.7 about evaluations of the convolution integrals∫
C
GC
p q (. . . ; z) GC

r s (. . . ; t/z)
d z

z1|1 .

Under the condition of Corollary 2.1 the integral (1.15) defining a GC
p q -function is the inverse

Mellin transform of the function KC
p q . Therefore the function KC

p q is the direct Mellin transform

of GC
p q . This is the statement of Lemma 1.6.
The Mellin transform is the Fourier transform on the group C×, therefore it sends multiplica-

tive convolutions to products. This property remains to be valid if both functions are contained
in L2, see [44, Theorem 64, Section 3.13].4 This implies Theorem 1.7.

2.5 The differential equations

Here we derive the system (1.19) of differential equations for a function GC
p q (the statement of

Corollary 1.4). We can use the explicit expressions ΣC
± for GC

p q obtained in Theorem 1.2. The

formula (1.18) for ΣC
+ has the form∑

CjΦj(z) ·Ψj(z),

where Cj do not depend on z and

Φj(z) = zaj Fp q−1

[
(bα + aj)

(1− aα + aj)\j
; (−1)p+qz

]
.

The equation DF = 0 of the system (1.19) is slightly modified equation for generalized hy-
pergeometric functions, see [43, Section 2.1.2] or [30, Section 5.2]. The functions Φj(z) form a
fundamental system of solutions of this equation in holomorphic functions on C.

This implies Corollary 1.4.

Remark 2.4. The statement also follows from the identities (3.10a)–(3.11b) established below.

2.6 The analytic continuation

It remains to prove Proposition 1.5 about the analytic continuation of the function GC
p q

[ (a|a′)
(b|b′) ; z

]
in the variable z and in the parameters (a|a′), (b|b′).

(1). Assume p 6= q, for definiteness let p < q. First, we omit the condition (1.12). A value
of GC

p q at z is defined by an infinite sum of contour integrals Ik and the convergence is locally
uniform in the parameters. For all but a finite number of summands the imaginary axis iR
separates the left poles and right poles of the integrand (see the terminology of Section 1.4).
Consider one of the remaining summands, say Im. A contour Lm separating left poles and
right poles of (1.15) exists if and only if left poles differ from right poles. The condition (1.21)
is the condition of collision of left and right poles. Two separation contours Lm, L′m can be
nonhomotopic. However

1

2πi

(∫
Lm

−
∫

iR

)
4Proof. Denote by C0 the space of continuous functions that have zero limit at infinity. The product is

a continuous operation L2 × L2 → L1. The Fourier transform sends L2 → L2 bijectively, and sends L1 → C0.
The convolution is a continuous operation L2×L2 → C0. Therefore the Fourier transform sends a product of two
L2-functions to the convolution.



12 Yu.A. Neretin

is a sum of residues at right poles contained in the half-plane Reσ < 0 minus a sum of residues
at left poles contained in the half-plane Reσ > 0. This expression does not depend on a choice
of separation contour. Clearly, a contour integral is holomorphic in the parameters.

So the sum of contour integrals is well-defined in the domain defined by conditions (1.16),
(1.17) (absolute convergence and absence of collisions).

On the other hand the generalized hypergeometric functions Fp q−1 meromorphically depend
on their parameters, and therefore Σ+(z) meromorphically depends on parameters and this
allows to omit the condition (1.13) for the convergence. Sums of power series are real analytic
and this implies real analyticity of Σ+(z) for z ∈ C \ 0.

Possible poles are located at hyperplanes{
aj + bβ ∈ Z−,
a′j + b′β ∈ Z−,

for some j and β and{
aα − aj ∈ Z,
a′α − a′j ∈ Z,

for some j, α. It remains to notice that singularities of the second type are removable under the
open condition (1.16) and therefore they are always removable.

(2). Let p = q. The same argument can be applied for |z| < 1 and |z| > 1, it remains to
examine the function on the circle |z| = 1. We extend GC

p q (z) to the same domain of parameters
as above and come away to a smaller domain5

∑
Re(aα + a′α) +

∑
Re(bβ + b′β) < p− 2. (2.4)

Then the contour integral in (1.15) has continuous partial derivatives up to order p. By continuity
the equation DF = 0 is valid on the circle |z| = 1. The operator D is elliptic for z 6= 0, ±1.
Therefore under the condition (2.4) solutions of the equation DF = 0 are analytic (see, e.g., [22,
Theorem 8.5.1]). Consider a point z0 6= 1 on the circle |z| = 1. Any generalized hypergeometric
function defined in the disk |z| < 1 has an analytic continuation to a neighborhood U of z0.
Therefore the expression (1.18) for GC

p q (z) provides us an analytic continuation of Σ+(z) to U

(and coincides with ΣC
− in the intersection of U and the domain |z| > 1). This expression is

meromorphic in (a), (b) as above.

3 Additions

3.1 Some simple cases

3.1.1 The exponential

For p = 0, q = 1 formula (1.18) gives

GC
0 1

[
a|a′

–
; z

]
= 2za|a

′
e−zez. (3.1)

5So we assume p > 2. For the case p = 2 the analyticity on the circle is clear from explicit formulas, see [33];
the case p = 1 is trivial, see (3.2) below.
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3.1.2 The power function

For p = q = 1 we get

GC
1 1

[
a|a′

b|b′
; z

]
= 2za|a

′
ΓC(a+ b|a′ + b′) F1 0

[
a+ b

–
;−z

]
· F1 0

[
a′ + b′

–
;−z

]
= 2ΓC(a+ b|a′ + b′) za|a

′
(1 + z)−a−b|−a

′−b′ . (3.2)

The series F1 0 converge in the disc |z| < 1, but the final expression is well defined in C\{0,−1}.

3.1.3 The Kummer functions

For p = 1, q = 2 we get

GC
1 2

[
a1|a′1, a2|a′2

b|b′
; z

]
= 2ΓC(a1 + b|a′1 + b) ΓC(a2 − a1|a′2 − a′1)

× za1 F1 1

[
a1 + b

1− a2 + a1
; z

]
za
′
1 F1 1

[
a′1 + b′

1− a′2 + a′1
;−z

]
(3.3)

+
{

similar term obtained by the transposition a1|a′1 ←→ a2|a′2
}
.

Denote the hypergeometric functions in these expression by Φ1(z), Φ′1(z), Φ2(z), Φ′2(z). Then
za1Φ1(z), za2Φ2(z) is a fundamental system of holomorphic solutions of the equation DF = 0 of
the system (1.19), and za

′
1Φ′1(z), za

′
2Φ′2(z) is a fundamental system of antiholomorphic solutions

of the equation DF = 0 (generally, all these functions are ramified at 0 and ∞). Then the
functions

za1Φ1(z) za
′
1Φ′1(z), za2Φ2(z) za

′
1Φ′1(z), za1Φ1(z) za

′
2Φ′2(z), za2Φ2(z) za

′
2Φ′2(z)

is a basis of the space of solutions of the system (1.19) in a neighborhood of any point z0 6= 0,
see [33, Proposition 3.8]. For a1 − a2 /∈ Z solutions non-ramified at 0 and ∞ have the form

C1 z
a1|a′1Φ1(z)Φ′1(z) + C2 z

a2|a′2Φ2(z)Φ′2(z). (3.4)

The asymptotic expansion of confluent hypergeometric function F1 1(z) as z →∞ (see, e.g., [30,
Section 4.7]) in the sector | arg z| < π − ε is

F1 1

[a
b

; z
]

=
Γ(b)

Γ(b− a)
eiπ sgn(Im a)z−a

(
K−1∑
n=0

(a)n(1 + a− b)n
n!

(−z)−n +O
(
z−K

))

+
Γ(b)

Γ(a)
ezza−b

(
L−1∑
n=0

(b− a)n(1− a)n
n!

z−n +O
(
z−L

))
.

For generic C1, C2 the growth of expression (3.4) as |Re z| → ∞ is exponential. For the linear
combination (3.3) all exponential terms of the asymptotics disappear (and ratio of coefficients
in (3.3) is uniquely defined by this condition, existence of such ratio a priori is non-obvious).
A reminder is O

(
z−Nez

)
+ O

(
z−Ne−z

)
+ O(1) for any N , is too rough. However, under the

conditions Re(a1 + a′1) > 0, Re(a2 + a′2) > 0, Re(a1 + a′1 + a2 + a′2) < 1 our function GC
2 1 is

contained in L2
(
C, |z|−2 d z

)
.

3.1.4 The Bessel functions

For p = 0, q = 2 we get an expression

GC
0 2

[
a1|a′1, a2|a′2

–
; z

]
= 2ΓC(a2 − a1|a′2 − a′1)za1|a

′
1 F0 1

[
–

1 + a1 − a2
; z

]
F0 1

[
–

1 + a′1 − a′2
; z

]
+
{

similar term obtained by the transposition a1|a′1 ←→ a2|a′2
}
.
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3.1.5 The Gauss hypergeometric functions

For p = q = 2

GC
2 2

[
a1|a′1, a2|a′2
b1|b′1, b1|b1

; z

]
= za1|a

′
1ΓC(a2 − a1|a′2 − a′1)

2∏
β=1

ΓC(bβ + a1|b′β + a′1)

× F2 1

[
b1 + a1, b2 + a1

1 + a1 − a2
; z

]
F2 1

[
b′1 + a′1, b

′
2 + a′1

1 + a′1 − a′2
; z

]
+
{

similar term obtained by the transposition a1|a′1 ←→ a2|a′2
}
.

On the other hand Gelfand, Graev and Retakh [16] defined the analog of the Gauss hypergeo-
metric function by the Euler integral (see the detailed examination in [33, Section 3]):

FC
2 1

[
A|A′, B|B′

C|C ′
; z

]
:=

ΓC(B|B′)
ΓC(B|B′) ΓC(C −B|C ′ −B′)

×
∫
C
tB−1|B′−1(1− t)C−B−1|C′−B′−1(1− zt)−A|−A′ d t. (3.5)

We have

FC
2 1

[
A|A′, B|B′

C|C ′
; z

]
=

Γ(C|C ′)(−1)C−C
′

Γ(A|A′) Γ(B|B′)
F2 2

[
0|0, 1− C|1− C ′

A|A′, B|B′
; z

]
.

We do not know which notation is better. In any case, for the notation FC
2 1 formulas are precisely

parallel to the classical theory of the Gauss hypergeometric functions.
As for the Kummer and Bessel cases the system (1.19) has 4-dimensional space of local

solutions and a two-dimensional subspace of solutions that are non-ramified at 0. The func-
tion FC

2 1 is selected from this subspace by the condition of non-ramification at z = 1, see [33,
Proposition 3.11].

3.2 Some simple properties of the functions GC
p q

Here we imitate properties of the Meijer G-function (see Prudnikov, Brychkov and Marichev
[40, Vol. 3, Section 8.2]). Clearly, the function GC

p q is symmetric with respect to permutations
of a1|a′1, . . . , ap|a′p and of b1|b′1, . . . , bq|b′q. If am − al ∈ Z, then we have an additional symmetry

GC
p q

[
(a|a′)
(b|b′)

; z

]
= GC

p q

[
(a|a′)\m,l, am|a′l, a′m|al

(b|b′)
; z

]
, if ak − al ∈ Z

(if ak − al /∈ Z, then the right hand side makes no sense), this follows from (1.7).
Changing the variables k 7→ −k and σ 7→ −σ in (1.15) we get

GC
p q

[
(a|a′)
(b|b′)

; z

]
= GC

q p

[
(b|b′)
(a|a′)

; z−1

]
. (3.6)

Changing only the summation index k 7→ −k, we get

GC
p q

[
(a|a′)
(b|b′)

; z

]
= (−1)

∑
(aα−a′α)+

∑
(bβ−b′β) GC

p q

[
(a|a′)
(b|b′)

; z

]
.

Keeping in the mind the reflection formula (1.8b), we get

GC
p+1 q+1

[
(a|a′),
(b|b′),

c|c′

1− c|1− c′
; z

]
= (−1)c−c

′
GC
p q

[
(a|a′)
(b|b′)

; z

]
. (3.7)
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Shifting variables k 7→ k + l, σ 7→ σ + τ , we come to

zc|c
′
GC
p q

[
(a|a′)
(b|b′)

; z

]
= GC

p q

[
(a|a′) + c|c′

(b|b′)− c|c′
; z

]
. (3.8)

Keeping in mind (1.8b), we obtain

GC
mp mq

[
(a|a′), (a|a′) + 1

m |
1
m , . . . , (a|a

′) + m−1
m |

m−1
m

(b|b′), (b|b′) + 1
m |

1
m , . . . , (b|b′) + m−1

m |
m−1
m

; z

]

= mp+q−2−
∑

(aα+a′α)−
∑

(bβ+b′β)
m−1∑
l=0

GC
p q

[
(ma|ma′)
(mb|mb′)

; e2πil/mz1/mmmp(−q)
]
, (3.9)

here we have a summation, which is absent for the classical Meijer G-function.
Differentiating the integral by the parameter z we get(
−z ∂

∂z
+ aj

)
GC
p q

[
(a|a′)
(b|b′)

; z

]
= GC

p q

[
(a|a′)\j , (aj + 1)|a′j

(b|b′)
; z

]
, (3.10a)(

z
∂

∂z
+ bm

)
GC
p q

[
(a|a′)
(b|b′)

; z

]
= GC

p q

[
(a|a′)

(b|b′)\m, (bm + 1)|b′m
; z

]
. (3.10b)

Due to the (−1) in (1.8c), the similar equations for z ∂
∂z differ from (3.10a) and (3.10b) by signs(

−z ∂
∂z

+ a′j

)
GC
p q

[
(a|a′)
(b|b′)

; z

]
= − GC

p q

[
(a|a′)\j , aj |(a′j + 1)

(b|b′)
; z

]
, (3.11a)(

z
∂

∂z
+ b′m

)
GC
p q

[
(a|a′)
(b|b′)

; z

]
= − GC

p q

[
(a|a′)

(b|b′)\m, bm|(b′m + 1)
; z

]
. (3.11b)

The last four equalities (3.10a)–(3.11b) imply the differential equations (1.19)–(1.20b).
Also

GC
p q

[
(a|a′)\j , (aj + 1)|a′j

(b|b′)
; z

]
− GC
p q

[
(a|a′)\m, (am + 1)|a′m

(b|b′)
; z

]
= (aj − am) GC

p q

[
(a|a′)
(b|b′)

; z

]
,

and

GC
p q

[
(a|a′)\j , (aj + 1)|a′j

(b|b′)
; z

]
+ GC
p q

[
(a|a′)

(b|b′)\m, (bm + 1)|b′m
; z

]
= (aj + bm) GC

p q

[
(a|a′)
(b|b′)

; z

]
.

3.3 References, links and problems

(1). Gauss hypergeometric functions of the complex field (our GC
2 2 modulo a simple factor)

were defined by Gelfand, Graev and Retakh in [16] by the Euler integral (3.5). Many formulas
for such functions were obtained in [33, Section 3].

(2). Marichev [31] proposed the following trick, which became the main tool in the creation
of the Prudnikov, Brychkov and Marichev tables [40],6 see also comments in [41]. Many special
functions (and many elementary functions) are special cases of the Meijer G-functions, i.e., can

6See also the tables [4].
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be written as Mellin–Barnes integrals (2.1). Therefore they are inverse Mellin transforms of
products

A∏
α=1

Γ(Aα + σ)
B∏
β=1

Γ(Bβ − σ)

C∏
γ=1

Γ(Cγ + σ)
D∏
δ=1

Γ(Dδ − σ)

. (3.12)

Take two such functions Φ(x), Ψ(x). Then we can evaluate the convolution

Θ(x) =

∫ ∞
0

Φ(y)Ψ(x/y)y−1 dy.

Indeed, the Mellin transform of Θ is the product of Mellin transforms, therefore we get a product
of two functions of the type (3.12), i.e., a function of the same type. Now we can express Θ(x)
as a linear combination of hypergeometric functions.

Numerous formulas in tables of integrals (such as Gradshteyn and Ryzhik [18]) whose initial
derivations were ingenious can be obtained in this straightforward way. The table of evaluations
of G-functions in Prudnikov, Brychkov and Marichev [40, Vol. 3, Section 8.4] contains 90 pages,
for each pair of lines we can apply this trick.7

Our Theorem 1.7 with formulas (3.6), (3.7), (3.8) gives us the same tool.8 However, in our
case the picture is less sophisticated. The classical Meijer functions depend on 4 subscripts and
superscripts (see (2.1)), In our case the reflection formula (1.8b) allows to move ΓC-factors from
the denominator to numerator. As a result, functions GC

p q depend only on two subscripts p, q.
Apparently, most9 of identities for classical hypergeometric functions as they are exposed

in [13, 14] (Chapters 2, 4, 6, 7), [1, 43] have counterparts for functions GC
p q , but different

classical formulas can have the same counterpart (for instance the 5H5-Dougall formula and the
de Branges–Wilson integral correspond to one integral over Z× R, see [39]).

(3). A collection of beta-integrals involving products of ΓC is known, see Bazhanov, Man-
gazeev and Segeev [2], Kels [27, 28], Derkachov, Manashov and Valinevich [6, 8, 9, 10], Nere-
tin [39], Sarkissian and Spiridonov [42], in particular, this collection contains counterparts of
the de Branges–Wilson integral and the Nassrallah–Rahman integral. Such integrals can be
regarded as evaluations of functions GC

p p (z) at the point (−1)p.
(4). Such beta integrals and such hypergeometric functions arise as limits of elliptic beta-

integrals and the hypergeometric functions GC
p p as limits of elliptic hypergeometric functions,

see Sarkissian and Spiridonov [42].
(5). The classical expansion in Jacobi polynomials has a well-known continuous analog known

under terms ‘Olevski transform’, ‘generalized Mehler–Fock transform’, ‘Jacobi transform’, see,
e.g., [29]; there is also a second continuous analog [38]. The paper Molchanov and Neretin [33]
contains a complex counterpart of these 3 transformations (expansions in the Jacobi polynomials
and two integral operators), it is a unitary integral transform with GC

2 2 -kernel acting from
a certain weighted L2 on C to a certain weighted L2 on Λ ' Z× R.

The ‘Jacobi transform’ is a representative of a big zoo of hypergeometric integral transforms
(see, e.g., [46]), it is natural to think that their counterparts exist in GC

p q -cases. Integral trans-
forms also can be applied as a tool for the production of special-functional identities (clearly,
several transforms were used for the creation of [40, Vol. 3], on possibilities of the Jacobi trans-
form, see [37]). An example of application of the GC

2 2 -transform is contained in [39].

7Chapter 7 of the same book (160 pages) also provides us a material for this business.
8Our arguments are not sufficient for integrals (1.22) with functions GC

1 0 , see (3.1). Apparently, the for-
mula (1.22) remains valid in this case.

9With some exceptions, for instance an application of formula (3.9) can be problematic.
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(6). It is well-known that representation theory of the group SL(2,R) is closely related
to theory of hypergeometric functions (as the Bessel functions, the confluent hypergeometric
functions, the Gauss hypergeometric functions, F3 2(1), and the balanced F4 3(1)). Application
of harmonic analysis related to the Lorentz group10 SL(2,C) to special functions are far not
so popular (at least among pure mathematicians). However, if to ask such a question, then
hypergeometric functions of complex field come thick and fast.

— a tensor product ρ1 ⊗ ρ2 of two irreducible unitary representations of SL(2,C) is a multi-
plicity free direct integral (see Naimark [34, 35, 36]). Therefore we can canonically decompose
a triple tensor product

(ρ1 ⊗ ρ2)⊗ ρ3 = ρ1 ⊗ (ρ2 ⊗ ρ3)

in two ways. In the first case we decompose ρ1 ⊗ ρ2 and multiply each component by ρ3, in the
second case we start from ρ2 ⊗ ρ3. Realizing this idea11 we get two explicit decompositions of
the same representation, the intertwining operator splits into a direct integral of intertwining
operators acting in isotypic components, such operators can be regarded as counterparts of
Racah coefficients (6j-symbols). Ismagilov [23, 24] (see also Derkachov iand Spiridonov [11])
showed that such ‘Racah operators’ are integrals transforms whose kernels have a form GC

4 4 (1).
The ‘Racah operators’ are GC-counterparts of expansions in Racah polynomials, expansions in
Wilson polynomials, and the ‘Wilson function transforms’ defined by Groenevelt [19, 20].

— Recall that the Lorentz group SL(2,C) is locally isomorphic to the complex orthogo-
nal group SO(3,C). Consider the symmetric space SO(3,C)/SO(2,C), it can be regarded as
a quadric x2 + y2 + z2 = 1 in C3, or the complexification of the sphere x2 + y2 + z2 = 1
in R3. Under the complexification, the Laplacian on the real sphere splits into two commuting
Laplacians, one is holomorphic, another is anti-holomorphic. A question about their joint spec-
tral decomposition in a space of SO(2)-invariant functions leads to 2G2-transform considered in
Molchanov and Neretin [33].

The shortest way of appearance of GC
2 2 -functions is discussed in Section 3.4 below.

(7). Dotsenko and Fateev [12] obtained a complex version of the Selberg integral; Derkachov,
Manashov and Valinevich [9, 10] obtained multi-dimensional beta-integrals with products of ΓC-
functions (counterparts of the Gustafson’s extension of the second Barnes lemma).

There arises a question about multi-dimensional symmetric C-counterparts of the Heckman–
Opdam hypergeometric functions [21]. The obvious candidates are spherical distributions on
symmetric spaces GC/KC, where GC is a complex semisimple Lie group and KC a complex
symmetric subgroup.

On the other hand there are no reasons to hope that in the multi-dimensional case complex
spherical transforms are unitary operators (unexpectedly, the radial parts of Laplace operators
can be non-commuting in the Nelson sense, see [33, Theorem 1.1]).

3.4 The Vilenkin model for SL(2,C)

First, we modify notation. Let us denote elements of ΛC by bold letters, denote a|a′ by a, 1|1
by 1, and (−1)a−a

′
by (−1)a. Since Λ ' Z× R, we can denote∫

Λ
(. . . ) =

∑
k∈Z

∫
R

(. . . ).

10See old works Gelfand, Graev and Vilenkin [17], Naimark [34, 35, 36], Gelfand and Graev [15] on SL(2,C)-
harmonic analysis, see also Derkachov, Korchemsky and Manashov [5, 7].

11It is difficult to extend this approach to unitary representations of other groups since decompositions of
tensor products usually have multiplicities > 1 (even for SL(2,R)). Several multiplicity free cases were examined
in [20, 23, 24, 25, 26].
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Now let us explain how the hypergeometric functions FC
2 1 arise from representations of the

Lorentz group SL(2,C). Recall that this group can be realized as the group of all complex 2× 2
matrices

(
a b
c d

)
with determinant ad− bc = 1. The principal series of representations Tσ of this

group is parametrized by σ = σ|σ′ ∈ ΛC. They act in the space of functions on C by operators

Tσ

(
a b
c d

)
f(z) := f

(
b+ zd

a+ zc

)
(a+ zc)−1+σ.

For σ ∈ Λ we get unitary representations in L2(C), for details, see [17, Chapter III].
Let us realize the representations Tσ in a space of functions on Λ conjugating them by the

Mellin transform12

T̃σ

(
a b
c d

)
= M ◦ Tσ

(
a b
c d

)
◦M−1.

A straightforward calculation shows that

T̃σ

(
a b
c d

)
F (µ) =

1

4π2i

∫
Λ
L

[
µ,λ;

(
a b
c d

)]
F (λ) dλ,

where

L

[
µ,λ;

(
a b
c d

)]
=

∫
C
zµ−1(a+ zc)σ−λ−1(b+ zd)λ d z.

Substituting z = −a
cu we come to

L

[
µ,λ;

(
a b
c d

)]
= (−1)µaσ+µ−λ−1bλc−µ

ΓC(σ − λ+ µ)

ΓC(µ)ΓC(σ − λ)
F2 1

[
µ,−λ

σ − λ+ µ
;
ad

bc

]
.
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[10] Derkachov S.É., Manashov A.N., Valinevich P.A., SL(2,C) Gustafson integrals, SIGMA 14 (2018), 030,
16 pages, arXiv:1711.07822.
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